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THE F -SIGNATURE AND STRONG F -REGULARITY

IAN M. ABERBACH AND GRAHAM J. LEUSCHKE

Abstract. We show that the F -signature of a local ring of characteristic p, defined by

Huneke and Leuschke, is positive if and only if the ring is strongly F -regular.

In [7], Huneke and Leuschke define the F -signature of an F -finite local ring of prime

characteristic with perfect residue field. The F -signature, denoted s(R), is an asymptotic

measure of the proportion of R-free direct summands in a direct-sum decomposition of R1/pe

,

the ring of peth roots of R. This proportion seems to give subtle information on the nature

of the singularity defining R. For example, the F -signature of any of the two-dimensional

quotient singularities (An), (Dn), (E6), (E7), (E8) is the reciprocal of the order of the group

G defining the singularity [7, Example 18]. The main theorem of [7] on F -signatures is as

follows.

Theorem 0.1. [7, Theorem 11] Let (R, m, k) be a reduced complete F -finite Cohen–Macaulay

local ring containing a field of prime characteristic p. Assume that k is perfect. Then

(1) If s(R) > 0, then R is weakly F -regular.

(2) If in addition R is Gorenstein, then s(R) exists, and is positive if and only if R is

weakly F -regular.

(See below for definitions of the F -signature and weak F -regularity.) In this note, we

extend this theorem in two directions: we remove the assumption in (2) that R be Gorenstein,

and we replace “weakly F -regular” by “strongly F -regular” throughout. Our main theorem

is thus as follows.

Theorem 0.2. Let (R, m, k) be a reduced excellent F -finite local ring containing a field of

characteristic p, and let d = dim R. Then the following are equivalent:

(1) lim inf aq

qd+α(R) > 0.

(2) lim sup aq

qd+α(R) > 0.

(3) R is strongly F -regular.
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In particular, if the F -signature s(R) is known to exist, then s(R) is positive if and only if

R is strongly F -regular.

We also extend the definition of the F -signature to the case of an imperfect residue field.

This allows us to prove that s(R) behaves well with respect to localization (Proposition 1.3).

Our results do not address the existence of the limit defining s(R). Yao has shown that

s(R) exists whenever R is Gorenstein on the punctured spectrum [10].

1. The Main Result

Throughout what follows, (R, m, k) is a reduced Noetherian local ring of dimension d,

containing a field of positive characteristic p. We use q to denote a varying power of p. Set

d = dim(R) and α(R) = logp[k : kp]. We assume throughout that R is F -finite, that is, the

Frobenius endomorphism F : R−→R defined by F (r) = rp is a module-finite ring homomor-

phism. Equivalently, for each q = pe, R1/q = {r1/q | r ∈ R} is a finitely generated R-module.

In particular, this implies that α(R) < ∞, and that R is excellent [8, Propositions 1.1 and

2.5]. Also, when computing length over R, we have λ(R/I [q]R) = λ(R1/q/IR1/q)/qα(R).

We first define the F -signature of R.

Definition 1.1. Let (R, m, k) be as above. For each q = pe, decompose R1/q as a direct sum

of finitely generated R-modules Raq ⊕ Mq, where Mq has no nonzero free direct summands.

The F -signature of R is

s(R) = lim
q−→∞

aq

qd+α(R)
,

provided the limit exists.

Our formulation differs slightly from the original definition in [7], where it is assumed that

k is perfect, or equivalently that α(R) = 0. This reformulation allows us to show that s(R)

cannot decrease upon localization. We use a lemma due to Kunz ([8]).

Lemma 1.2. Let R be an F -finite Noetherian ring of characteristic p. Then for any prime

ideals P ⊆ Q of R, [k(P ) : k(P )p] = [k(Q) : k(Q)p]pdim RQ/PRQ. In other words, α(RP ) =

α(RQ) + ht Q/P .

Proposition 1.3. Let (R, m) be an F -finite local ring and P a prime ideal. For q = pe, let

aq be the number of nonzero R-free direct summands in R1/q, and let bq be the corresponding

quantity for RP . Then
bq

qdim(RP )+α(RP )
≥

aq

qdim(R)+α(R)
.

