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Abstract

We give estimates for exponential sums of the form
∑

n6N Λ(n) exp(2πiagn/m), where
m is a positive integer, a and g are integers relatively prime to m, and Λ is the
von Mangoldt function. In particular, our results yield bounds for exponential sums of
the form

∑
p6N exp(2πiaMp/m), where Mp is the Mersenne number; Mp = 2p − 1 for any

prime p. We also estimate some closely related sums, including
∑

n6N µ(n) exp(2πiagn/m)

and
∑

n6N µ2(n) exp(2πiagn/m), where µ is the Möbius function.

1. Introduction

It is well-known that methods originating with Vinogradov [Vin54] have been used successfully to
find non-trivial estimates for a wide variety of exponential sums taken over the values of an integer
polynomial at prime numbers. Certain modern and more convenient variants of these methods
are due to Vaughan [Vau80] and to Heath-Brown [Hea82]. In this paper, we use such arguments
to estimate exponential sums, taken again at prime values, where the integer polynomial is now
replaced by an exponential function.

All of these methods employ a variant of the sieve of Eratosthenes to reduce the problem of
estimating exponential sums over primes to that of deriving estimates for sums over consecutive
integers and for a certain double sum with weights. For the case that we are considering here, in
the literature there are already a number of bounds for similar sums taken over consecutive integer
values [KS99,Kor72,Kor92,Nie78,Nie92]. The corresponding double sums have not been previously
studied, however. In § 2, we obtain such bounds as a generalization of those in [FK02,FS01].

Let m be an arbitrary positive integer. Put e(α) = exp(2πiα) for any real number α, and
em(α) = e(α/m). Our goal is to estimate exponential sums of the form

∑

n6N

Λ(n) em(agn), (1)

where a and g are integers relatively prime to m. As usual,

Λ(n) =

{
log p, if n is a power of a prime p,

0, otherwise,

is the von Mangoldt function, and log z denotes the natural logarithm of z. Let t denote the multi-
plicative order of g modulo m. We show that, for any given δ > 0, the exponential sum above is
small whenever t > m10/11+δ and N > t5/8+δm7/4.

Received 1 September 2002, accepted in final form 13 February 2003.
2000 Mathematics Subject Classification 11L07, 11L20.
Keywords: exponential sums over primes, Mersenne numbers.

The first author was supported in part by NSF grant DMS-0070628 and by Macquarie University (Sydney). The third
author was supported in part by NSERC grant A5123 and by the Max Planck Institut für Mathematik (Bonn).
The fourth author was supported in part by ARC grant A00000184.
This journal is c© Foundation Compositio Mathematica 2004.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Missouri: MOspace

https://core.ac.uk/display/62770032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


W. D. Banks et al.

Applying these considerations to the case g = 2, we deduce that, under the same conditions,
∑

p6N

em(aMp) = o(π(N)), (2)

where, for any prime p, Mp is the Mersenne number defined by Mp = 2p − 1. Here π(N) denotes
the number of primes p 6 N .

Certainly, it seems an interesting goal to ease the above restrictions so as to obtain estimates
when the period t is smaller and also to treat shorter sums where the method given in our principal
arguments (§ 3) seems to fail. Ironically, that method also fails to apply to the very long sums,
which should be the easier ones, and so, to achieve the full range of uniformity stated above, we
need to add (in § 4) some refinements and further ingredients which depend on the distribution of
primes in arithmetic progressions.

It seems natural to consider the analogous exponential sums wherein the von Mangoldt function
in (1) is replaced by another function of arithmetic interest, or the set of primes in (2) is replaced
by another interesting set of integers. In § 5, we consider the exponential sum

∑

n6N

µ(n) em(agn)

and obtain precisely the same bounds as for the original sum (1). Because of the extremely close
similarities in proof, we only sketch the argument. In § 6, we consider the corresponding sum

∑

n6N

µ2(n) em(agn)

over square-free integers. For this sum, the argument is much easier, and our results are considerably
stronger.

Throughout the paper, the implied constants in symbols ‘O’ and ‘�’ may depend, where obvious,
on one of the small positive parameters ε or δ, and are absolute otherwise (we recall that A� B is
equivalent to A = O(B)). For example, the well-known bound

τ(n) � nε (3)

holds for any ε > 0, where τ(n) denotes the number of positive integer divisors of n ∈ N.

All of our results below are uniform in all parameters except (when present) ε or δ. In particular,
our bounds are uniform over all integers a relatively prime to the modulus and over all integers g
with the same multiplicative order modulo m or q.

2. Preparation

We use the following result of [Vau80] in the form given in [Dav80, ch. 24].

