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Abstract. This paper gives new examples that exploit the idea of us-
ing sparse polynomials with restricted coefficients over a finite ring for
designing fast, reliable cryptosystems and identification schemes.

1 Overview

The idea of using polynomials with restricted coefficients in cryptography,
though fairly new, has already found several cryptographic applications such
as the NTRU cryptosystem [10], the ENROOT cryptosystem [6], the PASS

identification scheme [9, 11], and the SPIFI identification scheme [2]; see also [8].
In contrast to the constructions of NTRU and PASS, which consider classes

of low-degree polynomials with many “small” nonzero coefficients, ENROOT

and SPIFI are based on the use of polynomials of high degree that are extremely
sparse. Although these latter constructions were originally considered only over
finite fields, in this paper we improve and extend the ideas of [2, 6] and show that
both ENROOT and SPIFI can be generalized to the setting of an arbitrary
finite ring. In this generality, the user can be assured of an extra degree of
security by selecting rings in which the problem of solving polynomial equations
is notoriously difficult, as in the case of the residue ring for an RSA-modulus
M = pl, where p and l are two privately held primes. In this paper, we have
also introduced several new security features for the ENROOT and SPIFI

protocols. Quite recently several powerful attacks on the original versions of
ENROOT and SPIFI and some of their modifications have been presented
in [1]. In particular the present version is a result of our iterative, thanks to
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many fruitful discussions with the authors of [1]) attempts to make ENROOT

and SPIFI resistant to attacks of the types described in [1]. Although we believe
that there is no immediate “danger”, it still seems that these attacks still present
a serious threat to ENROOT and SPIFI. Nevertheless, these objects, sparse
polynomials, look too nice and natural (easy to evaluate but hard to invert) not
to try to use them for a public key cryptography. We hope that our paper may
help to bring more attention to this area.

2 Notation and Definitions

Throughout this paper, log z denotes the binary logarithm of z.
Let R be an arbitrary finite ring, and let N denote a fixed multiple of the

exponent exp(R×) of the multiplicative group of units R×; thus we have aN+1 =
a for all a ∈ R× ∪ {0}.

To illustrate our ideas below, we will sometimes consider two important spe-
cial cases, which we refer to as the “IFq-case” and the “ZZM -case.” In the IFq-case,
R is the finite field IFq with q elements, and we can take N = exp(R×) = q− 1.
In the ZZm-case, R is the ring ZZ/MZZ of residue classes with respect to an
RSA modulus M = pl, where p and l are primes. In this case, we can ei-
ther take N = ϕ(M) = (p − 1)(l − 1), where ϕ is the Euler function, or
N = λ(M) = lcm(p − 1, l − 1) (λ is the Carmichael function). We remark
that in all of these cases, we have log |R| ≈ log |R×| ≈ logN ,

We also assume that any element of R can be encoded by using about log |R|
bits.

Let d be a fixed positive integer. Given a set S ⊆ R, we say that a polynomial
f(x1, . . . , xd) ∈ R[x1, . . . , xd] is an S-polynomial if every coefficient of f belongs
to S.

An expression of the form axe1

1 . . . xed

d we call a monomial with the coefficient

a and the exponent (e1, . . . , ed).
Finally, we say that a polynomial f(x1, . . . , xd) ∈ R[x1, . . . , xd] is τ-sparse if

f has at most τ nonzero coefficients.

3 The SPIFI Identification Scheme

In this section, we describe a generalization of SPIFI (for Secure Polynomial

IdentiFIcation; see [2]) for an arbitrary finite ring R. For the sake of simplicity
and practicality, we work only with polynomials of a single variable (that is,
d = 1).

3.1 A Hard Problem

The hard problem underlying our one-way functions can be stated as follows:



Given 2m arbitrary elements α1, . . . αm, β1, . . . , βm ∈ R and a set S ⊆ R
of small cardinality, it is not feasible to find a τ-sparse S-polynomial

f(x) ∈ R[x] of degree deg(f) ≤ N with f(αj) = βj for each j = 1, . . . ,m,

provided that N is of “medium” size relative to the choices of m ≥ 1, the

cardinality |S|, and τ ≥ 3.

More precisely, we expect that if one fixes the number of points m, the
cardinality |S|, and the sparsity τ ≥ 3, then the problem requires exponential
time as N → ∞ (that is, exponential with respect to the bit length of N).

