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Abstract

Based on the pioneering work by Wahba (1990) in smoothing splines for

nonparametric regression, Gu (2002) decomposed the regression function based

on a tensor sum decomposition of inner product spaces into orthogonal sub-

spaces so the estimated functions from each subspaces can be viewed sepa-

rately. This is based on an ANOVA type decomposition and is called the

smoothing spline ANOVA (SSANOVA) model. Current research related to

smoothing spline ANOVA focuses on the frequentist approach for statistical

inference in estimation and prediction. In this dissertation, we apply a fully

Bayesian approach in SSANOVA to extend statistical inference not only for es-

timation and prediction but to model testing and selection. The prior selected

for the smoothing parameter in level effects is a variant of the Zellner-Siow

prior. Two sets of priors, the Pareto and the scaled χ2
1, are used for the

smoothing parameters corresponding to smooth effects. We study this fully

Bayesian SSANOVA model for Gaussian response variables and also extend

it to generalized additive models with binary response variables. Bayesian
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SSANOVA methods are illustrated by simulated examples and also by ap-

plication to real datasets, potassium measurement on dogs and a Wisconsin

epidemiological study of diabetic retinopathy. The flexibility of hypothesis

testing provides a powerful tool in statistical inference when dealing with real

datasets to come up with the most parsimonious models.
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Chapter 1

Introduction

1.1 Introduction

Additive regression models with fixed effects and smooth effects are among

the most popular models used in practice. Their usage in semiparametric

regression (e.g. Ruppert et al., 2003) and in nonparametric regression (e.g.

Stone, 1985; Hastie and Tibshirani, 1999) has broadened the applications

of regression. For nonparametric regression in additive models, Buja et al.

(1989) proposed backfitting to fit the model. For variable selection and esti-

mation in nonparametric regression, there are several popular proposals such

as CART (Breiman et al., 1984), TURBO (Friedman and Silverman, 1989),

BRUTO (Hastie, 1989), MARS (Friedman, 1991), Luo and Wahba (1997),

Wahba (1990) and Eubank (1988).

In the Bayesian approach, Eubank (1988) describes Bayesian polynomial

regression and its close relationship to splines and time series analysis. Some

of the proposed solutions are Smith and Kohn (1996), Kleinman and Ibrahim

(1998), Speckman and Sun (2003), Smith et al. (1998) and others. Dey et al.

(1998) provide another resource for Bayesian nonparametric and semipara-
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metric regression methods. One of the directions for nonparametric regression

is focused on full Bayesian analysis by simulation techniques such as Markov

Chain Monte Carlo (MCMC) (Gelfand and Smith, 1990).

Based on the pioneering work by Wahba (1990) in smoothing splines for

nonparametric regression, Gu (2002) decomposed the regression function based

on a tensor sum decomposition of inner product spaces into orthogonal sub-

spaces so the estimated function from each subspace can be viewed separately.

This is based on an ANOVA-type decomposition and is called the smoothing

spline ANOVA (SSANOVA) model. The decomposition of the estimated func-

tion into main effects and interaction effects provides not only flexility to the

fitted model but also makes it possible to select a parsimonious model from a

large class of semiparametric additive models.

Estimating unknown functions has attracted many researchers’ attention.

Luo (1998) applied backfitting in SSANOVA, and Karcher and Wang (2001)

proposed a Markov Chain Monte Carlo (MCMC) method, which leads to as-

ymptotically consistent estimates for the SSANOVA model. To popularize the

application of SSANOVA, Wang (1997) has developed a user-friendly package

as an R function called ASSIST. Several different methods have been pro-

posed for variable selection and model building in SSANOVA models. In the

Gaussian regression setting, Gu (1992) proposed using cosine diagnostics as

model checking tools after model fitting. For regression in exponential families,

Zhang et al. (2004) proposed likelihood basis pursuit. Zhang and Lin (2006)

used the COSSO-type penalized likelihood method to develop a computational

algorithm for variable selection in SSANOVA for exponential families.

Current research related to smoothing spline ANOVA focuses on the fre-
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quentist approach. We apply a Bayesian approach in SSANOVA to extend

the statistical inference to model selection. After providing suitable prior dis-

tributions to the parameters of the model, the posterior distribution provides

sufficient information for statistical inference. Model selection can be done

through Bayes factors.

In the next section, we start with an introduction of smoothing splines

in Section 2.1. Calculating the smoothing spline requires some fundamental

theory of reproducing kernel Hilbert spaces, which will be covered in Section

2.2. The reproducing kernel solution to smoothing splines and the Bayesian

interpretation of that solution is in Section 2.4. Details for a Bayesian approach

to SSANOVA will be in Section 2.7.

3



Chapter 2

Smoothing Spline Models

2.1 Smoothing Spline for One Variable

Consider a nonparametric regression model with one independent variable

xi and response variable yi,

yi = f(xi) + εi, i = 1, . . . , n, (2.1)

where xi ∈ [0, 1], the εi are independent N(0, δ0) random variables and f is an

unknown smooth function. The smoothing spline f̂ minimizes the penalized

likelihood

n∑
i=1

{yi − f(xi)}2 + λ

∫ 1

0

(f (m)(x))2dx, (2.2)

where f (m) = dmf/dxm, and λ is a smoothing parameter. The first term

measures closeness to the data, while the second term penalizes curvature in

the function. As λ → 0, f̂ converges to an interpolating spline. As λ →∞, f̂

approaches the least squares linear regression curve of degree m−1. Those two

extreme cases have the function varying from very rough to very smooth, and

4



the choice of λ ∈ (0,∞) indexes an interesting class of functions in between.