In particular, if both s(R) and s(RP ) exist, then s(RP ) ≥ s(R).
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Proof. We have (RP )1/q ∼= (R1/q)P , so the number of RP -free direct summands in (RP )1/q

is at least the number of R-free summands in R1/q. A straightforward computation using

Lemma 1.2 now gives the result. �

We now begin to work toward showing that s(R) is positive if and only if R is strongly

F -regular. We refer the reader to [6] for basic notions concerning the theory of tight closure,

including finitistic tight closure, but review briefly the ideas used in the proof.

A Noetherian ring R of characteristic p is said to be weakly F -regular provided every

ideal of R is tightly closed. Equivalently, the zero module is finitistically tightly closed in

E = ER(k), the injective hull of the residue field of R. In other symbols, 0∗fg
E = 0. We say

that R is strongly F -regular if for every c ∈ R not in any minimal prime of R, the inclusion

Rc1/q ⊂ R1/q splits for q � 0. Equivalently, the zero module is tightly closed in E, that is,

0∗E = 0. Weak and strong F -regularity are conjecturally equivalent, but this is known only

in low dimension and in some special cases.

A test element for R is an element c, not in any minimal prime of R, such that cI∗ ⊆ I

for every ideal I of R, and the test ideal, denoted τ(R), is the ideal generated by all test

elements. For a reduced local ring R, τ(R) = AnnR 0∗fg
E by [5, Theorem 8.23]. Thus R is

weakly F -regular if and only if τ(R) = R. On the other hand, the CS test ideal, cf. [9]

and [2], is the ideal τ̃(R) = AnnR 0∗E. By work of [9] and [2], the CS test ideal behaves well

under localization, so defines the non-strongly F -regular locus of Spec(R). In particular, R

is strongly F -regular if and only if τ̃(R) = R.

It is known that a weakly F -regular ring is F -pure, that is, the Frobenius morphism is a

pure homomorphism, and that for an F -pure ring both τ(R) and τ̃(R) are radical ideals.

A local ring (R, m, k) is said to be approximately Gorenstein provided there is a sequence

{It} of m-primary irreducible ideals cofinal with the powers of m. When R is Cohen–

Macaulay and has a canonical ideal J (so is Gorenstein at all associated primes), such a

family can be obtained as follows: Let x1, . . . , xd be a system of parameters such that x1 ∈ J

and x2, . . . , xd form a system of parameters for R/J . Then It := (xt−1
1 J, xt

2, . . . , x
t
d)R, for

t ≥ 1, gives the required family. Furthermore, the direct limit lim
−→t

R/It, where the maps in

the direct system are R/It
x1···xd−→ R/It+1, is isomorphic to ER(k). If u1 ∈ R is a representative

for the socle generator of R/I1, then ut := (x1 · · ·xd)
t−1u1 generates the socle of R/It, and

each ut maps in the limit to u, the socle element of ER(k).

More generally ([4, Thm. 1.7]), if R is any locally excellent Noetherian ring that is locally

Gorenstein at associated primes, then R is approximately Gorenstein.
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The following result of Hochster, together with its corollary below, explains our interest

in approximately Gorenstein rings. It can be thought of as a generalization of [7, Lemma

12].

Proposition 1.4. [4, Theorem 2.6] Let (R, m) be an approximately Gorenstein local ring

and let {It} be a sequence of irreducible ideals cofinal with the powers of m. Let f : R−→M

be a homomorphism of finitely generated R-modules. Then f is a split injection if and only

if f ⊗R R/It is injective for every t.

Proposition 1.5. Let (R, m) be an approximately Gorenstein local ring with a family of

irreducible ideals {It} as above, and let ut ∈ R represent a socle generator for R/It. Let

f : R−→M be a homomorphism of finitely generated R-modules. If M has no free summands,

then there exists t0 > 0 such that utM ⊆ ItM for all t ≥ t0.

Proof. By Proposition 1.4, f ⊗ R/It fails to be injective for some t. Since ut is the unique

socle element of R/It, we have f(ut) ∈ ItM , that is, utM ⊆ ItM . This continues to hold for

all t′ ≥ t, since there is an injection R/It−→R/It′ with ut 7→ ut′. �

We also use a result of Aberbach, which says that, in some sense, elements not in tight

closures are very far from being in Frobenius powers.

Theorem 1.6. [1, Prop. 2.4] Let (R, m) be an excellent local domain such that the completion

is also a domain. Let N = lim
−→t

R/Jt be a direct limit system of cyclic modules. Fix u 6∈ 0∗N .

