Matrix inequalities with applications to the theory of iterated kernels*

William Banks
Department of Mathematics, University of Missouri
Columbia, MO 65211 USA
bbanks@math.missouri.edu
Asma Harcharras ${ }^{\dagger}$
Department of Mathematics, University of Missouri
Columbia, MO 65211 USA
harchars@math.missouri.edu
\section*{Stefan Neuwirth}
Laboratoire de Mathématiques, Université de Franche-Comté
25030 Besançon cedex, France
neuwirth@math.univ-fcomte.fr
Eric Ricard
Université Paris VI, Equipe d'Analyse, Case 186
75252 Paris Cedex 05, France
ericard@ccr.jussieu.fr

Abstract

For an $m \times n$ matrix A with nonnegative real entries, Atkinson, Moran and Watterson proved the inequality $s(A)^{3} \leq \operatorname{mns}\left(A A^{t} A\right)$, where A^{t} is the transpose of A, and $s(\cdot)$ is the sum of the entries. We extend this result to finite products of the form $A A^{t} A A^{t} \ldots A$ or $A A^{t} A A^{t} \ldots A^{t}$ and give some applications to the theory of iterated kernels.

[^0]
1 Introduction

For any matrix A, let $s(A)$ denote the sum of its entries. For any integer $k \geq 1$, we define

$$
A^{(2 k)}=\left(A A^{t}\right)^{k}, \quad A^{(2 k+1)}=\left(A A^{t}\right)^{k} A,
$$

where A^{t} denotes the transpose of A. In Section 2, we prove the following sharp inequalities:

Theorem 1. Let A be an $m \times n$ matrix with nonnegative real entries. Then for every integer $k \geq 1$, the following matrix inequalities hold:

$$
s(A)^{2 k} \leq m^{k-1} n^{k} s\left(A^{(2 k)}\right), \quad s(A)^{2 k+1} \leq m^{k} n^{k} s\left(A^{(2 k+1)}\right)
$$

For the special case of symmetric matrices, this theorem was proved in 1959 by Mulholland and Smith [4], thus settling an earlier conjecture of Mandel and Hughes [3] that had been based on the study of certain genetical models. For arbitrary matrices (with nonnegative entries), Theorem 1 also generalizes the matrix inequality

$$
s(A)^{3} \leq \operatorname{mn} s\left(A A^{t} A\right)
$$

which was first proved in 1960 by Atkinson, Moran and Watterson [1] using methods of perturbation theory.

Theorem 1 has a graph theoretic interpretation when applied to matrices with entries in $\{0,1\}$. Let G be a graph with red vertices labeled $1, \ldots, m$ and blue vertices labeled $1, \ldots, n$ such that every edge connects only vertices of distinct colours: G is a bipartite graph. Its reduced incidence matrix is an $m \times n$ matrix A such that $a_{i, j}=1$ if red vertex i is adjacent to blue vertex j, and $a_{i, j}=0$ otherwise. Then $s(A)$ is the size of G, while $s\left(A^{(\ell)}\right)$ is the number of walks on G of length ℓ starting from a red vertex, i.e., the number of sequences $\left(v_{0}, \ldots, v_{\ell}\right)$ such that v_{0} is a red vertex and every pair $\left\{v_{i}, v_{i+1}\right\}$ is an edge in G. Theorem 1 then yields the optimal lower bound of the number of walks in terms of
the size of G. We do not know of a corresponding lower bound for the number of trails (walks with no edge repeated) or paths (walks with no vertex repeated).

Recall that an $m \times n$ matrix A is said to be bistochastic if every row sum of A is equal to $s(A) / m$, and every column sum of A is equal to $s(A) / n$. In Section 3 we prove the following asymptotic form of Theorem 1 :

Theorem 2. Let A be an $m \times n$ matrix with nonnegative real entries. If A is bistochastic, then for all $k \geq 1$,

$$
s(A)^{2 k}=m^{k-1} n^{k} s\left(A^{(2 k)}\right), \quad s(A)^{2 k+1}=m^{k} n^{k} s\left(A^{(2 k+1)}\right)
$$

If A is not bistochastic, then there exist constants $c>0$ and $\gamma>1$ (depending only on A) such that for all $\ell \geq 1$,

$$
s(A)^{\ell}<c \gamma^{-\ell}(m n)^{\ell / 2} s\left(A^{(\ell)}\right)
$$

As we show in Sections 2 and 3, both of the above theorems, though stated for arbitrary rectangular matrices with nonnegative entries, follow from the special case of square matrices.

Theorem 2 has an immediate application. Atkinson, Moran and Watterson [1] conjectured that for a nonnegative symmetric kernel function $K(x, y)$ that is Lebesgue integrable over the square $0 \leq x, y \leq a$, the inequality

$$
\begin{equation*}
\int_{0}^{a} \int_{0}^{a} K_{\ell}(x, y) d x d y \geq \frac{1}{a^{\ell-1}}\left(\int_{0}^{a} \int_{0}^{a} K(x, y) d x d y\right)^{\ell} \tag{1}
\end{equation*}
$$

holds for all $\ell \geq 1$. Here $K_{\ell}(x, y)$ denotes the ℓ-th order iterate of $K(x, y)$, which is defined recursively by

$$
K_{1}(x, y)=K(x, y), \quad K_{\ell}(x, y)=\int_{0}^{a} K_{\ell-1}(x, t) K(t, y) d t
$$

