EXTENSION OF WEAKLY AND STRONGLY F-REGULAR RINGS BY FLAT MAPS

IAN M. ABERBACH

§1. INTRODUCTION

Throughout this paper all rings will be Noetherian of positive characteristic p. Hence tight closure theory [HH1–4] takes a prominent place (see §2 for tight closure definitions and terminology). The purpose of this note is to help answer the following question: if R is weakly (resp. strongly) F-regular and $\phi : R \to S$ is a flat map then under what conditions on the fibers is S weakly (resp. strongly) F-regular. This question (among many others) is raised in [HH4] in section 7. It is shown there that if ϕ is a flat map of local rings, S is excellent and the generic and closed fibers are regular then weak Fregularity of R implies that of S (Theorem 7.24). One of our main results weakens the hypotheses considerably.

Theorem 3.4. Let $\phi : (R, \mathbf{m}) \to (S, \mathbf{n})$ be a flat map. Assume that $S/\mathbf{m}S$ is Gorenstein and R is weakly F-regular and Cohen-Macaulay. Suppose that either

- (1) $c \in R^{\circ}$ is a common test element for R and S, and S/mS is F-injective, or
- (2) $c \in S \mathbf{m}S$ is a test element for S and S/mS is F-rational, or
- (3) R is excellent and S/mS is F-rational.

Then S is weakly F-regular.

We note that the Gorenstein assumption on the fiber is essential, even if R is regular. Even weakening the assumption on the fiber to \mathbb{Q} -Gorenstein is not strong enough to give a good theorem, as Singh [Si] gives an example of $R \to S$ flat, where R is a discrete valuation domain, $S/\mathbf{m}S$ is \mathbb{Q} -Gorenstein and strongly F-regular, yet S is not weakly F-regular!

We also prove a corresponding result for strong F-regularity.

Theorem 3.6. Let $(R, \mathbf{m}, K) \to (S, \mathbf{n}, L)$ be a flat map of *F*-finite reduced rings with Gorenstein closed fiber. Assume that *R* is strongly *F*-regular. If *S*/**m***S* is *F*-rational then *S* is strongly *F*-regular.

In order to prove the first of these theorems we investigate how flat maps $\phi : (R, \mathbf{m}) \rightarrow (S, \mathbf{n})$ with Gorenstein closed fibers affect tight closure for $I \subseteq R$ such that $l(R/I) < \infty$

¹⁹⁹¹ Mathematics Subject Classification. 13A35.

The author was partially supported by the NSF.

and I is irreducible in R. In general these results do not depend on the relationship of $R/\mathbf{m} \to S/\mathbf{n}$ (e.g., separability or finiteness).

While not directly relevant to this paper, we note that other authors have recently investigated tight closure properties under good flat maps. For instance Enescu [En] and Hashimoto [Ha] have recently shown that for a flat map with F-rational base and F-rational closed fiber, the target is F-rational (in the presence of a common test element).

$\S2$. Background for tight closure

Let R be a Noetherian ring of characteristic p > 0. We use $q = p^e$ for a varying power of p and for an ideal $I \subseteq R$ we let $I^{[q]} = (i^q : i \in I)$. Also let R° be the complement in R of the union of the minimal primes of R. Then x is in the tight closure of I if and only if there exists $c \in R^\circ$ such that $cx^q \in I^{[q]}$ for all $q \gg 0$. If $I^* = I$ then I is said to be tightly closed. We will say that I is Frobenius closed if $x^q \in I^{[q]}$ for some q always implies that $x \in I$.

