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Some unusual identities for special values

of the Riemann zeta function’

by William D. Banks

Abstract: In this paper, we use elementary methods to derive some new identities

for special values of the Riemann zeta function.
§1. Introduction

In the region {s € C|Re(s) > 1}, the Riemann zeta function ((s) is defined by
1 1\!
neN p
where N denotes the set of natural numbers, and the product is over all prime
numbers p. It is well-known that the values of ((s) at positive even integers can be

expressed in terms of the Bernoulli numbers {Bk eQ ’ k> 0} by the formula

T 2k
M) (k) = (—1)’“—1;2(22)! Ba.

However, other special values of ((s) remain mysterious. Indeed, it is still an open
problem to show that ((2k + 1) is transcendental for any k > 1.

In this paper, we use elementary techniques to derive some new identities for
special values of the Riemann zeta function. For example, we will show that for

every integer k > 2, the following identity holds:

k
5 (15 et

neN m (mod n)

(2) C(k) = 2k=2 7"
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2

where (m, n) denotes the greatest common divisor of m and n. To obtain identities

of this type, we study the arithmetical functions {aj ‘ j e N} defined by

(3)

a;(n) = Z cos (2rm (m,n)?~! /n), n € N.

m (mod n)

Our main result is the following:

Theorem. If x,y,z € R with x,y,z > 0, and s € C with Re(s) > 0, then

> 2T o,
neN
az(n)®  (¢(2s —x)((3s — 2x)
% ns ((4s — 27) ’
az(n)®az(n)? _ (25 —x —y)¢(6s — 3z — 4y)
7% ns B C(4s — 2z — 2y) ’
az(n)®as(n)?  ((2s —x —y)((4s — 2z — 3y)
T% ns B C(4s — 2z — 2y) ’
as(n)as(n)ag(n)* _ C(2s —x —y — 2)((6s ~ 3z — dy — 52)

nS

C(4s — 2z — 2y — 2z)

From the proof of this theorem (see §2), it is clear that each identity is valid

whenever s € C lies in the region of absolute convergence for the Dirichlet series

that occur on the right side of each expression. In §2, we also state a corollary that

gives a list of identities generalizing (2).

The author would like to thank D. Zagier for his helpful comments on the original

manuscript, and the University of Missouri-Columbia and the Centre Interuniver-

sitaire en Calcul Mathématique Algébrique for their support.

§2. Proof of the Theorem

To prove the theorem, we first need to evaluate the arithmetical function a;(n)

defined by (3). This is accomplished by the following proposition.
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Proposition. For each j € N, the function aj(n) defined by (3) is multiplicative.
Its values on prime powers are given by

. ptlU—1+r fa—1=0bj+r with0 <r <y,
a;(p*) =

0 if @ =1 (mod 7).

Proof: Collecting together the terms in (3) with a fixed value d = (m,n), we can
rewrite that equation as
a;j(n) = Z Z cos(2mmd’ /n) = Z rn/d(dj_l),
dln me(Z/57)% d|n
where for all n, k € N, r,,(k) is the classical Ramanujan sum defined by
rn(k) = Z cos(2mmk/n) = Z e2mimk/n,

m (mod n) me(Z/nZ)*
(m,n)=1

Using the well-known (and easily proved) formula

rak) = 3 epln/e),

el (n,k)

we now find that
(4) am) =3 Y en(z)=Duln/g) Y e

dln e|(%,d7~1) gln ellgi=t
where in the second formula we have set g = de (note that e7|¢g? ~! implies e|g, hence
g = de with e|d’~1). With this formula, a;(n) is expressed as a sum over divisors
of n of multiplicative functions, so a;(n) is multiplicative as well. It remains to
calculate aj(n) for prime powers. If n = p® with p prime and a > 1, then the
coefficient p(n/g) in (4) is +1 for g = p*, —1 for g = p*~1, and 0 otherwise, and e
must have the form p’ for some ¢ > 0. Thus

a(p®)= Y  p- >  p= > .

0<i<i=% a 0<i<i=(a—1) I (a-N<i<izt o
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Writing « — 1 as b +r, 0 < r < 7, we see that the interval ( 5 (a - 1), Jl a]
contains the unique integer ¢ = b(j — 1) + 7 if r > 0 and no integer at all if » = 0.

The proposition follows. l

According to the proposition, we have

k . .
j(n) =4 i=

0 otherwise,

where [z] denotes the greatest integer less than or equal to z.

Proof of the theorem: We will prove only the last identity stated in the theorem.

By (5), we see that 0 < a;j(n) <nU~Y/J hence the Dirichlet series defined by

I
neN

converges absolutely if Re(s) is sufficiently large. For such s, the multiplicativity

of aj(n) gives rise to an Euler product expansion of the form

s) =[] Duls)

where for each prime p, the local factor D, (s) is given by

oo a\z

Dy(s) = 3. PV el st

s
a=0 p

According to the proposition, as(p®)as(p®)as(p®) = 0 unless a = 0 or 2 (mod 6),

thus D,(s) can be expressed as the sum of

— a2 (p%7)"az(p®°)Yas(p®’)* < 3
Bx+4By+58z—63s
> = — =D p
B=0 B=0

and

[e ) T z (e )

3 az (PP +2) as (p®+2)Vas (p*°12)7 0 pOFHDTHAT DB+ )z (65+2);
(68+2)s p :

5—0 p 5—0



On summing the two geometrical series, we find that

D B 1+ px—l—y—l—z—Zs _ 1— p21‘—|—2y—|—22—4s
p(S) - 1— p3m+4y—|—5z—68 - (1 _px+y+z—25) (1 _ p3x+4y+5z—6s) ’

and therefore

((2s—x—y—2)((6s— 3z —4y — 52)
D(s)=||D = :
() 1;[ b(s) C(4s — 2z — 2y — 2z)
The other identities listed in the theorem can be proved in a similar way. U

Corollary 1. If z,y € R with z,y > 0, and s € C with Re(s) > 0, then

as(n?)® s—x—1)((3s —4x — 3
3 (n*)* _ ¢( )¢( )

= o ¢(2s — 22 —2) ’
as(n®)®  ((s—ax—1)¢((2s — 3z —2)
% ns ¢(2s — 2z — 2) ’
as(n?)Fas(n®)? _ C(s =z —y = 1)¢(3s — 4z = 5y — 3)
Z ns B C(2s — 22— 2y — 2) '

neN

Proof: This follows immediately from the theorem, since by (5), az(n) = /n if n

is a perfect square, and as(n) = 0 otherwise. O

Corollary 2. For every integer k > 2, we have

_ ok—3%_k | Bok| az(n)*
C(k) = 272w (zk)!nezN nF

Il
B

3

k-1 k | Bay| ZCES(HQ)%
(2k)! n3k+1

Il
B

N

k-1 k|| Bkl 3 asg(n?)"

2kt 1
(2k)! o

- |sz| Z as(n2)2k/3qg(n2)2k/3

k—
2 1, (Th+3)/3

Proof: Using the relation (1), these identities follow easily as special cases of the

theorem and the preceding corollary. U
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