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Abstract: In this paper, we use elementary methods to derive some new identities

for special values of the Riemann zeta function.

§1. Introduction

In the region
{

s ∈ C
∣

∣ Re(s) > 1
}

, the Riemann zeta function ζ(s) is defined by

ζ(s) =
∑

n∈N

1

ns
=

∏

p

(

1 − 1

ps

)−1

,

where N denotes the set of natural numbers, and the product is over all prime

numbers p. It is well-known that the values of ζ(s) at positive even integers can be

expressed in terms of the Bernoulli numbers
{

Bk ∈ Q
∣

∣ k ≥ 0
}

by the formula

(1) ζ(2k) = (−1)k−1 (2π)2k

2 (2k)!
B2k.

However, other special values of ζ(s) remain mysterious. Indeed, it is still an open

problem to show that ζ(2k + 1) is transcendental for any k ≥ 1.

In this paper, we use elementary techniques to derive some new identities for

special values of the Riemann zeta function. For example, we will show that for

every integer k ≥ 2, the following identity holds:

(2) ζ(k) = 2k− 1

2 πk

√

√

√

√

√

|B2k|
(2k)!

∑

n∈N





1

n

∑

m (mod n)

cos
(

2πm (m, n)2/n
)





k

,
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where (m, n) denotes the greatest common divisor of m and n. To obtain identities

of this type, we study the arithmetical functions
{

aj

∣

∣ j ∈ N
}

defined by

(3) aj(n) =
∑

m (mod n)

cos
(

2πm (m, n)j−1/n
)

, n ∈ N.

Our main result is the following:

Theorem. If x, y, z ∈ R with x, y, z > 0, and s ∈ C with Re(s) � 0, then

∑

n∈N

a2(n)x

ns
= ζ(2s − x),

∑

n∈N

a3(n)x

ns
=

ζ(2s − x)ζ(3s − 2x)

ζ(4s − 2x)
,

∑

n∈N

a2(n)xa3(n)y

ns
=

ζ(2s − x − y)ζ(6s − 3x − 4y)

ζ(4s − 2x − 2y)
,

∑

n∈N

a2(n)xa4(n)y

ns
=

ζ(2s − x − y)ζ(4s − 2x − 3y)

ζ(4s − 2x − 2y)
,

∑

n∈N

a2(n)xa3(n)ya6(n)z

ns
=

ζ(2s − x − y − z)ζ(6s − 3x − 4y − 5z)

ζ(4s − 2x − 2y − 2z)
.

From the proof of this theorem (see §2), it is clear that each identity is valid

whenever s ∈ C lies in the region of absolute convergence for the Dirichlet series

that occur on the right side of each expression. In §2, we also state a corollary that

gives a list of identities generalizing (2).

The author would like to thank D. Zagier for his helpful comments on the original

manuscript, and the University of Missouri–Columbia and the Centre Interuniver-

sitaire en Calcul Mathématique Algébrique for their support.

§2. Proof of the Theorem

To prove the theorem, we first need to evaluate the arithmetical function aj(n)

defined by (3). This is accomplished by the following proposition.
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Proposition. For each j ∈ N, the function aj(n) defined by (3) is multiplicative.

Its values on prime powers are given by

aj(p
α) =

{

pb(j−1)+r if α − 1 = bj + r with 0 < r < j,

0 if α ≡ 1 (mod j).

Proof: Collecting together the terms in (3) with a fixed value d = (m, n), we can

rewrite that equation as

aj(n) =
∑

d|n

∑

m∈(Z/ n
d

Z)×

cos(2πmdj/n) =
∑

d|n

rn/d(d
j−1),

where for all n, k ∈ N, rn(k) is the classical Ramanujan sum defined by

rn(k) =
∑

m (mod n)
(m,n)=1

cos(2πmk/n) =
∑

m∈(Z/nZ)×

e2πimk/n.