There is a tight closure operation for a submodule $N \subseteq M$, but we will not discuss this case in general. It is however useful to discuss tight closure in the case of a particular type of direct limit. Suppose that $M = \lim_{t \to t} R/I_t$ for a sequence of ideals $\{I_t\}$. Let $u \in M$ be an element which is given by $\{u_t\}$ where in the direct limit system $u_t \mapsto u_{t+1}$. We will say that $u \in 0^*_M$ if there exists $c \in R^\circ$ and a sequence t_q such that for all $q \gg 0$, $cu^q_{t_q} \in I^{[q]}_{t_q}$. We will say that u is in the finitistic tight closure of 0 in M, 0^{*fg}_M , if there exists $c \in R^\circ$ and t > 0 such that $cu^q_t \in I^{[q]}_t$ for all q. This definition of finitistic tight closure agrees with that in [HH2] for this case. Clearly $0^{*fg}_M \subseteq 0^*_M$.

A ring R in which every ideal is tightly closed is called weakly F-regular. If every localization of R is weakly F-regular then R is F-regular. When R is reduced then $R^{1/p}$ denotes the ring of pth roots of elements of R. More generally, $R^{1/q}$ is the ring of qth roots. Clearly $R \subseteq R^{1/q}$. If R is F-finite and reduced ($R^{1/p}$ is a finite R-module) then R is called strongly F-regular if for all $c \in R^{\circ}$, there exists a q such that the inclusion $Rc^{1/q} \subseteq R^{1/q}$ splits over R. If R is F-finite and R_c is strongly F-regular for some $c \in R^{\circ}$, then R is strongly F-regular if and only if there exists q such that $Rc^{1/q} \subseteq R^{1/q}$ splits over R [HH1, Theorem 3.3]. Strongly F-regular rings are F-regular, and weakly F-regular rings are normal and under mild conditions (e.g., excellent) are Cohen-Macaulay.

The equivalence of the three conditions is an important open question. Let (R, \mathbf{m}) be an excellent reduced local ring and let E be an injective hull of the residue field of R. Then E can be written as a direct limit of the form above since R is approximately Gorenstein. Weak F-regularity of R is equivalent to $0_E^{*fg} = 0$ [HH2, Theorem 8.23], while strong F-regularity is equivalent to (F-finiteness and) $0_E^* = 0$ [LS, Proposition 2.9].

By a parameter ideal in (R, \mathbf{m}) we mean an ideal generated by part of a system of parameters. We say that (R, \mathbf{m}) is *F*-rational if every parameter ideal is tightly closed, and *F*-injective if every parameter ideal is Frobenius closed (this is a slightly different notion of *F*-injectivity from that in [FW], but is equivalent for CM rings). *F*-rational rings are normal and under mild conditions are Cohen-Macaulay. In a Gorenstein ring, *F*-rationality is equivalent to all forms of *F*-regularity.

A priori, the multiplier element c in the definition of tight closure depends on both Iand x. If c works for every tight closure test then we say that c is a test element for R. If c works for every tight closure test for every completion of every localization of R then we say that c is a completely stable test element. It is shown in [HH4] that if (R, \mathbf{m}) is a reduced excellent domain, $c \in R^{\circ}$, and R_c is Gorenstein and weakly F-regular then c has a power which is a completely stable test element for R.

In [HH2, HH3] it is shown that the multiplier c in the definition of tight closure need not remain constant. Let R be a domain. One may have a sequence of elements c_q such that $c_q x^q \in I^{[q]}$ where c_q must have "small order." We can obtain a notion of order, denoted ord, by taking a \mathbb{Z} -valued valuation on R which is non-negative on R and positive on \mathbf{m} . Let R^+ be the integral closure of R in an algebraic closure of the fraction field of R (R^+ has many wonderful properties, such as being a big Cohen-Macaulay algebra for R when R is excellent [HH5]). The valuation then extends to a function on R^+ which takes values in \mathbb{Q} . In particular, $\operatorname{ord}(c^{1/q}) = \operatorname{ord}(c)/q$. We will need to use the following theorem [HH3, Theorem 3.1].

