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1 Introduction

For any matrix A, let s(A) denote the sum of its entries. For any integer k ≥ 1, we define

A(2k) = (AAt)k, A(2k+1) = (AAt)kA,

where At denotes the transpose of A. In Section 2, we prove the following sharp inequalities:

Theorem 1. Let A be an m × n matrix with nonnegative real entries. Then for every

integer k ≥ 1, the following matrix inequalities hold:

s(A)2k ≤ mk−1nk s(A(2k)), s(A)2k+1 ≤ mknk s(A(2k+1)).

For the special case of symmetric matrices, this theorem was proved in 1959 by Mulholland

and Smith [4], thus settling an earlier conjecture of Mandel and Hughes [3] that had been

based on the study of certain genetical models. For arbitrary matrices (with nonnegative

entries), Theorem 1 also generalizes the matrix inequality

s(A)3 ≤ mn s(AAtA),

which was first proved in 1960 by Atkinson, Moran and Watterson [1] using methods of

perturbation theory.

Theorem 1 has a graph theoretic interpretation when applied to matrices with entries

in {0, 1}. Let G be a graph with red vertices labeled 1, . . . , m and blue vertices labeled

1, . . . , n such that every edge connects only vertices of distinct colours: G is a bipartite

graph. Its reduced incidence matrix is an m× n matrix A such that ai,j = 1 if red vertex

i is adjacent to blue vertex j, and ai,j = 0 otherwise. Then s(A) is the size of G, while

s(A(`)) is the number of walks on G of length ` starting from a red vertex, i.e., the number

of sequences (v0, . . . , v`) such that v0 is a red vertex and every pair {vi, vi+1} is an edge

in G. Theorem 1 then yields the optimal lower bound of the number of walks in terms of
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the size of G. We do not know of a corresponding lower bound for the number of trails

(walks with no edge repeated) or paths (walks with no vertex repeated).

Recall that an m × n matrix A is said to be bistochastic if every row sum of A is equal

to s(A)/m, and every column sum of A is equal to s(A)/n. In Section 3 we prove the

following asymptotic form of Theorem 1:

Theorem 2. Let A be an m×n matrix with nonnegative real entries. If A is bistochastic,

then for all k ≥ 1,

s(A)2k = mk−1nk s(A(2k)), s(A)2k+1 = mknk s(A(2k+1)).

If A is not bistochastic, then there exist constants c > 0 and γ > 1 (depending only on A)

such that for all ` ≥ 1,

s(A)` < c γ−` (mn)`/2 s(A(`)).

As we show in Sections 2 and 3, both of the above theorems, though stated for arbi-

trary rectangular matrices with nonnegative entries, follow from the special case of square

matrices.

Theorem 2 has an immediate application. Atkinson, Moran and Watterson [1] conjectured

that for a nonnegative symmetric kernel function K(x, y) that is Lebesgue integrable over

the square 0 ≤ x, y ≤ a, the inequality

a
∫

0

a
∫

0

K`(x, y) dx dy ≥
1

a`−1

(

a
∫

0

a
∫

0

K(x, y) dx dy

)`

(1)

holds for all ` ≥ 1. Here K`(x, y) denotes the `-th order iterate of K(x, y), which is defined

recursively by

K1(x, y) = K(x, y), K`(x, y) =

a
∫

0

K`−1(x, t) K(t, y) dt.
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Beesack [2] showed that the Atkinson-Moran-Watterson conjecture follows from the ma-

trix identities of Mulholland and Smith described above. Using Beesack’s ideas together

with Theorem 2, we prove in Section 4 the following asymptotic form of the Atkinson-

Moran-Watterson inequality (1):

Theorem 3. Let K(x, y) be a nonnegative symmetric kernel function that is Lebesgue

integrable over the square 0 ≤ x, y ≤ a, and consider the function f(x) =
a
∫

0

K(x, y) dy

defined on the interval 0 ≤ x ≤ a. If f(x) is constant almost everywhere, then for all

` ≥ 1
a

∫

0

a
∫

0

K`(x, y) dx dy =
1

a`−1

(

a
∫

0

a
∫

0

K(x, y) dx dy

)`

.

If not, there exist constants c > 0 and γ > 1 (depending only on K) such that for all ` ≥ 1

a
∫

0

a
∫

0

K`(x, y) dx dy >
c γ`

a`−1

(

a
∫

0

a
∫

0

K(x, y) dx dy

)`

.

