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Abstract. We give upper bounds for the number of solutions to con-
gruences with the Euler function ϕ(n) and with the Carmichael function
λ(n). We also give nontrivial bounds for certain exponential sums in-
volving ϕ(n). Analogous results can also be obtained for the sum of
divisors function and similar arithmetic functions.

1 Introduction

Let ϕ(n) denote the Euler function:

ϕ(n) = #{1 ≤ a ≤ n | gcd(a, n) = 1}.
Let p be a prime number, fixed throughout, and put ep(x) = exp(2πix/p) for all
x ∈ R. In this paper, we give upper bounds for exponential sums of the form

Sp(a,N) =

N
∑

n=1

ep (aϕ(n)) ,

where gcd(a, p) = 1, and N is sufficiently large. Our bounds are nontrivial for a
wide range of values of p, starting with p ≥ log9N . We remark that although it
might be possible to improve on this power of logN , for very small values of p
relative to N , it is simply not possible to obtain nontrivial bounds. In fact, it has
been shown in Theorem 3.5 of [5] that for any prime number p of size

p = o(log logN), (1.1)
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the congruence ϕ(n) ≡ 0 (mod p) holds for all positive integers n ≤ N with at most
o(N) exceptions; see (2.3) below for a more precise formulation of this statement.
Thus, for primes of this size, one has Sp(a,N) = N + o(N).

We also estimate more general sums of the form

Sp(f,N) =

N
∑

n=1

ep(f(ϕ(n))),

where f(x) is a polynomial with integer coefficients and degree d ≥ 2 that is not
constant modulo p. In fact, our methods can be used without any further modi-
fications to estimate the similar sums when f(x) is a rational function (one only
needs to deal appropriately with the poles).

We also expect that our methods can be applied to exponential sums with p
replaced by an arbitrary positive integer m, although certain arguments would be
more complicated. One should also be able to work with various other arithmetic
functions, including the sum of divisors function σ(n).

We also give bounds for the number Tp(a,N) of positive integers n ≤ N such
that ϕ(n) ≡ a (mod p) and for the number Lp(a,N) of positive integers n ≤ N
such that λ(n) ≡ a (mod p), where λ(n) denotes the Carmichael function. We
recall that λ(n) is defined to be the largest possible order of any element in the unit
group of the residue ring modulo n ≥ 1. More precisely, for a prime power qk, one
has

λ
(

qk
)

=

{

qk−1(q − 1) if q ≥ 3 or k ≤ 2,
2k−2 if q = 2 and k ≥ 3,

and for arbitrary n ≥ 2,

λ(n) = lcm
(

λ
(

qk1

1

)

, . . . , λ
(

qkν
ν

)

)

,

where n = qk1

1 . . . qkν
ν is the prime factorization of n. Of course, λ(1) = 1.

Throughout the paper, the implied constants in the symbols “O”, “�” and
“�” may occasionally, where obvious, depend on a real parameter ε > 0 and an
integer d ≥ 1 but are absolute otherwise. We recall that the notations U � V and
V � U are equivalent to the statement that U = O(V ) for positive functions U and
V . We also use the symbol “o” with its usual meaning: the statement U = o(V ) is
equivalent to U/V → 0.

Acknowledgements. Most of this work was done during a visit by W. B.
to Macquarie University, whose hospitality and support are gratefully acknowl-
edged. Work also supported in part, for W. B. by NSF grant DMS-0070628, and
for I. S. by ARC grant DP0211459.

2 Preparations

Here we collect some known number-theoretic estimates which are used in the
sequel.

For any integer n ≥ 2, let P (n) denote the largest prime divisor of n, and
put P (1) = 1. As usual, we say that an integer n ≥ 1 is Y -smooth if and only if
P (n) ≤ Y . Let

ψ(X,Y ) = #{1 ≤ n ≤ X |n is Y -smooth}.
The following estimate is a substantially relaxed and simplified version of Corol-
lary 1.3 of [13]; see also [3].
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Lemma 2.1 Let u = logX/ logY . For any u→ ∞ with u ≤ Y 1/2, we have

ψ(X,Y ) � Xu−u+o(u).