Theorem 2.1. Let (R, \mathbf{m}) be a complete local domain of characteristic p, let $x \in R$ and let $I \subseteq R$. Then $x \in I^*$ if and only if there exists a sequence of elements $\epsilon_n \in (R^+)^\circ$ such that $\operatorname{ord}(\epsilon_n) \to 0$ as $n \to \infty$ and $\epsilon_n x \in IR^+$.

In fact we would like to strengthen this theorem in order to apply it to tight closure calculations for non finitely generated modules which are defined by a direct limit system of ideals. The proof we give is just an altered version of the proof of Theorem 3.1 given in [HH3]. The key component is [HH3, Theorem 3.3]:

Theorem 2.2. Let (R, \mathbf{m}, k) be a complete local domain. Let ord be a Q-valued valuation on R^+ nonnegative on R (and hence on R^+) and positive on \mathbf{m} (and, hence, on \mathbf{m}^+). Then there exists a fixed real number $\nu > 0$ and a fixed positive integer r such that for every element u of R^+ of order $< \nu$ there is an R-linear map $\phi : R^+ \to R$ such that $\phi(u) \notin \mathbf{m}^r$.

The generalization of Theorem 2.1 is given below.

Theorem 2.3. Let (R, m) be a complete local domain of characteristic p. Let $M = \lim_{t \to T} R/I_t$ be an R-module and let $x \in M$. Suppose that x comes from the sequence $\{x_t\}$ where $x_t \mapsto x_{t+1}$. Then $x \in 0^*_M$ if and only if there exists a sequence of elements $\epsilon_n \in (R^+)^0$ such that $\operatorname{ord}(\epsilon_n) \to 0$ as $n \to \infty$ and for each n there exists t such that $\epsilon_n x_t \in I_t R^+$.

Proof. The "only if" part is trivial, as if $cx^q = 0$ for all $q \gg 0$ then we can take $\epsilon_q = c^{1/q}$.

To see the "if" direction, choose $\nu > 0$ and r as in Theorem 2.2. Fix $q = p^e > 0$. Choose n large enough that $\operatorname{ord}(\epsilon_n) < \nu/q$. Let $\epsilon = \epsilon_n^q$. Then there exists t such that $\epsilon x_t^q \in I_t^{[q]}R^+$ and $\operatorname{ord}(\epsilon) < \nu$. Applying an R linear map ϕ as in Theorem 2.2 we find that $c_q x_t^q \in I_t^{[q]} \subseteq (I_t^{[q]})^*$ with $c_q = \phi(\epsilon) \in R - \mathbf{m}^r$. Thus, setting $J_q = \bigcup_t (I_t^{[q]})^* :_R x_t^q$ we have $c_q \in J_q$ for all q.

The sequence J_q is nonincreasing. If for some t, $yx_t^{pq} \in (I_t^{[pq]})^*$ then $c'(yx_t^{pq})^{q'} \in (I_t^{[pq]})^{[q']} = (I_t^{[pqq']})$ for all $q' \gg 0$ where $c' \neq 0$. But then $c'(yx_t^q)^{pq'} \in (I_t^{[q]})^{[pq']}$ for all $q' \gg 0$ and hence $yx_t^q \in (I_t^{[q]})^*$, as required.

Since the sequence $\{J_q\}_q$ is nonincreasing, it cannot have intersection 0, or Chevalley's theorem would give $J_q \subseteq \mathbf{m}^r$ for $q \gg 0$. As $c_q \in J_q - \mathbf{m}^r$ for all q, we can choose a nonzero element $d \in \bigcap_q J_q$. Then for each q there exists t such that $dx_t^q \in (I_t^{[q]})^*$. If c is a test element for R then $cdx_t^q \in I_t^{[q]}$. Thus $x \in 0_M^*$. \Box

Proposition 2.4. Let (R, \mathbf{m}) be an excellent local domain such that its completion is a domain. Let $M = \varinjlim_t R/I_t$ be a direct limit system. Fix $u \notin 0_M^*$. Then there exists q_0 such that $J_q = \bigcup_q (I_t^{[q]} : u_t^q) \subseteq \mathbf{m}^{[q/q_0]}$ for all $q \gg 0$ (where $\{u_t\}$ represents $u \in M$ and $u_t \mapsto u_{t+1}$). In particular if $I \subseteq R$ we may take M = R/I where the limit system consists of equalities. Then $u \notin I^*$ implies that $(I^{[q]} : u^q) \subseteq \mathbf{m}^{[q/q_0]}$.