Using the well-known (and easily proved) formula

rn(k) =
∑

e|(n,k)

e µ(n/e),

we now find that

(4) aj(n) =
∑

d|n

∑

e|( n
d

,dj−1)

e µ
( n

de

)

=
∑

g|n

µ(n/g)
∑

ej|gj−1

e,

where in the second formula we have set g = de (note that ej |gj−1 implies e|g, hence

g = de with e|dj−1). With this formula, aj(n) is expressed as a sum over divisors

of n of multiplicative functions, so aj(n) is multiplicative as well. It remains to

calculate aj(n) for prime powers. If n = pα with p prime and α ≥ 1, then the

coefficient µ(n/g) in (4) is +1 for g = pα, −1 for g = pα−1, and 0 otherwise, and e

must have the form pi for some i ≥ 0. Thus

aj(p
α) =

∑

0≤i≤ j−1

j
α

pi −
∑

0≤i≤ j−1

j
(α−1)

pi =
∑

j−1

j
(α−1)<i≤ j−1

j
α

pi.
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Writing α − 1 as bj + r, 0 ≤ r < j, we see that the interval
(

j−1
j (α − 1), j−1

j α
]

contains the unique integer i = b(j − 1) + r if r > 0 and no integer at all if r = 0.

The proposition follows. �

According to the proposition, we have

(5) aj(n) =











k
∏

i=1
p
[αi(j−1)/j]
i if n = pα1

1 . . . pαk

k with each αi 6≡ 1 mod j,

0 otherwise,

where [x] denotes the greatest integer less than or equal to x.

Proof of the theorem: We will prove only the last identity stated in the theorem.

By (5), we see that 0 ≤ aj(n) ≤ n(j−1)/j, hence the Dirichlet series defined by

D(s) =
∑

n∈N

a2(n)xa3(n)ya6(n)z

ns

converges absolutely if Re(s) is sufficiently large. For such s, the multiplicativity

of aj(n) gives rise to an Euler product expansion of the form

D(s) =
∏

p

Dp(s),

where for each prime p, the local factor Dp(s) is given by

Dp(s) =
∞
∑

α=0

a2(p
α)xa3(p

α)ya6(p
α)z

pαs
.

According to the proposition, a2(p
α)a3(p

α)a6(p
α) = 0 unless α ≡ 0 or 2 (mod 6),

thus Dp(s) can be expressed as the sum of

∞
∑

β=0

a2(p
6β)xa3(p

6β)ya6(p
6β)z

p6βs
=

∞
∑

β=0

p3βx+4βy+5βz−6βs

and

∞
∑

β=0

a2(p
6β+2)xa3(p

6β+2)ya6(p
6β+2)z

p(6β+2)s
=

∞
∑

β=0

p(3β+1)x+(4β+1)y+(5β+1)z−(6β+2)s.
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On summing the two geometrical series, we find that

Dp(s) =
1 + px+y+z−2s

1 − p3x+4y+5z−6s
=

1 − p2x+2y+2z−4s

(

1 − px+y+z−2s
) (

1 − p3x+4y+5z−6s
) ,

and therefore

D(s) =
∏

p

Dp(s) =
ζ(2s − x − y − z) ζ(6s − 3x − 4y − 5z)

ζ(4s − 2x − 2y − 2z)
.

The other identities listed in the theorem can be proved in a similar way. �

Corollary 1. If x, y ∈ R with x, y > 0, and s ∈ C with Re(s) � 0, then

∑

n∈N

a3(n
2)x

ns
=

ζ(s − x − 1)ζ(3s − 4x − 3)

ζ(2s − 2x − 2)
,

∑

n∈N

a4(n
2)x

ns
=

ζ(s − x − 1)ζ(2s − 3x − 2)

ζ(2s − 2x − 2)
,

∑

n∈N

a3(n
2)xa6(n

2)y

ns
=

ζ(s − x − y − 1)ζ(3s − 4x − 5y − 3)

ζ(2s − 2x − 2y − 2)
.

Proof: This follows immediately from the theorem, since by (5), a2(n) =
√

n if n

is a perfect square, and a2(n) = 0 otherwise. �

Corollary 2. For every integer k ≥ 2, we have

ζ(k) = 2k− 1

2 πk

√

|B2k|
(2k)!

∑

n∈N

a3(n)k

nk

= 2k− 1

2 πk

√

|B2k|
(2k)!

∑

n∈N

a3(n2)2k

n3k+1

= 2k− 1

2 πk

√

|B2k|
(2k)!

∑

n∈N

a4(n2)k

n2k+1

= 2k− 1

2 πk

√

√

√

√

|B2k|
(2k)!

∑

n∈N

a3(n2)2k/3a6(n2)2k/3

n(7k+3)/3
.

Proof: Using the relation (1), these identities follow easily as special cases of the

theorem and the preceding corollary. �
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