Beesack [2] showed that the Atkinson-Moran-Watterson conjecture follows from the matrix identities of Mulholland and Smith described above. Using Beesack's ideas together with Theorem 2, we prove in Section 4 the following asymptotic form of the Atkinson-Moran-Watterson inequality (1):

Theorem 3. Let $K(x, y)$ be a nonnegative symmetric kernel function that is Lebesgue integrable over the square $0 \leq x, y \leq a$, and consider the function $f(x)=\int_{0}^{a} K(x, y) d y$ defined on the interval $0 \leq x \leq a$. If $f(x)$ is constant almost everywhere, then for all $\ell \geq 1$

$$
\int_{0}^{a} \int_{0}^{a} K_{\ell}(x, y) d x d y=\frac{1}{a^{\ell-1}}\left(\int_{0}^{a} \int_{0}^{a} K(x, y) d x d y\right)^{\ell}
$$

If not, there exist constants $c>0$ and $\gamma>1$ (depending only on K) such that for all $\ell \geq 1$

$$
\int_{0}^{a} \int_{0}^{a} K_{\ell}(x, y) d x d y>\frac{c \gamma^{\ell}}{a^{\ell-1}}\left(\int_{0}^{a} \int_{0}^{a} K(x, y) d x d y\right)^{\ell}
$$

Remark: Using an approximation argument as in the proof of Theorem 3, Theorem 1 can be also applied to establish an analogue to inequalities (1) and Theorem 3 in the case of nonsymmetric kernel functions. Let $K(x, y)$ be any nonnegative kernel function that is Lebesgue integrable over the rectangle $0 \leq x \leq a, 0 \leq y \leq b$ and let K_{ℓ} be the ℓ-th order iterate of K defined by $K_{1}(x, y)=K(x, y)$ and for each integer $k \geq 1$,

$$
K_{2 k}\left(x, x^{\prime}\right)=\int_{0}^{b} K_{2 k-1}(x, y) K\left(x^{\prime}, y\right) d y, \quad K_{2 k+1}(x, y)=\int_{0}^{a} K_{2 k}\left(x, x^{\prime}\right) K\left(x^{\prime}, y\right) d x^{\prime} .
$$

In this case, inequalities (1) become

$$
\begin{aligned}
& \int_{0}^{a} \int_{0}^{b} K_{2 k+1}(x, y) d x d y \geq \frac{1}{a^{k} b^{k}}\left(\int_{0}^{a} \int_{0}^{b} K(x, y) d x d y\right)^{2 k+1} \\
& \int_{0}^{a} \int_{0}^{a} K_{2 k}\left(x, x^{\prime}\right) d x d x^{\prime} \geq \frac{1}{a^{k-1} b^{k}}\left(\int_{0}^{a} \int_{0}^{b} K(x, y) d x d y\right)^{2 k} .
\end{aligned}
$$

The analogue of Theorem 3 is then obvious.

Acknowledgments. The first author wishes to thank Igor Shparlinski for some useful conversations. Work supported in part by NSF grant DMS-0070628 (Banks).

2 Matrix inequality

Given a matrix $A=\left(a_{i, j}\right)$ and an integer $\ell \geq 0$, we denote by $a_{i, j}^{(\ell)}$ the (i, j)-th entry of $A^{(\ell)}$, so that $A^{(\ell)}=\left(a_{i, j}^{(\ell)}\right)$. This notation will be used often in the sequel.

Lemma. Let $B=\left(b_{i, j}\right)$ be a $d \times d$ matrix with nonnegative real entries. For any two sequences $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{i}\right\}$ of nonnegative real numbers, the following inequality holds:

$$
\left(I_{2}^{\prime}\right): \quad \sum_{i, j=1}^{d} \alpha_{i} \beta_{i} b_{i, j} \leq d^{\frac{1}{2}}\left(\sum_{i, j=1}^{d} \alpha_{i}^{2} \beta_{j}^{2} b_{i, j}^{(2)}\right)^{\frac{1}{2}} .
$$

Proof. To prove the lemma, we apply the Cauchy-Schwarz inequality twice as follows:

$$
\begin{aligned}
\sum_{i, j=1}^{d} \alpha_{i} \beta_{i} b_{i, j}=\sum_{i, k=1}^{d} & \alpha_{i} \beta_{i} b_{i, k} \leq d^{\frac{1}{2}}\left(\sum_{k=1}^{d}\left(\sum_{i=1}^{d} \alpha_{i} \beta_{i} b_{i, k}\right)^{2}\right)^{\frac{1}{2}} . \\
\sum_{i, j=1}^{d} \alpha_{i} \beta_{i} b_{i, j} & \leq d^{\frac{1}{2}}\left(\sum_{i, j, k=1}^{d} \alpha_{i} \alpha_{j} \beta_{i} \beta_{j} b_{i, k} b_{j, k}\right)^{\frac{1}{2}} \\
& =d^{\frac{1}{2}}\left(\sum_{i, j=1}^{d} \alpha_{i} \alpha_{j} \beta_{i} \beta_{j} b_{i, j}^{(2)}\right)^{\frac{1}{2}} \\
& =d^{\frac{1}{2}}\left(\sum_{i, j=1}^{d} \alpha_{i} \beta_{j}\left(b_{i, j}^{(2)}\right)^{\frac{1}{2}} \cdot \alpha_{j} \beta_{i}\left(b_{j, i}^{(2)}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} \\
\leq & d^{\frac{1}{2}}\left(\sum_{i, j=1}^{d} \alpha_{i}^{2} \beta_{j}^{2} b_{i, j}^{(2)}\right)^{\frac{1}{2}}
\end{aligned}
$$

Here we have used the fact that $B^{(2)}=B B^{t}$ is a symmetric matrix.