Proof. Suppose that we can show that the proposition holds in \widehat{R} . Then $(I_t^{[q]} :_R u_t^q) \subseteq (I_t^{[q]} :_{\widehat{R}} u_t^q) \cap R \subseteq \mathbf{m}^{[q/q_0]} \widehat{R} \cap R \subseteq \mathbf{m}^{[q/q_0]} R$. Thus we may assume that R is complete.

For $x \in R$ let f(x) be the largest power of **m** that x is in, and set $\mathbf{f}(x) = \lim_{n \to \infty} f(x^n)/n$. By the valuation theorem [Re, Theorem 4.16], there exist a finite number of \mathbb{Z} -valued valuations v_1, \ldots, v_k on R which are non-negative on R and positive on **m** and positive rational numbers e_1, \ldots, e_k such that $\mathbf{f}(x) = \min\{v_i(x)/e_i\}$. Furthermore, since R is analytically unramified, there exists a constant L such that for all $x \in R$, $f(x) \leq \lfloor \mathbf{f}(x) \rfloor \leq f(x) + L$ ([Re, Theorem 5.32 and 4.16]).

Now, by Theorem 2.3, for each v_i there exists a positive real number α_i such that if $c \in (I_t^{[q]} : u_t^q)$ then $v_i(c) \ge \alpha_i q$. Combined with the valuation theorem we see that $\mathbf{f}(c) \ge \min\{q\alpha_i/e_i\}$. Let $\alpha = \min\{\alpha_i/e_i\}$. Then $f(c) \ge \alpha q - L - 1$. Let $s = \mu(\mathbf{m})$. Choose $q_1 > 1/\alpha$, $q_2 \ge L + 1$, and $q_3 \ge s$ (all powers of p). Set $q_0 = q_1q_2q_3$. Then $f(c) \ge \alpha q - (L+1) \ge q/q_1 - (L+1) \ge q/q_1q_2 - 1 \ge (q/q_0)s - 1$. A simple combinatorial argument shows that $\mathbf{m}^{(q/q_0)s-1} \in \mathbf{m}^{[q/q_0]}$. Hence $c \in \mathbf{m}^{[q/q_0]}$. \Box

§3. TIGHT CLOSURE IN FLAT EXTENSION MAPS

We show in this section that extending a weakly (respectively, strongly) F-regular ring by a flat map with sufficiently nice Gorenstein closed fiber yields another weakly (resp., strongly) F-regular ring. These results are Theorems 3.4 and 3.6 (see also Corollary 3.5 for the F-regular case).

By saying that $\phi : (R, \mathbf{m}) \to (S, \mathbf{n})$ is flat we mean that ϕ is flat and that $\phi(\mathbf{m}) \subseteq \mathbf{n}$. Since the map is flat we then know that given ideals $A, B \subseteq R$ we have $AS :_S BS = (A :_R B)S$ (B finitely generated). The next lemma merely asserts that modding out by elements which are regular in the closed fiber preserves flatness.

Lemma 3.1. Let ϕ : $(R, \mathbf{m}) \to (S, \mathbf{n})$ be a flat map. Let $z_1, \ldots, z_d \in S$ be elements whose images in $S/\mathbf{m}S$ are a regular sequence. Then for any ideal I generated by monomials in the z's, the ring S/IS is flat over R.