Throughout the sequel, we denote by P the set of all prime numbers, P [Y,X ]
the set of ` ∈ P with Y < ` ≤ X , and P [X ] = P [1, X ].

We also need the following simplified form of the Brun-Titchmarsh theorem;
see Theorem 1 in Section 2.3.1 of [9] or Theorem 3.7 in Chapter 3 of [10].

Lemma 2.2 For any X > k, let π(X ; k, a) be the number of primes ` ∈ P [X ]
such that ` ≡ a (mod k). Then

π(X ; k, a) � X

ϕ(k) log(2X/k)
.

Finally, our principal tool is the following bound for exponential sums with
prime numbers, which follows immediately from Theorem 2 of [16].

Lemma 2.3 For any X ≥ 2, the following bound holds:

max
gcd(c,p)=1

∣

∣

∣

∣

∣

∣

∑

`∈P[X]

ep(c`)

∣

∣

∣

∣

∣

∣

� (p−1/2 +X−1/4p1/8 + p1/2X−1/2)X log3X.

Proof Let Λ(n) denote the von Mangoldt function:

Λ(n) =

{

log ` if n is a positive power of some prime `,

0 otherwise.

According to Theorem 2 of [16], we have for any integer m ≥ 2:

max
gcd(c,p)=1

∣

∣

∣

∣

∣

m
∑

n=2

Λ(n) ep(cn)

∣

∣

∣

∣

∣

� (p−1/2 +m−1/4p1/8 + p1/2m−1/2)m log4m.

Taking M = bXc, we apply partial summation:

∑

`∈P[X]

ep(c`) =
M
∑

n=2

1

logn
Λ(n) ep(cn) +O(M1/2)

=
1

logM

M
∑

n=2

Λ(n) ep(cn)

+

M−1
∑

m=2

(

1

logm
− 1

log(m+ 1)

) m
∑

n=2

Λ(n) ep(cn) +O(X1/2)

� 1

logM

∣

∣

∣

∣

∣

M
∑

n=2

Λ(n) ep(cn)

∣

∣

∣

∣

∣

+

M−1
∑

m=2

1

m log2m

∣

∣

∣

∣

∣

m
∑

n=2

Λ(n) ep(cn)

∣

∣

∣

∣

∣

+M1/2.

The result follows.

Let Fd,p denote the set of polynomials with integer coefficients of degree d
whose leading coefficient is relatively prime to p; that is,

Fd,p =
{

f(x) = adx
d + . . .+ a1x+ a0 ∈ Z[x]

∣

∣ ad 6≡ 0 (mod p)
}

. (2.1)

For exponential sums over primes with polynomials from Fd,p, d ≥ 2, we use the
following bound of [7]. We remark that the condition d ≥ 2 is important; thus
Lemma 2.3 and Lemma 2.4 do not overlap.
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Lemma 2.4 For any ε > 0, d ≥ 2 and X ≥ 2, the following bound holds:

max
g∈Fd,p

∣

∣

∣

∣

∣

∣

∑

`∈P[X]

ep(g(`))

∣

∣

∣

∣

∣

∣

� p3/16+εX25/32.

For any integer a, let

Tp(a,N) = {1 ≤ n ≤ N |ϕ(n) ≡ a (mod p)}, (2.2)

and put Tp(a,N) = #Tp(a,N). In the special case where a ≡ 0 (mod p), we have
the following bound, which is a partial case of Theorem 3.5 of [5].

Lemma 2.5 For any N ≥ 2, we have

Tp(0, N) � N log logN

p
.

We remark that the bound of Lemma 2.5 becomes trivial when p = O(log logN),
which is very close to the threshold (1.1) below which it is not possible to obtain
nontrivial upper bounds. Indeed, for p satisfying (1.1), we have by inequality (4.2)
of [5]:

Tp(0, N) = N +O(N exp(−cp−1 log logN)), (2.3)

for some absolute constant c > 0.
To study congruences with the Carmichael function, we need the following

statement, which is Theorem 5 of [8].