Lemma 2.1. For any complex-valued function f(n) and any real numbers U, V > 1 with UV 6 N ,

we have ∑

n6N

Λ(n)f(n) � Σ1 + Σ2 + Σ3 + |Σ4|,

where

Σ1 =

∣∣∣∣
∑

n6U

Λ(n)f(n)

∣∣∣∣,

Σ2 = (logUV )
∑

v6UV

∣∣∣∣
∑

s6N/v

f(sv)

∣∣∣∣,
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Σ3 = (logN)
∑

v6V

max
w>1

∣∣∣∣
∑

w6s6N/v

f(sv)

∣∣∣∣,

Σ4 =
∑

k`6N
k>V, `>U

Λ(`)

∣∣∣∣
∑

d|k, d6V

µ(d)

∣∣∣∣f(k`).

The next result is essentially Theorem 10 in [Kor92, ch. 1]; see also the proof of Lemma 2
in [Kor72].

Lemma 2.2. Let ϑ be of multiplicative order T modulo a positive integer m. Then, for any H1 < H2

and any integer a relatively prime to m,

∑

H1<x6H2

em(aϑx) �

(
H2 −H1

T
+ 1

)
m1/2 logm.

In fact, the statement referred to in [Kor92] is the corresponding bound

∣∣∣∣
T∑

x=1

em(aϑx) eT (bx)

∣∣∣∣ 6 m1/2 (4)

for the relevant complete sum, which is valid for any integer b. Lemma 2.2 follows from this by the
standard method of ‘completing the sum’. Thus, the factor logm occurring in Lemma 2.2 is really
only necessary for the second term on the right-hand side, not the first.

We also need the following variant of the bound (4).

Lemma 2.3. Let ϑ be of multiplicative order T modulo a positive integer m. Then, for any integer

a relatively prime to m,

T∑

x=1
gcd(x,T )=1

em(aϑx) � 2ν(T )m1/2,

where ν(T ) is the number of distinct prime divisors of T .

Proof. Using the inclusion–exclusion principle to detect the coprimality condition gcd(x, T ) = 1, we
obtain

T∑

x=1
gcd(x,T )=1

em(aϑx) =
∑

d|T

µ(d)
T∑

x=1
x≡0 (mod d)

em(aϑx) =
∑

d|T

µ(d)

T/d∑

x=1

em(aϑdx),

where, as usual, µ denotes the Möbius function. Because ϑd is of multiplicative order T/d, we can
use the bound (4), which gives

∣∣∣∣∣

T∑

x=1
gcd(x,T )=1

em(aϑx)

∣∣∣∣∣ 6 m1/2
∑

d|T

|µ(d)| = 2ν(T )m1/2.

The following statement is the most important special case of Theorem 9 from [FK02].

Lemma 2.4. Let ϑ be of multiplicative order T modulo a positive integer m. Then, for any integers

a and b with gcd(a,m) = 1, we have

T∑

y=1

∣∣∣∣
T∑

x=1

em(aϑx + bϑxy)

∣∣∣∣
4

� T 9/4m5/2+ε.

17



W. D. Banks et al.

We are now ready to prove our basic estimate for weighted double sums that is needed for the
Vaughan combinatorial lemma. For any sequence α = (αk) of complex numbers with finite support,
we denote its `2 norm by

‖α‖ =

(∑

k

|αk|
2

)1/2

.

Lemma 2.5. Let m be a positive integer, g an integer relatively prime to m, and t the multiplicative

order of g modulo m. Let K, L, X, Y be real numbers with X,Y > 0. Then, for any two sequences

of complex numbers α = (αk) supported on the interval [K,K + X] and β = (β`) supported on

[L,L+ Y ], and for any integer a relatively prime to m, we have

∑

K<k6K+X
L<`6L+Y

αkβ` em(agk`) � ‖α‖‖β‖(X/t + 1)1/2(Y/t+ 1)1/2t21/32m5/16+ε.

Proof. First we group together terms in the sum in accordance with the greatest common divisor
of ` and t. By the triangle inequality,

∣∣∣∣∣
∑

K<k6K+X
L<`6L+Y

αkβ` em(agk`)

∣∣∣∣∣ 6
∑

d|t

σd(a),

where

σd(a) =

∣∣∣∣∣
∑

K<k6K+X

∑

L<`6L+Y
gcd(`,t)=d

αkβ` em(agk`)

∣∣∣∣∣.

Using the Cauchy inequality, we find

σd(a)
2

6
∑

K<k6K+X

|αk|
2

∑

K<k6K+X

∣∣∣∣∣
∑

L<`6L+Y
gcd(`,t)=d

β` em(agk`)

∣∣∣∣∣

2

6 ‖α‖2(X/t + 1)
t∑

k=1

∣∣∣∣∣
∑

L<`6L+Y
gcd(`,t)=d

β` em(agk`)

∣∣∣∣∣

2

= ‖α‖2(X/t + 1)
∑

L<`,r6L+Y
gcd(`,t)=gcd(r,t)=d

β`βr

t∑

k=1

em(a(gk` − gkr)).