Theorem 1'. Let $B=\left(b_{i, j}\right)$ be a square $d \times d$ matrix with nonnegative real entries, and let $\left\{\alpha_{i}\right\}$ be any sequence of nonnegative real numbers. Then for each integer $\ell \geq 1$, we have

$$
\left(I_{\ell}\right): \quad \sum_{i, j=1}^{d} \alpha_{i} b_{i, j} \leq d^{\frac{\ell-1}{\ell}}\left(\sum_{i, j=1}^{d} \alpha_{i}^{\ell} b_{i, j}^{(\ell)}\right)^{\frac{1}{\ell}} .
$$

Proof of Theorem $\mathbf{1}^{\prime}$. The case $\ell=1$ is trivial while the case $\ell=2$ is a consequence of the lemma above. We prove the general case by induction. Suppose that $p \geq 2$, and the inequalities $\left(I_{1}\right),\left(I_{2}\right), \ldots,\left(I_{p}\right)$ hold for all square matrices with nonnegative real entries. If $p=2 k-1$ is an odd integer, then the inequality $\left(I_{p+1}\right)$ follows immediately from $\left(I_{2}\right)$ and $\left(I_{k}\right)$. Indeed, since $B^{(2 k)}=B^{(2)(k)}$, we have

$$
\begin{equation*}
\sum_{i, j=1}^{d} \alpha_{i} b_{i, j} \leq d^{\frac{1}{2}}\left(\sum_{i, j=1}^{d} \alpha_{i}^{2} b_{i, j}^{(2)}\right)^{\frac{1}{2}} \leq d^{\frac{1}{2}}\left(d^{\frac{k-1}{k}}\left(\sum_{i, j=1}^{d} \alpha_{i}^{2 k} b_{i, j}^{(2)(k)}\right)^{\frac{1}{k}}\right)^{\frac{1}{2}} \tag{3}
\end{equation*}
$$

Thus

$$
\sum_{i, j=1}^{d} \alpha_{i} b_{i, j} \leq d^{\frac{2 k-1}{2 k}}\left(\sum_{i, j=1}^{d} \alpha_{i}^{2 k} b_{i, j}^{(2 k)}\right)^{\frac{1}{2 k}}
$$

If $p=2 k$ is an even integer, then the inequality $\left(I_{p+1}\right)$ follows from Hölder's inequality, and the inequalities $\left(I_{k}\right)$ and $\left(I_{2}^{\prime}\right)$. Indeed, by Hölder's inequality, we have

$$
\begin{equation*}
\sum_{i, j=1}^{d} \alpha_{i} b_{i, j} \leq d^{\frac{1}{2 k+1}}\left(\sum_{i=1}^{d} \alpha_{i}^{\frac{2 k+1}{2 k}}\left(\sum_{j=1}^{d} b_{i, j}\right)^{\frac{2 k+1}{2 k}}\right)^{\frac{2 k}{2 k+1}} \tag{4}
\end{equation*}
$$

Let \mathcal{I} denote the term between parentheses, and set $\beta_{i}=\sum_{j=1}^{d} b_{i, j}$ for each i. Then

$$
\mathcal{I}=\sum_{i=1}^{d} \alpha_{i}^{\frac{2 k+1}{2 k}}\left(\sum_{j=1}^{d} b_{i, j}\right)^{\frac{2 k+1}{2 k}}=\sum_{i, j=1}^{d} \alpha_{i}^{\frac{2 k+1}{2 k}} \beta_{i}^{\frac{1}{2 k}} b_{i, j}
$$

Applying $\left(I_{k}\right)$, it follows that

$$
\mathcal{I} \leq d^{\frac{k-1}{k}}\left(\sum_{i, j=1}^{d} \alpha_{i}^{\frac{2 k+1}{2}} \beta_{i}^{\frac{1}{2}} b_{i, j}^{(k)}\right)^{\frac{1}{k}}
$$

Applying the lemma to the sequences $\left\{\alpha_{i}^{\frac{2 k+1}{2}}\right\}$ and $\left\{\beta_{i}^{\frac{1}{2}}\right\}$, and using the fact $B^{(k)(2)}=B^{(2 k)}$, we see that

$$
\mathcal{I} \leq d^{\frac{k-1}{k}}\left(d^{\frac{1}{2}}\left(\sum_{i, j=1}^{d} \alpha_{i}^{2 k+1} \beta_{j} b_{i, j}^{(k)(2)}\right)^{\frac{1}{2}}\right)^{\frac{1}{k}}=d^{\frac{2 k-1}{2 k}}\left(\sum_{i, j=1}^{d} \alpha_{i}^{2 k+1} \beta_{j} b_{i, j}^{(2 k)}\right)^{\frac{1}{2 k}}
$$

Putting everything together, we have therefore shown that

$$
\sum_{i, j=1}^{d} \alpha_{i} b_{i, j} \leq d^{\frac{2 k}{2 k+1}}\left(\sum_{i, j=1}^{d} \alpha_{i}^{2 k+1} \beta_{j} b_{i, j}^{(2 k)}\right)^{\frac{1}{2 k+1}}
$$

