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THE STRUCTURE OF F-PURE RINGS

IAN M. ABERBACH AND FLORIAN ENESCU

Dedicated to Professor Melvin Hochster on the occasion of his sixtieth birthday

Abstract. For a reduced F -finite ring R of characteristic p > 0 and q = pe one can write
R1/q = Raq ⊕ Mq, where Mq has no free direct summands over R. We investigate the
structure of F -finite, F -pure rings R by studying how the numbers aq grow with respect to
q. This growth is quantified by the splitting dimension and the splitting ratios of R which
we study in detail. We also prove the existence of a special prime ideal P(R) of R, called
the splitting prime, that has the property that R/P(R) is strongly F -regular. We show that
this ideal captures significant information with regard to the F -purity of R.

1. Introduction

Let (R,m, k) be a reduced, local ring of positive characteristic p > 0 and Krull dimension
d. Throughout this paper, q = pe denotes a power of the characteristic, R1/q is the ring of qth
roots of elements in R, and R will usually be assumed to be F -finite, i.e. R1/p is module finite
over R. This implies that R1/q is module finite over R for all q. Write R1/q = Raq ⊕Mq, which
is a direct sum decomposition of R1/q over R such that Mq has no free direct summands.
We would like to investigate the size of the numbers aq, as q grows to infinity, by studying
the splitting dimension of the ring R (for short the s-dimension of R, as it was called in [2]).
(For precise definitions, we refer the reader to Section 2). The rings for which some aq > 0
(equivalently, all aq > 0) are called F -pure. The purpose of this paper is to demonstrate
that there is much more structure to be discerned in such rings, and at least part of this
structure is captured by the s-dimension and the splitting ratios (defined below).

The behavior of the sequence {aq}q captures subtle information about the structure of
the ring R with regard to the natural action of Frobenius on it. This behavior is intimately
connected to the notions of F -purity and strong F -regularity. In fact, our work starts with
and extends ideas originating in papers of Huneke and Leuschke ([12]), and Aberbach and
Leuschke ([2]) where the relation between the strong F -regularity and the F -signature of
Gorenstein rings ([12]) and Cohen-Macaulay rings ([2]) are analyzed. One can think of the
concept of strong F -regularity as a very strong form of F -purity, as the definitions included
below show. Our work shows that there is a spectrum of F -pure behavior, ranging from
“merely F -pure,” in the case that sdim(R) = 0 (i.e., essentially aq = 1 for all q), all the way
up to strong F -regularity (i.e., sdim(R) = dim(R)). Moreover, the central notions of the
paper, the splitting dimension and the Frobenius splitting ratios, will quantify this behavior
in a clear fashion.
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2 I. M. ABERBACH AND F. ENESCU

An important outcome of our analysis is the discovery, in any F -pure ring R, of a spe-
cial prime ideal P(R), which we will call the splitting prime of R, whose dimension (i.e.
dim(R/P)) is an upper bound for the splitting dimension of R. A significant feature of this
prime ideal P is that it defines a strongly F -regular quotient R/P. In the case of a Goren-
stein ring R this ideal is the only F -stable prime of R (the study of the F -stable primes of
ring R was initiated in ([4]).

Let (R,m, k) be an F -finite F -pure ring. For simplicity in making an initial statement,
assume that the residue field of R is perfect. We let k be the largest integer such that
lim infq

aq

qk > 0 and call this number the s-dimension of R, sdim(R). We can then prove

Theorem 1.1. There exists a prime ideal P = P(R) such that R/P is strongly F -regular
and sdim(R) ≤ dim(R/P). The prime P is 0 if and only if R is strongly F -regular.

The proof of this theorem is contained in Theorem 3.3 and Theorem 4.8.
The first part of the paper will introduce the relevant concepts of the paper, such as

the splitting dimension and the Frobenius splitting ratios. Section 2 of the paper contains
some results about the splitting dimension, the splitting prime ideal P, and the lower and
upper Frobenius splitting ratios of a ring R. We also raise the question of whether or not
sdim(R) = P(R) and provide some evidence in support of an affirmative answer. The study
of these concepts continues in Section 3 where we investigate the case of reduced rings that
are images of regular local rings and state our main Theorem (Theorem 4.8). The last section
of the paper extends some of the earlier results to the class of R-modules.

We would like to conclude our introduction by outlining some of the main facts about
F -purity and strong F -regularity. The notion of F -purity was introduced in the work of
Hochster and Roberts ([11]) and that of strong F -regularity in a paper by Hochster and
Huneke ([8]). Both concepts have been studied by many other authors; the main facts
about them, which are now considered standard, will be listed below without any proofs or
references.

Let F : R → R be the Frobenius homomorphism F (r) = rp. We denote by F e the eth
iteration of F , that is F e(r) = rq, F e : R → R. One can regard R as an R-algebra via
the homomorphism F e. Although as an abelian group it equals R, it has a different scalar
multiplication. We will denote this new algebra by R(e).

Definition 1.2. R is F -finite if R(1) is module finite over R, or, equivalently (in the case
that R is reduced), R1/p is module finite over R. R is called F -pure if the Frobenius homo-
morphism is a pure map, i.e, F ⊗R M is injective for every R-module M .

If R is F -finite, then R1/q is module finite over R, for every q. Moreover, any quotient
and localization of an F -finite ring is F -finite. Any finitely generated algebra over a perfect
field is F -finite. An F -finite ring is excellent.

If R is F -finite, then R is F -pure if and only if the inclusion R ↪→ R1/p splits over R. This
is equivalent to the assertion that R ↪→ R1/q splits, for every q. The reader should note that
R1/q ' R(e) as R-algebras, by sending r1/q to r.

