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Abstract

For an m x n matrix A with nonnegative real entries, Atkinson, Moran and
Watterson proved the inequality s(A)3 < mns(AA'A), where A! is the transpose
of A, and s(-) is the sum of the entries. We extend this result to finite products of
the form AA'AA!. .. A or AA'AA! ... A! and give some applications to the theory
of iterated kernels.
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1 Introduction

For any matrix A, let s(A) denote the sum of its entries. For any integer k£ > 1, we define
A(2k) _ (AAt)k, A(2k+1) _ (AAt)kA,
where A! denotes the transpose of A. In Section 2, we prove the following sharp inequalities:

Theorem 1. Let A be an m X n matriz with nonnegative real entries. Then for every

integer k > 1, the following matriz inequalities hold:

S(A)Zk < mk—lnk S(A(%)), 8(A>2k+1 < mknk S(A(2k+1)).

For the special case of symmetric matrices, this theorem was proved in 1959 by Mulholland
and Smith [4], thus settling an earlier conjecture of Mandel and Hughes [3] that had been
based on the study of certain genetical models. For arbitrary matrices (with nonnegative

entries), Theorem 1 also generalizes the matrix inequality
s(A)* <mns(AA'A),

which was first proved in 1960 by Atkinson, Moran and Watterson [1] using methods of

perturbation theory.

Theorem 1 has a graph theoretic interpretation when applied to matrices with entries
in {0,1}. Let G be a graph with red vertices labeled 1,...,m and blue vertices labeled
1,...,n such that every edge connects only vertices of distinct colours: G is a bipartite
graph. Its reduced incidence matrix is an m x n matrix A such that a; ; = 1 if red vertex
i is adjacent to blue vertex j, and a; ; = 0 otherwise. Then s(A) is the size of G, while
s(A®) is the number of walks on G of length ¢ starting from a red vertex, i.e., the number
of sequences (vy,...,v,) such that vy is a red vertex and every pair {v;, v;11} is an edge

in G. Theorem 1 then yields the optimal lower bound of the number of walks in terms of



the size of G. We do not know of a corresponding lower bound for the number of trails

(walks with no edge repeated) or paths (walks with no vertex repeated).

Recall that an m x n matrix A is said to be bistochastic if every row sum of A is equal
to s(A)/m, and every column sum of A is equal to s(A)/n. In Section 3 we prove the

following asymptotic form of Theorem 1:

Theorem 2. Let A be an m xn matriz with nonnegative real entries. If A is bistochastic,

then for all k > 1,
S(A)% _ mk—lnk S(A(zk)), 8(A>2k+1 _ mknk S(A(2k+1)).

If A is not bistochastic, then there exist constants ¢ > 0 and v > 1 (depending only on A)
such that for all £ > 1,
s(A)* < ey~ (mn)Y? s(AY).

As we show in Sections 2 and 3, both of the above theorems, though stated for arbi-
trary rectangular matrices with nonnegative entries, follow from the special case of square

matrices.

Theorem 2 has an immediate application. Atkinson, Moran and Watterson [1] conjectured
that for a nonnegative symmetric kernel function K (z,y) that is Lebesgue integrable over

the square 0 < z,y < a, the inequality

/a/aKz(x,y)da:dyZ Oé(/a/aK(x,y)dxdy)e (1)

holds for all £ > 1. Here K;(z,y) denotes the ¢-th order iterate of K(x,y), which is defined

recursively by

Ki(ry) = K(oy),  Kie,y) = / Ko () K (1, ) dt.



Beesack [2] showed that the Atkinson-Moran-Watterson conjecture follows from the ma-
trix identities of Mulholland and Smith described above. Using Beesack’s ideas together
with Theorem 2, we prove in Section 4 the following asymptotic form of the Atkinson-

Moran-Watterson inequality (1):

Theorem 3. Let K(z,y) be a nonnegative symmetric kernel function that is Lebesque
integrable over the square 0 < z,y < a, and consider the function f(x fK z,y)dy

defined on the interval 0 < x < a. If f(x) is constant almost everywhere, then for all

a a 1 a a Z
[ [ e sy - W(//K(w)dmdy) |
0 0 0 O

If not, there exist constants ¢ > 0 and v > 1 (depending only on K) such that for all ¢ > 1

a a ) a a ¢
//Kg(x,y)dxdy> %(//K(x,y)dxdy) .
00 00

t>1

Remark: Using an approximation argument as in the proof of Theorem 3, Theorem 1
can be also applied to establish an analogue to inequalities (1) and Theorem 3 in the case
of nonsymmetric kernel functions. Let K(z,y) be any nonnegative kernel function that is
Lebesgue integrable over the rectangle 0 < x < a, 0 <y < b and let K, be the ¢-th order

iterate of K defined by K;(z,y) = K(z,y) and for each integer k > 1,

Kop(z,2") Z/sz—l(ifay)K(i’f/,y) dy, Kopr1(z,y) :/sz(f’%f,)K(l"/,y) da’.