The focus of our project is in the cubic smoothing spline, where f̂ minimizes

the penalized likelihood,

n∑
i=1

{yi − f(xi)}2 + λ

∫ 1

0

(f
′′
(x))2dx. (2.3)

The unknown function f can be approximated by a linear combination of

terms from an appropriate basis. For a regular function, the number of basis

terms doesn’t need to be large, while still ensuring the estimated function

is nearly without bias (Smith and Kohn, 1996). Choices of bases include

reproducing kernel bases (Wahba, 1990), cubic polynomial splines (Friedman

and Silverman, 1989; Friedman, 1991; Smith and Kohn, 1996), linear natural

splines (Wahba, 1990), mixed radial bases, and others.

The exact solution for equation (2.3) is constructed based on reproducing

kernel Hilbert spaces (Wahba, 1990), discussed in the next section.

2.2 Reproducing Kernel Hilbert Space

A space L is called linear if x, y ∈ L implies that αx + βy ∈ L for all

α, β ∈ R. A bilinear form (x, y) in a linear space L satisfies (αx + βy, z) =

α(x, z) + β(y, z), and (x, αy + βz) = α(x, y) + β(x, z) for all x, y, z ∈ L and

all α, β ∈ R. A linear space is often equipped with an inner product, a

positive definite bilinear form with notation 〈·, ·〉. A Hilbert space H is a

complete inner product linear space. Consider a Hilbert space H of functions

on domain X . If the evaluation function [x]f = f(x) is continuous in H for

all x ∈ X , then H is called a reproducing kernel Hilbert space. By the Riesz

5



representation theorem, there exists Rx ∈ H, the representer of the evaluation

functional [x](·), such that 〈Rx, f〉 = f(x) for all f ∈ H. The symmetric

bivariate function R(x, y) = Rx(y) = 〈Rx, Ry〉 has the reproducing property

〈R(x, ·), f(·)〉 = f(x) and is called the reproducing kernel of the space H.

The reproducing kernel is unique when exists. It can be shown that for

every non-negative definite function R(x, y) on X , there corresponds a unique

reproducing kernel Hilbert space H that has R(x, y) as its reproducing kernel.

So one can construct a reproducing kernel Hilbert space by specifying a non-

negative definite function as its reproducing kernel (Gu, 2002).

If the reproducing kernel R of a space H on domain X can be decom-

posed into R = R0 + R1, where R0 and R1 are both non-negative definite,

R0(x, ·), R1(x, ·) ∈ H for all x ∈ X , and 〈R0(x, ·), R1(y, ·)〉=0 for all x, y ∈ X ,

then the spaces H0 and H1 corresponding respectively to R0 and R1 form

a tensor sum decomposition of H (Gu, 2002) that is introduced in the next

section. The following introduces examples of reproducing kernels for each of

X = [0, 1] and X = {1, . . . , K}.

Example 2.1

For f ∈ C(m)[0, 1], the standard Taylor expansion with integral remainder

gives

f(x) =
m−1∑
ν=0

xν

ν!
f (m)(0) +

∫ 1

0

(x− u)m−1
+

(m− 1)!
f (m)(u) du, (2.4)

where (·)+ = max{0, ·}. Define the inner product

〈f, g〉 =
m−1∑
ν=0

f (ν)(0)g(ν)(0) +

∫ 1

0

f (m)g(m)dx. (2.5)

6



The representor of evaluation [x]f = f(x) is

Rx(y) = R0(x, y) + R1(x, y)

=
m−1∑
ν=0

xν

ν!

yν

ν!
+

∫ 1

0

(x− u)m−1
+

(m− 1)!

(y − u)m−1
+

(m− 1)!
du.

Note that

R0(x, y) =
m−1∑
ν=0

xν

ν!

yν

ν!
, (2.6)

R1(x, y) =

∫ 1

0

(x− u)m−1
+

(m− 1)!

(y − u)m−1
+

(m− 1)!
du. (2.7)

Now take derivatives with respect to y for both R0(x, y) and R1(x, y), evaluated

at y = 0 for R0(x, y), evaluated at y for R1(x, y).

∂m−1

∂ym−1
R0(x, y) |y=0 =

x(m−1)

(m− 1)!

∂

∂y
R1(x, y) =

∫ 1

0

(x− u)m−1
+

(m− 1)!

(y − u)m−2
+

(m− 2)!
du,

∂m−1

∂ym−1
R1(x, y) =

∫ 1

0

(x− u)m−1
+

(m− 1)!
(y − u)0

+ du =

∫ y

0

(x− u)m−1
+

(m− 1)!
du,

∂m

∂ym
R1(x, y) |y =

(x− y)m−1
+

(m− 1)!
.

Then

R
(ν)
0 (x, 0) =

x(ν)

ν!
, ν = 0, . . . , m− 1,

R
(m)
1 (x, y) =

(x− y)m−1
+

(m− 1)!
.

Now set g = Rx and plugging the g into equation (2.5), we obtain equation

(2.4). Thus 〈Rx, f〉 = f(x), which proves that Rx is the reproducing kernel.