Finally, note that

$$
\sum_{j=1}^{d} \beta_{j} b_{i, j}^{(2 k)}=\sum_{\ell=1}^{d} b_{i, \ell}^{(2 k)} \beta_{\ell}=\sum_{j, \ell=1}^{d} b_{i, \ell}^{(2 k)} b_{\ell, j}=\sum_{j=1}^{d} b_{i, j}^{(2 k+1)}
$$

since $B^{(2 k+1)}=B^{(2 k)} B$. Consequently,

$$
\begin{equation*}
\sum_{i, j=1}^{d} \alpha_{i} b_{i, j} \leq d^{\frac{2 k}{2 k+1}}\left(\sum_{i, j=1}^{d} \alpha_{i}^{2 k+1} b_{i, j}^{(2 k+1)}\right)^{\frac{1}{2 k+1}} \tag{5}
\end{equation*}
$$

and $\left(I_{p+1}\right)$ holds for the case $p=2 k$. Theorem 1^{\prime} now follows by induction.

Theorem 1. Let A be an $m \times n$ matrix with nonnegative real entries. Then for every integer $k \geq 1$, the following matrix inequalities hold:

$$
s(A)^{2 k} \leq m^{k-1} n^{k} s\left(A^{(2 k)}\right), \quad s(A)^{2 k+1} \leq m^{k} n^{k} s\left(A^{(2 k+1)}\right)
$$

Proof of Theorem 1. For the case of square matrices, Theorem 1 follows immediately from Theorem 1^{\prime}. Indeed, taking $\alpha_{i}=1$ for each i, the inequality $\left(I_{\ell}\right)$ yields the corresponding inequality in Theorem 1.

Now, let A be an $m \times n$ matrix with nonnegative real entries, put $d=m n$, and let B be the $d \times d$ matrix with nonnegative real entries defined as the tensor product $B=A \otimes \mathbb{1}_{n, m}$, where $\mathbb{1}_{n, m}$ is the $n \times m$ matrix with every entry equal to 1 . For any integers $\ell, k \geq 0$, the relations

$$
\begin{gathered}
B^{(\ell)}=A^{(\ell)} \otimes \mathbb{1}_{n, m}^{(\ell)}, \quad s\left(B^{(\ell)}\right)=s\left(A^{(\ell)}\right) s\left(\mathbb{1}_{n, m}^{(\ell)}\right), \\
s\left(\mathbb{1}_{n, m}^{(2 k)}\right)=m^{k} n^{k+1}, \quad s\left(\mathbb{1}_{n, m}^{(2 k+1)}\right)=m^{k+1} n^{k+1} .
\end{gathered}
$$

are easily checked. In particular, $s(B)=m n s(A)$. Applying Theorem 1 to the matrix B and using these identities, the inequalities of Theorem 1 follow for the matrix A.

3 Asymptotic matrix inequality

As will be shown below, Theorem 2 is a consequence of the following more precise theorem for square matrices:

Theorem 2'. Let B be a square $d \times d$ matrix with nonnegative real entries and $s(B) \neq 0$. Let λ be the largest eigenvalue of $B^{(2)}=B B^{t}$, and put $\gamma=\lambda d^{2} / s(B)^{2}$. Then $\gamma \geq 1$, and there exists a constant $c>0$ (depending only on B) such that for all integers $\ell \geq 0$,

$$
\begin{equation*}
s(B)^{\ell}<c \gamma^{-\frac{\ell}{2}} d^{\ell-1} s\left(B^{(\ell)}\right) \tag{6}
\end{equation*}
$$

Moreover, the following assertions are equivalent:
(a) $\gamma=1$,
(b) $s(B)^{\ell}=d^{\ell-1} s\left(B^{(\ell)}\right)$ for every integer $\ell \geq 0$,
(c) $s(B)^{\ell}=d^{\ell-1} s\left(B^{(\ell)}\right)$ for some integer $\ell \geq 3$,
(d) B is bistochastic.

Proof. We express $B^{(2)}=B B^{t}$ in the form $B^{(2)}=U^{t} D U$, where $U=\left(u_{i, j}\right)$ is an orthogonal matrix, and D is a diagonal matrix $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ with $\lambda_{1} \geq \ldots \geq \lambda_{d} \geq 0$. Here $\lambda=\lambda_{1}$. For each $\nu=1, \ldots, d$, let E_{ν} be the projection matrix whose (ν, ν)-th entry is 1 , and all other entries are equal to 0 . Put $A_{\nu}=U^{t} E_{\nu} U$ for each ν. Then for all integers $k \geq 0$,

$$
B^{(2 k)}=\sum_{\nu=1}^{d} \lambda_{\nu}^{k} A_{\nu}, \quad B^{(2 k+1)}=\sum_{\nu=1}^{d} \lambda_{\nu}^{k} A_{\nu} B .
$$

By a straightforward calculation, we see that for each ν

$$
\begin{equation*}
s\left(A_{\nu}\right)=\left(\sum_{i=1}^{d} u_{\nu, i}\right)^{2}, \quad s\left(A_{\nu} B\right)=\left(\sum_{i=1}^{d} u_{\nu, i}\right)\left(\sum_{j, k=1}^{d} u_{\nu, k} b_{k, j}\right) . \tag{7}
\end{equation*}
$$