Remark: Using an approximation argument as in the proof of Theorem 3, Theorem 1

can be also applied to establish an analogue to inequalities (1) and Theorem 3 in the case

of nonsymmetric kernel functions. Let K(x, y) be any nonnegative kernel function that is

Lebesgue integrable over the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b and let K` be the `-th order

iterate of K defined by K1(x, y) = K(x, y) and for each integer k ≥ 1,

K2k(x, x′) =

b
∫

0

K2k−1(x, y)K(x′, y) dy, K2k+1(x, y) =

a
∫

0

K2k(x, x′)K(x′, y) dx′.

In this case, inequalities (1) become

a
∫

0

b
∫

0

K2k+1(x, y) dx dy ≥
1

akbk

(

a
∫

0

b
∫

0

K(x, y) dx dy

)2k+1

a
∫

0

a
∫

0

K2k(x, x′) dx dx′ ≥
1

ak−1bk

(

a
∫

0

b
∫

0

K(x, y) dx dy

)2k

.

The analogue of Theorem 3 is then obvious.
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2 Matrix inequality

Given a matrix A = (ai,j) and an integer ` ≥ 0, we denote by a
(`)
i,j the (i, j)-th entry of

A(`), so that A(`) = (a
(`)
i,j ). This notation will be used often in the sequel.

Lemma. Let B = (bi,j) be a d × d matrix with nonnegative real entries. For any two

sequences {αi} and {βi} of nonnegative real numbers, the following inequality holds:

(I ′

2) :
d

∑

i,j=1

αi βi bi,j ≤ d
1
2

( d
∑

i,j=1

α2
i β2

j b
(2)
i,j

)
1
2

.

Proof. To prove the lemma, we apply the Cauchy-Schwarz inequality twice as follows:

d
∑

i,j=1

αi βi bi,j =
d

∑

i,k=1

αi βi bi,k ≤ d
1
2

( d
∑

k=1

(

d
∑

i=1

αi βi bi,k

)2
)

1
2

. (2)

d
∑

i,j=1

αi βi bi,j ≤ d
1
2

(

d
∑

i,j,k=1

αi αj βi βj bi,k bj,k

)
1
2

= d
1
2

(

d
∑

i,j=1

αi αj βi βj b
(2)
i,j

)
1
2

= d
1
2

(

d
∑

i,j=1

αi βj (b
(2)
i,j )

1
2 · αj βi (b

(2)
j,i )

1
2

)
1
2

≤ d
1
2

(

d
∑

i,j=1

α2
i β2

j b
(2)
i,j

)
1
2

.

Here we have used the fact that B(2) = BBt is a symmetric matrix.

Theorem 1′. Let B = (bi,j) be a square d × d matrix with nonnegative real entries, and

let {αi} be any sequence of nonnegative real numbers. Then for each integer ` ≥ 1, we

have

(I`) :

d
∑

i,j=1

αi bi,j ≤ d
`−1

`

( d
∑

i,j=1

α`
i b

(`)
i,j

)
1
`

.
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Proof of Theorem 1′. The case ` = 1 is trivial while the case ` = 2 is a consequence of

the lemma above. We prove the general case by induction. Suppose that p ≥ 2, and the

inequalities (I1), (I2), . . . , (Ip) hold for all square matrices with nonnegative real entries.

If p = 2k − 1 is an odd integer, then the inequality (Ip+1) follows immediately from (I2)

and (Ik). Indeed, since B(2k) = B(2)(k), we have

d
∑

i,j=1

αi bi,j ≤ d
1
2

( d
∑

i,j=1

α2
i b

(2)
i,j

)
1
2

≤ d
1
2

(

d
k−1

k

(

d
∑

i,j=1

α2k
i b

(2)(k)
i,j

)
1
k

)
1
2

. (3)

Thus
d

∑

i,j=1

αi bi,j ≤ d
2k−1
2k

( d
∑

i,j=1

α2k
i b

(2k)
i,j

)
1
2k

.

If p = 2k is an even integer, then the inequality (Ip+1) follows from Hölder’s inequality,

and the inequalities (Ik) and (I ′

2). Indeed, by Hölder’s inequality, we have

d
∑

i,j=1

αi bi,j ≤ d
1

2k+1

( d
∑

i=1

α
2k+1
2k

i

(

d
∑

j=1

bi,j

)
2k+1
2k

)
2k

2k+1

. (4)

Let I denote the term between parentheses, and set βi =
d

∑

j=1

bi,j for each i. Then

I =

d
∑

i=1

α
2k+1
2k

i

(

d
∑

j=1

bi,j

)
2k+1
2k

=

d
∑

i,j=1

α
2k+1
2k

i β
1
2k

i bi,j .