Since 2|β`βr| 6 |β`|
2 + |βr|

2, we deduce that

σd(a)
2

6
1

2
‖α‖2(X/t + 1)

∑

L<`,r6L+Y
gcd(`,t)=gcd(r,t)=d

|β`|
2

∣∣∣∣
t∑

k=1

em(a(gk` − gkr))

∣∣∣∣

+
1

2
‖α‖2(X/t + 1)

∑

L<`,r6L+Y
gcd(`,t)=gcd(r,t)=d

|βr|
2

∣∣∣∣
t∑

k=1

em(a(gk` − gkr))

∣∣∣∣
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= ‖α‖2(X/t + 1)
∑

L<`,r6L+Y
gcd(`,t)=gcd(r,t)=d

|β`|
2

∣∣∣∣
t∑

k=1

em(a(gk` − gkr))

∣∣∣∣

6 ‖α‖2(X/t + 1)(Y/t+ 1)
∑

L6`6L+Y
gcd(`,t)=d

|β`|
2
∑

16r6t
gcd(r,t)=d

∣∣∣∣
t∑

k=1

em(a(gk` − gkr))

∣∣∣∣.

Since each element ` with gcd(`, t) = d can be represented in the form ` = dw with gcd(w, t/d) = 1,
and ϑd = gd is of multiplicative order t/d, it follows that the inner double sum over r and k does
not depend on ` (to see this, make the change of variables k 7→ kw−1, r 7→ rw). Therefore,

σd(a)
2

6 ‖α‖2(X/t + 1)(Y/t + 1)
∑

L6`6L+Y
gcd(`,t)=d

|β`|
2
∑

16r6t
gcd(r,t)=d

∣∣∣∣
t∑

k=1

em(a(gkd − gkr))

∣∣∣∣

6 ‖α‖2(X/t + 1)(Y/t + 1)
∑

L6`6L+Y
gcd(`,t)=d

|β`|
2

t/d∑

r=1

∣∣∣∣
t∑

k=1

em(a(ϑk
d − ϑkr

d ))

∣∣∣∣

= ‖α‖2(X/t + 1)(Y/t + 1)dS
∑

L6`6L+Y
gcd(`,t)=d

|β`|
2,

where

S =

t/d∑

r=1

∣∣∣∣
t/d∑

k=1

em(a(ϑk
d − ϑkr

d ))

∣∣∣∣.

By the Hölder inequality and Lemma 2.4, we see that

S4
6 (t/d)3

t/d∑

r=1

∣∣∣∣
t/d∑

k=1

em(a(ϑk
d − ϑkr

d ))

∣∣∣∣
4

� (t/d)3(t/d)9/4m5/2+ε,

so that

dS � t21/16d−5/16m5/8+ε � t21/16m5/8+ε.

Consequently,

σd(a) � ‖α‖(X/t + 1)1/2(Y/t+ 1)1/2t21/32m5/16+ε

(
∑

L6`6L+Y
gcd(`,t)=d

|β`|
2

)1/2

for every divisor d|t. Summing over d and using the Cauchy inequality, we obtain

∑

d|t

(
∑

L6`6L+Y
gcd(`,t)=d

|β`|
2

)1/2

6 (τ(t))1/2‖β‖.

Applying the bound (3) and taking into account the fact that t 6 m, we obtain the stated result.

In the special case where m = q is a prime number one can improve upon the preceding results.
In this case, instead of Lemma 2.4, we use the following stronger bound from [CFKLLS00] (see also
[CFS99] for an earlier result of this type).
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Lemma 2.6. Let ϑ be of multiplicative order T modulo a prime number q. Then, for any integers

a and b with gcd(a, q) = 1, we have

T∑

y=1

∣∣∣∣
T∑

x=1

eq(aϑ
x + bϑxy)

∣∣∣∣
4

� T 11/3q.

Using Lemma 2.6 in place of Lemma 2.4, we obtain the following stronger analogue of Lemma 2.5.

Lemma 2.7. Let q be a prime number, a and g integers not divisible by q, and t the multiplicative

order of g modulo q. Let K, L, X, Y be real numbers with X,Y > 0. Then, for any two sequences

of complex numbers α = (αk) supported on the interval [K,K + X] and β = (β`) supported on

[L,L+ Y ], we have

∑

K<k6K+X
L<`6L+Y

αkβ` em(agk`) � ‖α‖‖β‖(X/t + 1)1/2(Y/t+ 1)1/2t5/6q1/8+ε.

Finally, we need the following result.

Lemma 2.8. For K1/2 6 X 6 K, we have the bounds

∑

K<k6K+X

τ(k) � X logK and
∑

K<k6K+X

τ2(k) � X(logK)3.

These bounds, actually valid in a larger range, may be found for example as special cases of
Theorem 2 from [Shi80].