Let Ro be the complement of the minimal primes of the ring R.
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Definition 1.3. A reduced Noetherian F -finite ring R is strongly F -regular if for every
c ∈ Ro there exists q such that the R-linear map R → R1/q that sends 1 to c1/q splits over
R, or equivalently Rc1/q ⊂ R1/q splits over R.

The notion is related to that of F -purity by the fact that, in the definition above, if a
splitting exists for a choice of c ∈ Ro and q, then the inclusion R ↪→ R1/q′ (sending 1 7→ 1) also
splits for every q′. Also, if a splitting of Rc1/q ⊂ R1/q exists, then a splitting of Rc1/q′ ⊂ R1/q′

exists too for all q′ ≥ q.
The notion of strong F -regularity localizes well, and all ideals are tightly closed in strongly

F -regular rings. Regular rings are strongly F -regular and strongly F -regular rings are Cohen-
Macaulay and normal. To show that a reduced Noetherian and F -finite ring is strongly
F -regular it is necessary and sufficient to show that, for some c ∈ Ro such that Rc is strongly
F -regular, there exists q such that Rc1/q ⊂ R1/q splits over R.

Let ER(k) be the injective hull of the residue field of R. Then R is strongly F -regular if
and only if 0∗ER

= 0. The ideal AnnR(0∗ER
) is called the CS-test ideal of R and is denoted

by τ̃ (R). Note that τ̃ (R) = R if and only if R is strongly F -regular.

Definition 1.4. The ring (R,m) is approximately Gorenstein if R has a sequence of m-
primary irreducible ideals {It}t cofinal with the powers of m. See [7].

By taking a subsequence, we may assume that It ⊃ It+1. For each t, let ut be an element
of R which represents a socle element modulo It. Then there is, for each t, a homomorphism
R/It ↪→ R/It+1 such that ut + It 7→ ut+1 + It+1. The direct limit of the system will be the
injective hull E = ER(R/m) and each ut will map to the socle element of E, which we will
denote by u. Hochster has shown that every excellent, reduced local ring is approximately
Gorenstein ([7]). In particular, every F -finite reduced ring is approximately Gorenstein.

2. Notation and terminology

Let (R,m, k) be a reduced, local, F -finite ring of positive characteristic p > 0 and Krull
dimension d. As in the introduction, let

R1/q = Raq ⊕Mq

be a direct sum decomposition of R1/q such that Mq has no free direct summands. If R is
complete, such a decomposition is unique up to isomorphism, but it is always the case that
the values of the aq are independent of the decomposition. As mentioned in the introduction,
we investigate here the size of the numbers aq with respect to q.

For a local ring (R,m, k), we set α(R) = logp[k : kp]. For I an ideal of R, let I [q] = (iq : i ∈

I)R. It is easy to see that, for an m-primary ideal I of R, λR(R1/q/IR1/q) = λ(R/I [q])qα(R).
If P is a prime ideal of R, then α(P ) will simply denote α(RP ). It is often convenient to
understand many of the statements in this paper first in the case that k is perfect, i.e.,
α(R) = 0. However, in order to use induction and have the concepts localize well we must
keep track of the exponent α(R).

Before we proceed, we would like to remind the reader of the following fact ([13]).
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Lemma 2.1. Let R be an F -finite Noetherian ring of characteristic p. Then for any prime
ideals P ⊂ Q of R,

α(P ) = α(Q) + ht(Q/P ).

We would like to first define the notion of F -signature as it appears in [2] and [12].

Definition 2.2. Let R be an F -finite local ring. The F -signature of R is

s(R) = lim
q→∞

aq/q
d+α(R),

if it exists.

The following result, due to Aberbach and Leuschke, holds:

Theorem 2.3. Let (R,m, k) be a reduced Noetherian ring of positive characteristic p. Then
lim infq→∞ aq/q

d+α(R) > 0 if and only if lim supq→∞ aq/q
d+α(R) > 0 if and only if R is strongly

F -regular.

Moreover, Huneke and Leuschke proved that if R is local, reduced and Gorenstein, then
the F -signature exists. Yao has recently extended this result to rings that are Gorenstein on
their punctured spectrum.

We are now able to define the central concepts to be investigated in this paper.

Definition 2.4. Let R be an F -finite local ring. The s-dimension of R, sdim(R), is the
largest integer k such that

lim inf
q→∞

aq

qk+α(R)

is not zero. If R is not F -pure then sdim(R) = −∞. The lower Frobenius splitting ratio of R,
r−F (R), equals the value of the limit introduced above, that is r−F (R) = lim infq→∞

aq

qsdim(R)+α(R) .

Similarly, the upper Frobenius splitting ratio of R, r+
F (R), equals lim supq→∞

aq

qsdim(R)+α(R) .

Whenever r−F (R) = r+
F (R), we call this number the Frobenius splitting ratio of R, rF (R).

Whenever sdim(R) = dim(R) (equivalently, R is strongly F -regular), we recover the notion
of F -signature of R, denoted by s(R), and, we will use this terminology whenever we are
in such a special case. In particular, whenever sdim(R) = dim(R), we will be speaking of
the lower and upper signature of R, denoted accordingly by s−(R) and s+(R), instead of its
lower and, respectively, upper Frobenius splitting ratio.

We show below that R is F -pure if and only if sdim(R) ≥ 0.

Remark 2.5. In [14] the notion of minimal Hilbert-Kunz multiplicity is defined, denoted
mHK(R). Theorem 2.3 shows that this number is non-zero if and only if R is strongly F -
regular. In our terminology, mHK(R) = 0 if sdim(R) < dim(R) and mHK(R) = s−(R)
otherwise.

The following result is classical and very helpful in understanding the number of free direct
summands of R1/q. We will quote it here in the form stated in [10].