For example, let p be a prime, and consider the case where R is the finite field
IFp with p elements. Let aij ≡ αi

j (mod p) and bj ≡ βj (mod p) be chosen
so that 0 ≤ aij , bj ≤ p − 1 for i = 0, . . . , p − 1 and j = 1, . . . ,m. Then in this
simplified situation, the hard problem above is still equivalent to the problem of
finding a feasible solution to the integer programming problem

p−1∑

i=0

xiεiaij + yjp = bj, j = 1, . . . ,m,

p−1∑

i=0

εi ≤ τ,

where yj ∈ ZZ, xi ∈ S, and εi ∈ {0, 1} for all i and j.

3.2 Basic Idea

We fix the ring R and some integer parameters k ≥ 1 and r, s, t ≥ 3. This
information is made public. The value of N may be kept private. Only Alice

needs this value, so in this scenario the choice of the ring R (and the value of
N) can be made by Alice.

In addition we require that R contains elements of multiplicative order in
the interval [0.5N1/4, 2N1/4]. This certainly imposes some additional number
theoretic requirements on N which in practice are easy to satisfy.

To create the signature Alice uses the following algorithm, which we still
denote by SPIFI.

Initial Set-up

Step 1

Select at random k distinct elements a0, . . . ak−1 ∈ R× where a0 of multi-
plicative order in the interval [0.5N1/4, 2N1/4].

Step 2

Select a random dt/2e-sparse {0, 1}-polynomial f1(x) ∈ R[x] with deg(f1) ≤
N and f1(a0) ∈ R×. Next, select a random bt/2c-sparse {0, 1}-polynomial
f2(x) ∈ R[x] with deg(f2) ≤ N , f2(a0) 6= 0 and f2(a0) 6= −f1(a0).

Step 3

Compute A = −f2(a0)f1(a0)
−1 and put f(x) = Af1(x) + f2(x). Then f

is a t-sparse {0, 1, A}-polynomial with deg(f) ≤ N , and f(a0) = 0. The
polynomial f is the private key.



Step 4

Compute Cj = f(aj) for j = 1, . . . , k − 1.
Step 5

Publish the set of values {A, a0, . . . ak−1, C1, . . . , Ck−1} as the public key.

To verify Alice’s identity, Alice and Bob use the following procedure.

Verification Protocol

Step 1

Alice selects a random r-sparse {0, 1}-polynomial g(x) ∈ R[x] with deg(g) ≤
N and g(0) = 0, computes

Dj = g(aj), j = 1, . . . , k − 1,

and sends the sum D = D1 + . . .+Dk−1 to Bob.
Step 2

Bob selects a random s-sparse {0, 1, B}-polynomial h(x) ∈ R[x] of degree
deg(h) ≤ N and sends h to Alice. Here B 6= 0, 1 or A.

Step 3

Alice computes

F (x) ≡ f(x)g(x)h(x) (mod xN+1 − x)

and sends the polynomial F and {D1, . . . , Dk−1} to Bob.
Step 4

Bob computes
Ej = h(aj), j = 1, . . . , k − 1,

and verifies that
D1 + . . .+Dk−1 = D

and that F (x) is an rst-sparse {0, 1, A,B,AB}-polynomial with deg(F ) ≤ N ,
F (a0) = 0, and

F (aj) = CjDjEj , j = 1, . . . , k − 1.

Of course, there is a chance that the constructed polynomial F (x) is not
a {0, 1, A,B,AB}-polynomial; however, if rst is substantially smaller than N ,
then this chance is negligible (and in this case, Alice and Bob can repeat the
procedure).

3.3 Efficiency

The sparsity of the polynomials involved guarantees computational efficiency
for this scheme. Using (naive) repeated squaring, one can compute the power
ae for any a ∈ R and 0 ≤ e ≤ N in about 2 logN arithmetic operations in
R in the worst case, or about 1.5 logN arithmetic operations “on average”; see
Section 1.3 of [3], Section 4.3 of [4], or Section 2.1 of [5]. Consequently, any



τ -sparse polynomial f(x) ∈ R[x] of degree at most N can be evaluated at any
point in about O(τ logN) arithmetic operations in R.

We recall that any element of R can be encoded by using about log |R| bits.
Finally, we remark that if 0 ∈ S ⊆ R, then any τ -sparse S-polynomial

f(x) ∈ R[x] of degree at most N can be encoded with about τ log(N |S| − N)
bits. To do this, we have to identify at most τ positions at which f has a nonzero
coefficient. The encoding of each position requires about logN bits, and for
each such position, about log(|S| − 1) bits are then required to determine the
corresponding element of S.

