
AN EXTREMELY SMALL AND

EFFICIENT IDENTIFICATION

SCHEME

William D. Banks1, Daniel Lieman2 and Igor E. Shparlinski3

1 Department of Mathematics, University of Missouri
Columbia, MO 65211, USA
bbanks@math.missouri.edu

2 Department of Mathematics, University of Missouri
Columbia, MO 65211, USA
lieman@math.missouri.edu

3 Department of Computing, Macquarie University
Sydney, NSW 2109, Australia

igor@mpce.mq.edu.au

Abstract. We present a new identification scheme which is based on
Legendre symbols modulo a certain hidden prime and which is naturally
suited for low power, low memory applications.

1 Overview

One of the most desirable cryptographic functions is a secure, small,
zero-knowledge public-key identification scheme. The applications
are many and obvious – even the single application of credit/smart-
card security is enough to stimulate research. In this paper, we
present a scheme that requires extremely little computing power to
perform a verification and to which we refer as FLIP (Fast Leg-
endre Identification Protocol). Our scheme is unbalanced by design:
the party proving his/her identity needs almost no computing power,
while the party to whom the identity is being proved needs only a
very small amount.

Our scheme is based on the assumption that integer factorization is
a “hard problem.” In fact, we believe that the only feasible attack on
our scheme is via the factorization of a certain modulus M , hence the
scheme is secure provided that M is reasonably large. In contrast to
(say) RSA based signatures, our scheme offers the advantage that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Missouri: MOspace

https://core.ac.uk/display/62770014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


time consuming computation modulo M is required only for the
verifier (it is not unreasonable to assume the verifier to be more
powerful than the prover). This lends itself well to the credit/smart-
card & bank paradigm.

We have conducted some preliminary tests using the interpreted
number theory system PARI-GP. We find that FLIP (at high se-
curity) performs an identification as fast or faster than any other
identification scheme of which we are aware, although key creation
in FLIP is slower than in some other schemes, see [8].

We remark that although our scheme uses constructions similar to
the Feige–Fiat–Shamir scheme, see [10], both schemes seem to be
independent and rely on the hardness of different number theoretic
problems (although the assumption of the hardness of integer fac-
torization is common to both of them).

2 FLIP Description

Our construction is based on properties of the Legendre and Jacobi

symbols.

We recall that given a prime p the Legendre symbol of a with
gcd(a, p) = 1 is defined as

{

1, if the congruence a ≡ x2 (mod p) is solvable,
−1, otherwise.

The Jacobi symbol modulo an odd integer k is defined as multiplica-
tive extension of the Legendre symbol. That is,

(

a

k

)

=
s
∏

ν=1

(

a

pν

)eν

where
k = pe1

1 . . . pes

s

is the prime factorization of k.

We also recall the following basic properties of the Jacobi symbol (see
Section 5.8 of [3]) which hold for any odd integer k and arbitrary
integers l and r:



◦
(

2
k

)

= (−1)(k2−1)/8;

◦
(

lr
k

)

=
(

l
k

) (

r
k

)

;

◦
(

l
k

)

=
(

r
k

)

if l ≡ r (mod k);

◦
(

l
k

)

=
(

k
l

)

(−1)(l−1)(k−1)/4, if l is odd.

The above properties provide very fast algorithms for computing
Jacobi symbols, and thus guarantee the efficiency of our scheme.

FLIP has two formal security parameters, integers n and k.

For purposes of this paper, we will assume that Irina is proving her
identity to the verifier Victor .

To create the signature Irina uses the following algorithm:

FLIP initial set-up and key construction

Step 1

Irina chooses two n-bit prime numbers p and r, and computes
the product M = pr.

Step 2

Irina selects at random k relatively prime 2n-bit integers aj , com-
putes the Legendre symbols

αj =

(

aj

p

)

, j = 1, . . . , k,

and checks that at least one αj = −1.
Step 3

Irina publishes as her public key the product M and the collec-
tion of k pairs (aj , αj), j = 1, . . . , k.

Step 4

Irina discards the value of r and retains as her private key the
prime p.

The verification protocol has another security parameter which is a
non-negative integer l.

The FLIP verification sequence

Step 1



Victor chooses l random 2n-bit integers s1, . . . , sl and l subsets of
the set {a1, . . . , ak}, and for each subset, he computes the product
of s2

i and the selected integers modulo M . In other words, Victor

chooses l sets of k random bits eij = 0, 1, and computes for
i = 1, . . . , l

Ci ≡ s2
i

k
∏

j=1

a
eij

j (mod M), 0 ≤ Ci ≤ M − 1.