Then there exists q0 such that
⋃

t

(J
[q]
t : uq

t ) ⊆ m
[q/q0]

for all q � 0 (where the sequence {ut} represents u ∈ N and ut 7→ ut+1).

Proof of Theorem 0.2. The Cohen-Macaulayness of R is forced by the assumptions ([7, The-

orem 11] and [5]), so we may assume throughout that R is Cohen-Macaulay.

That (1) implies (2) is trivial. So assume that (2) holds. We proceed by induction on the

dimension d, the case d = 0 being trivial. If d > 0, then Proposition 1.3 shows that we may

assume by induction on d that R is strongly F -regular on the punctured spectrum. We will

show that 0∗E = 0, where as above E = ER(k) is the injective hull of the residue field of R.

Since τ̃(R) = AnnR 0∗E is a radical ideal and is known to define the non-strongly F -regular

locus of R (see [2]), and R is strongly F -regular on the punctured spectrum, AnnR 0∗E contains

the maximal ideal m. If τ̃(R) = R, then we are done, so we assume τ̃ (R) = m. Then

0∗E = soc(E).
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As in the discussion above, E = ER(k) ∼= lim
−→t

R/It for a family of irreducible ideals It.

Let u be a socle generator for E and {ut} ⊆ R a sequence of representatives for the socle

generators of R/It, converging to u.

Fix a power q of the characteristic, and decompose R1/q ∼= Raq ⊕ Mq, where Mq has no

nonzero free summands. Then for each t, we have

λ

(

R/I
[q]
t

)

− λ

(

R/(It, ut)
[q]

)

=
λ

(

R1/q/ItR
1/q

)

qα(R)
−

λ
(

R1/q/(It, ut)R
1/q

)

qα(R)

=
aqλ(R/It) + λ(Mq/ItMq)

qα(R)

−
aqλ (R/(It, ut)) − λ (Mq/(It, ut)Mq)

qα(R)

=
aqλ(R/It) − aqλ(R/(It, ut))

qα(R)

+
λ(Mq/ItMq) − λ(Mq/(It, ut)Mq)

qα(R)

=
aq + ct,q

qα(R)
,

for some ct,q ≥ 0. By Proposition 1.5, there exists t0 > 0 such that utMq ⊆ ItMq for t ≥ t0,

that is, ct,q = 0 for t ≥ t0. On the other hand, λ(R/I
[q]
t ) − λ(R/(It, ut)

[q]) = λ(R/(I
[q]
t : uq

t ))

is equal to 1 for large t since (I
[q]
t : uq

t ) = m for large t. Thus, for large t,

lim
q−→∞

aq + ct,q

qd+α(R)
= lim

q−→∞

1

qd+α(R)
= 0,

a contradiction.

Lastly, assume that R is strongly F -regular and keep the same notation. We then have

0∗E = 0, so u 6∈ 0∗E. By Theorem 1.6, then, there exists q0 such that

(I
[q]
t :R uq

t ) ⊆ m
[q/q0]

for all q ≥ q0. Fix q ≥ q0. Then there exists t0 such that for all t ≥ t0 we have

aq

qα(R)
= λ

(

R/I
[q]
t

)

− λ
(

R/(I
[q]
t , uq

t )
)

= λ
(

I
[q]
t : uq

t

)

≥ λ
(

R/m[q/q0]
)

.

Divide by qd and pass to the limit; we see that lim inf aq

qd+α(R) ≥ eHK(m, R)/qd
0 > 0. Thus (1)

holds.
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The last statement is immediate if there is a limit. �

The F -signature suggests a form of dimension that we may attach to an F -finite reduced

local ring. Let sj = limq−→∞

aq

qj+α(R)
for 0 ≤ j ≤ d = dim(R) and set s−1 = 1. Then we

can define the s-dimension of R as sdim(R) = max{j ≥ −1|sj > 0}. A ring which is F -pure

then has non-negative s-dimension, and Theorem 0.2 says that R is strongly F -regular if

and only if sdim(R) = dim(R).

References

1. I. Aberbach, Extension of weakly and strongly F -regular rings by flat maps, J. Algebra 241 (2001), 799–

807.

2. I. Aberbach and F. Enescu, Test ideals and base change problems in tight closure theory, Trans. Amer.

Math. Soc. (to appear).

3. M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973),

25–43.

4. , Cyclic purity versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231 (1977),

no. 2, 463–488.

5. M. Hochster and C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer.
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