For example, the signature must encode rst positions of the polynomial F
(corresponding to its nonzero coefficients), which takes about rst logN bits.
Each position requires two additional bits to distinguish between the possible
nonzero coefficients 1, A, B and AB. The encoding of D1, . . . , Dk−1 and their
sum D requires about k log |R| bits. Hence the total signature size is about
rst log(4N) + k log |R| bits.

Putting everything together, after simple calculations we derive that (using
the naive repeated squaring exponentiation)

◦ the initial set-up takes O(kt logN) arithmetic operations in R;
◦ the private key size is about t log(2N) bits;
◦ the public key size is about k(log |R| + log |R×|) bits;
◦ signature generation, that is, computation of the polynomial F , elements
Dj , j = 1, . . . , k − 1, and their sum D, takes O(rst) arithmetic operations
with integer numbers in the range [0, 2N ] and O ((k − 1)r logN) arithmetic
operations in R;

◦ the signature size is about rst log(4N) + k log |R| bits;
◦ signature verification, that is, computation of D1 + . . .+Dk−1, F (aj) and the

products CjDjEj , j = 1, . . . , k − 1, takes about O (krst logN) arithmetic
operations in R.

We remark that the practical and asymptotic performance of the SPIFI

scheme can be improved if one uses more sophisticated algorithms to evaluate
powers and sparse polynomials; see [3–5, 13, 15]. In particular, one can use pre-
computation of certain powers of the aj , j = 1, . . . , k−1, and several other clever
tricks which we do not consider in this paper.

3.4 Possible Attacks

It is clear that recovering or faking the private key (that is, finding a t-sparse

{0, 1, A}-polynomial polynomial f̃(x) ∈ R[x] with f̃(a0) = 0 and f̃(aj) = Cj

for j = 1, . . . , k − 1) or faking the signature (that is, finding a rst-sparse

{0, 1, A,B,AB}-polynomial F̃ (x) ∈ R[x] with F̃ (a0) = 0 and F̃ (aj) = CjDjEj

for j = 1, . . . , k − 1) are versions of the hard problem mentioned in Section 3.1
(with slightly different parameters).

We also remark that that without the reduction

f(x)g(x)h(x) (mod xN+1 − x),



one of the one possible attacks might be via polynomial factorization. In a practi-
cal implementation of this scheme, one should make sure that both f and g have
terms of degree greater than N/2 so there are some reductions. Even without the
reduction modulo xN+1−x, the factorization attack does not seem to be feasible
because of the large degrees of the polynomials involved; all known factorization
algorithms (as well as their important components such as irreducibility testing
and the greatest common divisor algorithms) do not take advantage of sparsity
or any special structure of the coefficients; see [4, 14]. Moreover, the first factor
that any of these algorithms will find would be the trivial one, that is, (x− a0).
But the quotient F (x)/(x−a0) is most likely neither sparse nor an S-polynomial
for any small set S. Finally, we remark that if one works in the setting of a ring
R that is not a field (such as the ZZM -case), then the problem of factorization
becomes much more complicated, so this type of attack is even less likely to
succeed.

It is possible that by using some “clever” choice of polynomials h, after several
rounds of identification, Bob might be able to gain some information about f .
But the polynomials g are specifically designed to prevent him from doing this.
In Section 3.5 below, we present another idea which should render this attack
completely infeasible, at least in the IFq-case.

One might also consider lattice attacks. In particular, one can try to select a
rt-sparse {0, 1, A}-polynomial e(X) ∈ R[x] with e(a0) = 0, compute

Dj = e(aj)C
−1
j , j = 1, . . . , k − 1,

and then send these values together with

F (x) ≡ e(x)h(x) (mod xN+1 − x)

to the verifier. In principal this attack could succeed but finding such a polyno-
mial e is kind of knapsack problem and since the dimension of the corresponding
lattice would be equal to the (very large) degree N of the polynomials involved,
any such attack seems completely infeasible at this time. With current technol-
ogy, one can reduce lattices of degrees only in the hundreds, while in a practical
implementation of this scheme our lattices will have dimension N of much large
order of magnitude. Another attempt to construct such a polynomial e could be
via solving the discrete logarithm in R to base a0, see [1]. However because a0