In particular, $s\left(A_{\nu}\right) \geq 0$. By Theorem 1^{\prime}, it follows that

$$
\begin{equation*}
\frac{s(B)^{2}}{d} \leq s\left(B^{(2)}\right)=\sum_{\nu=1}^{d} \lambda_{\nu} s\left(A_{\nu}\right) \leq \lambda \sum_{\nu=1}^{d} s\left(A_{\nu}\right)=\lambda d \tag{8}
\end{equation*}
$$

Therefore, $\gamma=\frac{\lambda d^{2}}{s(B)^{2}} \geq 1$. Now, from the definition of γ, we have

$$
\frac{\gamma^{\frac{\ell}{2}} s(B)^{\ell}}{d^{\ell-1} s\left(B^{(\ell)}\right)}=d \frac{\lambda^{\frac{\ell}{2}}}{s\left(B^{(\ell)}\right)}
$$

Then, in order to show inequality (6), we will show that the $\lambda^{\frac{\ell}{2}} / s\left(B^{(\ell)}\right)$ are bounded above by a constant that is independent of ℓ. Indeed, let $C_{\ell}=B^{(\ell)} / s\left(B^{(\ell)}\right)$ for every $\ell \geq 0$. Since each C_{ℓ} has nonnegative real entries, and $s\left(C_{\ell}\right)=1$, the entries of C_{ℓ} all lie in the closed interval $[0,1]$. Thus the entries of the matrices $U C_{2 k} U^{t}$ and $U C_{2 k+1} B^{t} U^{t}$ are bounded by a constant that depends only on B. Noting that for each nonnegative integer k, we have

$$
U C_{2 k} U^{t}=\frac{D^{k}}{s\left(B^{(2 k)}\right)}, \quad U C_{2 k+1} B^{t} U^{t}=\frac{D^{k+1}}{s\left(B^{(2 k+1)}\right)}
$$

and on examining the $(1,1)$-th entry for each of these matrices, we see that $\lambda^{k} / s\left(B^{(2 k)}\right)$ and $\lambda^{k+1} / s\left(B^{(2 k+1)}\right)$ are both bounded above by a constant that is independent of k. Consequently, inequality (6) holds.
$(a) \Longrightarrow(b)$: If $\gamma=1$, then $\lambda d=s(B)^{2} / d$, hence from (8) we see that $s\left(A_{\nu}\right)=0$ whenever $\lambda_{\nu} \neq \lambda$. By (7), we also have that $s\left(A_{\nu} B\right)=0$ whenever $\lambda_{\nu} \neq \lambda$. Thus

$$
\begin{aligned}
s\left(B^{(2 k)}\right) & =\sum_{\nu=1}^{d} \lambda_{\nu}^{k} s\left(A_{\nu}\right)=\lambda^{k} \sum_{\nu: \lambda_{\nu}=\lambda} s\left(A_{\nu}\right)=\lambda^{k} \sum_{\nu=1}^{d} s\left(A_{\nu}\right)=\lambda^{k} d=\frac{s(B)^{2 k}}{d^{2 k-1}}, \\
s\left(B^{(2 k+1)}\right) & =\sum_{\nu=1}^{d} \lambda_{\nu}^{k} s\left(A_{\nu} B\right)=\lambda^{k} \sum_{\nu: \lambda_{\nu}=\lambda} s\left(A_{\nu} B\right)=\lambda^{k} \sum_{\nu=1}^{d} s\left(A_{\nu} B\right)=\lambda^{k} s(B)=\frac{s(B)^{2 k+1}}{d^{2 k}} .
\end{aligned}
$$

$(b) \Longrightarrow(a)$: If (b) holds, then inequality (6) implies $1<c \gamma^{-\frac{\ell}{2}}$ for some $\gamma \geq 1$ and all integers $\ell \geq 0$. This forces $\gamma=1$.
$(b) \Longrightarrow(c)$: Trivial.
$(c) \Longrightarrow(d)$: Suppose that $\ell=2 k+1 \geq 3$ is an odd integer such that $s(B)^{\ell}=d^{\ell-1} s\left(B^{(\ell)}\right)$.
Taking every $\alpha_{i}=1$ in the proof of Theorem 1^{\prime}, our hypothesis means that equality holds in (5), hence (4) must also hold with equality:

$$
\sum_{i, j=1}^{d} b_{i, j}=d^{\frac{1}{2 k+1}}\left(\sum_{i=1}^{d}\left(\sum_{j=1}^{d} b_{i, j}\right)^{\frac{2 k+1}{2 k}}\right)^{\frac{2 k}{2 k+1}} .
$$

By Hölder's inequality, this is only possible if all of the row sums of B are equal. Since ℓ is odd and s is transpose-invariant, we also have

$$
s\left(B^{t}\right)^{\ell}=d^{\ell-1} s\left(\left(B^{(\ell)}\right)^{t}\right)=d^{\ell-1} s\left(\left(B^{t}\right)^{(\ell)}\right) .
$$

Thus all of the row sums of B^{t} are equal as well, and B is bistochastic.