Lemma 2.6 For all sufficiently large numbers N and any ∆ ≥ (log logN)3,
the number of positive integers n ≤ N with

λ(n) ≤ n exp (−∆)

is at most N exp
(

−0.69 (∆ log ∆)
1/3

)

.

3 Congruences with ϕ(n)

As in Section 2, let Tp(a,N) be defined by (2.2), and let Tp(a,N) = #Tp(a,N).
In this section, we consider the problem of estimating Tp(a,N) in the case where
a 6≡ 0 (mod p).

Theorem 3.1 The following bound holds:

max
gcd(a,p)=1

Tp(a,N) � Nw−w/2+o(w) +
Nw

p
,

where w = logN/ log p. Moreover, if p ≤ exp
(√

0.5 logN log logN
)

, then

max
gcd(a,p)=1

Tp(a,N) � Np−1+o(1).

Proof Without loss of generality, we can assume that p → ∞ as N → ∞,
since the bounds are trivial otherwise. Throughout the proof, let a be fixed with
gcd(a, p) = 1. We define

u =























logN

2 log p
if p ≥ exp

(√
0.5 logN log logN

)

,

log p

log log p
if p < exp

(√
0.5 logN log logN

)

.
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We also define a smoothness bound K = N1/u. Note that p ≤ K2/3 and u ≤ K1/2

for sufficiently large values of N , and that u→ ∞ as N → ∞.
Let E1 be the set of integers n ∈ [1, N ] such that n is K-smooth. Since all of

the conditions of Lemma 2.1 hold, we have

#E1 � Nu−u+o(u).

Next, let E2 be the set of integers n ∈ [1, N ] such that P (n) > K and P (n)2 |n.
Then

#E2 �
∑

`∈P[K,N1/2]

∑

K<n≤N
`2|n

1 ≤
∑

`∈P[K,N1/2]

N/`2 ≤ N
∑

k>K

1

k2
� N/K.

Now define N = {1, . . . , N}\ (E1 ∪ E2). Using the results above, we obtain that

Tp(a,N) � Nu−u+o(u) +N/K +
∑

n∈N
ϕ(n)≡a (mod p)

1.

Since every n ∈ N can be expressed in the form n = `m with ` ∈ P [K,N/m]
and gcd(`,m) = 1, and since gcd(a, p) = 1, it follows that

∑

n∈N
ϕ(n)≡a (mod p)

1 ≤
∑

1<m≤N/K
ϕ(m) 6≡0 (mod p)

∑

`∈P[K,N/m]
`≡am (mod p)

1,

where am ≡ 1 + aϕ(m)−1 (mod p). By Lemma 2.2,

∑

`∈P[K,N/m]
`≡am (mod p)

1 � N

mp log(2N/mp)
≤ N

mp log(2K/p)
� N

mp logK
,

since p ≤ K2/3. Hence,

∑

n∈N
ϕ(n)≡a (mod p)

1 ≤ N

p logK

∑

1<m≤N/K

1

m
� N log(N/K)

p logK
<
Nu

p
.

Therefore

Tp(a,N) � Nu−u+o(u) +N/K +Nu/p.

Because p ≤ K2/3, we see that the second term never dominates, and the result
follows.

The bound (2.3) suggests that when p is very small relative to N , one might
expect that Tp(a,N) = o(N/p). By refining the arguments in Theorem 3.1 in
order to make use of (2.3), we show that this is indeed the case in the following
quantitative form:

Theorem 3.2 There exists an absolute constant C > 0, such that for

p ≤ C
log logN

log log logN
,

the following bound holds:

max
gcd(a,p)=1

Tp(a,N) � N

p
exp(−Cp−1 log logN).
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Proof Without loss of generality, we can assume that p→ ∞ as N → ∞ since
otherwise the result follows trivially from (2.3). Let a be fixed with gcd(a, p) = 1.
Put u = exp(0.5cp−1 log logN), where c > 0 is the constant from (2.3); by our
hypothesis on the size of p, we see that u → ∞ as N → ∞. Finally, define
the smoothness bound K = N1/u. Since u = (logN)o(1), we have that K =
exp((logN)1+o(1)), hence u ≤ K1/2 and p ≤ K1/2 if N is sufficiently large.