Proof. See, for example [HH4, Theorem 7.10a,b]. \Box

The next proposition shows that tight closure behaves well for irreducible **m**-primary ideals when extending to S. Given a sequence of elements $\mathbf{z} = z_1, \ldots, z_d$ we will use $\mathbf{z}^{[t]}$ to denote z_1^t, \ldots, z_d^t .

Proposition 3.2. Let ϕ : $(R, \mathbf{m}, K) \to (S, \mathbf{n}, L)$ be a flat map with Gorenstein closed fiber. Let $\mathbf{z} = z_1, \ldots, z_d \in S$ be elements whose images form a s.o.p. in $S/\mathbf{m}S$. Let $I \subseteq R$ be such that $l(R/I) < \infty$ and $\dim_K(0:_{R/I}m) = 1$. Suppose that either

- (1) R and S have a common test element and S/mS is F-injective, or
- (2) $c \in S \mathbf{m}S$ is a test element for S, and $S/\mathbf{m}S$ is F-rational, or
- (3) R is excellent, \hat{R} is a domain, and $S/\mathbf{m}S$ is F-rational.

Then I is tightly closed in $R \iff$ for all t > 0, $IS + (\mathbf{z})^{[t]}S$ is tightly closed in $S \iff$ there exists t > 0 such that $IS + (\mathbf{z})^{[t]}S$ is tightly closed in S.

Proof. Let $b \in S$ have as its image the socle element in $S/\mathbf{m}S + (\mathbf{z})S$. Let $u \in R$ be the socle element mod I. Then the socle element of $S/(IS + (\mathbf{z})S)$ is ub since the map $R/I \to R/I \otimes S = S/IS$ is flat with Gorenstein fibers (there is only one fiber).

Suppose that I is tightly closed. There is no loss of generality in taking t = 1. If $IS + (\mathbf{z})S$ is not tightly closed in S then we have $c(ub)^q \in (I^{[q]} + (\mathbf{z})^{[q]})S$ for all q. In case (1) we may take $c \in R^\circ$, so that

$$b^q \in (I^{[q]} + (\mathbf{z})^{[q]})S :_S cu^q = (I^{[q]} :_R cu^q)S + (\mathbf{z})^{[q]}S \subseteq \mathbf{m}S + (\mathbf{z})^{[q]}S$$

for all $q \gg 0$. The first equality is a consequence of flatness, while the inclusion follows since $u \notin I^*$. By our assumption that $S/\mathbf{m}S$ is *F*-injective we reach the contradictory conclusion that $b \in ((\mathbf{z}) + \mathbf{m})S$. In case (2) we have

$$cb^q \in (I^{[q]} + (\mathbf{z})^{[q]})S :_S u^q = (I^{[q]} :_R u^q)S + (\mathbf{z})^{[q]}S \subseteq \mathbf{m}S + (\mathbf{z})^{[q]}S$$

for all $q \gg 0$. As $S/\mathbf{m}S$ is F-rational, it is a domain, so $c \neq 0$ in $S/\mathbf{m}S$. This contradicts our hypothesis that $S/\mathbf{m}S$ is F-rational (in fact it is enough to assume that I is Frobenius closed to reach this conclusion). In case (3) we can choose q_0 as in Proposition 2.4, and then

$$c(b^{q_0})^{q/q_0} \in (I^{[q]} + (\mathbf{z})^{[q]})S :_S u^q = (I^{[q]} :_R u^q)S + (\mathbf{z})^{[q]}S \subseteq \mathbf{m}^{[q/q_0]}S + ((\mathbf{z})^{[q_0]})^{[q/q_0]}$$

for all q/q_0 . But then $b^{q_0} \in (\mathbf{m}S + (\mathbf{z})^{[q_0]})^*$. By persistence, the image of b^{q_0} is in $((\mathbf{z})^{[q_0]}S/\mathbf{m}S)^*$, which contradicts the *F*-rationality of $S/\mathbf{m}S$.