Now suppose that $\ell=2 k \geq 4$ is an even integer such that $s(B)^{\ell}=d^{\ell-1} s\left(B^{(\ell)}\right)$. By taking every $\alpha_{i}=1$ in (3), we see that $s(B)^{2}=d s\left(B^{(2)}\right)$. Then, taking every $\alpha_{i}=\beta_{i}=1$ in the proof of the lemma, we see that equality holds in (2) which is only possible if all of the column sums of B are equal. Therefore $s(B A)=\beta s(A)$ for every $d \times d$ matrix A, where $\beta=s(B) / d$ is the sum of each column of B. In particular,

$$
s(B)^{\ell}=d^{\ell-1} s\left(B^{(\ell)}\right)=d^{\ell-1} \beta s\left(\left(B^{t}\right)^{(\ell-1)}\right)=d^{\ell-1} \beta s\left(\left(B^{(\ell-1)}\right)^{t}\right)=d^{\ell-1} \beta s\left(B^{(\ell-1)}\right),
$$

thus $s(B)^{\ell-1}=d^{\ell-2} s\left(B^{(\ell-1)}\right)$. Since $\ell-1$ is odd, we can apply the previous result to conclude that B is bistochastic.
$(d) \Longrightarrow(b)$: Suppose B is bistochastic, with every row or column sum equal to $\beta=s(B) / d$. For any $d \times d$ matrix A, one has $s(A B)=\beta s(A)$ and $s\left(A B^{t}\right)=\beta s(A)$. In particular, $s\left(B^{(2 k+1)}\right)=\beta s\left(B^{(2 k)}\right)$ and $s\left(B^{(2 k+2)}\right)=\beta s\left(B^{(2 k+1)}\right)$ for all $k \geq 0$. Consequently,

$$
s\left(B^{(\ell)}\right)=\beta^{\ell-1} s(B)=\frac{s(B)^{\ell}}{d^{\ell-1}}, \quad \ell \geq 0
$$

This completes the proof.

Corollary. Let B be a square $d \times d$ matrix with nonnegative real entries and $s(B) \neq 0$. Let β_{j} be the j-th column sum of B for each j, and put

$$
\delta=1+\frac{1}{2 s(B)^{2}} \sum_{i, j=1}^{d}\left(\beta_{i}-\beta_{j}\right)^{2} .
$$

Then there exists a constant $c>0$ (depending only on B) such that for all $\ell \geq 0$, we have

$$
s(B)^{\ell}<c \delta^{-\frac{\ell}{2}} d^{\ell-1} s\left(B^{(\ell)}\right) .
$$

Proof. Note first that for any $d \times d$ matrix B, if β_{j} denotes the j-th column sum of B, then it is easily seen that

$$
\begin{equation*}
s\left(B^{(2)}\right)=\frac{s(B)^{2}}{d}+\frac{1}{2 d} \sum_{i, j=1}^{d}\left(\beta_{i}-\beta_{j}\right)^{2} . \tag{9}
\end{equation*}
$$

Using the notation of Theorem 2^{\prime} and applying the relations (8) and (9), we have

$$
\gamma=\frac{\lambda d^{2}}{s(B)^{2}} \geq \frac{d s\left(B^{(2)}\right)}{s(B)^{2}}=1+\frac{1}{2 s(B)^{2}} \sum_{i, j=1}^{d}\left(\beta_{i}-\beta_{j}\right)^{2}=\delta .
$$

The corollary therefore follows from (6).

Theorem 2. Let A be an $m \times n$ matrix with nonnegative real entries. If A is bistochastic, then for all $k \geq 1$,

$$
s(A)^{2 k}=m^{k-1} n^{k} s\left(A^{(2 k)}\right), \quad s(A)^{2 k+1}=m^{k} n^{k} s\left(A^{(2 k+1)}\right) .
$$

If A is not bistochastic, then there exist constants $c>0$ and $\gamma>1$ (depending only on A) such that for all $\ell \geq 1$,

$$
s(A)^{\ell}<c \gamma^{-\ell}(m n)^{\ell / 2} s\left(A^{(\ell)}\right)
$$

Proof of Theorem 2. Given an $m \times n$ matrix A with nonnegative real entries, we proceed as in the proof of Theorem 1: put $d=m n$, and let $B=A \otimes \mathbb{1}_{n, m}$. Note that A is bistochastic if and only if B is bistochastic. Applying the corollary above to B, Theorem 2 follows immediately for the matrix A. The details are left to the reader.

4 Asymptotic kernel inequality

Theorem 3. Let $K(x, y)$ be a nonnegative symmetric kernel function that is Lebesgue integrable over the square $0 \leq x, y \leq a$, and consider the function $f(x)=\int_{0}^{a} K(x, y) d y$ defined on the interval $0 \leq x \leq a$. If $f(x)$ is constant almost everywhere, then for all $\ell \geq 1$

$$
\int_{0}^{a} \int_{0}^{a} K_{\ell}(x, y) d x d y=\frac{1}{a^{\ell-1}}\left(\int_{0}^{a} \int_{0}^{a} K(x, y) d x d y\right)^{\ell}
$$

If not, there exist constants $c>0$ and $\gamma>1$ (depending only on K) such that for all $\ell \geq 1$

$$
\int_{0}^{a} \int_{0}^{a} K_{\ell}(x, y) d x d y>\frac{c \gamma^{\ell}}{a^{\ell-1}}\left(\int_{0}^{a} \int_{0}^{a} K(x, y) d x d y\right)^{\ell}
$$

Proof of Theorem 3. By changing variables if necessary, we can assume that $a=1$. For simplicity, we will also assume that $K(x, y)$ is continuous. Consider the function $f(x)$ defined by

$$
f(x)=\int_{0}^{1} K(x, y) d y, \quad x \in[0,1]
$$

If $f(x)$ is a constant function, then since $K(x, y)$ is symmetric, the equality

$$
\int_{0}^{1} \int_{0}^{1} K_{\ell}(x, y) d x d y=\left(\int_{0}^{1} \int_{0}^{1} K(x, y) d x d y\right)^{\ell}
$$

for all $\ell \geq 1$ follows from an easy inductive argument.