7



Moreover, the non-negative definite functions R0(x, y) and R1(x, y) are the

reproducing kernels for spaces H0 and H1 respectively. The kernel R0 cor-

responds to the space of polynomials H0 = {f ∈ H : f (m) = 0} with inner

product 〈f, g〉H0 =
∑m−1

ν=0 f (ν)(0)g(ν)(0), and R1 corresponds to the orthogonal

complement of H0,

H1 = {f ∈ H : f (ν)(0) = 0, ν = 0, 1, . . . , m− 1,

∫ 1

0

(f (m)(x))2dx < ∞}

with inner product 〈f, g〉H1 =
∫ 1

0
f (m)g(m)dx.

Example 2.2

For a function on the discrete domain X = {1, . . . , K}, write H = RK .

For any f ∈ H, let f = (f(1), . . . , f(K))′. Set ex = (0, . . . , 0, 1, 0, . . . , 0, )′, the

xth unit vector. With an inner product

〈f, g〉 = f
′
g,

we have

〈f, ex〉 = f
′
ex = f(x).

Thus the representor of evaluation [x]f = f(x) is ex. Hence, the reproducing

kernel is given by R(x, y) = 〈ex, ey〉 = I{x=y}. Consider a decomposition of

the reproducing kernel, R(x, y) = 1/K +(I{x=y}− 1/K) = R0(x, y)+R1(x, y).

Since (11
′
/K)(I − 11

′
/K) = 0K×K , the inner product 〈R0(x, ·), R1(y, ·)〉 = 0,

for all x, y. This decomposition defines a tensor sum decomposition of the

space RK = H0 ⊕ H1, where H0 = {f : f(1) = · · · = f(K)} and H1 = {f :

8



∑K
x=1 f(x) = 0}. The inner product for H0 is 〈f, g〉H0 = f

′
(11

′
/K)g and for

H1 is 〈f, g〉H1 = f
′
(I − 11

′
/K)g.

2.3 Tensor Sum Decomposition of Inner Product Spaces

The distance between a point f ∈ H and a closed linear subspace G ⊂ H is

defined by D[f,G] = infg∈G ‖f − g‖. Since G is closed, there exists an fG ∈ G,

called the projection of f in G, such that ‖f − fG‖ = D[f,G]. It can be shown

that (f − fG, g) = 0 for all g ∈ G. The linear subspace Gc = {f : (f, g) =

0,∀g ∈ G} is called the orthogonal complement of G. It can be verified that

‖f−fG−fGc‖2 = 0, where fG ∈ G and fGc ∈ Gc are the projections of f in G and

Gc, respectively. Therefore, there exists a unique decomposition f = fG + fGc

for every f ∈ H. It is clear that (Gc)c = G. The decomposition f = fG + fGc is

called the tensor sum decomposition (Murray and Von Neumann, 1936) and

is denoted by H = G ⊕ Gc, Gc = Hª G, or G = Hª Gc. Multiple term tensor

sum decompositions can be derived similarly.

A non-negative definite bilinear form J(f, g) in a linear space H defines

a semi-inner product in H that induces a seminorm J(f) = J(f, f). Unless

J(f, g) is positive definite, the null space NJ = {f : J(f, f) = 0, f ∈ H} is a

linear subspace of H containing elements other than 0. Now suppose there is

another non-negative definite bilinear form J̃(f, g) inH satisfying the following

conditions: (i) it is positive definite when restricted to NJ , so J̃(f) = J̃(f, f)

defines a full norm in NJ and (ii) for every f ∈ H, there exists a g ∈ NJ

such that J̃(f − g) = 0. With such an J̃(f, g), it can be verified that J(f, g)

is positive definite in the linear subspace N eJ = {f : J̃(f, f) = 0, f ∈ H}

and that (J + J̃)(f, g) is positive definite in H. Hence, a semi-inner product
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can be made a full inner product either via restriction to a subspace or via

augmentation by an extra term, a new inner product on its null sapce. So if

H is complete under the norm induced by (J + J̃)(f, g), then NJ and N eJ form

a tensor sum decomposition of H.

Example 2.3 refer to Gu (2002)

All square integrable functions on [0, 1] form a Hilbert space

L2[0, 1] = {f :

∫ 1

0

f 2dx < ∞}

with inner product 〈f, g〉 =
∫ 1

0
fg dx. The space

G = {f : f = gI[x≤.5], g ∈ L2[0, 1]}

is a closed linear subspace with orthogonal complement

Gc = {f : f = gI[x≥.5], g ∈ L2[0, 1]}.

The bilinear form J(f, g) =
∫ 0.5

0
fg dx defines a semi-inner product in L2[0, 1],

with null space

N eJ = Gc = {f : f = gI[x≥.5], g ∈ L2[0, 1]}.

Define J̃(f, g) = C
∫ 1

0.5
fg dx, with C > 0 a constant; one has an inner product

〈f, g〉 = (J + J̃)(f, g) =
∫ 0.5

0
fgdx + C

∫ 1

0.5
fgdx on L2[0, 1]. On G = L2 ªNJ ,

J(f, g) is a full inner product.

Example 2.4
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For a function on the discrete domain X ∈ {1, . . . , K}, consider the inner

product

〈f, g〉 =
K∑

x=1

f(x)g(x) = f
′
g.

From Example 1.2, the space G = H0 = {f : f(1) = · · · = f(K)} is a closed

linear subspace with orthogonal complement Gc = H1 = {f :
∑K

x=1 f(x) = 0}.