Suppose now that $IS + (\mathbf{z})^{[t]}S$ is tightly closed in S for all t, but I is not tightly closed in R. Then $u \in (IR)^* \subseteq (I + (\mathbf{z})^{[t]})^*$ (since $R^\circ \subseteq S^0$). But then $u \in \cap_t (IS + (\mathbf{z})^{[t]}S)^* \cap R \subseteq \cap_t (IS + (\mathbf{z})^{[t]}S) \cap R \subseteq IS \cap R = IR$.

Finally, suppose that $(IS + (\mathbf{z})^{[t_0]})S$ is tightly closed for some t_0 . Given any t, the socle element of $(IS + (\mathbf{z})^{[t]})S$ is $(z_1 \cdots z_d)^{t-1}ub$. If $c((z_1 \cdots z_d)^{t-1}ub)^q \in (IS + (\mathbf{z})^{[t]})^{[q]}$ then by flatness, $c((z_1 \cdots z_d)^{t_0-1}ub)^q \in (IS + (\mathbf{z})^{[t_0]})^{[q]}$. Therefore, one such ideal tightly closed shows that all such ideals are tightly closed. \Box

To deal with strong F-regularity we need to give a similar proposition with R/I replaced by the injective hull $E_R(R/\mathbf{m})$. Suppose that we can write $E = E_R(R/\mathbf{m}) = \lim_t R/J_t$, the set $\{u_t\} \subseteq R$ is a collection of elements such that $u_t \mapsto u_{t+1}$ in the map $R/J_t \to R/J_{t+1}$ and the image of each u_t in E is the socle element of E. It suffices that R be approximately Gorenstein [Ho2] (e.g., excellent and normal, or even reduced) to obtain E in this manner. In particular an F-finite ring is excellent [Ku], so a reduced F-finite ring is approximately Gorenstein.

Proposition 3.3. Let $(R, \mathbf{m}, K) \rightarrow (S, \mathbf{n}, L)$ be a flat map of *F*-finite reduced rings with Gorenstein closed fiber.

- (1) If $Rc^{1/q} \subseteq R^{1/q}$ splits for some q (over R) and $S/\mathbf{m}S$ is F-injective then $Sc^{1/q} \subseteq S^{1/q}$ splits for some q (over S).
- (2) If 0 is Frobenius closed in $E_R(K)$, $S/\mathbf{m}S$ is F-rational and $c \in S \mathbf{m}S$ then there exists q such that $Sc^{1/q} \subseteq S^{1/q}$ splits (over S).

Proof. Choose $\mathbf{z} = z_1, \ldots, z_d \in S$ elements which generate a s.o.p. in $S/\mathbf{m}S$. By [HH4, Lemma 7.10] we have $E_S(L) = \lim_{v \to v} S/(\mathbf{z}^{[v]}) \otimes_R E_R(K) = \lim_{v,t} S/(\mathbf{z}^{[v]}) \otimes_R R/J_t = \lim_{t \to v} S/(\mathbf{z}^{[t]}, J_t)S$. If $b \in S$ generates the socle element in $S/(\mathbf{m} + (\mathbf{z}))S$ then the image of $(z_1 \cdots z_d)^{t-1}bu_t$ in $S/((\mathbf{z}^{[t]}) + J_t)S$ maps to the socle element of E_S (where u_t is as given above).

In case (1), if for all q the inclusion $Sc^{1/q} \to S^{1/q}$ fails to split, by [Ho1, Theorem 1 and Remark 2] for all q there exists t_q such that

$$c(z_1\cdots z_d)^{(t_q-1)q}b^q u_{t_q}^q \in ((\mathbf{z}^{[t_q]}), J_{t_q})^{[q]}S.$$

Hence $(z_1 \cdots z_d)^{(t_q-1)q} b^q \in ((\mathbf{z}), J_{t_q})^{[q]} :_S cu_{t_q}^q \subseteq (J_{t_q}^{[q]} :_R cu_{t_q}^q)S + (\mathbf{z}^{[t_q]})^{[q]}S \subseteq \mathbf{m}S + (\mathbf{z}^{[t_q]})^{[q]}S$ for $q \gg 0$ (we are using here that if $Rc^{1/q} \subseteq R^{1/q}$ splits for some q then $Rc^{1/q'} \subseteq R^{1/q'}$ splits for all $q' \ge q$). Thus $b^q \in \mathbf{m}S + (\mathbf{z})^{[q]}$ since $S/\mathbf{m}S$ is CM. This contradicts the F-injectivity of $S/\mathbf{m}S$.