In this case, inequalities (1) become

a

b 2%h+1
//sz“ x,y)dedy > s (//K x,y da:dy)
0

0

r a b 2%k
//K2k($,;(;’)dl’dx/> Y <//K T,y dmdy) .
0

0 0

The analogue of Theorem 3 is then obvious.
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2 Matrix inequality

Given a matrix A = (a;;) and an integer ¢ > 0, we denote by a the (i,7)-th entry of

A® 5o that A = (aﬁj ). This notation will be used often in the sequel.

Lemma. Let B = (b;;) be a d x d matriz with nonnegative real entries. For any two

sequences {a;} and {0;} of nonnegative real numbers, the following inequality holds:

d d 2
(1) : Z o B by < d ( Z o; B bz(2y)> :

1,j=1 i,j=1

Proof. To prove the lemma, we apply the Cauchy-Schwarz inequality twice as follows:

Zazﬁz by — 3 b < é(z(zm )) @)
1,7=1 i,k=1 d i=
Z Q; ﬁz bi,j S dz < Z Qi ﬂz ﬂ] bz,k by,k)
ij=1 irj k=1
L/ d o) 3
:d2<z Q; ajﬁiﬁjbi,j)
z,jdzl %
B dé( > i (043) - 6 <b§?2>5)
ij=1
1 d (2) 2
<di( v a2pi?)
2,7=1
Here we have used the fact that B®®) = BB! is a symmetric matrix. [ |

Theorem 1'. Let B = (b;;) be a square d x d matriz with nonnegative real entries, and
let {a;} be any sequence of nonnegative real numbers. Then for each integer £ > 1, we

have

(Ip) : Zalbugd (Zalb”) .

i,0=1 2,7=1



Proof of Theorem 1’. The case ¢ = 1 is trivial while the case £ = 2 is a consequence of
the lemma above. We prove the general case by induction. Suppose that p > 2, and the
inequalities (11), (I2), ..., ({,) hold for all square matrices with nonnegative real entries.
If p =2k — 1 is an odd integer, then the inequality (/,.;) follows immediately from (I5)
and (I;,). Indeed, since B?*) = BA)*)  we have

Zazb”<d2(2%bg) <d%< (Za%b@ ) ) . (3)

2,7=1 i,7=1 2,7=1

N|=

Thus

d 1
Zaibi,j Sdz% (ZO&zkbzk) k.

,j=1 ,j=1

If p = 2k is an even integer, then the inequality (/,.;) follows from Holder’s inequality,

and the inequalities (I;) and (73). Indeed, by Holder’s inequality, we have

d ) 2k+1 s
Zaibi,jgd%“(za o (Zb,j> ) . (4)

ij=1

d
Let 7 denote the term between parentheses, and set 3; = »_ b;; for each 7. Then
j=1

2k+1 d

(k) " =2 a a

7j=1 7j=1

d

2k+4

T=> ;"
i=1

Applying (1), it follows that
2k+1 %
2k+1 1
I<d® ( Z a; 37 ) .
2,7=1

2k+41 1
Applying the lemma to the sequences {c; > }and {37}, and using the fact B*®?) = B(k)

we see that

d N
T<dw (d%( Y a2, bgf;xz)) 2) ’

i,j=1

(Za%ﬂﬁj @ )

3,j=1

Putting everything together, we have therefore shown that

> aby < (S )

i,j=1 ,j=1
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Finally, note that

d d d d
PR IUAEED SLALIED DL ik

since B+ = B%) B Consequently,

. 2 (o (2k+1) T
Z a; bi,j S d2k+1 (Z Oé?k—H bi,j ) (5)
ij=1 ij=1

and (,41) holds for the case p = 2k. Theorem 1’ now follows by induction. |

Theorem 1. Let A be an m X n matriz with nonnegative real entries. Then for every

integer k > 1, the following matriz inequalities hold:

S(A)% < mk—lnk S(A(zk)), 8(A>2k+1 < mknk S(A(2k+1)).