Now suppose that $f(x)$ is not constant, and let m and M denote respectively the minimum and maximum value of $f(x)$ on $[0,1]$. Choose $\varepsilon>0$ such that $4 \varepsilon<M-m$. For every integer $d \geq 1$, let $\mathcal{U}_{i}^{[d]}$ be the open interval

$$
\mathcal{U}_{i}^{[d]}=\left(\frac{i-1}{d}, \frac{i}{d}\right), \quad 1 \leq i \leq d,
$$

and let $\mathcal{U}_{i, j}^{[d]}$ be the rectangle $\mathcal{U}_{i}^{[d]} \times \mathcal{U}_{j}^{[d]}$ for $1 \leq i, j \leq d$. Let $K^{[d]}(x, y)$ be the function that is defined on $[0,1] \times[0,1]$ as follows:

$$
K^{[d]}(x, y)= \begin{cases}\min \left\{K(s, t) \mid(s, t) \in \overline{\mathcal{U}_{i, j}^{[d]}}\right\} & \text { if }(x, y) \in \mathcal{U}_{i, j}^{[d]} \text { for some } 1 \leq i, j \leq d \\ K(x, y) & \text { otherwise. }\end{cases}
$$

Here $\overline{\mathcal{U}_{i, j}^{[d]}}$ denotes the closure of $\mathcal{U}_{i, j}^{[d]}$. Noting that $K^{[d]}(x, y)$ is constant on each rectangle $\mathcal{U}_{i, j}^{[d]}$, let $B_{[d]}$ be the $d \times d$ matrix whose (i, j)-th entry is equal to $K^{[d]}\left(\mathcal{U}_{i, j}^{[d]}\right)$. Let $K_{\ell}^{[d]}(x, y)$ denote the ℓ-th order iterate of $K^{[d]}(x, y)$ for each $\ell \geq 1$. Then

$$
K_{\ell}^{[d]}(x, y)=\int_{0}^{1} K_{\ell-1}^{[d]}(x, t) K^{[d]}(t, y) d t=\sum_{k=1}^{d} \int_{\mathcal{U}_{k}^{[d]}} K_{\ell-1}^{[d]}(x, t) K^{[d]}(t, y) d t
$$

It follows by induction that $K_{\ell}^{[d]}(x, y)$ is also constant on each rectangle $\mathcal{U}_{i, j}^{[d]}$, and

$$
K_{\ell}^{[d]}\left(\mathcal{U}_{i, j}^{[d]}\right)=\frac{1}{d} \sum_{k=1}^{d} K_{\ell-1}^{[d]}\left(\mathcal{U}_{i, k}^{[d]}\right) K^{[d]}\left(\mathcal{U}_{k, j}^{[d]}\right) ;
$$

by induction, this is the (i, j)-th entry of the matrix $\frac{1}{d^{\ell-1}} B_{[d]}^{(\ell)}$. In other words,

$$
\begin{equation*}
\left(K_{\ell}^{[d]}\left(\mathcal{U}_{i, j}^{[d]}\right)\right)=\frac{1}{d^{\ell-1}} B_{[d]}^{(\ell)}, \quad \text { for all } \ell, d \geq 1 \tag{10}
\end{equation*}
$$

Now since $f(x)$ is continuous, we can choose d sufficiently large such that for some integers $1 \leq i_{m}, i_{M} \leq d$, we have

$$
\begin{array}{ll}
f(x)<m+\varepsilon, & \text { for all } x \in \mathcal{U}_{i_{m}}^{[d]} \\
f(x)>M-\varepsilon, & \text { for all } x \in \mathcal{U}_{i_{M}}^{[d]} .
\end{array}
$$

Taking d larger if necessary, we can further assume that $0 \leq K(x, y)-K^{[d]}(x, y)<\varepsilon$ for all $0 \leq x, y \leq 1$. Fixing this value of d, we define

$$
\gamma=1+\frac{\varepsilon^{2}}{2 d^{2}\left(\int_{0}^{1} \int_{0}^{1} K(x, y) d x d y\right)^{2}}
$$

Finally, since $\gamma^{-\frac{1}{4}}<1$, we can choose e sufficiently large so that $K^{[d e]}(x, y)>\gamma^{-\frac{1}{4}} K(x, y)$ for all $0 \leq x, y \leq 1$. For this value of e, we therefore have

$$
\int_{0}^{1} \int_{0}^{1} K^{[d e]}(x, y) d x d y>\gamma^{-\frac{1}{4}} \int_{0}^{1} \int_{0}^{1} K(x, y) d x d y
$$

By the corollary to Theorem 2^{\prime} applied to the matrix $B_{[d e]}$, there exists a constant $c>0$, which is independent of ℓ, such that

$$
s\left(B_{[d e]}\right)^{\ell}<c \delta^{-\frac{\ell}{2}}(d e)^{\ell-1} s\left(B_{[d e]}^{(\ell)}\right)
$$

for all integers $\ell \geq 0$, where

$$
\delta=1+\frac{1}{2 s\left(B_{[d e]}\right)^{2}} \sum_{i, j=1}^{d e}\left(\beta_{[d e], i}-\beta_{[d e], j}\right)^{2} .
$$

Here $\beta_{[d e], j}$ denotes the j-th column sum of $B_{[d e]}$ for each j. We now claim that $\delta>\gamma$.