Applying (Ik), it follows that

I ≤ d
k−1

k

( d
∑

i,j=1

α
2k+1

2
i β

1
2
i b

(k)
i,j

)
1
k

.

Applying the lemma to the sequences {α
2k+1

2
i } and {β

1
2
i }, and using the fact B(k)(2) = B(2k),

we see that

I ≤ d
k−1

k

(

d
1
2

(

d
∑

i,j=1

α2k+1
i βj b

(k)(2)
i,j

)
1
2

)
1
k

= d
2k−1
2k

( d
∑

i,j=1

α2k+1
i βj b

(2k)
i,j

)
1
2k

.

Putting everything together, we have therefore shown that

d
∑

i,j=1

αi bi,j ≤ d
2k

2k+1

( d
∑

i,j=1

α2k+1
i βj b

(2k)
i,j

)
1

2k+1

.
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Finally, note that

d
∑

j=1

βj b
(2k)
i,j =

d
∑

`=1

b
(2k)
i,` β` =

d
∑

j,`=1

b
(2k)
i,` b`,j =

d
∑

j=1

b
(2k+1)
i,j

since B(2k+1) = B(2k)B. Consequently,

d
∑

i,j=1

αi bi,j ≤ d
2k

2k+1

( d
∑

i,j=1

α2k+1
i b

(2k+1)
i,j

)
1

2k+1

(5)

and (Ip+1) holds for the case p = 2k. Theorem 1′ now follows by induction.

Theorem 1. Let A be an m × n matrix with nonnegative real entries. Then for every

integer k ≥ 1, the following matrix inequalities hold:

s(A)2k ≤ mk−1nk s(A(2k)), s(A)2k+1 ≤ mknk s(A(2k+1)).

Proof of Theorem 1. For the case of square matrices, Theorem 1 follows immedi-

ately from Theorem 1′. Indeed, taking αi = 1 for each i, the inequality (I`) yields the

corresponding inequality in Theorem 1.

Now, let A be an m × n matrix with nonnegative real entries, put d = mn, and let B be

the d×d matrix with nonnegative real entries defined as the tensor product B = A⊗1ln,m,

where 1ln,m is the n × m matrix with every entry equal to 1. For any integers `, k ≥ 0,

the relations

B(`) = A(`) ⊗ 1l(`)n,m , s
(

B(`)
)

= s
(

A(`)
)

s(1l(`)n,m) ,

s
(

1l(2k)
n,m

)

= mknk+1, s
(

1l(2k+1)
n,m

)

= mk+1nk+1.

are easily checked. In particular, s(B) = mn s(A). Applying Theorem 1 to the matrix B

and using these identities, the inequalities of Theorem 1 follow for the matrix A.

3 Asymptotic matrix inequality

As will be shown below, Theorem 2 is a consequence of the following more precise theorem

for square matrices:
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Theorem 2′. Let B be a square d×d matrix with nonnegative real entries and s(B) 6= 0.

Let λ be the largest eigenvalue of B(2) = BBt, and put γ = λ d2/s(B)2. Then γ ≥ 1, and

there exists a constant c > 0 (depending only on B) such that for all integers ` ≥ 0,

s(B)` < c γ−
`

2 d`−1 s(B(`)). (6)

Moreover, the following assertions are equivalent:

(a) γ = 1,

(b) s(B)` = d`−1 s(B(`)) for every integer ` ≥ 0,

(c) s(B)` = d`−1 s(B(`)) for some integer ` ≥ 3,

(d) B is bistochastic.

Proof. We express B(2) = BBt in the form B(2) = U tDU , where U = (ui,j) is an

orthogonal matrix, and D is a diagonal matrix diag(λ1, . . . , λd) with λ1 ≥ . . . ≥ λd ≥ 0.

Here λ = λ1. For each ν = 1, . . . , d, let Eν be the projection matrix whose (ν, ν)-th entry

is 1, and all other entries are equal to 0. Put Aν = U tEνU for each ν. Then for all integers

k ≥ 0,

B(2k) =

d
∑

ν=1

λk
ν Aν , B(2k+1) =

d
∑

ν=1

λk
ν AνB.