Proof of Theorem 1. For the case of square matrices, Theorem 1 follows immedi-
ately from Theorem 1’. Indeed, taking «; = 1 for each i, the inequality (I,) yields the
corresponding inequality in Theorem 1.

Now, let A be an m X n matrix with nonnegative real entries, put d = mn, and let B be
the d x d matrix with nonnegative real entries defined as the tensor product B = A®1,, ,,,,
where 11, ,,, is the n X m matrix with every entry equal to 1. For any integers ¢,k > 0,
the relations

BO — A© g 10

n,m

s(BY) = s(A®) s(19),),

n,m
s(UCR)) = mbphtl (IR = mbtiphtl,

are easily checked. In particular, s(B) = mn s(A). Applying Theorem 1 to the matrix B

and using these identities, the inequalities of Theorem 1 follow for the matrix A. [ |

3 Asymptotic matrix inequality

As will be shown below, Theorem 2 is a consequence of the following more precise theorem

for square matrices:



Theorem 2'. Let B be a square d X d matriz with nonnegative real entries and s(B) # 0.
Let X be the largest eigenvalue of B® = BB, and put v = Ad?/s(B)%. Then~y > 1, and

there exists a constant ¢ > 0 (depending only on B) such that for all integers ¢ > 0,
s(B)! < cy 2 d s(BY). (6)

Moreover, the following assertions are equivalent:

(b) s(B)! =d“'s(BY) for every integer £ > 0,
(c) s(B)f =d"'s(BY) for some integer { > 3,

(d) B is bistochastic.

Proof. We express B® = BB! in the form B® = U'DU, where U = (u;;) is an
orthogonal matrix, and D is a diagonal matrix diag(Ay,...,A\g) with Ay > ... > X\; > 0.
Here A = A\;. Foreach v =1,...,d, let E, be the projection matrix whose (v, v)-th entry

is 1, and all other entries are equal to 0. Put A, = U'E,U for each v. Then for all integers

k>0,
d d
Bk _ Z AE A, Bk+1) _ Z e A,B.
v=1 v=1
By a straightforward calculation, we see that for each v
d ) d d
s(4) = (wi) . s(4B) = (Zu) (> wnbns)- (7)
i=1 i=1 J,k=1
In particular, s(A4,) > 0. By Theorem 1', it follows that
s(B)? d d
(2)y — _
S <s(B )—;AVS(AV) SA;s(AV)—)\d. (8)
A d?

Therefore, v = > 1. Now, from the definition of v, we have

s(B)?

v2s(B) A2
d'~1s(BW) s(BW)




Then, in order to show inequality (6), we will show that the A3 /s(BY) are bounded above
by a constant that is independent of £. Indeed, let C;, = B®) /s(B®) for every ¢ > 0. Since
each C; has nonnegative real entries, and s(Cy) = 1, the entries of C, all lie in the closed
interval [0, 1]. Thus the entries of the matrices UCy,U" and UCy,1 B'U" are bounded by

a constant that depends only on B. Noting that for each nonnegative integer k, we have

Dk Dk+1
t __ trrt _
UCQkU - m, UCQk+1B U — W’

and on examining the (1,1)-th entry for each of these matrices, we see that \F/s(B(2)
and A1 /s(B@k+1)) are both bounded above by a constant that is independent of k.

Consequently, inequality (6) holds.

(a) = (b): If v = 1, then Ad = s(B)?/d, hence from (8) we see that s(A,) = 0 whenever
A, # A By (7), we also have that s(A,B) = 0 whenever A\, # A. Thus

J d
%)y _ k Ak — )\ VIl
S(B) = ;Aysw—x V_AZ:AsmV)—A ;SW—A 4= gt
J d s(B)2%+
S(B(2k+1)) _ Z)@ s(A,B) = \F Z s(A,B) = )\st(A,,B) = \s(B) = T2k
v=1 ViAy=A v=1

(b) => (a): If (b) holds, then inequality (6) implies 1 < ¢y~2 for some v > 1 and all

integers ¢ > 0. This forces v = 1.
(b) = (¢): Trivial.

