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The Fourier coefficients of certain metaplectic Eisenstein series con-
tain L-series of arithmetic interest. This fact has been repeatedly
exploited by various authors in order to obtain analytic information
about these L-series. Bump and Hoffstein [H] conjectured that the
Hecke L-series of the n-th order residue symbol would be contained in
the Fourier coefficients of an Eisenstein series on the n-cover of GL(n)
induced up from a theta function on the n-cover of GL(n − 1). Some
evidence for this conjecture was provided in [H], and a representation
theoretic explanation for its plausibility was given in [BL]. Recently,
Suzuki [S] proved the conjecture in the function field case, and he
carried out many preliminary steps towards the proof of the conjec-
ture in the number field case. Using very different techniques, the
authors of this paper recently proved a generalization of the (slightly
corrected version of the) Bump-Hoffstein conjecture over an arbitrary
global field [BBL].

In the course of the proof in [BBL], the authors considered various
means of attack on the problem. One of these was the method of
Casselman and Shalika, which required us to bound the size of the
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Jacquet module JV of a certain induced representation. Although this
work was not needed in the final version of our paper, the computation
of dim(JV ) is both amusing and enlightening, and we present it here
as a pleasant result in its own right. The basic reference for this
material is [KP].

For n ≥ 3, the setup is as follows. Let F be a nonarchimedean local
field such that the group of n-th roots of unity in F× has cardinality
n. Let Θ denote the theta representation on the n-fold (metaplectic)
cover of GL(n − 1, F ), let G denote the n-fold cover of GL(n, F ),
and let δP be the modular character of the (n − 1, 1)-parabolic P of
G. Once and for all, we fix an element s ∈ C. Let (ρ, V ) be the
(normalized) induced representation IndG

P (Θ ⊗ δs
P ), and let JV be

the Jacquet module defined by

JV = V/〈ρ(n)v − v | v ∈ V, n ∈ N〉,

where N is the canonical lift of the standard maximal unipotent sub-
group of GL(n, F ). Note that JV is an admissible T -module, where
T denotes the metaplectic preimage in G of the diagonal matrices.
Our goal in this paper is to show that dim(JV ) = n (a priori, one
only knows that dim(JV ) ≤ n! ).

To illustrate the ideas, we consider first the case n = 3. Let ω be
the character of T given by





y1

y2

y3



 7→ |y1|
s+1/6 |y2|

s−1/6 |y3|
−2s.

Let IndG
B(ω) be the representation of G parabolically induced from ω

(normalized induction) as explained in Kazhdan and Patterson [KP].
Then V is the unique subrepresentation of IndG

B(s1ω), where we have
written s1 for the matrix





1
1

1





(more precisely, s1 is the canonical preimage of this matrix in G ).
Note that V is also the unique quotient representation of IndG

B(ω). For
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every element w of the Weyl group, let wω be the character defined by
wω(t) = ω(w−1tw). It is known that dim

(
HomT (JV, wω)

)
≤ 1. We

will prove that for precisely 3 elements w, dim
(
HomT (JV, wω)

)
= 1;

the assertion that dim(JV ) = 3 follows immediately.
Indeed, suppose that σ is a nonzero element of HomT (JV, wω). By

Frobenius reciprocity, HomT (JV, wω) ∼= HomG

(
V, IndG

B(wω)
)
, so we

may regard σ as a nonzero element of HomG

(
V, IndG

B(wω)
)
. Now con-

sider the composition

IndG
B(s1ω)

Ts1−−→ IndG
B(ω)

Ts1−−→ V
σ
−→ IndG

B(wω).

By [KP, 1.2.2], there exists a constant c 6= 0 so that σ ◦ Ts1
= c Tw.

Using the definition of ω, it follows from [KP, 1.2.6] that Ts1
◦Ts1

= 0.
Thus, 0 = σ ◦Ts1

◦Ts1
= c Tw ◦Ts1

. This yields a contradiction unless
`(ws1) = `(w) − 1, since Tw ◦ Ts1

= Tws1
6= 0 if `(ws1) = `(w) + 1 by

[KP, 1.2.3].
Conversely, if `(ws1) = `(w) − 1, then the composition Tws1

◦ Ts1

from IndG
B(ω) to IndG

B(wω) is a nonzero multiple of Tw. By restricting
Tws1

to V = Im(Ts1
), one obtains a nonzero element σ = Tws1

∣
∣
V

in

HomG

(
V, IndG

B(wω)
)
∼= HomT (JV, wω). Consequently, we’ve proved

(for n = 3)

PROPOSITION.

dim
(
HomT (JV, wω)

)
= 1 ⇐⇒ `(ws1) = `(w) − 1.

For arbitrary n ≥ 3, the proof that dim(JV ) = n is very similar.
We include it here for the sake of completeness. Let w now denote
the matrix






1
. .

.

1
1




 .

There exist n− 2 distinct simple reflections si such that Tw ◦Tsi
= 0.

Let ω now be the character such that V is the unique subrepresenta-
tion of IndG

B(wω). Again, we choose a Weyl group element w′ and an
element σ 6= 0 in

HomT (JV, w′

ω) ∼= HomG

(
V, IndG

B( w′

ω)
)
.
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Consider the picture

IndG
B(siω)

Tsi−−→ IndG
B(ω)

Tw−−→ V
σ
−→ IndG

B( w′

ω)
︸ ︷︷ ︸

c T
w′

.

By [KP, 1.2.2, 1.2.3 and 1.2.6], as before, there exists a constant
c 6= 0 with σ ◦ Tw = c Tw′ . On the other hand, Tw ◦ Tsi

= 0, and
so 0 = σ ◦ Tw ◦ Tsi

= c Tw′ ◦ Tsi
. This is a contradiction unless

(1) `(w′si) = `(w′) − 1, i = 1, 2, . . . , n − 2.

Conversely, if `(w′si) = `(w′)−1 for every i = 1, . . . , n−2, it follows
that `(w′) = `(w′w−1)+`(w), hence the composition Tw′w−1 ◦ Tw from

IndG
B(ω) to IndG

B( w′

ω) is a nonzero multiple of Tw′ . By restricting
Tw′w−1 to V = Im(Tw), we obtain a nonzero element σ = Tw′w−1

∣
∣
V
∈

HomG

(
V, IndG

B( w′

ω)
)
∼= HomT (JV, w′

ω). Thus, we’ve proved

PROPOSITION.

dim
(
HomT (JV, w′

ω)
)

= 1 ⇐⇒ `(w′si) = `(w′)− 1 for 1 ≤ i ≤ n− 2.

To see what this means for w′, we note that condition (1) means
w′αi < 0 for all 1 ≤ i ≤ n − 2 where αi ranges over the first (n − 2)
positive simple roots. In other words, if w′ ∈ Sn, we require that
w′(i) ≥ w′(j) whenever 1 ≤ i ≤ j ≤ n−2. For example, the surviving
elements of the Weyl group in GL(3) are





1
1

1



 ,





1
1

1



 ,





1
1

1



 ,

while the surviving elements of the Weyl group in GL(4) are






1
1

1
1




 ,






1
1

1
1




 ,






1
1

1
1




 ,
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and






1
1

1
1




 .

In general, the Weyl group in GL(n) will have precisely n surviving el-
ements, and the assertion that dim(JV ) = n then follows immediately
from the proposition.
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