Granting this fact for the moment, we apply (10) to $K^{[d e]}(x, y)$ and obtain:

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1} K_{\ell}(x, y) d x d y \geq \int_{0}^{1} \int_{0}^{1} K_{\ell}^{[d e]}(x, y) d x d y=\frac{1}{(d e)^{2}} \sum_{i, j=1}^{d e} K_{\ell}^{[d e]}\left(\mathcal{U}_{i, j}^{[d e]}\right) \\
=\frac{1}{(d e)^{\ell+1}} s\left(B_{[d e]}^{(\ell)}\right)>c^{-1} \delta^{\frac{\ell}{2}}(d e)^{-2 \ell} s\left(B_{[d e]}\right)^{\ell} \\
=c^{-1} \delta^{\frac{\ell}{2}}\left(\frac{1}{(d e)^{2}} \sum_{i, j=1}^{d e} K^{[d e]}\left(\mathcal{U}_{i, j}^{[d e]}\right)\right)^{\ell}=c^{-1} \delta^{\frac{\ell}{2}}\left(\int_{0}^{1} \int_{0}^{1} K^{[d e]}(x, y) d x d y\right)^{\ell} \\
>c^{-1} \delta^{\frac{\ell}{2}} \gamma^{-\frac{\ell}{4}}\left(\int_{0}^{1} \int_{0}^{1} K(x, y) d x d y\right)^{\ell}>c^{-1} \gamma^{\frac{\ell}{4}}\left(\int_{0}^{1} \int_{0}^{1} K(x, y) d x d y\right)^{\ell} .
\end{gathered}
$$

This completes the proof of the theorem modulo our claim that $\delta>\gamma$. To see this, let \mathcal{V} be any interval of the form $\mathcal{U}_{i}^{[d e]}$ such that $\mathcal{V} \subset \mathcal{U}_{i_{m}}^{[d]}$. Note that there are e such intervals. Since $B^{[d e]}$ is a symmetric matrix, the column sum $\beta_{[d e], \mathcal{V}}$ of $B_{[d e]}$ corresponding to the interval \mathcal{V} is equal to the " \mathcal{V}-th" row sum, which can be bounded as follows:

$$
\begin{aligned}
\beta_{[d e], \mathcal{V}}=\sum_{j=1}^{d e} K^{[d e]}\left(\mathcal{V}, \mathcal{U}_{j}^{[d e]}\right) & =(d e)^{2} \int_{\mathcal{V}} \int_{0}^{1} K^{[d e]}(x, y) d y d x \leq(d e)^{2} \int_{\mathcal{V}} \int_{0}^{1} K(x, y) d y d x \\
& =(d e)^{2} \int_{\mathcal{V}} f(x) d x<d e(m+\varepsilon) .
\end{aligned}
$$

Similarly, let \mathcal{W} be any interval of the form $\mathcal{U}_{i}^{[d e]}$ such that $\mathcal{W} \subset \mathcal{U}_{i_{M}}^{[d]}$. Again, there are e such intervals, and by a similar calculation, the column sum $\beta_{[d e], \mathcal{W}}$ satisfies the bound

$$
\beta_{[d e], \mathcal{W}}=\sum_{j=1}^{d e} K^{[d e]}\left(\mathcal{W}, \mathcal{U}_{j}^{[d e]}\right)>d e(M-2 \varepsilon)
$$

Thus

$$
\sum_{i, j=1}^{d e}\left(\beta_{[d e], i}-\beta_{[d e], j}\right)^{2} \geq \sum_{\mathcal{V}, \mathcal{W}}\left(\beta_{[d e], \mathcal{W}}-\beta_{[d e], \mathcal{V}}\right)^{2}>d^{2} e^{4}(M-m-3 \varepsilon)^{2}>d^{2} e^{4} \varepsilon^{2}
$$

On the other hand, we have

$$
s\left(B_{[d e]}\right)=(d e)^{2} \int_{0}^{1} \int_{0}^{1} K^{[d e]}(x, y) d x d y \leq(d e)^{2} \int_{0}^{1} \int_{0}^{1} K(x, y) d x d y
$$

and the claim follows.

Bibliography

[1] F.V. Atkinson, G.A. Watterson and P.A.P. Moran, A matrix inequality, Quart. J. Math. Oxford Ser. (2) 11 (1960) 137-140.
[2] P.R. Beesack, Inequalities involving iterated kernels and convolutions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 274-301 (1969) 11-16.
[3] S.P.M. Mandel and I.M. Hughes, Change in mean viability at a multiallelic locus, Nature 182 (1958) 63-64.
[4] H.P. Mulholland and C.A.B. Smith, An inequality arising in genetical theory, Amer. Math. Monthly 66 (1959) 673-683.

[^0]: *AMS Subject Classification: 15A45; Keywords: matrix inequality, iterated kernel
 ${ }^{\dagger}$ Corresponding author