Theorem 2.6. Let (R,m, k) be a local ring and F be a free finitely generated R-module.
Let M be a finitely generated R-module and φ : F → M an R-linear map. Then φ splits
over R if and only if φ⊗ER(k) is an injective map.
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IfM is a finite R-module that has no nonzero free direct summands, then for every m ∈M ,
the map R → M that sends 1 to m does not split. By tensoring with ER(k) and using the
above Theorem, we conclude that the map ER(k) → ER(k) ⊗M that sends e to e ⊗m is
not injective. Denote by u the socle generator for ER(k). The following holds:

Proposition 2.7. Let (R,m, k) be a local ring, let M be a finite R-module, and let u be the
socle generator of ER(k). Then M has no nonzero free direct summands if and only if for
every m ∈M , u⊗m = 0 in ER(k) ⊗M .

Proof. For each m ∈ M , define fm : R → M by fm(r) = rm. Then fmdoes not split
over R if and only if fm ⊗ ER(k) is not injective if and only if ker(fm ⊗ ER(k)) is nonzero
(Theorem 2.6). This holds if and only if ker(fm ⊗ ER(k)) intersects the socle of ER(k) non
trivially. But, Soc(ER(k)) = Ru. So, fm⊗ER(k) is not injective if and only if u⊗m = 0 �

The following Corollary will prove to be of much use in what follows. Yao has also noted
this result in his recent work [15].

Corollary 2.8. Let (R,m, k) be an F -finite reduced local ring of characteristic p. Let
R1/q = Raq ⊕Mq be a direct sum decomposition of R1/q over R, where Mq has no R-free
direct summands. Define

Jq := {r ∈ R1/q : r ⊗ u = 0 in R1/q ⊗ ER(k)}.

Then, aq = λR(R1/q/Jq).

Proof. R1/q = Raq ⊕Mq; so, by tensoring with Ru ⊂ ER(k), we get

R1/q ⊗R · u = (Raq ⊗ R · u) ⊕ (Mq ⊗R · u).

Map this further to R1/q ⊗ER(k) and apply Proposition 2.7 to Mq. We have that Im(R1/q ⊗
R · u → R1/q ⊗ ER(k)) = Im(g : Raq ⊗ Ru → R1/q ⊗ ER(k)), where g(a ⊗ ru) = a ⊗ ru.
But g factors through Raq ⊗ ER(k) → R1/q ⊗ ER(k) which is an injective map (again by
Theorem 2.6), so g is also injective. But λ(Ru) = 1, and hence λ(Raq ⊗ Ru) = aq. In
conclusion,

λ(Im(R1/q ⊗R · u→ R1/q ⊗ER(k))) = aq.

There is a natural R-linear map R1/q → R1/q ⊗ ER(k) that sends r ∈ R1/q to r ⊗ u. The
kernel of this map equals Jq and the theorem is proved. �

3. Splittings, s-dimension and strong F -regularity

Let F e : R → R be the eth iteration of the Frobenius map. We can regard R as a new
(right) R-algebra, under this map, which we denote by R(e). Corollary 2.8 leads us to define
the following sequence of ideals.

Definition 3.1. Let (R,m, k) be an F -finite local ring. We define

Ae = Ae(R) = {r ∈ R : r ⊗ u = 0 ∈ R(e) ⊗R ER(k)}.



6 I. M. ABERBACH AND F. ENESCU

If R is not reduced then the map R → R(e) cannot be injective for e > 0, and hence
by Theorem 2.6, Ae = R for all e ≥ 1. So assume that R is reduced (hence approximately
Gorenstein). Then clearly, Ae = (Jq)

[q] (note that R1/q ' R(e) by r1/q 7−→ r). In fact, Ae is an

ideal both of R and R(e). Using the notation in Definition 1.4, we see that Ae = ∪t(I
[q]
t : uq

t ).
We claim that the sequence {Ae}e is non-increasing. If R is not F -pure then Ae = R for all

e. Otherwise, let r ∈ Ae. For t � 0, ruq
t ∈ I

[q]
t where q = pe, hence rpuq

t ∈ I
[q]
t . Taking pth

roots and applying the splitting yields, ru
q/p
t ∈ I

[q/p]
t , showing that Ae ⊆ Ae−1.

Definition 3.2. Let (R,m, k) be an F -finite reduced local ring. Let

P(R) = {r ∈ R : r ⊗ u = 0 ∈ R(e) ⊗R ER(k) for all e� 0} = ∩eAe.

If the ring is understood we will sometimes refer to this ideal simply as P.

As we will show in Theorem 3.3 below, the ideal P(R) is prime.
Since u is the socle generator for ER(k), we have rq ⊗ u = 1 ⊗ ru, which is 0 if r ∈ m, so

m[q] ⊂ Ae for every q. On the other hand, if u /∈ 0∗ER
, then P = 0 (see [1], Proposition 2.4).

If R is a domain, then P is nonzero only if R is not strongly F -regular, since 0∗ER
= 0 in

strongly F -regular rings (see also Corollary 3.4). The reader is invited to note that there is
a similarity between the ideal P(R) introduced here and the concept of F -stable primes of
R introduced in [4]. In fact, when R is Gorenstein, then R admits a unique F -stable prime,
which, indeed, is P. This similarity is underlined by our next Theorem that asserts that
P(R) is in fact a prime ideal of R. We will refer to P(R) as the splitting prime for R.

Before we state the result, we need to introduce some notation. For every c ∈ R, one can
define an R-linear map φc,e : R → R1/q, φc,e(1) = c1/q, where q = pe.

Theorem 3.3. Let (R,m, k) be an F -finite reduced local ring of characteristic p. Then,
Ae = {c ∈ R : φc,q does not split over R} and P(R) is a prime ideal or the unit ideal.

