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Abstract

We show that for infinitely many prime numbers p there are at

least log log p/ log log log p distinct residue classes modulo p that are

not congruent to n! for any integer n.
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1 Introduction

For any odd prime p, let F (p) be the number of the distinct residue classes
modulo p that are missed by the sequence {n! : n = 1, 2, . . .}.

In F11 of [5], it is conjectured that F (p) ≈ p/e as p → ∞. This question
appears to be quite difficult, and very little is known at the present time
about the distribution of n! modulo p. Some evidence for the conjecture is
provided by [1], where it is shown that for a random permutation σ of the
set {1, . . . , p − 1}, the products

n
∏

i=1

σ(i), n = 1, . . . , p − 1,

hit the expected number of p(1 − 1/e) residue classes modulo p. It has
been remarked in [3] that F (p) ≤ p− (p−1)1/2 (which is based on the simple
observation that n = n!/(n−1)!). Several other results about the distribution
of n! modulo p can be found in [2, 3, 4, 7, 10], but unfortunately these give
very little insight into the behaviour of F (p).

Here, we show that the Chebotarev Density Theorem implies that the
relation lim supp→∞ F (p) = ∞ holds. Below, we give a slightly more precise
form of this statement using a result from [6].

The implied constants in the symbol ‘O’ are always absolute.
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2 Preparations

We use some standard notions of the theory of algebraic number fields which
can be found in [8] and many other standard textbooks.

Given two number fields K ⊂ L and a basis {β1, . . . , β`} for L over K

(thus ` = [L : K]), we denote by DL/K(β1, . . . , β`) the discriminant of this
basis. We also denote by NL/K(β) ∈ K the relative norm of an element β ∈ L.
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We recall the following formula for discriminants in a tower of finite ex-
tensions K ⊂ L ⊂ M (see [8, Chapter 2, Exercise 23]). If [L : K] = `,
[M : L] = m, and {β1, . . . , β`} and {γ1, . . . , γm} are bases for L over K and
M over L, respectively, then the discriminant of the basis {β1γ1, . . . , β`γm}
of M over K is given by

DM/K(β1γ1, . . . , β`γm) = Dm
L/K(β1, . . . , β`)NL/K

(

DM/L(γ1, . . . , γm)
)

. (1)

We also recall that the discriminant DF of an algebraic number field F

over Q divides the discriminant DF/Q(ϑ1, . . . , ϑN) of any basis {ϑ1, . . . , ϑN}
of F over Q, whenever ϑ1, . . . , ϑN are algebraic integers (see [8, Chapter 2]).

We now establish a useful estimate for the discriminant of the splitting
field of a polynomial over Z in terms of the differences between its roots.
This result may be of independent interest.

Lemma 1. Let α1, . . . , αt ∈ C be the roots of a monic irreducible polynomial

f(X) ∈ Z[X] of degree t. Then the discriminant DF of the splitting field

F = Q (α1, . . . , αt) satisfies the inequality

|DF| ≤ ∆t(t−1)t!/2,

where

∆ = max
1≤i<j≤t

|αi − αj |.

Proof. We consider the tower of extensions L0 = Q, Li = Li−1(αi), and let
ni = [Li : Li−1], i = 1, . . . , t. In particular, F = Lt.

We observe that for i = 1, . . . , t, the conjugates of αi over Li−1 are among
the roots of f . Therefore, for i = 1, . . . , t, the ni-tuple

(

1, αi, . . . , α
ni−1
i

)

is a
basis of Li over Li−1 whose discriminant is given by

DLi/Li−1
(1, αi, . . . , α

ni−1
i ) = (−1)ni(ni−1)/2

∏

r,s∈Ji

r 6=s

(αr − αs) (2)

for some set Ji ⊂ {1, . . . , t} of cardinality #Ji = ni.
For every i = 1, . . . , t, the n1 · . . . · ni-tuple

Ai =

(

i
∏

j=1

α
aj

j

)

0≤a1≤n1−1,...,0≤ai≤ni−1
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is a basis of Li over Q. We claim that the absolute value of the discriminant
of this basis |DLi/Q (Ai) | is a product of

Ni = n1 · . . . · ni · (n1 + . . . + ni − i)

factors of the form |αr − αs| for 1 ≤ r < s ≤ t.
We prove this by induction on i. For i = 1, the assertion is trivial. We

now assume that |DLi−1/Q (Ai−1) | is a product of Ni−1 such factors. Then,
by (1) and (2), |DLi/Q(Ai)| is a product of

Ni−1ni + n1 · . . . · ni · (ni − 1) = n1 · . . . · ni · (n1 + . . . + ni − i)

factors of the requested form. Taking into account that ni ≤ t − i + 1 for
i = 1, . . . , t, we derive

Nt ≤ t!

(

t(t + 1)

2
− t

)

=
t(t − 1)t!

2
.

Since, as we have mentioned, DF divides DF/Q(At), we obtain the inequality

|DF| ≤ |DF/Q(At)| ≤ ∆Nt ,

which concludes the proof.

Let us consider the family of polynomials

ft(X) = X(X + 1) . . . (X + t − 1) − 1, t = 1, 2 . . . . (3)

Lemma 2. For an integer t ≥ 5, the roots of the polynomial ft given by (3)
are real and belong to interval [−t + 1/2, 1/2].

Proof. It is enough to show that ft(X) alternates its sign at half integers
−k +1/2 for k = 0, . . . , t. We first remark that this property obviously holds
for gt(X) = X(X + 1) . . . (X + t − 1). Thus, it is now enough to show that
|gt(−k + 1/2)| > 1 for k = 0, . . . , t. But trivially,

|gt(−k + 1/2)| =
t−1
∏

i=0

|i − k + 1/2| ≥

(

3

2

)t−2 (
1

2

)2

≥

(

3

2

)4 (
1

2

)2

> 1

for t ≥ 6. For t = 5 this property can be verified directly.
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3 The Main Result

Theorem 3. The following bound holds:

lim sup
p→∞

F (p) log log log p

log log p
≥ 1.

Proof. For a sufficiently large integer t ≥ 1 we consider the polynomial ft

given by (3). It is well known (see [9, Part VIII, Chapter 2, Section 3,
Problem 121]) that ft is irreducible over Z. We denote by Ft = Q(α1, . . . , αt)
the algebraic number field generated by all the roots α1, . . . , αt of ft, and
let Dt be the discriminant of Ft. Then, by [6, Theorem 1.1], there exists a

prime number p ≤ D
O(1)
t which splits into a product of distinct ideals of first

degree in Ft over Q. This is equivalent to the fact that ft has t distinct zeros
0 < m1 < . . . < mt ≤ p−1 modulo p. In particular, (mi −1)! ≡ (mi + t−1)!
(mod p) for each i = 1, . . . , t. It is clear that mt + t−1 ≤ p−1, for otherwise
f(mt) ≡ −1 6≡ 0 (mod p). Also, m2 − 1 > 1. Therefore, the t − 1 values
(mi + t−1)! (mod p), i = 2, . . . , t all occur at least twice among the residues
of n! (mod p). Hence F (p) ≥ t − 1.

Combining Lemma 1 and Lemma 2, we derive that

|Dt| ≤ tt(t−1)t!/2,

thus p ≤ exp (O(t! t2 log t)) ≤ exp(tt), provided that t is large enough. Con-
sidering both possibilities t > log log p and t ≤ log log p we see that the
inequality

t ≥
log log p

log log log p

holds, which finishes the proof.
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