3. Main results

Theorem 3.1. Fix ε > 0. Let m be a positive integer, g an integer relatively prime to m, and t the

multiplicative order of g modulo m. Then we have the bound

max
gcd(a,m)=1

∣∣∣∣
∑

n6N

Λ(n) em(agn)

∣∣∣∣� (Nt−11/32m5/16 +N5/6t5/48m7/24)N ε,

where the implied constant depends only on ε.

Proof. Let U, V > 1 with UV 6 N and apply Lemma 2.1 with the function f(n) = em(agn). In the
notation of that lemma we have, by Chebyshev’s bound,

Σ1 =

∣∣∣∣
∑

16n6U

Λ(n)f(n)

∣∣∣∣ 6
∑

16n6U

Λ(n) � U. (5)

Next, since the multiplicative order of ϑ = gv is t/ gcd(t, v), Lemma 2.2 yields the bound

Σ2 6 logN
∑

16v6UV

(
N gcd(t, v)

vt
+ 1

)
m1/2 logm

6 Nt−1m1/2 logN logm
∑

16v6UV

gcd(t, v)

v
+ UV m1/2 logN logm.
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Moreover,

∑

16v6UV

gcd(t, v)

v
=
∑

d|t

∑

16v6UV
gcd(t,v)=d

d

v
6
∑

d|t

∑

16v6UV
d|v

d

v

=
∑

d|t

∑

16w6UV/d

1

w
�
∑

d|t

logUV 6 τ(t) logN.

Therefore, we obtain the estimate

Σ2 � (Nt−1m1/2 + UVm1/2)N ε. (6)

Similarly, we obtain the stronger bound

Σ3 � (Nt−1m1/2 + V m1/2)N ε. (7)

It remains only to estimate Σ4. Let us denote

A(k) =

∣∣∣∣
∑

d|k, d6V

µ(d)

∣∣∣∣,

so that, using (3), we obtain

A(k) 6 τ(k) � kε/4 and Λ(`) 6 log `� `ε/4. (8)

Now, let ∆ be fixed in the range 1/V < ∆ < 1/2, and define the set

Ω = {V (1 + ∆)i | 0 6 i 6 R},

where

R =

⌊
log(N/V )

log(1 + ∆)

⌋
� ∆−1 logN.

Then

Σ4 =
∑

k`6N
k>V, `>U

A(k)Λ(`) em(agk`) =
∑

K∈Ω

σ(K),

where

σ(K) =
∑

K<k6K(1+∆)
k<N/U

∑

U<`6N/k

A(k)Λ(`) em(agk`).

For any k in the range K < k 6 K(1 + ∆), we have N/k = N/K +O(∆N/K). Assuming that

∆N > K (9)

and using (8), it follows that

σ(K) = σ̃(K) +O(∆2N1+3ε/4),

where

σ̃(K) =
∑

K<k6K(1+∆)
k<N/U

∑

U<`6N/K

A(k)Λ(`) em(agk`).

Because Ω has at most O(∆−1 logN) elements, it follows that

Σ4 =
∑

K∈Ω

σ̃(K) +O(∆N1+ε). (10)

We can estimate each σ̃(K), using Lemma 2.5 together with (8), obtaining

σ̃(K) � N ε(∆K)1/2(N/K)1/2(∆K/t + 1)1/2(N/Kt + 1)1/2t21/32m5/16.
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We write this as

σ̃(K) � σ̃1(K) + σ̃2(K) + σ̃3(K) + σ̃4(K), (11)

where

σ̃1(K) = ∆N1+εt−11/32m5/16, σ̃2(K) = ∆N1/2+εK1/2t5/32m5/16,

σ̃3(K) = ∆1/2N1+εK−1/2t5/32m5/16, σ̃4(K) = ∆1/2N1/2+εt21/32m5/16.

For any real number α we trivially have
∑

K∈Ω
A6K6B

Kα � ∆−1(Bα +Aα) logN.

In particular, we derive that
∑

K∈Ω

σ̃1(K) � N1+εt−11/32m5/16,
∑

K∈Ω

σ̃2(K) � N1+εU−1/2t5/32m5/16,

∑

K∈Ω

σ̃3(K) � ∆−1/2N1+εV −1/2t5/32m5/16,
∑

K∈Ω

σ̃4(K) � ∆−1/2N1/2+εt21/32m5/16,

which are valid for every ε > 0. Putting these results together with (10) and (11), and then with (5),
(6), and (7), we find that

Σ4 � (B1 +B2 +B3 +B4 +B5)N
ε,

and
∑

n6N

Λ(n) em(agn) � |Σ4| + Σ1 + Σ2 + Σ3

� (B1 +B2 +B3 +B4 +B5 +B6 +B7)N
ε,

where

B1 = Nt−11/32m5/16, B2 = NU−1/2t5/32m5/16,

B3 = ∆−1/2NV −1/2t5/32m5/16, B4 = ∆−1/2N1/2t21/32m5/16,

B5 = ∆N, B6 = Nt−1m1/2, B7 = UVm1/2.