To see (2), if there is no splitting we obtain

$$c(z_1\cdots z_d)^{(t_q-1)q}b^q \in (\mathbf{z}^{[t_q]}, J_{t_q})^{[q]} :_S u_{t_q}^q \subseteq (J_{t_q}^{[q]}:_R u_{t_q}^q)S + ((\mathbf{z}^{[t_q]})^{[q]}S \subseteq \mathbf{m}S + ((\mathbf{z}^{[t_q]})^{[q]}S)$$

and hence $cb^q \in \mathbf{m}S + (\mathbf{z})^{[q]}$. This contradicts the *F*-rationality of $S/\mathbf{m}S$. \Box

We can now give our main theorems on the extension of weakly and strongly F-regular rings by flat maps with Gorenstein closed fiber.

Theorem 3.4. Let $\phi : (R, \mathbf{m}) \to (S, \mathbf{n})$ be a flat map. Assume that $S/\mathbf{m}S$ is Gorenstein and R is weakly F-regular and CM. Suppose that either

- (1) $c \in R^{\circ}$ is a common test element for R and S, and S/mS is F-injective, or
- (2) $c \in S \mathbf{m}S$ is a test element for S and S/mS is F-rational, or
- (3) R is excellent and S/mS is F-rational.

Then S is weakly F-regular.

Proof. To see that S is weakly F-regular it suffices to show that there exists a sequence of irreducible tightly closed ideals of S cofinite with the powers of **n**. As R is weakly Fregular (so normal) and CM it is approximately Gorenstein. Say that $\{J_t\}$ is a sequence of irreducible ideals cofinite with the powers of **m**. Let $\mathbf{z} = z_1, \ldots, z_d \in S$ be elements which form a s.o.p. in $S/\mathbf{m}S$. Then $(J_t + \mathbf{z}^{[t]})S$ is a sequence of irreducible ideals in S cofinal with the powers of **n**. By Proposition 3.2, in cases (1), (2), and (3), the ideals $(J_t + \mathbf{z}^{[t]})S$ are tightly closed in S (in case (3), \hat{R} is still weakly F-regular, so is a domain). Therefore S is weakly F-regular. We note that in case (2) we may weaken the assumption that R is weakly F-regular to the assumption that R is F-pure (see the comment in the proof of Proposition 3.2, part (2)). \Box

The next corollary should be compared with [HH4, Theorem 7.25(c)].

Corollary 3.5. Let $(R, \mathbf{m}) \to (S, \mathbf{n})$ be a flat map of excellent rings with Gorenstein fibers. Suppose that the generic fiber is *F*-rational and all other fibers are *F*-injective. If *R* is *F*-regular then *S* is *F*-regular.

Proof. By hypothesis the generic fiber is Gorenstein and F-rational, therefore there is a $c \in R^{\circ}$ which is a common completely stable test element. F-regularity is local on the prime ideals of S and the fiber of such a localization is the localization of a fiber, hence Gorenstein and F-injective (the property of F-injectivity is easily seen to localize). Therefore Theorem 3.4(1) always applies. \Box

Theorem 3.6. Let $(R, \mathbf{m}, K) \to (S, \mathbf{n}, L)$ be a flat map of *F*-finite reduced rings with Gorenstein closed fiber. Assume that *R* is strongly *F*-regular. If *S*/**m***S* is *F*-rational then *S* is strongly *F*-regular.