is selected to be of small order this attack is very unlikely to succeed either.
There is also another way to avoid the above attack via constructing a rt-

sparse {0, 1, A}-polynomial e(X) ∈ R[x] with e(a0) = 0. This way does not
require any restrictions of the order of a0 and thus can be used for arbitrary N .
Namely we request that for each of the polynomials f(x), g(x) and h(x) the sum
of the degrees of the monomials is divisible by N . In this case the same condition
also holds for F (x). Indeed, if an s-sparse polynomial and a t-sparse polynomial
have monomials of degrees n1, . . . , ns and m1, . . . ,mt, respectively, with

s∑

i=1

ni ≡ 0 (mod N) and
t∑

j=1

mj ≡ 0 (mod N)



then their product has st monomials ni +mj , i = 1, . . . , s, j = 1, . . . , t (unless a
collision occurs which is very unlikely). Then

s∑

i=1

t∑

j=1

(ni +mj) =

s∑

i=1



tni +

t∑

j=1

mj





= t

s∑

i=1

ni + s

t∑

j=1

mj ≡ 0 (mod N)

as claimed. Therefore the aforementioned discrete logarithm attack from [1] is
very unlikely (with probability about 1/N) to produce a polynomial e(x) which
besides the aforementioned conditions also has the sum of the degrees of the
monomials which is divisible by N .

We remark that, although using composite moduli may add some additional
security features, the security of the SPIFI scheme is not compromised even if
the factorization of M is known. In fact, we believe that even in the case where
the modulus is a (sufficiently large) prime (that is, in the IFq-case), the scheme
is still very secure.

It has turned out that Alice must make some commitment about the values
of D1, . . . , Dk−1 before she receives the polynomial h from Bob, otherwise there
is a very simple attack on this scheme. On the other hand, sending the whole
set to Bob before he selects his polynomial h may open some ways of attacking
for “cheating” verifier. Sending the sum D = D1 + . . . + Dk−1 is just one of
many possible ways for Alice undertake some commitments about the values
of D1, . . . , Dk−1 (just reducing the probability of the aforementioned “on-line”
attack to 1/N). Probably a more practical way would be just sending about a
half of the bits of D1, . . . , Dk−1 at Step 1 (instead of computing and sending D)
and then sending the rest of the bits at Step 3 (just reducing the probability of
the aforementioned “on-line” attack to about N−(k−1)/2).

Moreover, the SPIFI scheme is easily modified so that the value N = ϕ(M)
or λ(M) (see Section 2) remains secret. Indeed, Alice can choose g in Step 1 of the
verification protocol so that the reduction modulo xN+1−x that occurs in Step 3
produces a polynomial whose degree is not “too close” to N. In fact, “on average”
it should be aboutN(1−1/2rst) for the SPIFI scheme and aboutN(1−1/2R) for
the ENROOT scheme (see Section 4 below) since the corresponding polynomials
are rst-sparse and R-sparse, respectively. Thus, in the case that N = ϕ(M), the
degree of F gives a worse approximation to N than the value of M itself, at least
if M = pl is a product of two primes of the same order.

3.5 Modification of the Basic Scheme

In this subsection, we consider only the case of a finite field R = IFq. It is very
likely, however, that these ideas can be generalized to the setting of an arbitrary
ring.



In order to prevent Bob from gaining any useful information about f by
selecting certain special polynomials h, Alice can initially construct two poly-
nomials f1 and f2, either one of which can serve as her private key. That is,
for some A,C1, . . . , Ck−1 ∈ IFq with A 6= 0, 1 and distinct a0, . . . , ak−1 ∈ IF×

q ,
Alice can find two t-sparse {0, 1, A}-polynomials f1(x), f2(x) ∈ IFq[x] of degree
at most N that satisfy

f1(aj) = f2(aj) = Cj , j = 0, . . . , k − 1, (1)

for some C0, C1, . . . , Ck−1 ∈ IFq.
To do this, Alice selects a certain parameter n and considers certain random

{±1,±A}-polynomials ψ(x) of degree 4n, looking for roots in IF×
q . For values of

n of reasonable size this can be done quite efficiently, at least in probabilistic
polynomial time; see [4, 14].

It follows from Theorem 3 of [12] that for sufficiently large q, the probability
that a random monic polynomial of degree 4n over IFq will have k + 1 distinct
roots in IFq is given by

Pk+1(4n, q) =

∞∑

m=k+1

(
q

m

)
q−m

4n−m∑

l=0

(−1)l

(
q −m

l

)
q−l.