Proceeding as in Theorem 3.1 with these choices for u and K, we obtain the
estimate

Tp(a,N) � Nu−u+o(u) +N/K +
N

p logK

∑

1<m≤N/K
ϕ(m) 6≡0 (mod p)

1

m
.

Using partial summation together with the estimate (2.3), we also have (with M =
bN/Kc):

∑

1<m≤N/K
ϕ(m) 6≡0 (mod p)

1

m

=
1

M
(M − Tp(0,M)) +

M−1
∑

m=2

(

1

m
− 1

m+ 1

)

(m− Tp(0,m))

� 1 +

M−1
∑

m=3

exp(−cp−1 log logm)

m
= 1 +

M−1
∑

m=3

1

m(logm)cp−1

� 1 + (logM)1−cp−1 � (logN)1−cp−1

.

Since
N

p logK
(logN)1−cp−1

=
N

p
exp(−0.5cp−1 log logN),

we derive the estimate

Tp(a,N) � Nu−u+o(u) +NK−1 +Np−1 exp(−0.5cp−1 log logN).

Now let C = c/3, and suppose that p satisfies the hypothesis of the theorem. It is
easily seen that

K = exp((logN)1+o(1)) � p exp(0.5cp−1 log logN).

Also,

u = exp(0.5cp−1 log logN) ≥ (log logN)1.5

� logC + log logN − log log logN ≥ log p,

thus

−u logu (1 + o(1)) � (1 − u/2) logu� log u− log p,

and therefore

u−u+o(u) � up−1 = p−1 exp(−0.5cp−1 log logN).

The result follows.
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4 Congruences with λ(n)

Let us define

Lp(a,N) = {1 ≤ n ≤ N |λ(n) ≡ a (mod p)},

and put Lp(a,N) = #Lp(a,N). Since the integers λ(n) and ϕ(n) always have the
same set of prime divisors, it follows that Lp(0, N) = Tp(0, N); thus the estimate
for Tp(0, N) in Lemma 2.5 applies to Lp(0, N) as well.

In this section, we combine Theorem 3.1 with Lemma 2.6 to estimate Lp(a,N)
in certain ranges when a 6≡ 0 (mod p).

Theorem 4.1 For

exp
(

3(log logN)3
)

≤ p ≤ exp

(

logN log log logN

5(log logN)3

)

,

the following bound holds:

max
gcd(a,p)=1

Lp(a,N)

� N
(

exp
(

−0.4w1/3 (logw)
2/3

)

+ exp
(

−0.5 (log p log log p)
1/3

))

,

where w = logN/ log p.

Proof Denote h(n) = ϕ(n)/λ(n). For any η ≥ 1, we have

Lp(a,N) ≤
∑

1≤h<η

∑

n∈Lp(a,N)
h(n)=h

1 +
∑

n∈Lp(a,N)
h(n)≥η

1 ≤
∑

1≤h<η

Tp(ah,N) +
∑

n∈Lp(a,N)
h(n)≥η

1.

Then, provided that

η ≥ exp
(

(log logN)3
)

, (4.1)

Theorem 3.1 and Lemma 2.6 together imply

Lp(a,N) � η

(

Nw−w/2+o(w) +
Nw

p

)

+N exp
(

−0.69 (log η log log η)1/3
)

.

Now put

η = min
{

ww/4, p1/2
}

.

It follows from the conditions of the theorem that (4.1) is satisfied and also that
w = po(1); consequently,

Lp(a,N) � Nη−1/2+o(1) +N exp
(

−0.69 (log η log log η)
1/3

)

� N exp
(

−0.69 (log η log log η)
1/3

)

,

and the result follows.