The bilinear form J(f, g) = 〈f, g〉H1 = f
′
(I − 11

′
/K)g defines a semi-inner

product with null space NJ = G = H0 = {f : f(1) = · · · = f(K)}. Define

J̃(f, g) = cf
′
(11

′
/K)g, with c > 0 a constant; one has an inner product,

〈f, g〉 = (J + J̃)(f, g) = f
′
(I +

c− 1

K
11

′
)g,

which reduces to the Euclidean inner product when c = 1. On Gc = H1 = {f :

∑K
x=1 f(x) = 0}, J(f, g) is a full inner product.

The application of tensor sum decompositions in smoothing splineF ANOVA

will be illustrated in later sections.

2.4 Reproducing Kernel Solution to Smoothing Spline

Suppose that

H = H0 ⊕H1, (2.8)

where H0 is a finite dimensional space with basis functions φ1(t), . . . , φM(t),

and H1 is a reproducing kernel Hilbert space with reproducing kernel R1(s, t).

To compute the minimizer f̂ for equation (2.2), we consider the following
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penalized least squares equation,

n∑
i=1

{yi − Lif}2 + λ‖P1f‖2, (2.9)

where Li is the evaluation functional at observed points: Lif = f(ti) =

〈ξi, f〉 with the representer ξi, P1 is the orthogonal projection operator of

f onto H1 in H and λ is the smoothing parameter. The representer ξi(t) =

LiR1(t, ·) is exactly the reproducing kernel R1(t, ti). It can be shown (Wahba,

1990) that the minimizer of equation (2.9) lies in the span of the null space

{1, φ1(t), . . . , φM(t)} plus the evaluator functionals {ξ1, . . . , ξn}. Thus

f̂(t) =
M∑
i=0

diφi(t) +
n∑

j=1

cjξj(t). (2.10)

Define the matrix

Σ = {〈ξi, ξj〉}n×n = {R1(ti, tj)},

and let c = (c1, . . . , cn)′. Note that

‖P1f̂‖2 = ‖P1(
M∑
i=0

diφi(t) +
n∑

j=1

cjξj(t))‖2 = ‖
n∑

j=1

cjξj(t)‖2

=
n∑

i=1

n∑
j=1

cicj〈ξi, ξj〉 = c′Σc,

which is a seminorm induced by the semi-inner product inH. If d = (d1, . . . , dM)′

and

T = (φi(tj))n×M , (2.11)
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equation (2.9) can be written as

‖y − Td−Σc‖+ λc′Σc. (2.12)

Then the estimated f̂ = (f̂(t1), . . . , f̂(tn))′ has the following form shown by

(Kimeldorf and Wahba, 1971):

f̂ = Td + Σc. (2.13)

Equation (2.13) is over parameterized. Following Wahba (1990), one solution

is obtained by solving

(Σ + λI)c + Td = y, (2.14)

T ′c = 0. (2.15)

Again following Wahba (1990), consider the spectral decomposition of TT ′,

i.e.,

TT ′ = FΛF ′, (2.16)

where F is an orthogonal matrix of eigenvectors and Λ is a diagonal matrix

with eigenvalues as the elements. We write F as

F = (F1, F2), (2.17)
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where F1 is the n×M matrix of vectors spanning the column space of T and

F2 has dimension n× (n−M). So T = F1R, where R = F
′
1T is an M ×M

nonsingular matrix. Because F is orthonormal, F
′
1F2 = 0 and F ′F = In×n.

Since T ′c = 0,

c = F2γ (2.18)

for some γ. By equations (2.14) and (2.15), the solutions for γ and d are

γ = (F
′
2MF2)

−1F
′
2y, (2.19)

d = (F ′
1T )−1F

′
1(y −Mc), (2.20)

where M = Σ + λI.

So far the smoothing parameter λ has been fixed. Good choice of λ is cru-

cial to the performance of the spline estimates (Wahba, 1990). Several meth-

ods have been proposed including cross-validation (CV), generalized cross-

validation (GCV), generalized maximum likelihood (GML) and unbiased risk

(UBR) methods (Gu, 2002).

2.5 Bayesian interpretation for Reproducing Kernel So-

lution to Smoothing Spline

As shown first by Kimeldorf and Wahba (1971), the solution to the penal-

ized likelihood equation (2.3) is equivalent to the Bayes estimate to a certain

Bayes model with a limiting Gaussian prior.

Example 2.5
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Consider the classical one-way ANOVA model with independent observa-

tions yi ∼ N(η(xi), δ0), i = 1, . . . , n, where xi ∈ {1, . . . , K}. Set η = α1 + η1

with independent priors α ∼ N(0, τ 2) for the mean and η1 ∼ N(0, δ0
λ
(I −

11′/K)). Note that η′11 = 0 almost surely and that η =
∑K

x=1 η(x)/K = α.

The posterior mean of η is given by the minimizer of

1

δ0

n∑
i=1

(yi − η(xi))
2 +

1

τ 2
η2 +

λ

δ0

K∑
x=1

(η(x)− η)2. (2.21)

Letting τ →∞ implies α has a flat prior.

Example 2.6

Consider η(x) = η0(x) + η1(x) on [0, 1], with η0(x) and η1(x) having inde-

pendent Gaussian priors with mean 0 and covariance matrices,

E[η0(x)η0(y)] = τ 2R0(x, y) = τ 2

m−1∑
ν=0

xν

ν!

yν

ν!
,

E[η1(x)η1(y)] = bR1(x, y) = b

∫ 1

0

(x− u)m−1
+

(m− 1)!