By a straightforward calculation, we see that for each ν

s(Aν) =
(

d
∑

i=1

uν,i

)2

, s(AνB) =

( d
∑

i=1

uν,i

)

(

d
∑

j,k=1

uν,k bk,j

)

. (7)

In particular, s(Aν) ≥ 0. By Theorem 1′, it follows that

s(B)2

d
≤ s(B(2)) =

d
∑

ν=1

λν s(Aν) ≤ λ
d

∑

ν=1

s(Aν) = λ d. (8)

Therefore, γ =
λ d2

s(B)2
≥ 1. Now, from the definition of γ, we have

γ
`

2 s(B)`

d`−1s(B(`))
= d

λ
`

2

s(B(`))
·
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Then, in order to show inequality (6), we will show that the λ
`

2 /s(B(`)) are bounded above

by a constant that is independent of `. Indeed, let C` = B(`)/s(B(`)) for every ` ≥ 0. Since

each C` has nonnegative real entries, and s(C`) = 1, the entries of C` all lie in the closed

interval [0, 1]. Thus the entries of the matrices UC2kU
t and UC2k+1B

tU t are bounded by

a constant that depends only on B. Noting that for each nonnegative integer k, we have

UC2kU
t =

Dk

s(B(2k))
, UC2k+1B

tU t =
Dk+1

s(B(2k+1))
,

and on examining the (1, 1)-th entry for each of these matrices, we see that λk/s(B(2k))

and λk+1/s(B(2k+1)) are both bounded above by a constant that is independent of k.

Consequently, inequality (6) holds.

(a) =⇒ (b): If γ = 1, then λ d = s(B)2/d, hence from (8) we see that s(Aν) = 0 whenever

λν 6= λ. By (7), we also have that s(AνB) = 0 whenever λν 6= λ. Thus

s(B(2k)) =

d
∑

ν=1

λk
ν s(Aν) = λk

∑

ν : λν=λ

s(Aν) = λk

d
∑

ν=1

s(Aν) = λk d =
s(B)2k

d2k−1
,

s(B(2k+1)) =
d

∑

ν=1

λk
ν s(AνB) = λk

∑

ν :λν=λ

s(AνB) = λk
d

∑

ν=1

s(AνB) = λk s(B) =
s(B)2k+1

d2k
·

(b) =⇒ (a): If (b) holds, then inequality (6) implies 1 < c γ−
`

2 for some γ ≥ 1 and all

integers ` ≥ 0. This forces γ = 1.

(b) =⇒ (c): Trivial.

(c) =⇒ (d): Suppose that ` = 2k + 1 ≥ 3 is an odd integer such that s(B)` = d`−1 s(B(`)).

Taking every αi = 1 in the proof of Theorem 1′, our hypothesis means that equality holds

in (5), hence (4) must also hold with equality:

d
∑

i,j=1

bi,j = d
1

2k+1

( d
∑

i=1

(

d
∑

j=1

bi,j

)
2k+1
2k

)
2k

2k+1

.

By Hölder’s inequality, this is only possible if all of the row sums of B are equal. Since `

is odd and s is transpose-invariant, we also have

s(Bt)` = d`−1 s
(

(B(`))t
)

= d`−1 s
(

(Bt)(`)
)

.
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Thus all of the row sums of Bt are equal as well, and B is bistochastic.

Now suppose that ` = 2k ≥ 4 is an even integer such that s(B)` = d`−1 s(B(`)). By taking

every αi = 1 in (3), we see that s(B)2 = d s(B(2)). Then, taking every αi = βi = 1 in the

proof of the lemma, we see that equality holds in (2) which is only possible if all of the

column sums of B are equal. Therefore s(BA) = β s(A) for every d × d matrix A, where

β = s(B)/d is the sum of each column of B. In particular,

s(B)` = d`−1 s
(

B(`)
)

= d`−1 β s
(

(Bt)(`−1)
)

= d`−1 β s
(

(B(`−1))t
)

= d`−1 β s(B(`−1)),

thus s(B)`−1 = d`−2 s(B(`−1)). Since ` − 1 is odd, we can apply the previous result to

conclude that B is bistochastic.

(d) =⇒ (b): Suppose B is bistochastic, with every row or column sum equal to β = s(B)/d.

For any d × d matrix A, one has s(AB) = β s(A) and s(ABt) = β s(A). In particular,

s(B(2k+1)) = β s(B(2k)) and s(B(2k+2)) = β s(B(2k+1)) for all k ≥ 0. Consequently,

s(B(`)) = β`−1 s(B) =
s(B)`

d`−1
, ` ≥ 0.