Step 2

Victor transmits the l numbers Ci, i = 1, . . . , l.
Step 3

Irina computes and transmits the l Legendre symbols

ϑi =

(

Ci

p

)

, i = 1, . . . , l.

Step 4

Victor verifies each of the l Legendre symbols transmitted by
Irina is correct. That is, he verifies that

ϑi =
k
∏

j=1

α
eij

j , i = 1, . . . , l.

We first note that in terms of the parameters n, k and l, we have
the following properties:

◦ the bit size of the private key length is n
◦ the bit size of the public key length is 2n + k(n + 1);
◦ the total number of bits transmitted is (2n + 1)l.

We remark that the relatively prime numbers a1, . . . , ak need not be
chosen by Irina. They can be globally available or even produced by
Victor . In either of these cases, they are not strictly speaking a part
of the public key, and the bit length of the public key drops to 2n+k.
In any case, the generation of the ai is not time consuming. In fact
even if one decides to select k random 2n-bit prime numbers this
can done be efficiently by selecting random integers in the interval
[2n−1, 2n−1] and testing them for primality. Classical density results



about the distribution of prime numbers and primality testing algo-
rithms (see [3, 5, 6]) guarantee the efficiency of this procedure. The
condition that at least one of a1, . . . , ak is not a quadratic residue
modulo p is very easy to satisfy as well, for example, by selecting a1

with this property.

It is also useful to recall that each computation of a Legendre symbol
involved in this scheme takes O(n2) bit operations; see Theorem 5.9.3
of [3] or Section 1.4 of [5]. Each multiplication modulo M takes
O(n2) bit operations if one uses naive arithmetic and O(n log n) bit
operations if one uses fast arithmetic, see Theorems 7.8 and 8.5 of [1]
or Theorem 8.24 and Corollary 9.9 of [6].

3 Security Analysis

It is obvious that the probability of impersonating a valid private key
(that is, the probability of a correct guess of l individual Legendre
symbols) is 2−l. This is an “on-line” attack, and for attacks of this
type, it is common to request the 240 level of security. Thus the choice
l = 40 will be satisfactory.

The probability that the same product will be used twice during N
rounds of verification, thus allowing an attacker to collect and re-use
Irina’s replies, is

Pl,k,N = 1 −
(

1 − 2−k
)Nl

.

In particular Pl,k,N ∼ Nl2−k if Nl2−k ∼ 0. This is an “off-line”
attack, and for attacks of this type, it is common to request the
280 level of security. Assuming that l = 40 and that N = 10000
identification rounds are to be made, one can easily verify that the
choice k = 99 guarantees

Pl,k,N ≤ 2−80.

An “off-line” brute force attack (that is, correctly guessing a valid
private key) would succeed with probability 2−k.

One can also apply the above scheme with s1 = . . . = sl = 1.
However in this case a more sophisticated attack can be used. An



attacker can precompute the products

bk/2c
∏

j=1

a
fj

j and
k
∏

i=bk/2c+1

a
gj

j

for all binary vectors
(

f1, . . . , fbk/2c

)

and
(

gbk/2c+1, . . . , gk

)

and then
try to find a representation of the challenges Ci, i = 1, . . . , l, by
looking at the precomputed values. This “meet in the middle” attack
requires of order 2k/2 operations and the same amount of memory,
so it is not likely to be efficient. In any case, using random squares in
the computation of the challenges rules out this attack completely.

Another possible attack is via the known values of Legendre sym-
bols. In theory, if one knows the Legendre symbols modulo p of the
first O(log2 p) integers, then this is enough to identify p uniquely
(see [7]), but no one has been able to produce an efficient algorithm
to accomplish this identification; indeed, the security schemes defined
in [2] are based on the intractability of this problem. Note that in
our scheme Irina does not verify that the numbers Ci, i = 1, . . . , l,
for which she is supposed to compute Legendre symbols are valid
products of the integers aj, j = 1, . . . , k, used to construct the pub-
lic key (indeed, such a verification would be infeasible). Thus, the
attacker can force Irina to compute the Legendre symbol modulo
p of any integer C. However, we believe that identifying the prime
number p from the values of Legendre symbols modulo p of integers
is completely infeasible.

Of course the attacker is able to compute

(

C

r

)

=
(

C

M

)

(

C

p

)

for any C as well, but the same arguments as above apply to this as
well.