Proof. By Theorem 2.6 we know that φc,e splits if and only φc,e ⊗ ER(k) is injective.
Take c ∈ Ae. Then c1/q belongs to Jq. Hence c1/q ⊗ u = 0, and therefore φc,e does not

split. Now, assume that c ∈ R is an element such that the map φc,q does not split. Then
again u ∈ Ker(φc,e ⊗ ER(k)) which means that c1/q ∈ Jq. So, c ∈ Ae. This shows the first
assertion of the Theorem.

For the second assertion assume that P(R) is not the unit ideal and let us write

P = {c ∈ R : φc,e does not split for any e� 0}.

If P is not prime, then there exist a and b not in P such that ab ∈ P. Since a and b are not
in P we can find e1 and e2 large enough such that the R-linear maps φa,e1 and φb,e2 split. Let
θ1 : R1/q1 → R an R-linear that maps a1/q1 to 1. This map exists because φa,e1 splits over
R. Similarly, we can find θ2 : R1/q1q2 → R1/q1 , such that θ2(b

1/q1q2) = 1 and θ2 is R1/q1-linear
(we can do this by taking the q1-root of a splitting for φb,e2).

Let θ = θ1θ2. It is easy to check that θ is R-linear and θ((aq2b)1/q1q2) = 1. So, for
e0 = e1 + e2, φaq2b,e0 splits.

We know that ab ∈ P, and this implies that aq2b ∈ P. So, if we fix e2, this means that
φaq2b,e does not split for any e � 0 large enough. This is a contradiction, since we have
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just shown the existence of a splitting for values q of the form q = q0 = pe0 = pe1+e2 , where
q1 = pe1 can be arbitrarily large.

In conclusion, P is a prime ideal. �

Corollary 3.4. Let (R,m, k) be an F -finite reduced local ring of characteristic p. Then, R
is F -pure if and only if P(R) is a proper ideal if and only if sdim(R) ≥ 0. In this case,

sdim(R) ≤ dim(R/P).

The ring R is strongly F -regular if and only if P = 0. Also, dim(R/P) = 0 if and only if
P = m if and only if sdim(R) = 0, in which case rF (R) = 1.

Proof. R is F -pure if and only if some aq > 0 if and only if Ae is proper, and since the
sequence {Ae}e is non-increasing this occurs if and only if P(R) 6= R. By Theorem 2.8,
aq = λ(R1/q/Jq) and hence aq = λ(R/Ae) · q

α(R) with α(R) = logp[k : kp] . From this we can
see that R is F -pure if and only if sdim(R) ≥ 0.

We next show that sdim(R) ≤ dim(R/P). Since m
[q] ⊂ Ae, for every q = pe, we have that

m
[q] + P ⊂ Ae. Then aq/q

k+α(R) = λ(R/Aq)/q
k ≤ λ(R/m[q] + P)/qk. If k > dim(R/P),

then by the theory of Hilbert-Kunz functions, limq→∞ λ(R/m[q] +P)/qk = 0. So, sdim(R) ≤
dim(R/P).

The ideal P = 0 if and only if for all c 6= 0 there exists a q such that φc,q splits; this is
precisely the definition of a strongly F -regular ring.

Since P is prime, dim(R/P) = 0 if and only if P = m. Clearly P 6= R if and only if
R is F -pure if and only if Ae 6= R for all e. So, P = m if and only if R is F -pure and
Ae = m for all e. In conclusion, aq/q

α(R) = λ(R/Ae) = λ(R/m) = 1. Hence, in particular,
rF (R) = 1. �

Remark 3.5. We note the following facts:

1) The proof of the above Corollary shows that, in fact, when R is F -pure and P = m

(an important such case is that of an isolated non-strongly F -regular point), then
aq = qα(R).

2) Assume that R is strongly F -regular. A result of Aberbach ([1]) shows that there
exists eo such that Ae ⊂ m

[q/qo] for every e ≥ eo. This shows that aq/q
d+α(R) ≥

λ(R/m[q/qo])/qd; since eHK(m) > 0, we conclude that sdim(R) = d and rF (R) ≥
eHK(m)/qd

o . This result was first established in [2] and our remark is along the lines
of the argument given there.

3) Also, let us take c ∈ τ̃ (R) = AnnR(0∗ER
), a CS-test element. The ring Rc is strongly

F -regular. If c /∈ Ae, for some e, then R is strongly F -regular (as explained in the
introduction). So, if R is not strongly F -regular, then τ̃ (R) ⊆ P.

The splitting prime of R does not localize well in general. The most obvious example is
when P(R) = m. Then for all Q ∈ Spec(R), RQ is F -pure, so P(RQ) 6= RQ = P(R)RQ.
However, when Q ⊇ P(R) we do get a nice localization result.

Proposition 3.6. Let (R,m, k) be a local ring of characteristic p. Then for every Q ∈
Spec(R) such that P ⊂ Q we have

P(RQ) = P(R)RQ.
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Proof. We first note that (R1/q)Q = (RQ)1/q = R1/q ⊗ RQ. Moreover, if φc,e splits, then
φc,e ⊗ RQ splits, too.

Take c/s ∈ P(RQ). Then c/1 belongs to P(RQ). We would like to show that c ∈ P(R).
Assume the contrary; then, φc,e : R → R1/q does split for e � 0. By tensoring with RQ we
get a splitting over RQ, which is a contradiction.

Now, take c ∈ P(R). We want to show that c/1 belongs to P(RQ). If not, for large q, the

map RQ → R
1/q
Q that sends 1 to c1/q/1 splits. So, for each such q = pe, there is an element

dq /∈ Q and a map R1/q → R that sends c1/q to dq. But, dq is not in P(R), since P(R) ⊂ Q.