(y − u)m−1
+

(m− 1)!
du.

Observing yi ∼ N(η(xi), δ0), i = 1, . . . , n, the joint distribution of y and

η(x) is normal with mean zero and covariance matrix




bΣ + τ 2TT ′ + δ0I bξ + τ 2Tφ

bξ′ + τ 2φ′T ′ bR1(x, x) + τ 2φ′φ


 , (2.22)

where Σ is n×n with the (i, j)th entry R1(xi, xj), T is n×M with the (i, ν)th

entry xν−1
i /(ν − 1)!, ξ is n × 1 with the ith entry R1(xi, x), and φ is M × 1

with the νth entry xν−1/(ν−1)!. Using a standard result from the multivariate
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normal distribution, the posterior mean of η(x) given y is

E[η(x) | y] = (bξ′ + τ 2φ′T ′)(bΣ + τ 2TT ′ + δ0I)−1y

= ξ′(Σ + ρTT ′ + λI)−1y + φ′ρT ′(Σ + ρTT ′ + λI)−1y,

where ρ = τ 2/b and b = δ0/λ. Letting ρ → ∞, it can be shown that the

posterior mean E[η(x) | y] is of the form ξ′c + φ′d, with the coefficients given

by

c = (M−1 −M−1T (T ′M−1T )−1T ′M−1)y,

d = (T ′M−1T )−1T ′M−1y,

where M = Σ + λI (Wahba, 1990).

These two cases demonstrate that the limiting posterior mean for the

Bayesian problem is the same as the smoothing spline solution (2.18), (2.19)

and (2.20). The setting for those two cases is based on equation (2.12). The

penalty term is λc′Σc, which implies the prior for c has a Gaussian distrib-

ution with mean zero and covariance matrix Σ−/λ. The inverse covariance

matrices (the precision matrices) are proportional to the reproducing kernel

R1.

2.6 Bayesian approach for Reproducing Kernel Solu-

tion to Smoothing Spline

Now an alternative for the prior distribution is proposed. Instead of work-

ing with a precision matrix derived from a reproducing kernel, after certain
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transformations we have the covariance matrix for the prior itself derived from

the reproducing kernel. The setting for the posterior distribution stays the

same. But there are some advantages to this transformation. This transfor-

mation has better properties for Bayesian computation. And the reproducing

kernel as the covariance matrix in the prior distribution provides flexibility

in decomposing the covariance components in the smoothing spline ANOVA,

which is the focus in a later section.

Now set η = Σc, so

η′Σ−η = c′ΣΣ−Σc = c′Σc. (2.23)

Maximizing (2.12) is equivalent to minimizing

− 1

2δ0

‖y − Td− η‖2 − λ

2δ0

η′Σ−η, (2.24)

which implies the corresponding prior distribution for η is

η | δ0, λ ∼ Nn

(
0,

δ0

λ
Σ

)
. (2.25)

Assign the prior distribution for d as

d | τ ∼ NM(0, τIM). (2.26)

In order to improve the MCMC in Bayesian computation, we will be working

in the coordinates obtained by transforming the data using F , the eigenvectors
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from the spectral decomposition of TT ′. Set v = Td+η and u = F ′v. Then

v = Td + η | τ, δ0, λ ∼ Nn

(
0, τTT′ +

δ0

λ
Σ

)
(2.27)

and

u = F ′v | τ, δ0, λ ∼ Nn

(
0,F′

(
τTT′ +

δ0

λ
Σ

)
F

)
. (2.28)

To work in the orthogonal coordinates, also transform y, so

y | v, δ0 ∼ Nn(v, δ0In), (2.29)

F ′y | u, δ0 ∼ Nn(u, δ0In). (2.30)

The joint distribution of u and F ′y is




u

F ′y


 ∼ N







0

0


 ,




F ′ (τTT ′ + δ0
λ
Σ

)
F F ′ (τTT ′ + δ0

λ
Σ

)
F

F ′ (τTT ′ + δ0
λ
Σ

)
F δ0In×n + F ′ (τTT ′ + δ0

λ
Σ

)
F







Using a standard result on multivariate normal distribution (e.g. Johnson and

Wichern, 1998), the conditional distribution for u | δ0, λ, τ is

u | y, δ0, λ, τ ∼ N(B−1
τ F ′y, δ0B

−1
τ ), (2.31)

where Bτ = In + (F ′( τ
δ0

TT ′ + 1
λ
Σ)F )−1.
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The spectral decomposition showed TT ′ = FΛF ′ and F ′F = In, so

F ′(TT ′)F = F ′(FΛF ′)F = Λ =




Λ1 0M×(n−M)

0(n−M)×M 0(n−M)×(n−M)


 , (2.32)

where Λ1 is an M ×M diagonal matrix. Also

F ′ΣF =




F
′
1

F
′
2


Σ(F1, F2) =




F
′
1ΣF1 F

′
1ΣF2

F
′
2ΣF1 F

′
2ΣF2


 . (2.33)

We have

(
F ′

(
τ

δ0

TT ′
)

F +
1

λ
F ′ΣF

)−1

=




τ
δ0

Λ1 + 1
λ
F
′
1ΣF1

1
λ
F
′
1ΣF2

1
λ
F
′
2ΣF1

1
λ
F
′
2ΣF2




−1

.(2.34)