Proof. We must show that there exists an element $c \in S^0$ such that S_c is strongly *F*-regular and $Sc^{1/q} \subseteq S^{1/q}$ splits for some q.

If there exists $c \in R^{\circ}$ such that S_c is strongly *F*-regular (i.e., a power of *c* is a common test element for *R* and *S*) then we are done by Proposition 3.3(1). Even if *R* and *S* have no (apparent) common test element, however, we claim that there exists $c \in S - \mathbf{m}S$ such that S_c is strongly *F*-regular. Once we have shown this, the theorem follows by Proposition 3.3(2).

Since the non-strongly *F*-regular locus is closed [HH1, Theorem 3.3] it suffices to show that $S_{\mathbf{m}S}$ is strongly *F*-regular, for then there exists an element $c \in S - \mathbf{m}S$ such that S_c is strongly *F*-regular. Let $B = S_{\mathbf{m}S}$. Then $R \to B$ is flat and the closed fiber is a field. In particular $E_B(B/\mathbf{m}B) = E_R(K) \otimes_R B$. As *R* is strongly *F*-regular (so normal) it is approximately Gorenstein. Say $E_R = \lim_{t \to T} R/J_t$ with socle element mapped to by u_t (as before). Then $u_t \in B/J_t B$ will still map to the socle element *u* in E_B . Suppose that $u \in 0^*_{E_B}$. This means there exists $b \in B_0$ such that for all *q* there exists t_q such that $bu_{t_q}^q \in J_{t_q}^{[q]}B$. Hence $b \in J_{t_q}^{[q]} :_B u_{t_q}^q = (J_{t_q}^{[q]} :_R u_{t_q}^q)B$. Note that *R* is an excellent normal domain, so its completion remains a domain. Thus by Proposition 2.4 we see that as $q \to \infty$, $(J_{t_q}^{[q]} :_R u_{t_q}^q)$ gets into larger and larger powers of the maximal ideal, since 0 is tightly closed in E_R . Thus $b \in \bigcap_N \mathbf{m}^N B = 0$, a contradiction. \Box

References

- [En] F. Enescu, On the behavior of F-rational rings under flat base change, J. of Alg. (to appear).
- [FW] R. Fedder and K.I. Watanabe, A characterization of F-regularity in terms of F-purity, Commutative Algebra, MSRI Publications No. 15, Springer-Verlag, 1989, pp. 227–245.
- [Ha] M. Hashimoto, Relative Frobenius maps and Cohen-Macaulay F-injective homomorphisms, preprint.
- [Ho1] M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973), 25–43.
- [Ho2] M. Hochster, Cyclic purity versus purity in excellent Noetherian rings, Trans. A.M.S. 231 (1977), 463–488.

- [HH1] M. Hochster and C. Huneke, Tight closure and strong F-regularity, Memoires Soc. Math. de France 38 (1989), 119–133.
- [HH2] M. Hochster and C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), 31–116.
- [HH3] M. Hochster and C. Huneke, Tight closure and elements of small order in integral extensions, J. Pure Appl. Alg. 71 (1991), 233–247.
- [HH4] M. Hochster and C. Huneke, F-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), 1–62.
- [HH5] M. Hochster and C. Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, Annals of Math. 135 (1992), 53–89.
- [Ku] E. Kunz, On Noetherian rings of characteristic p, Amer. J. Math 98 (1976), 999-1013.
- [LS] G. Lyubeznik and K. E. Smith, On the commutation of the test ideal with localization and completion, Trans. A.M.S (to appear).
- [Re] D. Rees, *Lectures on the asymptotic theory of ideals*, LMS Lecture Note Series 113, Cambridge University Press, Cambridge.
- [Si] A. K. Singh, F-regularity does not deform, Amer. Jour. Math. 121 (1999), 919–929.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MO 65211 *E-mail address:* aberbach@math.missouri.edu