Note that the result is trivial unless B1 6 N and so we can assume that t > m10/11. From this
it follows that B6 6 B1, thus B6 can be neglected.

Next we choose U and V . We balance B2 and B3 by setting U = ∆V , and then we balance
both of these with B7 by choosing U = ∆2/5N2/5t1/16m−3/40, which gives B2 = B3 = B7 =
∆−1/5N4/5t1/8m7/20. It is easy to see these choices are optimal.

Now we choose ∆ to balance these with B5, the appropriate choice being ∆ = N−1/6t5/48m7/24;
this gives B2 = B3 = B5 = B7 = N5/6t5/48m7/24. This would certainly be an optimal choice for ∆
were it not for the presence of B4. Fortunately, this term does not present any real difficulty. Indeed,
it can now be seen that, for a non-trivial bound, we require N > t5/8m7/4. Using this together with
the trivial bound t 6 m and the above choice of ∆, one verifies that B4 = N7/12t29/48m1/6 < B5.

It remains only to check that our choices of U , V , ∆ satisfy the mild size restrictions imposed
earlier. Since we can assume N > 64t5/8m7/4, else the theorem is trivial, this implies ∆ 6 1/2 as
required. We also have ∆V > ∆U = N1/6t5/24m1/3 > 1 so that ∆ > 1/U > 1/V and U , V > 1.
In particular, since K 6 N/U , we see that the assumption (9) is satisfied for this choice of
parameters. Finally, UV = ∆−3(∆U)2 = N5/6t5/48m−5/24 6 N since t 6 m. The result follows.
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Theorem 3.2. Fix ε > 0. Let q be a prime number, g an integer not divisible by q, and t the

multiplicative order of g modulo q. We have

max
gcd(a,q)=1

∣∣∣∣
∑

n6N

Λ(n) eq(ag
n)

∣∣∣∣� (Nt−1/6q1/8 +N5/6t2/9q1/6)N ε,

where the implied constant depends only on ε.

Proof. We follow the proof of Theorem 3.1 and keep the same notation. Applying Lemma 2.7 instead
of Lemma 2.5, together with the estimate (8), we obtain that

σ̃(K) � N ε(∆K)1/2(N/K)1/2(∆K/t + 1)1/2(N/Kt + 1)1/2t5/6q1/8.

This improvement leads to the bound
∑

n6N

Λ(n) em(agn) � (B1 +B2 +B3 +B4 +B5 +B6 +B7)N
ε,

where

B1 = Nt−1/6q1/8, B2 = NU−1/2t1/3q1/8,

B3 = ∆−1/2NV −1/2t1/3q1/8, B4 = ∆−1/2N1/2t5/6q1/8,

B5 = ∆N, B6 = Nt−1q1/2, B7 = UV q1/2.

Balancing these expressions as before leads to the choice U = ∆V = ∆2/5N2/5t2/15q−3/20, then
to ∆ = N−1/6t2/9q1/6. Since the result is otherwise trivial we can assume that t > q3/4 and that
N > 64t4/3q; then Bj 6 N for j = 1, . . . , 6, B5 < B1, and B4 < B2 = B3 = B6 = B7. Since we can
also check that 1/V < 1/U < ∆ 6 1/2, and that U , V > 1, UV < N , the result follows.

4. Longer sums

The results of the previous section are not quite sufficient to give the range of uniformity claimed in
the introduction. It is easy to see that, as stated, the above estimates become trivial whenN becomes
extremely large in relation to m. Indeed, the factor N ε, which is not important when N and m are
of the same logarithmic order, becomes crucial for larger values of N . Nevertheless, it is possible to
overcome this problem by a slightly more careful treatment which we now describe.

Theorem 4.1. Let m be a positive integer and g an integer relatively prime to m. For each δ > 0,
there exists η > 0 such that if the multiplicative order t of g modulo m satisfies t > m10/11+δ , then

for all N > t5/8+δm7/4 we have the bound

max
gcd(a,m)=1

∣∣∣∣
∑

n6N

Λ(n) em(agn)

∣∣∣∣� Nt−η,

where the implied constant depends only on δ.

Proof. Let us fix a large constant A > 0. For N 6 mA, the desired result follows immediately from
Theorem 3.1.

We now extend the range of N for which our bound is non-trivial from mA up to exp(mγ) for
some fixed γ > 0. To do this, it suffices to replace the factor N ε in Theorem 3.1 by any expression of
the form mε(logN)c, where c > 0 is an absolute constant. Examining our earlier treatment, we see
at once that, in our bounds for Σ1, Σ2, and Σ3, the factor N ε can easily be replaced by mε(logN)2.