So, for q′ � 0, there is an R-linear map R1/q′ → R that sends d
1/q′

q to 1. Combining these
last two assertions, we conclude that c is not in P(R) and this is a contradiction.

�

Proposition 3.7. Let R be an F -pure local ring. Then Q ⊂ P, for every Q ∈ Min(R).

Proof. Let c ∈ R. For every q, the map φc,q is not injective if c is a zero-divisor on R. Since
R is reduced this means that c belongs to some minimal prime Q of R. So, if c ∈ Q, with Q
a minimal prime, then φc,q cannot split over R for any q. The assertion of the Proposition
follows.

�

We would like to show that the splitting prime of the completion is extended. In order to
do this we need the next Lemma.

Lemma 3.8. Let (R,m) → (S, n) be a faithfully flat map of F -finite local reduced rings
such that the closed fiber S/mS is regular of dimension n. Then Ae(S) = Ae(R)S + n

[q]. If
sdimR = 0, then sdimS = n, P(S) = mS, and r−F (S) = r+

F (S) = 1.

Proof. Both rings are approximately Gorenstein, and the closed fiber S/mS is regular of
dimension n. Let z1, ..., zn be a sequence of elements in S that define a regular sequence
on S/mS. Then for any q = pe, zq

1, ..., z
q
n form a regular sequence on S/mS and, in fact,

R → S/(zq
1, ..., z

q
n)S if a faithfully flat map.

If {It}t is a sequence of irreducible m-primary ideals of R, cofinal with the powers of m,
then {Jt}t = {ItS + (zt

1, ..., z
t
n)}t is a sequence of irreducible n-primary ideals of S, cofinal

with the powers of n. Let ut be elements of R which are socle elements modulo It. Then the

images of the ut ·(z1 · · · zn)t−1 in S are socle elements modulo Jt. Moreover, R/I
[q]
t → S/I

[q]
t S

is flat with regular closed fiber of dimension n. Since R/I
[q]
t has depth 0, we see that S/I

[q]
t S

has depth n. It follows that S/I
[q]
t S is Cohen-Macaulay. In particular, this shows that

z1, ..., zn form a regular sequence on S/I
[q]
t S, because their images in S/I

[q]
t S form a system

of parameters.

Let us compute Ae(S) = ∪t((I
[q]
t S + (ztq

1 , · · · , z
tq
n )) : uq

t · (z1 · · · zn)(t−1)q). If a ∈ S such
that

a · uq
t · (z1 · · · zn)(t−1)q ∈ I

[q]
t S + (ztq

1 , · · · , z
tq
n )

then, by using that z1, ..., zn form a regular sequence on S/I
[q]
t S, we have that
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auq
t ∈ I

[q]
t S + (zq

1, ..., z
q
n).

This is equivalent to a ∈ (I
[q]
t S + (zq

1, ..., z
q
n)) :S u

q
t ).

By flatness of S/(zq
1, · · · , z

q
n) over R, (I

[q]
t S+ (zq

1, ..., z
q
n)) :S u

q
t = (I

[q]
t :R uq

t )S +(zq
1, ..., z

q
n).

In conclusion, Ae(S) = ∪t((I
[q]
t :R uq

t )S+(zq
1, ..., z

q
n)) and hence Ae(S) = Ae(R)S+(zq

1, ..., z
q
n).

So, if sdim(R) = 0, then Ae(S) = m
[q]S + (zq

1, ..., z
q
n). Hence, aq = λS(S/Ae(S)) =

λS(S/(mS + (zq
1, ..., z

q
n)) which shows that sdim(S) = n. �

Proposition 3.9. Let (R,m) and (S, n) be local, reduced, F -finite rings of characteristic p
and let f : (R,m) → (S, n) be a flat local map with regular fibers. Then Ae(S) = Ae(R)S+n

[q]

for every q = pe, and P(S) = P(R)S. In particular, if R is local, reduced and F -finite, then

Ae(R)R̂ = Ae(R̂) and P(R)R̂ = P(R̂).

Proof. The assertion that Ae(S) = Ae(R) + n
[q] has been shown in Lemma 3.8.

To see that P(S) = P(R)S we first observe that P(S) = ∩eAe(S) is a prime ideal of S
lying over P(R).

We first show that any prime of S that is minimal over P(R)S is in fact contained in
P(S). Let Q 6= P(S) be a prime ideal of S that is minimal over P(R)S. Since R → S is
flat then Q lies over P. Thus the map RP(R) → SQ is faithfully flat and P(R)SQ = QSQ.
By Lemma 3.8, sdim(SQ) = 0. In particular, Ae(SQ) = QSQ for all e. However, if we take
c ∈ Q−P(S), then for q � 0, c1/qS ⊆ S1/q splits over S. This remains true after localizing,
showing that Ae(SQ) 6= QSQ, a contradiction.

In conclusion, Q ⊆ P(S).
Note that P(R) is prime in R, and since R → S has regular fibers, then P(R)S is a radical

ideal in S.
Now, we would like to argue that P(S) itself is a minimal prime of P(R)S. The homo-

morphism RP(R) → SP(S) is flat because P(S) lies over P(R). Its closed fiber is regular
and sdim(RP(R)) = 0. If the dimension of its closed fiber is positive, then, by Lemma 3.8
below, sdim(SP(S)) > 0. However, this is impossible. In conclusion, the closed fiber of
RP(R) → SP(S) is 0-dimensional, so P(S) is minimal over P(R)S.

Now, since P(R)S is radical and its only minimal prime is P(S), we obtain the equality
P(R)S = P(S).