As one of the advantages of our scheme we note that it is an honest

verifier zero-knowledge scheme. That is, an honest verifier, who uses
only “legimate” challenges Ci, i.e., challenges of the form

Ci ≡ s2
i

k
∏

j=1

a
eij

j (mod M), 0 ≤ Ci ≤ M − 1,



i = 1, . . . , l, does not obtain any new information from the prover.

Finally, one could successfully attack this scheme by factoring either
M or finding the representation of Ci as a product of powers of aj .
That is, by finding representations

Ci ≡
k
∏

j=1

a
xij

j (mod M), i = 1, . . . , l,

with integer xij . However, it is easy to see that the latter problem
is not easier than the discrete logarithm problem. Indeed, even if
a1, . . . , ak belong to a cyclic group G modulo M and even if repre-
sentations aj ≡ gdj (mod M), j = 1, . . . , l, are known, where g is
a generator of G, then finding a representation

C ≡
k
∏

j=1

a
xj

j ≡ gx1d1+...xkdk (mod M)

is no easier than the general discrete logarithm problem modulo M .
However, it has been shown in [9] that the discrete logarithm problem
modulo a composite M = pr (or even the possibly easier problem of
breaking the Diffie–Hellman scheme) is as hard as factoring M ; see
also [4]. In particular, the prime numbers p and r should be selected
to avoid the all known “short-cuts” in the integer factorization of
M = pr and in solving the discrete logarithm problem modulo M .
Some conditions of this kind have been described in [9].

4 Possible Modifications

Instead of using quadratic characters one can use characters of higher
orders, for example bi-quadratic characters. In this case a smaller
value of l can be selected for the verification procedure, thus reduc-
ing the number of bits exchanged. For example, using bi-quadratic
characters, one can use a value of l that is twice as small in order
to provide the same level of security. More generally, characters of
order d reduce this value by approximately d/2 times. On the other
hand, the computational cost of computing higher order characters
grows rather quickly with d. Nevertheless, our preliminary computa-
tional experiments have confirmed that bi-quadratic characters can
be incorporated rather efficiently in this scheme.



Another possible modification may help to hide the values ϑi, i =
1, . . . , l. In order to do so, Irina and Victor select some large integer
weights wi, i = 1, . . . , l, (cooperatively, say each of them provides
half of the bits of each element ). Then Irina sends the sum W =
ϑ1w1+. . .+ϑlwl which can be verified by Victor . However finding the
values of ϑ1, . . . , ϑl from the value of W is equivalent to the knapsack
problem which is known to be NP-complete. In fact, there is no need
to select the weights wi, i = 1, . . . , l, for each round. They can be
some initially agreed upon functions of ϑi, i = 1, . . . , l. Moreover, if l
is too small to guarantee the security of the knapsack problem, then
Irina and Victor may use more weights wi, i = 1, . . . , L, with some
L ≥ l and compute the sum

W = B1(ϑ1, . . . , ϑl)w1 + . . . + BL(ϑ1, . . . , ϑl)wL

where Bi, i = 1, . . . , L, are some Boolean functions of l variables.
Probably one can even use Bi(ϑ1, . . . , ϑl) = ϑi for i = 1, . . . , l.

References

1. A. V. Aho, J. E. Hopcroft and J.D. Ullman, The design and analysis of computer
algorithms, Addison-Wesley, Reading, MA, 1975.

2. M. Anshel and D. Goldfeld, ‘Zeta functions, one-way functions, and pseudoran-
dom number generators’, Duke Math. J., 88 (1997), 371–390.

3. E. Bach and J. Shallit, Algorithmic number theory , MIT Press, 1996.
4. E. Biham, D. Boneh and O. Reingold, ‘Breaking generalized Diffie-Hellman mod-

ulo a composite is not weaker than factoring’, Inform. Proc. Letters, 70 (1999),
83–87.

5. H. Cohen A course in Computational Algebraic Number Theory, Springer-
Verlag, Berlin, 1997.

6. J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge Uni-
versity Press, Cambridge, 1999.

7. D. Goldfeld and J. Hoffstein, ‘On the number of Fourier coefficients that deter-
mine a modular form’, Contemp. Math., 143 (1993), 385–393.

8. J. Hoffstein, D. Lieman and J. Silverman, ‘Polynomial rings and efficient public
key authentication’, Proc. the Intern. Workshop on Cryptographic Techniques
and E-Commerce (CrypTEC ’99), M. Blum and C.H. Lee, eds., City University
of Hong Kong Press (to appear).

9. K. S. McCurley, ‘A key distribution system equivalent to factoring, J. Cryptol-
ogy , 1 (1988), 95–105.

10. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied
Cryptography , CRC Press, Boca Raton, FL, 1996.