For Σ4, the matter is a bit more complicated. To estimate Σ4 we apply Lemma 2.8 to the sums
∑

K<k6K(1+∆)

A(k),
∑

K<k6K(1+∆)

(A(k))2, K ∈ Ω,
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using the trivial bound A(k) 6 τ(k). To verify that Lemma 2.8 is applicable note that

log(∆K)

logK
= 1 +

log ∆

logK
> 1 +

log ∆

log V
.

When N > mA and A > 0 is large, which we can assume to be the case, it is easily checked that
with our earlier choice of the parameters the right-hand side is 2/3+ o(1) as A increases. We choose
A sufficiently large so that the right-hand side is at least 1/2.

Tracing through the reasoning in our earlier treatment of Σ4, the first change required is in the
approximation of σ(K). To this end we require the first part of Lemma 2.8 which together with
trivial bound Λ(`) 6 logN yields

∑

K<k6K(1+∆)
k<N/U

∑

N/k<`6N/K

A(k)Λ(`) � ∆NK−1 logN
∑

K<k6K(1+∆)
k<N/U

A(k)

� ∆2N(logN)2.

The approximation now becomes

σ(K) = σ̃(K) +O(∆2N(logN)2),

so that (10) is sharpened to

Σ4 =
∑

K∈Ω

σ̃(K) +O(∆N(logN)3).

Next, in the application of Lemma 2.5 that provides bounds for each σ̃j(K), 1 6 j 6 4, we now use
the second part of Lemma 2.8 to estimate the sum over k, and we use the trivial bound Λ(`) 6 logN
together with the Chebyshev bound to estimate the sum over `. We find thatN ε can here be replaced
by mε(logN)2. A further factor of logN is introduced when these bounds are summed over K ∈ Ω.

Thus, without even bothering to optimize the final exponent of logN , we can choose it to be
c = 3 and take U , V , and ∆ as before. As a result, we obtain the bound of Theorem 3.1 but with
N ε replaced by mε(logN)3, and this extends the range for N (for which the results save a power
of t) up to exp(mγ) for any fixed γ < 3.

By refining our method in the manner indicated above, we can dispense with the case m >
(logN)C for any C > 3, so that in the remaining case we may assume m 6 (logN)C , say with
C = 4, which can be treated (as if the period m of the exponential sum is essentially fixed) by
appealing to the Siegel–Walfisz theorem for the distribution of primes in arithmetic progressions
modulo t. Thus

ψ(N ; t, b) =
∑

n6N
n≡b (mod t)

Λ(n) = χ0(b)N/ϕ(t) +O(N(logN)−8),

where ϕ is the Euler function, χ0 is the principal character modulo t, and where 8 can be replaced
by whatever we like. This result may be found (in more general form) in many places. It occurs for
example in [Dav80, ch. 22], albeit not under the name Siegel–Walfisz (although see the footnote on
p. 133).

We can write our exponential sum in the form

∑

n6N

Λ(n) em(agn) =
t∑

b=1

em(agb)ψ(N ; t, b).

On insertion of this in the asymptotic formula for ψ, the error term therein gives a contribution E
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which satisfies the bound E � tN(logN)−8 � Nt−1. The main term gives a contribution

M =
N

ϕ(t)

t∑

b=1
gcd(b,t)=1

em(agb)

and to complete the argument it remains to recall Lemma 2.3, the inequality 2ν(t) 6 τ(t), and the
bound (3).

Theorem 4.1 implies that, for any δ > 0, there exists positive real η such that if N > t5/8+δm7/4

and t > m10/11+δ , then

max
gcd(a,m)=1

∣∣∣∣
∑

p6N

em(agp)

∣∣∣∣� π(N)t−η, (12)

where the sum runs over all primes p 6 N . In particular, this bound holds for exponential sums
over Mersenne numbers, hence we obtain (2) under the stated conditions (with t equal to the order
of g = 2 modulo m). Indeed,

∣∣∣∣
∑

p6N

em(a(gp − 1))

∣∣∣∣ =

∣∣∣∣em(−a)
∑

p6N

em(agp)

∣∣∣∣ =
∣∣∣∣
∑

p6N

em(agp)

∣∣∣∣

and, applying partial summation, we obtain
∑

p6N

em(agp) =
∑

26n6N

1

log n
Λ(n) em(agn) +O(N1/2)

=
1

logN

N∑

n=2

Λ(n) em(agn) +

N−1∑

M=2

(
1

logM
−

1

log(M + 1)

) M∑

n=2

Λ(n) em(agn) +O(N1/2)

�
1

logN

∣∣∣∣
N∑

n=2

Λ(n) em(agn)

∣∣∣∣+
N−1∑

M=2

1

M log2M

∣∣∣∣
M∑

n=2

Λ(n) em(agn)

∣∣∣∣+N1/2.

After simple calculations, we obtain (12). Also, by Theorem 3.1 we see that

max
gcd(a,m)=1

∣∣∣∣
∑

p6N

em(aMp)

∣∣∣∣� (Nt−11/32m5/16 +N5/6t5/48m7/24)N ε

for any ε > 0.