This completes the proof.

Corollary. Let B be a square d × d matrix with nonnegative real entries and s(B) 6= 0.

Let βj be the j-th column sum of B for each j, and put

δ = 1 +
1

2 s(B)2

d
∑

i,j=1

(βi − βj)
2.

Then there exists a constant c > 0 (depending only on B) such that for all ` ≥ 0, we have

s(B)` < c δ−
`

2 d`−1 s(B(`)).

Proof. Note first that for any d × d matrix B, if βj denotes the j-th column sum of B,

then it is easily seen that

s(B(2)) =
s(B)2

d
+

1

2d

d
∑

i,j=1

(βi − βj)
2. (9)
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Using the notation of Theorem 2′ and applying the relations (8) and (9) , we have

γ =
λ d2

s(B)2
≥

d s(B(2))

s(B)2
= 1 +

1

2 s(B)2

d
∑

i,j=1

(βi − βj)
2 = δ.

The corollary therefore follows from (6).

Theorem 2. Let A be an m×n matrix with nonnegative real entries. If A is bistochastic,

then for all k ≥ 1,

s(A)2k = mk−1nk s(A(2k)), s(A)2k+1 = mknk s(A(2k+1)).

If A is not bistochastic, then there exist constants c > 0 and γ > 1 (depending only on A)

such that for all ` ≥ 1,

s(A)` < c γ−` (mn)`/2 s(A(`)).

Proof of Theorem 2. Given an m × n matrix A with nonnegative real entries, we

proceed as in the proof of Theorem 1: put d = mn, and let B = A⊗ 1ln,m. Note that A is

bistochastic if and only if B is bistochastic. Applying the corollary above to B, Theorem 2

follows immediately for the matrix A. The details are left to the reader.

4 Asymptotic kernel inequality

Theorem 3. Let K(x, y) be a nonnegative symmetric kernel function that is Lebesgue

integrable over the square 0 ≤ x, y ≤ a, and consider the function f(x) =
a
∫

0

K(x, y) dy

defined on the interval 0 ≤ x ≤ a. If f(x) is constant almost everywhere, then for all

` ≥ 1
a

∫

0

a
∫

0

K`(x, y) dx dy =
1

a`−1

(

a
∫

0

a
∫

0

K(x, y) dx dy

)`

.

If not, there exist constants c > 0 and γ > 1 (depending only on K) such that for all ` ≥ 1

a
∫

0

a
∫

0

K`(x, y) dx dy >
c γ`

a`−1

(

a
∫

0

a
∫

0

K(x, y) dx dy

)`

.
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Proof of Theorem 3. By changing variables if necessary, we can assume that a = 1.

For simplicity, we will also assume that K(x, y) is continuous. Consider the function f(x)

defined by

f(x) =

1
∫

0

K(x, y) dy, x ∈ [0, 1].

If f(x) is a constant function, then since K(x, y) is symmetric, the equality

1
∫

0

1
∫

0

K`(x, y) dx dy =

(

1
∫

0

1
∫

0

K(x, y) dx dy

)`

for all ` ≥ 1 follows from an easy inductive argument.

Now suppose that f(x) is not constant, and let m and M denote respectively the minimum

and maximum value of f(x) on [0, 1]. Choose ε > 0 such that 4ε < M − m. For every

integer d ≥ 1, let U
[d]
i be the open interval

U
[d]
i =

(i − 1

d
,
i

d

)

, 1 ≤ i ≤ d,

and let U
[d]
i,j be the rectangle U

[d]
i × U

[d]
j for 1 ≤ i, j ≤ d. Let K [d](x, y) be the function

that is defined on [0, 1] × [0, 1] as follows:

K [d](x, y) =











min
{

K(s, t)
∣

∣ (s, t) ∈ U
[d]
i,j

}

if (x, y) ∈ U
[d]
i,j for some 1 ≤ i, j ≤ d

K(x, y) otherwise.

Here U
[d]
i,j denotes the closure of U

[d]
i,j . Noting that K [d](x, y) is constant on each rectangle

U
[d]
i,j , let B[d] be the d× d matrix whose (i, j)-th entry is equal to K [d](U

[d]
i,j ). Let K

[d]
` (x, y)

denote the `-th order iterate of K [d](x, y) for each ` ≥ 1. Then

K
[d]
` (x, y) =

1
∫

0

K
[d]
`−1(x, t) K [d](t, y) dt =

d
∑

k=1

∫

U
[d]
k

K
[d]
`−1(x, t) K [d](t, y) dt.