In particular,

lim
n→∞

lim
q→∞

Pk+1(4n, q) =
1

(k + 1) ! ek+1
.

Letting A vary randomly over IFq/{0, 1}, Alice considers {±1,±A}-polynomials
ψ(x) ∈ IFq[x] of degree 4n which have n coefficients of each type 1, −1, A or
−A. Since

(q − 2)
(4n) !

(n !)4(k + 1) ! ek+1

is large, after O((k + 1)!ek+1) trials Alice will find with high probability such a
polynomial with k+1 distinct roots a0, . . . , ak ∈ IFq. By reordering if necessary,
we can assume that a0, . . . , ak−1 are distinct elements in the multiplicative group
IF×

q . Alice now writes ψ(x) = ϕ1(x)−ϕ2(x) where ϕ1, ϕ2 are 2n-sparse {0, 1, A}-
polynomials of degree at most 4n+1, and each ϕi has n coefficients of each type
1 or A. Moreover, ϕ1 6= ϕ2, but clearly

ϕ1(aj) = ϕ2(aj), j = 0, . . . , k − 1.

Now Alice selects a random (dt/2e − n)-sparse {0, 1}-polynomial ψ1(x) ∈
IFq[x] with deg(ψ1) ≤ q−1 and ψ1(a0) 6= 0. Alice then selects a random (bt/2c−
n)-sparse {0, 1}-polynomial ψ2(x) ∈ IFq[x] with deg(ψ2) ≤ q− 1. Assuming that
ψ1 and ψ2 have been selected so that the non-constant monomials that occur in
them have degree greater than 4n+ 1, Alice can now define

fi(x) = Aψ1(x) + ψ2(x) + ϕi(x), i = 1, 2.



Then f1 and f2 are t-sparse {0, 1, A}-polynomials in the correct form for the
SPIFI protocol, and they satisfy (1) some C0, C1, . . . , Ck−1 ∈ IFq We remark
that in this case the value C0 = f1(a0) = f2(a0) must be published as well
(although the scheme can easily be modified in such a way that as before f1(a0) =
f2(a0) = 0 thus this value need not be sent).

Now Alice can alternate between f1 and f2 in a random order to confound
Bob’s attempts to gain useful information about the private key.

It is easy to see that instead of the sum Aψ1(x) + ψ2(x) + ϕi(x) for i = 1, 2,
one can also consider more complicated expressions involving {0, 1}-polynomials.
For example, one can put

fi(x) = Aψ1(x) + ψ2(x) + ϕi(x)ϕ(x), i = 1, 2,

for appropriately chosen {0, 1}-polynomials ψ1(x), ψ2(x) and ϕ(x).

3.6 Remarks

It is natural to try to construct and utilize more than two t-sparse {0, 1, A}-
polynomials that take the same values at k distinct points. However our approach
of Section 3.5 does not seem to extend to this case.

Although we have not done so here, it can be interesting to extend our
construction to multivariate polynomials.

4 The ENROOT Cryptosystem

In this section, we describe a generalization of ENROOT (for ENcryption with

ROOTs ; see [6]) for an arbitrary finite ring R. We will now consider polynomials
in R[x1, . . . , xd], where d ≥ 2 is fixed. Accordingly, we will often employ vector
notation, writing f(x) for f(x1, . . . , xd), R[x] for R[x1, . . . , xd], etc.

4.1 Another Hard Problem

Our one-way functions are based on the following hard problem:

Given the τ-sparse polynomials f1(x), . . . , fd(x) ⊂ R[x] of degree at

most N , it is not feasible to find an element a = (a1, . . . , ad) ∈ Rd with

fj(a) = 0 for j = 1, . . . , d, provided that N is sufficiently large relative

to the choices of d ≥ 2 and τ ≥ 3.

Again, we expect that if one fixes the number d ≥ 2 and the sparsity τ ≥ 3,
then the problem requires exponential time as N → ∞ (see Section 4.4 below).



4.2 Basic Idea

We fix the ring R and the integers d > ` ≥ 3, sj , tj ≥ 3, j = 1, . . . , d such that
t1 = . . . = t`. This information is made public. The value of N may be kept
private. In fact, only Bob needs this value so in this scenario the choice of the
ring R (and thus the value of N) is made by Bob.