It is easy to see that one can slightly improve the constants that occur in the
statement of Theorem 4.1, both in the range specified for p and in the bound, but
we have not done so in order to provide a cleaner statement.
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5 Exponential Sums with ϕ(n)

We now show that the same arguments used in the proof of Theorem 3.1,
combined with the bound of Lemma 2.5, can be used to estimate exponential sums
with the Euler function.

Theorem 5.1 The following bound holds:

max
gcd(a,p)=1

|Sp(a,N)| � N

(

log4N

p1/2
+ w−2w/5+o(w)

)

,

where w = logN/ log p.

Proof Without loss of generality, we can assume that p ≥ log8N since the
bound is trivial otherwise. In particular, we can assume that p is sufficiently large
for our purposes. Throughout the proof, fix a with gcd(a, p) = 1. We define
K = p2.5 and denote by E1 the set of n ∈ [1, N ] which are K-smooth. Let

u =
logN

logK
= 2w/5.

It is easy to see that if w ≥ p1/3, then p ≤ log3N and the bound is trivial; thus we
can assume that u ≤ p1/2 ≤ K1/2. By Lemma 2.1, we have that

#E1 � Nu−u+o(u).

Denote by E2 the set of n ∈ [1, N ] for which P (n) > K and P (n)2 |n. Then

#E2 �
∑

`∈P[K,N ]

N/`2 � N/K.

Denote by E3 the set of n ∈ [1, N ] such that P (n)2 6 |n and p |ϕ(m), where m =
n/P (n). Since p |ϕ(n) for every n ∈ E3, Lemma 2.5 yields the estimate

#E3 � N log logN

p
� N log p

p
.

Finally, let N = {1, . . . , N}\ (E1 ∪ E2 ∪ E3). From the preceding bounds, it follows
that

Sp(a,N) =
∑

n∈N

ep(aϕ(n)) +O

(

N

(

log p

p
+ u−u+o(u) +K−1

))

=
∑

n∈N

ep(aϕ(n)) +O

(

N

(

log p

p
+ w−2w/5+o(w)

))

.

Now, every integer n ∈ N has a unique representation of the form n = m`,
where ` ∈ P [K,N ], ` > P (m), and p 6 |ϕ(m). Conversely, if Lm = max{K,P (m)},
then for any m ≤ N/K such that p 6 |ϕ(m) and any ` ∈ P [Lm, N/m], we have
n = m` ∈ N . Observing that ϕ(n) = ϕ(m)(` − 1), we obtain

∑

n∈N

ep(aϕ(n)) =
∑

m≤N/K
p6 |ϕ(m)

∑

`∈P[Lm,N/m]

ep(aϕ(m`))

=
∑

m≤N/K
p6 |ϕ(m)

ep(−aϕ(m))
∑

`∈P[Lm,N/m]

ep(aϕ(m)`).
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Write
∑

`∈P[Lm,N/m]

ep(aϕ(m)`) =
∑

`∈P[N/m]

ep(aϕ(m)`) −
∑

`∈P[Lm]

ep(aϕ(m)`),

and observe that the right hand side of the bound in Lemma 2.3 is a monotonically
increasing function of X . Then it follows that

∑

`∈P[Lm,N/m]

ep(aϕ(m`)) � N

m

(

p−1/2 +N−1/4m1/4p1/8 + p1/2m1/2N−1/2
)

log3N.

Recalling that m ≤ N/K = Np−5/2, we see that the first term always dominates
the other two. Hence,

∑

`∈P[Lm,N/m]

ep(aϕ(m`)) � N log3N

mp1/2
,

Therefore,

∑

n∈N

ep(aϕ(n)) � N log3N

p1/2

N
∑

m=1

1

m
� N log4N

p1/2
,

and we obtain the stated result.

It is easy to see that the bound of Theorem 5.1 is nontrivial when the conditions

logN = o(p1/8) and p = No(1)

both hold.
We now turn our attention to sums with polynomials f from the class Fd,p

given by (2.1), with d ≥ 2. As before, we remark that the condition d ≥ 2 is
important, thus Theorem 5.1 and Theorem 5.2 do not overlap.