It follows by induction that K
[d]
` (x, y) is also constant on each rectangle U

[d]
i,j , and

K
[d]
` (U

[d]
i,j ) =

1

d

d
∑

k=1

K
[d]
`−1(U

[d]
i,k) K [d](U

[d]
k,j);

12



by induction, this is the (i, j)-th entry of the matrix
1

d`−1
B

(`)
[d] . In other words,

(

K
[d]
` (U

[d]
i,j )

)

=
1

d`−1
B

(`)
[d] , for all `, d ≥ 1. (10)

Now since f(x) is continuous, we can choose d sufficiently large such that for some integers

1 ≤ im, iM ≤ d, we have

f(x) < m + ε, for all x ∈ U
[d]
im ,

f(x) > M − ε, for all x ∈ U
[d]
iM

.

Taking d larger if necessary, we can further assume that 0 ≤ K(x, y) − K [d](x, y) < ε for

all 0 ≤ x, y ≤ 1. Fixing this value of d, we define

γ = 1 +
ε2

2d2
( 1

∫

0

1
∫

0

K(x, y) dx dy
)2

.

Finally, since γ−
1
4 < 1, we can choose e sufficiently large so that K [de](x, y) > γ−

1
4 K(x, y)

for all 0 ≤ x, y ≤ 1. For this value of e, we therefore have

1
∫

0

1
∫

0

K [de](x, y) dx dy > γ−
1
4

1
∫

0

1
∫

0

K(x, y) dx dy.

By the corollary to Theorem 2′ applied to the matrix B[de], there exists a constant c > 0,

which is independent of `, such that

s
(

B[de]

)`
< c δ−

`

2 (de)`−1 s
(

B
(`)
[de]

)

for all integers ` ≥ 0, where

δ = 1 +
1

2 s
(

B[de]

)2

de
∑

i,j=1

(

β[de],i − β[de],j

)2
.

Here β[de],j denotes the j-th column sum of B[de] for each j. We now claim that δ > γ.
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Granting this fact for the moment, we apply (10) to K [de](x, y) and obtain:

1
∫

0

1
∫

0

K`(x, y) dx dy ≥

1
∫

0

1
∫

0

K
[de]
` (x, y) dx dy =

1

(de)2

de
∑

i,j=1

K
[de]
`

(

U
[de]
i,j

)

=
1

(de)`+1
s
(

B
(`)
[de]

)

> c−1 δ
`

2 (de)−2` s
(

B[de]

)`

= c−1 δ
`

2

(

1

(de)2

de
∑

i,j=1

K [de]
(

U
[de]
i,j

)

)`

= c−1 δ
`

2

(

1
∫

0

1
∫

0

K [de](x, y) dx dy

)`

> c−1 δ
`

2 γ−
`

4

(

1
∫

0

1
∫

0

K(x, y) dx dy

)`

> c−1 γ
`

4

(

1
∫

0

1
∫

0

K(x, y) dx dy

)`

.

This completes the proof of the theorem modulo our claim that δ > γ. To see this, let V

be any interval of the form U
[de]
i such that V ⊂ U

[d]
im

. Note that there are e such intervals.

Since B[de] is a symmetric matrix, the column sum β[de],V of B[de] corresponding to the

interval V is equal to the “V-th” row sum, which can be bounded as follows:

β[de],V =
de

∑

j=1

K [de]
(

V,U
[de]
j

)

= (de)2

∫

V

1
∫

0

K [de](x, y) dy dx ≤ (de)2

∫

V

1
∫

0

K(x, y) dy dx

= (de)2

∫

V

f(x) dx < de(m + ε).

Similarly, let W be any interval of the form U
[de]
i such that W ⊂ U

[d]
iM

. Again, there are e

such intervals, and by a similar calculation, the column sum β[de],W satisfies the bound

β[de],W =
de

∑

j=1

K [de]
(

W,U
[de]
j

)

> de(M − 2ε).

Thus

de
∑

i,j=1

(

β[de],i − β[de],j

)2
≥

∑

V ,W

(

β[de],W − β[de],V

)2
> d2e4(M − m − 3ε)2 > d2e4ε2.

On the other hand, we have

s
(

B[de]

)

= (de)2

1
∫

0

1
∫

0

K [de](x, y) dx dy ≤ (de)2

1
∫

0

1
∫

0

K(x, y) dx dy,

and the claim follows.
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