Analogously, for sums with prime denominators, we obtain the following result.

Theorem 4.2. Let q be a prime number, g an integer relatively prime to q. For each δ > 0, there

exists η > 0 such that if the multiplicative order t of g modulo q satisfies t > q3/4+δ , then for all

N > t4/3+δq we have

max
gcd(a,q)=1

∣∣∣∣
∑

n6N

Λ(n) eq(ag
n)

∣∣∣∣� Nt−η,

where the implied constant depends only on δ.

Theorem 4.2 implies that, for any δ > 0, there exists positive real η such that if N > t4/3+δq
and t > q3/4+δ, then

max
gcd(a,q)=1

∣∣∣∣
∑

p6N

eq(ag
p)

∣∣∣∣� π(N)t−η.

In particular, this bound also holds for exponential sums over Mersenne numbers and implies (2)
when m = q is prime and the above conditions hold.
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From Theorem 3.2 we also have

max
gcd(a,q)=1

∣∣ ∑

p6N

eq(aMp)

∣∣∣∣� (Nt−1/6q1/8 +N5/6t2/9q1/6)N ε

for any ε > 0.

5. Sums weighted by the Möbius function

As is the case with many other sums over primes, the corresponding sums weighted by the Möbius
function can be treated by essentially the same techniques. In this section we give such results.
Because the methods are so very close to those in the previous sections we give only the briefest of
sketches.

Theorem 5.1. Theorems 3.1 and 4.1 hold under precisely the same conditions with the sum
∑

n6N

µ(n) em(agn) in place of
∑

n6N

Λ(n) em(agn),

as do Theorems 3.2 and 4.2 in the case where m = q is prime.

Sketch of Proof. Our starting point before was Lemma 2.1. To prove the results in this case we
need a similar combinatorial decomposition for µ. We may start, for example, with the following
formula from § 3 of [FI98]. Let h be any arithmetic function, and let H be the summatory function
H(n) =

∑
d|n h(d). Then, if U , V > 1 and n > U , we have

h(n) =
∑

b|n
b6V

µ(b)H(n/b) −
∑

bc|n
b6V, c6U

µ(b)h(c) +
∑

bc|n
b>V, c>U

µ(b)h(c).

Here, if we take h = Λ so that H(n) = log n, multiply by f , and then sum over n, we are led to
a proof of Lemma 2.1. If instead we take h = µ, so that (provided n > V ) we have H(n/b) = 0 for
all b|n with b 6 V , then we are led to the analogous bound

∑

n6N

µ(n)f(n) � Σ′
1 + Σ′

2 + Σ′
3 + |Σ′

4|,

where

Σ′
1 =

∣∣∣∣
∑

n6max{U,V }

µ(n)f(n)

∣∣∣∣, Σ′
2 =

∑

v6UV

τ(v)

∣∣∣∣
∑

s6N/v

f(sv)

∣∣∣∣,

Σ′
3 = 0, Σ′

4 =
∑

k`6N
k>V, `>U

µ(`)

∣∣∣∣
∑

d|k, d6V

µ(d)

∣∣∣∣f(k`).

Let us compare these with the corresponding sums Σj . We find that Σ′
1 can again be bounded

trivially, now by Σ′
1 6 max{U, V } which is worse than before but still very small, for example, when

compared to the bound we gave for Σ2. In estimating Σ′
2 the extra factor τ(v) causes only a little

trouble. Arguing as before in the proof of Theorem 3.1, we find that

∑

16v6UV

τ(v)
gcd(t, v)

v
� τ3(t) log2N,

so that the bound for Σ′
2 is worse only in that τ(t) has been replaced by τ3(t), the number of ways t

can be written as the product of three positive integers. Since τ3(t) � tε 6 mε, none of the theorems
is weakened at all. Obviously Σ′

3 is easier than before. A little thought discloses that Σ′
4 is virtually
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the same as before, being a bit easier in one or two places where we can take advantage of the fact
that the trivial bound for µ is better than the trivial bound for Λ.

Finally, for the very largest values of N , we replace the earlier Siegel–Walfisz bound by its
Möbius function analogue: ∑

n6N
n≡b (mod t)

µ(n) � N(logN)−8,

and, since there is no main term here, this part of the proof is somewhat simpler than before.

6. Sums over square-free numbers

In this section, we show that much simpler arguments, which combine only the sieve of Eratosthenes
with Lemma 2.2, can be used to treat the corresponding exponential sum over square-free numbers.

Theorem 6.1. Let m be a positive integer, g an integer relatively prime to m, and t the multiplica-

tive order of g modulo m. Then we have the bound

max
gcd(a,m)=1

∣∣∣∣
∑

n6N

µ2(n) em(agn)

∣∣∣∣� (Nt−1m1/2 +N1/2m1/4)tε,

where the implied constant depends only on ε.