The algorithm ENROOT can be described as follows.

ENROOT Algorithm

Step 1

Alice selects d random elements a1, . . . , ad ∈ R× which form her private key.
Step 2

Alice selects d random polynomials hj(x) ∈ R[x], of degree at most |R|,
containing at most tj − 1 monomials, j = 1, . . . , d, such that the first ` poly-
nomials h1(x), . . . , h`(x) have the same set E of exponents of their monomi-
als.

Step 3

Alice publishes the polynomials fj(x) = hj(x) − hj(a) for j = 1, . . . , d as
her public key, where a is the vector (a1, . . . , ad) ∈ (R×)d.

Step 4

To send a message m ∈ R, Bob selects d random polynomials gj(x) ∈ R[x]
of degree at most N , containing at most sj − 1 monomials such that one
monomial has an exponent from the set E and having nonzero constant
coefficients. Bob then computes the reduction F (x) of the polynomial

m+ f1(x)g1(x) + . . .+ fd(x)gd(x)

modulo the ideal in R[x] generated by {xN+1
1 − x1, . . . , x

N+1
d − xd}, and he

sends F (x) to Alice.
Step 5

To decrypt the message, Alice simply computes F (a) = m.

4.3 Efficiency

The sparsity of the polynomials involved again provides computational effi-
ciency for this scheme. Using repeated squaring, one can compute the monomial
ae1

1 . . . aed

d for any (a1, . . . , ad) ∈ Rd and 0 ≤ ej ≤ |R|, j = 1, . . . , d, in about
O(d log(2|R|)) arithmetic operations in R. Consequently, any τ -sparse polyno-
mial f(x) ∈ R[x] of degree at most |R| can be evaluated at any point in Rd in
about O(τd log(2|R|)) arithmetic operations in R.

We remark that any τ -sparse polynomial f(x) ∈ R[x] of degree at most |R|
can be encoded with about τ((d+1) log |R|) bits. To do this, we have to identify
at most τ monomials for which f has a nonzero coefficient. The encoding of each
monomial xe1

1 . . . xed

d requires about d log |R| bits, and for each such monomial
about log |R| bits are then required to encode the coefficient.



Let us set

T =

d∑

j=1

tj , S =

d∑

j=1

sj , R =

d∑

j=1

tjsj , Q = (d+ 1) log |R|.

Then after simple calculations we derive that (using the naive repeated squaring
exponentiation)

◦ generation of the public key: to produce the vector a requires O(d log |R|)
random bits; to construct the polynomials hj(x) requires the generation of
another (T − d)Q random bits; the computation of the hj(a), j = 1, . . . , d,
takes O(Td log(2|R|)) arithmetic operations in R;

◦ the private key size is about d log |R| + (T − d)Q bits;
◦ the public key size is about TQ bits;
◦ cost of encryption: to construct the polynomials gj(x) requires the generation

of about d log |R|+(S−d)Q random bits; the computation of the polynomial
F (x) requires about R arithmetic operations in R plus Rd additions in
ZZ/NZZ;

◦ the size of the encrypted message is about RQ bits;
◦ the cost of decryption: the evaluation of F (a) = m takes aboutO(Rd log(2N))

arithmetic operations in R.

In the IFq-case, the above scheme can be accelerated if Alice sets e1 = 1,
selects a random element a ∈ R× and d − 1 random exponents e2, . . . , ed ∈
ZZ/(q − 1)ZZ, and defines a as (ae1 , . . . , aed) ∈ (R×)d.

Again we mention that the performance of the ENROOT algorithm can
be improved if one uses more sophisticated algorithms to evaluate powers and
sparse polynomials; see [3–5, 13, 15].

Another possible way to improve performance is to use at Step 4 only k < d
randomly selected polynomials from the set {f1, . . . , fd}. For the same level of
security, there will be a trade-off between the complexity of Step 2 (hence the
size of the private key) and the complexity of Step 4.

4.4 Security Considerations

The obvious way to attack the ENROOT cryptosystem is to try to find a
simultaneous solution to the system of polynomial equations

fj(x) = 0, j = 1, . . . , d, (2)

which amounts to solving the hard problem in Section 4.1. All known algorithms
to solve systems of polynomial equations of total degree n require (regardless
of sparsity) an amount of time that is polynomial in n (that is, exponential
time with respect to the bit length of n); see [7, 14]. Since the degrees of the
polynomials in (2) will be very large in practical implementations (about the
size of N), this attack is totally infeasible.