The last assertion about the completion follows from the fact that, under our hypotheses, R
is excellent, so all the fibers of the completion homomorphism are smooth, hence regular. �

Proposition 3.9 enables us to reduce the study of the s-dimension and the Frobenius
splitting ratio of reduced excellent rings to the case of complete local rings. These rings are
images of regular local rings. Following in the paths of Fedder, Glassbrenner, and Cowden-
Vassilev we can analyze the finer structure of F -pure rings in this way.

4. Images of regular rings

In this section, we continue our analysis in the case of local rings that are images of regular
local rings. The more general case of reduced F-finite rings can be reduced to this class of
rings by Proposition 3.9.
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Let us write R = S/I where S is regular and local and π : S → R the natural projection.
Assume that R is reduced, i.e., I is a radical ideal. There are two results that describe under
what conditions such rings are F -pure or strongly F -regular. The first one is due to Fedder
(Theorem 1.12 in [5]). It does not require R to be F -finite.

Theorem 4.1. Let (S,m, k) be a regular local ring of characteristic p and let R = S/I. Then
R is F -pure if and only if (I [p] : I) 6⊂ m

[p].

The idea behind this criterion for F -purity has been used by Glassbrenner to give a similar
criterion for strong F -regularity (Theorem 2.3 in [6]). We will state it here in the form we
need it later.

Theorem 4.2. Let (S,m, k) be a local regular ring and let R = S/I and c ∈ S. Then, for
every q = pe, the map φπ(c),e splits if and only if c /∈ m

[q] :S (I [q] : I). Moreover, R is strongly

F -regular if and only if I = ∩q

(
m

[q] :S (I [q] : I)
)
.

Using the notation introduced previously, we see that Ae =
(
m

[q] :S (I [q] : I)
)
/I. So,

aq = qα(R) λS(S/(m[q] :S (I [q] : I))). Note that S/m[q] is zero dimensional and Gorenstein.

The quotient S/
(
m

[q] :S (I [q] : I)
)

is an S/m[q]-module and its Matlis dual is (I [q]:I)+m
[q]

m
[q] .

Hence, aq = qα(R) λS( (I [q]:I)+m
[q]

m
[q] ).

Although Theorem 4.2 was stated in [6] under the assumption that S is local, regular and
F -finite, one can note that the F -finiteness hypothesis can be removed along the lines of the
argument used by Fedder in proving his criterion for F -purity (where we interpret “strongly
F -regular” to mean that 0∗E = 0). The point is that one can make a flat base change, by
enlarging the residue field to its perfect closure, to get to the case where S is F -finite. Strong
F -regularity commutes with this base change (see, for example, Theorem 3.6 [1]).

Remark 4.3 (for proofs, see [5], 1.4 and 1.5). For every q = pe, HomS(S1/q, S) has an S1/q-
structure given by s1/q · φ(t1/q) := φ((st)1/q), for every s, t ∈ S and φ ∈ HomS(S1/q, S).
Moreover, HomS(S1/q, S) ' S1/q. Let T be a generator for HomS(S1/q, S) and s1/q ∈ S.
Then s1/qT defines an element in HomR(R1/q, R) if and only if s1/q ∈ (IS1/q : I1/q) if and
only if s ∈ (I [q] : I).

The following result is similar to Theorem 3.1 in [3], in which Cowden-Vassilev showed
that if R is F -pure then so is R/τ(R), where τ(R) is the test ideal of R. We give two proofs:
one is similar to the proof of Theorem 3.1 given in [3], while the other one uses some ideas
originating in Fedder’s work, [5].

Proposition 4.4. Let (S,m, k) be an F -finite local regular ring and let R = S/I be reduced
and F -pure. Set Q to be the full preimage of P(R) in S. Then for all q, (I [q] : I) ⊂ (Q[q] : Q).
In particular, if R is F -finite then sdim(R/P) ≥ sdim(R).

Proof. Proof 1. R is excellent and reduced, so it is approximately Gorenstein. Let {It} be
a collection of irreducible m-primary ideals in R cofinal with the powers of m, and denote
by {Jt} their full preimages in S. Let ut be an element of S mapping to the socle in S/Jt.

Then we may describe Q as Q = ∩q(∪t(J
[q]
t + I) :S uq

t ). Let w ∈ (I [q] : I) and v ∈ Q.
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We want to show that vw ∈ Q[q] =
(
∩q′ ∪t (J

[q′]
t + I) : uq′

t

)[q]
, which by flatness of the

Frobenius endomorphism over S is ∩q′ ∪t

(
(J

[qq′]
t + I [q]) : uqq′

t

)
. For all q′ there is a t such

that vuqq′

t ∈ J
[qq′]
t + I, hence vwuqq′

t ∈ J
[qq′]
t + I [q]. This shows that vw ∈ Q[q], as desired.

Proof 2. Let T be as in Remark 4.3. In the light of this Remark we need to show that if
ψ := s1/qT ∈ HomR(R1/q, R), then (sQ)1/q ∈ QS1/q. By the same Remark, this is equivalent
to the assertion that ψ induces an R-linear map R1/q/Q1/q → R/Q.

We can define an R1/q′-linear map by ψq′ : R1/qq′ → R1/q′ , ψq′(a) = ψ(aq′)1/q′ . This map
is, in particular, R-linear.

Take c ∈ Q; then, c1/qq′ ⊗u = 0 in R1/qq′ ⊗ER(k) where u is the socle generator in ER(k).
Clearly, ψq′(c

1/qq′) ⊗ u = 0. That is, ψ(c1/q)1/q′ ⊗ u = 0. So, s1/qT (c1/q) = ψ(c1/q) ∈ Q.
Hence, s1/qT takes Q1/q into Q. So, s1/qT defines an element in HomR(R1/q/Q1/q, R/Q),
and hence s ∈ (Q[q] : Q).