Applying the well-known result (e.g. Horn and Johnson, 1985) for the inverse

of a block matrix and letting τ → ∞, which leads to a noninformative prior

distribution on d,




τ
δ0

Λ1 + 1
λ
F
′
1ΣF1

1
λ
F
′
1ΣF2

1
λ
F
′
2ΣF1

1
λ
F
′
2ΣF2




−1

→




0M×M 0M×(n−M)

0(n−M)×M λ(F
′
2ΣF2)

−1


 (2.35)

From (2.31), the limiting conditional distribution for u | δ0, λ is

u | y, δ0, λ ∼ N(B−1F ′y, δ0B
−1), (2.36)
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where

B =




IM 0

0 I(n−M)×(n−M) + λ(F
′
2ΣF2)

−1


 (2.37)

Note that letting τ →∞ in the prior distribution of d is the same as putting

a flat prior on d. Now we have to transform u back to the original scale v, so

v | y, δ0, λ ∼ N(FB−1F ′y, δ0FB−1F ) (2.38)

2.7 Smoothing Spline ANOVA Models

Smoothing spline ANOVA is a function estimate based on an ANOVA type

decomposition of the unknown mean function f . Before we go in to detail, we

start this section with a two-way ANOVA example.

Example 2.7

Consider α ∈ X1 = {1, . . . , K1} and β ∈ X2 = {1, . . . , K2}. The usual

model is

E(yjk) = µ + αj + βk + γjk, j = 1, . . . , K1, k = 1, . . . , K2, (2.39)

with side conditions
∑K1

j=1 αj =
∑K2

k=1 βk =
∑K1

j=1 γjk =
∑K2

k=1 γjk = 0. De-

fine the averaging operators as A1f =
∑K1

j=1 f(j, k)/J = f ·k and A2f =

∑K2

k=1 f(j, K)/K = f j·. The side conditions imply A1(I −A1) = A2(I −A2) =

0. The effects of each component in the two-way ANOVA model are defined
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in terms of the averaging operators applied to f to obtain µ, α, β and γ by

A1A2f = A1fk· = f ··,

(I − A1)A2f = (I − A1)f j· = f j· − f ··,

A1(I − A2)f = A1f − A1A2f = f ·k − f ··,

(I − A1)(I − A2)f = (I − A1 − A2 + A1A2)f = f − f j· − f ·k − f ··,

where A1A2f represents the constant, (I −A1)A2f represents the main effect

of α, A1(I − A2)f represents the main effect of β, and (I − A1)(I − A2)f

represents the interaction effect between α and β. The averaging operators,

A1 and A2, decompose f into four parts, and each part is in a subspace which

is orthogonal to the others.

This idea of ordinary ANOVA decomposition has been borrowed and ap-

plied to the decomposition of functions in a Hilbert H space. Suppose one

has reproducing kernel Hilbert spaces H(γ) on domains Xγ, γ = 1, . . . , Γ, re-

spectively. Further, assume that each space H(γ) has a one-way ANOVA de-

composition built in via the tensor sum decompositions H(γ) = H0(γ) ⊕H1(γ),

where H0(γ) = {f : f ∝ 1} has a reproducing kernel R0(γ) ∝ 1 and H1(γ) has

a reproducing kernel R1(γ) satisfying side conditions AγR1(γ)(x(γ), ·) = 0, for

all x(γ) ∈ Xγ, where the Aγ are the averaging operators defining the one-way

ANOVA decompositions on Xγ. The tensor product space H = ⊗Γ
γ=1H(γ) has

a tensor sum decomposition

H = ⊗Γ
γ=1(H0(γ) ⊕H1(γ)). (2.40)
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If Γ=2, then

H = ⊗2
γ=1(H0(γ) ⊕H1(γ))

= (H0(x1) ⊗H0(x2))⊕ (H1(x1) ⊗H0(x2))

⊕(H0(x1) ⊗H1(x2))⊕ (H1(x1) ⊗H1(x2)), (2.41)

where H0(x1)⊗H0(x2) is the space of constants, H1(x1)⊗H0(x2) is space of main

effects in x1, H0(x1) ⊗H1(x2) is space of main effects in x2, and H1(x1) ⊗H1(x2)

is the space of interaction effects between x1 and x2.

With reproducing kernel Hilbert space H with two discrete variables in

x1 ∈ X1 = {1, . . . , K1} and x2 ∈ X2 = {1, . . . , K2}, Example 2.7 can be reinter-

preted. SetH = {µ : µ ∈ RK1×K2}, where u = (u11, . . . , u1K2 , . . . , uK11, . . . , uK1K2)
′.

The representer ξij in H is eij = (0, . . . , 0, 1, 0, . . . , 0)′, the ijth unit vector,

such that

〈ξij, µ〉 = 〈eij.µ〉 = µij. (2.42)

This defines the reproducing kernel

R((i, j), (k, l)) = 〈eij, ekl〉 = I{(i,j)=(k,l)}. (2.43)

The null space is

H0 = {µ : µij = c, ∀i, j, i.e. µ = c1K1K2}. (2.44)
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Since

µ = 〈 1

K1K2

1K1K2 , µ〉 = 〈ξij, u〉, (2.45)

the reproducing kernel is

R0((i, j), (k, l)) = 〈ξij, ξij〉 = 〈 1

K1K2

1K1K2 ,
1

K1K2

1K1K2〉 =
1

K1K2

1K1K2 ,(2.46)

where 1k = (1, . . . , 1)′ is with k terms of 1 in a vector.