Theorem 5.2 For any ε > 0 and d ≥ 2, the following bound holds:

max
f∈Fd,p

|Sp(f,N)| � N
(

p−1/4+ε + w−w/2+o(w)
)

,

for p ≥ logN , where w = logN/ log p.

Proof We use the same notation as in the proof of Theorem 5.1 except that
we put K = p2; thus u = logN/ logK = w/2 ≤ p = K1/2. As in the proof of
Theorem 5.1 we obtain

Sp(f,N) =
∑

n∈N

ep(f(ϕ(n))) +O

(

N

(

log p

p
+ u−u+o(u) +K−1

))

=
∑

m≤N/K
p6 |ϕ(m)

∑

`∈P[Lm,N/m]

ep(f(ϕ(m)(` − 1))) +O

(

N

(

log p

p
+ w−w/2+o(w)

))

.

It is clear that for each m in the sum above, the polynomial f(ϕ(m)(x−1)) ∈ Fd,p.
Therefore using Lemma 2.4 instead of Lemma 2.3, as in the proof of Theorem 5.1,
we derive that

∑

m≤N/K
p6 |ϕ(m)

∑

`∈P[Lm,N/m]

ep(f(ϕ(m)(` − 1))) � p3/16+ε
∑

m≤N/K

(N/m)25/32

� p3/16+εNK−7/32 = Np−1/4+ε,
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and we obtain the stated result.

Clearly, there are many possible admissible choices for K and thus a trade-off
between the exponent of p and ww (and the required bottom range of p).

6 Remarks

As we have already remarked, our approach should work in principle for ex-
ponential sums with f(ϕ(n)), where f is a polynomial with integer coefficients.
Appropriate analogues of Lemma 2.3 can be found in [7, 11, 12]. It would also
be interesting to consider such sums when f is a polynomial with irrational coeffi-
cients, however our methods do not seem to extend to this case. One can also fix
an integer g ≥ 1 of multiplicative order t modulo m ≥ 2 and consider the rather
exotic sums

Vm(a, g,N) =

N
∑

n=1

em

(

agϕ(n)
)

.

At least when t is prime, our method, combined with the upper bounds from [1] on
sums with ag` taken over primes `, should work in principle to estimate such sums.
It would also be interesting to estimate exponential sums with the Euler function
over integers taken from various special sets S, such as shifted primes.

It would also be interesting to extend our results in another direction, namely
to sums with arbitrary integer denominator m. In this case, as well as in the
estimate of sums Vm(a, g,N) for composite multiplicative orders t, one would need
an analogue of Lemma 2.5 for arbitrarym. Clearly, proving such an analogue seems
possible, but it requires some additional arguments. The problem of estimating the
number of solutions to the congruence ϕ(n) ≡ a (mod m), 1 ≤ n ≤ N , is an
interesting question in its own right, and it certainly deserves more attention. For
moduli that are products of a fixed number of primes (not necessarily distinct), a
generalization of Lemma 2.5 is given in [2]; in fact, it also applies to iterations of
the Euler function. In the case where the modulus m is fixed and N is growing,
rather detailed information about the distribution of ϕ(n), 1 ≤ n ≤ N , in residue
classes modulo m can be found in [4, 6, 15]. However, this question remains open
in the general case.

We also remark that by Lemma 2 of [14], almost all values of ϕ(n), 1 ≤ n ≤ N ,
are divisible by all prime powers

pα � log logN

log log logN
.

Therefore, for some constant c > 0 and some integer

m ≥ (logN)c/ log log log N

one has Tm(0, N) = N + o(N).
Sums with multiplicative characters might also be considered; in principle, our

methods should provide nontrivial bounds in certain ranges, similar to those of
Theorem 5.1.

Finally, we mention that our methods can be applied to the sum of divisors
function σ(n). However, it is still not clear how to estimate exponential sums with
the Carmichael function λ(n), even given its close relationship to the Euler function.
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