The last statement now follows, after noting that α(R) = α(R/P), since

aq(R) = qα(R) λS

(
I [q] : I + m

[q]

m
[q]

)
≤ qα(R/P) λS

(
Q[q] : Q + m

[q]

m
[q]

)
= aq(R/P).

�

Remark 4.5. This result improves Theorem 3.4, since the s-dimension of a ring is bounded
above by its dimension.

Corollary 4.6. Let R be a characteristic p local F -pure ring that is a homomorphic image
of a regular local ring (S,m, k), that is R = S/I. Then sdim(RP) = 0.

Proof. Denote by k(P) the residue field of the localization of R at P. Apply Theorem 4.4
to RP . We get that 0 = sdim(k(P)) ≥ sdim(RP) and we are done. �

Theorem 4.7. Let R = S/I be a characteristic p local F -pure, F -finite ring that is a
homomorphic image of a regular local ring S. Then R/P is strongly F -regular.

Proof. If sdimR = 0, i.e., P = mR this is clear. Thus we may assume that sdimR >
0. If R/P is not strongly F -regular we may localize a prime minimal among the set
{P |(R/P)P is not strongly F -regular}. After relabeling this ring R, we note that the s-
dimension is still positive. Thus we can assume that (R/P)Q is strongly F -regular for all Q,
different from m, containing P. We know that R/P is F -pure by Proposition 4.4.

If R/P is not strongly F -regular, then P(R/P) equals mR since mR = τ̃ (R) ⊆ P(R). But
then sdim(R/P) = 0, a contradiction. �

Now we are in a position to describe the s-dimension of a local ring of positive character-
istic. We also give some information on the splitting ratios. We expect that the upper and
lower splitting ratios always coincide. At present, we can only prove this if sdim(R) ≤ 1,
however, we can give an upper bound on the ratio r+

F (R)/r−R(F ), if sdim(R) = dim(R/P).

Theorem 4.8. Let R be an F -pure, F -finite local ring of positive characteristic. Then
i) R/P is strongly F -regular, sdim(R) ≤ dim(R/P). Moreover, if sdim(R) = dim(R/P),

then r−F (R) ≤ s−(R/P) ≤ 1, r+
F (R) ≤ s+(R/P) ≤ 1.
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ii) If sdim(R) = dim(R/P), then r+
F (R) ≤ r−F (R) · eHK(R/P). This shows that, in this

case, r+
F (R) > 0 if and only if r−F (R) > 0.

iii) If dim(R/P) = 1, then sdim(R) = 1 and R/P is a DVR.
iv) If dim(R/P) ≤ 1 then r+

F (R) = r−F (R).
v) dim(R/P) = dim(R) if and only if R is strongly F -regular. In this case, s−(R) ≤

s+(R)eHK(R).
vi) depthR ≥ sdimR.

Proof. One can pass to the completion of R by Proposition 3.9, and hence assume that
R = S/I with S regular local.

For part i), let us note that since R is a homomorphic image of a regular ring, R/P is
strongly F -regular by Theorem 4.7.

The inequalities stated in i) follow easily from the proof of Proposition 4.4.
To prove ii), let j = sdim(R) and choose two sequences of indices q and q′ such that

λ(R/Ae)/q
j approaches r−F and λ(R/Ae+e′)/(qq

′)j approaches r+
F . Let us note that P+A

[q]
e′ ⊂

Ae+e′.
Claim:

λ(R/Ae+e′) ≤ λ(R/P + A[q′]
e ) ≤ λ(R/Ae) · λ(R/P + m

[q′]).

Indeed, the left side of the inequality is immediate since P+A
[q]
e′ ⊂ Ae+e′. Set k = λ(R/Ae)

and write a composition series Ae = Io ⊂ · · · ⊂ Ii ⊂ · · · ⊂ Ik = R. Then (P + A
[q′]
e ) ⊂ · · · ⊂

(P + Ii) ⊂ · · · ⊂ (P + Ik) = R. The successive quotients of this filtration are homomorphic

images of R/P + m
[q]. Hence, λ(R/Ae+e′) ≤ λ(R/P + A

[q′]
e ) ≤ k · λ(R/P + m

[q]).
By dividing on both sides by (qq′)j, with j = sdim(R) = dim(R/P), and letting q, q′

approach infinity we obtain the inequality stated in ii).
For iii), note that a one-dimensional strongly F -regular ring R is a DVR. Part iv) follows

at once from i), ii) and iii) by noting that the Hilbert-Kunz multiplicity of a local regular
ring equals one.

For v), dim(R/P) = dim(R) implies that P is a minimal prime of R. Since P contains all
the minimal primes of R, it follows that P is, in fact, the only minimal prime of R. But R
is reduced, so P = 0. Hence, R is strongly F -regular.

That depthR ≥ sdimR follows from [16], Lemma 2.2.
�

Question 4.9. Is is true that, for a local reduced and F -finite ring (R,m, k) , sdim(R) =
dim(R/P)?

Our results so far seem to indicate an affirmative answer to this question, since we have
the equality sdim(R) = dim(R/P) if dim(R/P) ∈ {0, 1, dim(R)}.

Proposition 4.10. Let R = S/I be a Stanley-Reisner ring, then
∑
Q = P where the sum

runs over all the minimal primes Q of R.

Proof. By the definition of Stanley-Reisner rings, I is a square-free monomial ideal. In
particular, I can be written as an intersection of some prime ideals in S, each of them
generated by a string of indeterminates.
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Let us assume that the union of all the minimal primes of R lifted to S involves all the
indeterminates of S. But then

∑
Q = m ⊂ P ⊂ m and we are done.