(c) = (d): Suppose that £ = 2k +1 > 3 is an odd integer such that s(B)* = d*~! s(B").
Taking every «; = 1 in the proof of Theorem 1’, our hypothesis means that equality holds
in (5), hence (4) must also hold with equality:

d ) d d 2kt 2
Zbi,j:d%“(z<zbi,j> ) :
1 =1

ij=1 i=

By Holder’s inequality, this is only possible if all of the row sums of B are equal. Since ¢

is odd and s is transpose-invariant, we also have
S(Bt)é _ dé—l S((B(Z))t) _ dé—l S((Bt)(z)).

9



Thus all of the row sums of B! are equal as well, and B is bistochastic.

Now suppose that £ = 2k > 4 is an even integer such that s(B)‘ = d*~! s(B"). By taking
every a; = 1 in (3), we see that s(B)? = ds(B®). Then, taking every a; = 3 = 1 in the
proof of the lemma, we see that equality holds in (2) which is only possible if all of the
column sums of B are equal. Therefore s(BA) = [ s(A) for every d x d matrix A, where

B = s(B)/d is the sum of each column of B. In particular,
S(B)g _ df—l S(B(Z)) _ df—lﬂs((Bt)(f—l)) _ df—l 68((3(5—1))1%) _ d@—lﬂS(B(f—l))’

thus s(B)~' = d*2s(B“). Since ¢ — 1 is odd, we can apply the previous result to

conclude that B is bistochastic.

(d) = (b): Suppose B is bistochastic, with every row or column sum equal to 5 = s(B)/d.
For any d x d matrix A, one has s(AB) = fs(A) and s(AB") = 3s(A). In particular,
s(B@k1)) = 35(B®) and s(BZ+2) = 3 s(B®*1) for all k > 0. Consequently,

s(B)*

s(BO) = g s(B) = 70

¢>0.

This completes the proof. [ |

Corollary. Let B be a square d X d matriz with nonnegative real entries and s(B) # 0.

Let 3 be the j-th column sum of B for each j, and put

d

1 2
5:”@2(@_@)'

i,j=1

Then there exists a constant ¢ > 0 (depending only on B) such that for all { > 0, we have

s(B)! < ¢672d"" s(BY).

Proof. Note first that for any d x d matrix B, if 3; denotes the j-th column sum of B,

then it is easily seen that

S(B(Z)) _ 3(3)2 N i Z(ﬂz _ ﬂj)2' (9)




Using the notation of Theorem 2’ and applying the relations (8) and (9) , we have

A2 ds(B® 1 ¢
TTSBE j((BP) =1t asme D (Bi=p)* =0
ij=1

The corollary therefore follows from (6). |

Theorem 2. Let A be an m xn matriz with nonnegative real entries. If A is bistochastic,

then for all k > 1,
S(A)% _ mk—lnk S(A(zk)), 8(A>2k+1 _ mknk S(A(2k+1)).

If A is not bistochastic, then there exist constants ¢ > 0 and vy > 1 (depending only on A)
such that for all £ > 1,
s(A)" < ey~ (mn)Y? s(AY).

Proof of Theorem 2. Given an m X n matrix A with nonnegative real entries, we
proceed as in the proof of Theorem 1: put d = mn, and let B = A® 1, ,,,. Note that A is
bistochastic if and only if B is bistochastic. Applying the corollary above to B, Theorem 2

follows immediately for the matrix A. The details are left to the reader. [ ]

4 Asymptotic kernel inequality

Theorem 3. Let K(x,y) be a nonnegative symmetric kernel function that is Lebesgue

integrable over the square 0 < x,y < a, and consider the function f(z) = [ K(z,y)dy
0

defined on the interval 0 < x < a. If f(x) is constant almost everywhere, then for all

>1

a

//aKe(:C,y)dmdyza61_1</a/aK(x,y)d:cdy)z_

0
If not, there exist constants ¢ > 0 and vy > 1 (depending only on K) such that for all ¢ > 1

a a é a a ¢
//Kg(x,y)dxdy> ;Zl(//K(a:,y)dxdy) .
0 0 0 0

11



Proof of Theorem 3. By changing variables if necessary, we can assume that a = 1.
For simplicity, we will also assume that K (x,y) is continuous. Consider the function f(x)

defined by

= /K(:E,y) dy, z € 0,1].