Another possibility is to simply “guess” a solution. One expects that a system
of τ -sparse polynomial equations in d variables of high degree over R will have
very few zeros if d ≥ 2, even though the number of zeros of a polynomial over an
arbitrary ring is not necessarily bounded by the degree. Working heuristically,
if we view the vector of polynomials f (x) = (f1(x), . . . , fd(x)) as defining a
“random” map f : Rd → Rd, then the expected number of roots common to all
of the polynomials fj(x) (that is, the cardinality of the kernel of f) is given by

1 − |R|d(1−|R|d)

1 − (1 − |R|−d)|R|d
≈

1

1 − e−1
≈ 1.5819,

hence this brute force attack will take roughly 0.245|R|d trials “on average” to
succeed. For arbitrary rings, we expect the choice d ≥ 2 will provide the 290 level
of security against this attack if N is at least 50 bits long.

Although it is tempting to choose d = ` = 1, in this case there are more
sophisticated attacks that provide some information about Alice’s private key.
One of these is based upon consideration of the difference set of the powers of
monomials occurring in the polynomial F (x). Indeed, if

f(x) =

t∑

i=1

Aix
ni and g(x) =

s∑

j=1

Bix
mj

are the polynomials selected by Alice and Bob, respectively, with n1 = m1 = 0
(and such that the sets {n1, . . . , nt} and {m1, . . . ,ms} have a reasonably large
intersection) then F (x) contains at most τ ≤ st monomials Cνx

rν , where

rν ≡ ni +mj (mod N), ν = 1, . . . , τ,

for some i = 1, . . . , t and j = 1, . . . , s.
Consequently, finding the repeated elements in the difference set

∆ = {rν − rη (mod N) | ν, η = 1, . . . , τ} ,

may reveal some information about the polynomial f(x).
In addition, if d = 1, one can also compute the greatest common divisor

of f(x) with xN+1 − x. Since this polynomial will have lower degree than f in
general, it would be easier to find a root from a theoretical standpoint. Although
it is not clear how to do this in an amount of time that is polynomial in the
sparsity rather than in the degree of f(x), it remains a potential threat.

On the other hand, these attacks on ENROOT fail when d > ` ≥ 2. In-
deed, the first attack may help to gain some information about the total set
of monomials in all of the polynomials f1, . . . , fd, but it does not provide any
information about the individual polynomials since it is impossible to determine
which monomial comes from which product fjgj , j = 1, . . . , d. In order to try
all possible partitions into d groups of sjtj monomials, j = 1, . . . , d, needs to
examine

P =
R !

(s1t1) ! . . . (sdtd) !
(3)



total combinations. In particular, the most interesting case is when s1, . . . , sd

are of approximately the same size as well as t1, . . . , td, that is, when sj ∼ s and
tj ∼ t for j = 1, . . . , d. In this case

logP ∼ st(d log d),

hence the number P of combinations to consider grows exponentially with re-
spect to all parameters, provided that d > ` ≥ 2.

The second attack fails as well since the notion of greatest common divisor
for multivariate polynomials is not defined, and taking resolvents to reduce to
one variable is too costly.

However the case d = 2 is still not secure. Indeed, in this case we have
either d = ` = 2 or ` = 1. In either case there are very simple linear algebra
attacks which do not apply when d > ` ≥ 2 which we believe to be completely
secure against the aforementioned attacks. There are some other alternative
ways to guarantee that there are sufficiently many common elements in the sets
of exponents of monomials of f1, . . . , fd. In particular, the first few monomials
of each polynomial h1, . . . , hd can be selected the same exponents.

Finally, we remark that the ENROOT cryptosystem is probably secure
against lattice attacks for the same reason that the SPIFI scheme is secure
(see Section 3.4): most lattice attacks would necessarily be based on lattices of
dimension equal to the cardinality of |R|, and in practical implementations this
number would be very large.

4.5 Remarks

The ENROOT cryptosystem is well-suited to private key sharing among multi-
ple parties. For parameter choices and approximate runtimes in the IFq-case, we
refer the reader to [6]. The main inherent weakness of this cryptosystem is its
high message expansion cost. It is likely that working over certain noncommuta-
tive rings or rings that are not principal ideal domains may improve the overall
security, so that smaller rings could be employed. Working over these rings, it
would be interesting to have a more thorough security analysis than we have
attempted here.
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