Proof. We have
∑

n6N

µ2(n) em(agn) =
∑

d6N1/2

µ(d)
∑

n6N
d2|n

em(agn)

=
∑

d6N1/2

µ(d)
∑

n6N/d2

em(agnd2

).

If t is the multiplicative order of g modulo m, then the multiplicative order of gd2

modulo m is
t/ gcd(t, d2). Fix some D > 1. Using Lemma 2.2 for d 6 D (assuming that gcd(a,m) = 1) and the
trivial upper bound N/d2 for d > D, we obtain

∑

n6N

µ2(n) em(agn) �
∑

d6D

(
N gcd(t, d2)

td2
+ 1

)
m1/2 logm+

∑

d>D

N

d2

� Nt−1m1/2 logm
∑

d6D

gcd(t, d2)

d2
+Dm1/2 logm+ND−1.

Now, collecting together all numbers d with the same value of gcd(t, d) = f (thus gcd(t, d2) 6 f2),
we derive

∑

d6D

gcd(t, d2)

d2
=
∑

f |t

∑

d6D
gcd(t,d)=f

gcd(t, d2)

d2
6
∑

f |t

∑

d6D/f

1

d2
6 2τ(t).

Choose D = N1/2m−1/4 log−1/2m to balance the other two terms. Note that for this choice we have
D > 1 else the theorem is trivial. We obtain

∑

n6N

µ2(n) em(agn) � Nt−1τ(t)m1/2 logm+N1/2m1/4 log1/2 m.

Using (3) and remarking that the bound of the theorem is trivial for t < m1/2, we obtain the
result.
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Theorem 6.1 is non-trivial for N > m1/2+δ and t > m1/2+δ with any fixed δ > 0. This is the
same range in which the underlying Lemma 2.2 is non-trivial. We remark that in the case of prime
denominators better bounds are known; see [KS99], which can be used to improve Theorem 6.1 in
the case where n = q is prime.

The same arguments also apply to sums over k-free numbers (that is, over numbers that are not
divisible by the kth power of any prime number). In this situation, the second term in our estimate
is improved to N1/km(k−1)/2k (after balancing Dm1/2 logm with N/Dk−1). The range in which this
estimate is non-trivial remains the same, however.

7. Remarks

Our results are non-trivial provided that the multiplicative order t of g modulom (or q) is sufficiently
large. Although this should frequently be the case, unconditional results in this direction are still
rather weak (see [EM99,IT02,KR01,MRS96,Pap96]) and only guarantee that when g is fixed, then,
for any fixed ε, we have that t is at least m1/2−ε for almost all integers m, and is at least q1/2−ε for
almost all primes q. We recall, however, that under the Extended Riemann Hypothesis, it is known
that, provided again that g is fixed, t is at least m1−ε for almost all integers m and is at least q1−ε

for almost all primes q; see [EM99, Kur01, LP]. We also remark that the results of [BH98] show
that, for many primes q, the order t of g modulo q is substantially larger than q1/2. In particular, it
follows from [BH98] that t > q0.677 for at least cx/ log2 x primes q 6 x with a positive constant c.

Using some of the results of [FK02], which hold for an arbitrary modulus m, one can estimate
exponential sums over Fermat numbers Fn = 22n

+1. Unfortunately, proving that there are members
of this sequence of sufficiently large period modulo m appears to be quite difficult, and it is not clear
whether there are any values of m for which the corresponding bound is non-trivial, although one
certainly would expect this to be the case. Even for sums with a prime denominator q, the bounds
from [FHS00] (which are stronger than those for the general case of [FK02]) do not overlap with
what is currently known about the period of Fn modulo q; see [FPS01].

We have already mentioned that when n = q is prime stronger variants of Lemma 2.2 are
available which can be used to improve Theorem 6.1. These do not, however, yield any further
improvement of our other results, as Lemma 2.7 remains a bottleneck for our approach.

We note that it would be of very great interest to estimate the sums
∑

n6N

Λ(n)χ(gn + a), gcd(a,m) = 1,

with multiplicative characters χ modulo m. Unfortunately, analogues of our underlying results, that
is, those of [CFKLLS00] and [FK02], are not known for multiplicative characters. On the other hand,
character sum analogues of Lemma 2.2 are known [DW92,Yu01]; thus one can extend Theorem 6.1
to character sums over square-free numbers.

Finally, studying similar exponential and character sums over various other interesting subsets
of the integers n 6 N leads to other challenging questions. In particular, one can consider the sums

∑

n6N
n is r-smooth

em(agn) and
∑

n6N
n is r-smooth

χ(gn + a),

over r-smooth integers (recall that n > 1 is called r-smooth if every prime divisor of n does not
exceed r). Another tempting choice would be the sum over all integers up to N which can be
expressed as the sum of two squares.
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