If f(x) is a constant function, then since K(x,y) is symmetric, the equality

/l/lKg(x,y) dx dy = (ij(x,y) dmdy)z

for all £ > 1 follows from an easy inductive argument.

Now suppose that f(z) is not constant, and let m and M denote respectively the minimum
and maximum value of f(x) on [0, 1]. Choose € > 0 such that 4¢ < M — m. For every

integer d > 1, let Lli[d} be the open interval

U= ("), isisd

and let Z/{i[flj] be the rectangle Z/{i[d] X U][d} for 1 < 4,7 < d. Let K%z, y) be the function

that is defined on [0, 1] x [0, 1] as follows:
. S . [d] .
u min {K(s,t) | (s,t) € UM} if (z,y) € U;; for some 1 <i,j <d
K% (z,y) =
K(x,y) otherwise.
Here Z/{i[flj] denotes the closure of Z/{i[flj]. Noting that K14 (x,y) is constant on each rectangle
[d]
U,

denote the ¢-th order iterate of K% (x,5) for each £ > 1. Then

let Bjg be the d x d matrix whose (4, j)-th entry is equal to K9 (Z/{Z[C;]) Let Kéd] (x,y)

d
Kz, y) /K (w,t) Kt y)dt = /Kg Sz, t) Kt y) dt.
k=1 1y
k
It follows by induction that K l[d] (x,y) is also constant on each rectangle Z/ll[ j], nd

27.]

d d d d
KOG = ZKé L) K

12



1
by induction, this is the (i, j)-th entry of the matrix dTB( ). In other words,

1
(Kl[d} (L{}?)) dTB(Z) for all ¢,d > 1. (10)

Now since f(x) is continuous, we can choose d sufficiently large such that for some integers

1 <, iy < d, we have
flz) <m+e, for all z € Ul-[i},

fl@)>M—¢e,  forallzeld?.

Taking d larger if necessary, we can further assume that 0 < K(z,y) — K% (z,y) < ¢ for
all 0 < x,y < 1. Fixing this value of d, we define

82

vy=1+ I .
202( [ [ K(x,y) dedy)
00

Finally, since 71 < 1, we can choose e sufficiently large so that Kl (x,y) > A1 K(x,y)

for all 0 < x,y < 1. For this value of e, we therefore have

11 11
//K[de}(x,y) dx dy > 7_411//K(at,y) dx dy.
0 0 0 0

By the corollary to Theorem 2’ applied to the matrix Bjg,), there exists a constant ¢ > 0,

which is independent of ¢, such that
S(B[de})é <cds (de)=* (B(je])

for all integers ¢ > 0, where

de
1
0=1+——- (ﬁde]z Blae), )
25(Bu)” ;1

Here (4.); denotes the j-th column sum of B4, for each j. We now claim that § > ~.

13



Granting this fact for the moment, we apply (10) to Kl%l(z,y) and obtain:

//Kgxydzdy>//K :Bydxdy— 22 de]( de])

- (de;£+1 S(B[(ji}) >0k (de)_zés(B[de})
11 .
= ( ZK[de< de]))—c_lég (//Kde]xy dxdy)
ij=1 0
1

5hn i(//nydg:dy)>c1 ﬁ(//nydxdy)z

This completes the proof of the theorem modulo our claim that § > ~. To see this, let V
be any interval of the form Lli[de] such that V C Ui[f. Note that there are e such intervals.
Since Bl is a symmetric matrix, the column sum Bide),v of Bge) corresponding to the

interval V is equal to the “V-th” row sum, which can be bounded as follows:

de 1 1
Baay = S KW = e [ [ K ay) dyde < (@e? [ [ KRGy dyda
j=1 Vo v o

= (de)? / f(z)dx < de(m + ¢).

Similarly, let VW be any interval of the form L{Z-[de] such that W C I/IZ-[ICS. Again, there are e

such intervals, and by a similar calculation, the column sum (34 )y satisfies the bound

de
Blaegw = Z KLl (W,L{][de]) > de(M — 2¢).
=1
Thus
de
Z (Blae)i — Biaels) Z el — ﬂ[de]7v)2 > d*¢* (M —m — 3¢)? > d?e*e?
=1 v,

On the other hand, we have

1
B [de = /
0

and the claim follows. [ |

O\H

11
K[de (x,y)dedy < (de) //K:L’ y) dz dy,
00

14
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