In the general case, let us assume that x1, ..., xk are all the indeterminates that do not
appear in any of the minimal primes of R. Then one can write R = A[x1, ..., xk], with A
a Stanley-Reisner ring that satisfies the condition on the minimal primes of the previous
paragraph. Hence mA = P(A). It is easy to show that P(R) = P(A)R. But then, P(R) =
mAR and this equals the sum of all the minimal primes Q of R as it can be easily checked. �

5. The module case

In what follows, we would like to extend some of our considerations to the case of R-
modules. Let M be a finitely generated R-module. For every e, we can define a new
R-module on the Z-module M with the R-multiplication given as follows: r ·m = rpe

m, for
every r ∈ R and m ∈ M . Denote this new module by M (e) and, as before, let us denote
q = pe. The reader should note that M (e) = M as abelian groups.

Denote by aq the maximal rank of a free direct summand of M . Hence, M (e) = Raq ⊕Mq

with Mq an R-module with no free direct summands. Also, for every m ∈ M , denote
φm,e : R → M (e) the map that takes r to rqm for every r ∈ R. This is clearly a map of
R-modules.

Definition 5.1. Let u be the socle generator for ER(k). For every positive integer e, one
can define

Ae(M) = {m ∈M (e) : m⊗ u = 0}

in M (e) ⊗ ER(k). Here M (e) is the R-module just introduced above. It is easy to see that
Ae(M) is a submodule of M = M (e) over R with either of the two module structures that
can be considered. Let us also define, P(M) := ∩e�0Ae(M) seen as an R-submodule of M .

Note that the above Definition naturally extends the Definition 3.1.
Also, m

[q]M +P(M) ⊂ Ae(M) for every e: if r ∈ m and m ∈M , then rqm⊗u = m⊗ru =
m⊗ 0 = 0.

The following Theorem is similar to the Theorem 2.8.

Theorem 5.2. With the notations introduced above, one has that

λR(M/Ae(M)) · qα(R) = aq.

Proof. Regard Ae(M) as an R-submodule of M . Then (M/Ae(M))(e) = M (e)/Ae(M).
The proof is similar to that of Theorem 2.8 and one can show that aq = λR(M (e)/Ae(M)).

But, for every R-moduleN one has that λR(N (e)) = λR(N)·qα(R). Hence, aq = λR(M/Ae(M))·
qα(R).

�

Theorem 5.3. Let M be a finitely generated R-module and r ∈ R and m ∈ M . Then
rm ∈ P(M) if and only if r ∈ P(R) or m ∈ P(M).

Proof. The proof is similar to the that of Theorem 3.3.
Let r ∈ P(R) and m ∈ M . We need to show that rm ∈ P(M). Consider the map

R(e) → M (e) that sends r′ to r′m (seen as an element of M under the usual R-module
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structure) for every r′ ∈ R(e). Tensor this map with ER(k) and let u be the socle element
of this module. For every e � 0, r ⊗ u = 0. This maps further to zero, so rm ⊗ u = 0 for
e� 0. Hence, rm ∈ P(M).

For the converse implication, assume that rm ∈ P(M) and that r /∈ P(R) and m /∈ P(M).
Since r /∈ P(R), we have that for e � 0 the map φr,e : R → R(e) splits over R. Similarly,

for m /∈ P(M), we have that φm,e′ : R →M (e′) splits over R.
Fix e′ � 0 so that φm,e′ splits over R. Let q′ = pe′ . We will show that rq′m /∈ P(M) which

contradicts the fact that rm ∈ P(M). This will prove the converse implication.
Take e� 0, so that φr,e splits. Define the map ψm,e′ : R(e) →M (e+e′) by ψm,e′(r

′) = r′q
′

m.
This is essentially the map φm,e′ “lifted” to R(e). It is an R-linear map and it splits over R.
The composition of the two maps φr,e and ψm,e′ defines an R-linear map R → M (e+e′) that
sends 1 → rq′m. This map splits over R for all e � 0 (or, equivalently, e + e′ � 0) and
hence rq′m /∈ P(M). �

We can define the s-dimension and the Frobenius splitting ratio of an R-module.

Definition 5.4. The s-dimension of M, sdim(M), is the largest integer k such that

lim inf
q→∞

aq

qk+α(R)

is not zero. The lower Frobenius splitting ratio of M , rF (M), equals the value of the limit
introduced above, that is r−F (M) = lim infq→∞

aq

qsdim(M)+α(R) . Similarly, the upper Frobenius

splitting ratio of M , r+
F (M), equals lim supq→∞

aq

qsdim(M)+α(R) . Whenever r−F (M) = r+
F (M), we

call this number the Frobenius splitting ratio of M .

The following result is an extension of the case when M = R.

Theorem 5.5. Let M be an R-module. Then sdim(M) ≤ dim(M/P(M)). If R is strongly
F -regular and M is an torsion free R-module, then sdim(M) = dim(R) = dim(M).

Proof. From the definition ofM (e) one can see that (AnnR(M (e)))q ⊂ AnnR(M), so dim(M (e)) =
dim(M). Write M (e) = Raq ⊕Mq. If aq 6= 0, for some q, then dim(M (e)) = dim(R), because
R injects into M (e).

We have seen that aq = λR(M/Ae(M)), and m
[q]M + P(M) ⊂ Ae(M). So, aq ≥

λ(M/m[q]M + P(M)). Since, eHK(m,M/P(M)) > 0, the first part of the Theorem follows.
If R is strongly F -regular, then P(R) = 0. If M is torsion-free over R, then M injects into

Rn for some n. Hence, if m⊗u = 0 in M (e)⊗ER(k) for all e� 0, then the image of m in Rn,
say (r1, ..., rn), belongs to P(R) component-wise. However, P(R) = 0, and so P(M) = 0.
So, aq ≤ λ(M/m[q]M), and since eHK(m,M) > 0 we see that sdim(M) = dim(M) = dim(R).

�
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