Consider the main effect at level x1 ∈ X1 with reproducing kernel Hilbert

space is H1(x1). The main effects for x1 are defined to be

µi· − µ·· = e′ijµ−
1

K1K2

1′K1K2
µ

= 〈eij − 1

K1K2

1K1K2 , µ〉 = 〈ξij, µ〉, (2.47)

where eij = (0, . . . , 0, 1/K2, . . . , 1/K2, 0, . . . , 0)′, the ith block with elements

1/K2. The representer is ξij = eij − 1
K1K2

1K1K2 , which is

ξij(k, l) =





1
K2
− 1

K1K2
if i = k

− 1
K1K2

if i 6= k

.

The reproducing kernel is defined as

R1(x1)((i, j), (k, l)) = 〈ξ(ij), ξ(kl)〉

=





1
K2
− 1

K1K2
if i = k

− 1
K1K2

if i 6= k
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=
1

K2

I{i=k} − 1

K1K2

=
1

K2

(
I{i=k} − 1

K1

)
. (2.48)

Thus the tensor product space for H(x1) = {µ ∈ RK1×K2 : µij = µi·,∀i, j} can

be expressed as

H(x1) = H0(x1) ⊕H1(x1). (2.49)

The reproducing kernel under subspace H0(x1) is R0 in equation (2.46), and

the reproducing kernel for subspace H1(x1) is R1(x1) in equation (2.48).

With the same approach applied to x2, the tensor product space forH(x2) =

{µ ∈ RK1×K2 : µij = µ·j,∀i, j} can be expressed as

H(x2) = H0(x2) ⊕H1(x2). (2.50)

The reproducing kernels under subspace H0(x2) is R0 in equation (2.46) and

H1(x2) is

R1(x2)((i, j), (k, l)) =
1

K1

(
I{j=l} − 1

K2

)
. (2.51)

Thus the tensor product space can be expressed as

H = (H0(x1) ⊕H1(x1))⊗ (H0(x2) ⊕H1(x2))

= (H0(x1) ⊗H0(x2))⊕ (H1(x1) ⊗H0(x2))⊕ (H0(x1) ⊗H1(x2))⊕ (H1(x1) ⊗H1(x2))

= H0 ⊕H(x1) ⊕H(x2) ⊕H(x1,x2), (2.52)

where H0 is the space of constants, H(x1) is the space of main effects for
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x1, H(x2) is the space of main effects for x2 and H(x1,x2) is the space of the

interaction effects. The corresponding reproducing kernels for each subspace

are R0((i, j), (k, l)) in equation (2.46), R1(x1)((i, j), (k, l)) in equation (2.48),

R1(x2)((i, j), (k, l)) in equation (2.51) and

R1(x1,x2)((i, j), (k, l)) = R((i, j), (k, l))−R0((i, j), (k, l))−R1(x1)((i, j), (k, l))

− R1(x2)((i, j), (k, l)). (2.53)

Example 2.8

Now consider two variables, x1 ∈ X1 = {1, . . . , K1} and x2 ∈ X2 = [0, 1].

Consider reproducing kernel Hilbert spaces H(x1) = H0(x1)⊕H1(x1) on domain

X1 and H(x2) = H0(x2)⊕H1(x2) on domain X2 with the linear spline. Analogous

to Example 2.7, the reproducing kernels for the discrete variable x1 under

subspaces H0(x1) = {µ1K1 : µ ∈ R} and H1(x1) = {µ ∈ RK1 s.t. 〈µ,1K1〉 =

0, i.e.
∑K1

i=1 µi = 0} are

R0(x1)(i, j) =
1

K1

,

R1(x1)(i, j) = I{i=j} − 1

K1

. (2.54)

The reproducing kernel Hilbert spaces for x2 are

H0(x2) = {f : f ′ = 0},

H1(x2) = {f : f(0) = 0,

∫ 1

0

(f ′)2 dx < ∞}. (2.55)

Refer to equation (2.6) and (2.7). When m = 1, the reproducing kernels for
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subspaces H0(x2) and H1(x2) are

R0(x2)(x, y) = 1,

R1(x2)(x, y) =

∫ 1

0

(x− u)+(y − u)+ du = x ∧ y. (2.56)

The tensor product space is the same as Example 2.7,

H = (H0(x1) ⊗H0(x2))⊕ (H1(x1) ⊗H0(x2))⊕ (H0(x1) ⊗H1(x2))⊕ (H1(x1) ⊗H1(x2))

= H0 ⊕H(x1) ⊕H(x2) ⊕H(x1,x2).

The reproducing kernels for each of the subspaces are

H0 : R0(x1)(i, x)R0(x2)(j, y) =
1

K1

,

H(x1) : R1(x1)(i, x)R0(x2)(j, y) = I{i=j} − 1

K1

,

H(x2) : R0(x1)(i, x)R1(x2)(j, y) = (
1

K1

)(x ∧ y),

H(x1,x2) : R1(x1)(i, x)R1(x2)(j, y) = (I{i=j} − 1

K1

)(x ∧ y).

Example 2.9

Another case to consider is with the same two spaces in x1 ∈ X1 =

{1, . . . , K1} and x2 ∈ X2 = [0, 1] but with cubic spline smoothing on x2.

The reproducing kernel Hilbert space for x1 ∈ X1 stays the same with H(x1) =

H0(x1) ⊕ H1(x1). Now the reproducing kernel Hilbert space for x2 ∈ X2 with

cubic spline is H(x2) = H00(x2)⊕H01(x2)⊕H11(x2). With m = 2, equation (2.6)
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showed

R0(x2)(x, y) = R00(x2)(x, y) + R01(x2)(x, y) = 1 + xy,

R11(x2)(x, y) =

∫ 1

0

(x− u)+(y − u)+ du, = (x ∧ y)2(3(x ∨ y)− (x ∧ y))/6.

The reproducing kernel R0(x2)(x, y) is decomposed into R00(x2)(x, y) plus R01(x2)(x, y)

for the corresponding reproducing kernel Hilbert spaces H00(x2) and H01(x2).

The space H00(x2) = {f : f(x2) = c} is the space of constants, H01(x2) = {f :

f(x2) = bx2} is the space of linear effects, and H11(x2) = {f : f(0) = f ′(0) =

0,
∫ 1

0
(f ′′)2 dx < ∞} is the space of smooth effects.

Thus the corresponding reproducing kernels under each subspace are

R0(x1)(i, j) =
1

K1

,

R1(x1)(i, j) = I{i=j} − 1

K1

,

R00(x2)(x, y) = 1,

R01(x2)(x, y) = xy,

R11(x2)(x, y) = (x ∧ y)2(3(x ∨ y)− (x ∧ y))/6. (2.57)

We construct a tensor product space with six tensor sum terms,

H = (H0(x1) ⊕H1(x1))⊗ (H00(x2) ⊕H01(x2) ⊕H11(x2))

= (H0(x1) ⊗H00(x2))⊕ (H0(x1) ⊗H01(x2))⊕ (H0(x1) ⊗H11(x2))

⊕(H1(x1) ⊗H00(x2))⊕ (H1(x1) ⊗H01(x2))⊕ (H1(x1) ⊗H11(x2))(2.58)

where H0(x1) ⊗ H00(x2) is the space of constants, H0(x1) ⊗ H01(x2) is the one
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dimensional space of a linear effect in x2, H0(x1)⊗H11(x2) is the space of smooth

effects in x2, H1(x1)⊗H00(x2) is the space of level effects in x1, H1(x1)⊗H01(x2) is

the space of interaction effects between level effects in x1 and linear effects in

x2, and H1(x1)⊗H11(x2) is the space of interaction effects between level effects

in x1 and smooth effects in x2. The corresponding reproducing kernels for each

subspace are

H0(x1) ⊗H00(x2) : R0(x1)(i, x)R00(x2)(j, y) =
1

K1

, (2.59)

H0(x1) ⊗H01(x2) : R0(x1)(i, x)R01(x2)(j, y) = (
1

K1

)(xy), (2.60)

H0(x1) ⊗H11(x2) : R0(x1)(i, x)R11(x2)(j, y) =

(
I{i=j} − 1

K1

)
×

((x ∧ y)2(3(x ∨ y)− (x ∧ y))/6), (2.61)

H1(x1) ⊗H00(x2) : R1(x1)(i, x)R00(x2)(j, y) =

(
I{i=j} − 1

K1

)
, (2.62)

H1(x1) ⊗H01(x2) : R1(x1)(i, x)R01(x2)(j, y) =

(
I{i=j} − 1

K1

)
(xy), (2.63)

H1(x1) ⊗H11(x2) : R1(x1)(i, x)R11(x2)(j, y) =

(
I{i=j} − 1

K1

)
×

(x ∧ y)2(3(x ∨ y)− (x ∧ y))/6), (2.64)

respectively.

For each of the cases discussed above, the reproducing kernel Hilbert space

has decomposition as H = H0 ⊕
∑p

k=1Hk, where H0 is the space that is not

penalized, and each Hk is a reproducing kernel Hilbert space with reproducing

kernel Rk. The SSANOVA model is constructed based on H0⊕
∑p

k=1Hk. The

estimate of f is the minimizer of

n∑
i=1

{yi − Lif}2 + λ

p∑

k=1

θ−1
k ‖Pkf‖2, (2.65)
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where Pk is the orthogonal projection operator of f onto Hk in H. Let ξki(t) =

LiRk(t, ·) and Σk = {〈ξki, ξkj〉}n×n. The solution to equation (2.65) is

f̂(t) =
M∑
i=1

diφi(t) +
n∑

j=1

cj(

p∑

k=1

θkξkj(t))

f̂ = Td + Σc, (2.66)

where c and d are solutions to equation (2.7) with Σ replaced by
∑p

k=1 θkΣk.

Smoothing parameters λ/θ1, . . . , λ/θp can be estimated similarly using GCV,

GML, and UBR methods. Wang (1997) has developed an R function “ssr”

to fit SSANOVA models. Gu (2002) has an algorithm to solve for c, d, and

λ/θ1, . . . , λ/θp with GCV, GML, and UBR methods simultaneously.

We propose a Bayesian approach in the next chapter to estimate the para-

meters c and d and smoothing parameters simultaneously through MCMC.

29



Chapter 3

Bayesian Smoothing Spline ANOVA

With the Bayesian interpretation for the reproducing kernel solution to

smoothing splines, it’s natural to consider a fully Bayesian approach. In

this chapter, we discuss a fully Bayesian approach to smoothing splines and

SSANOVA.

3.1 Fully Bayesian approach to Smoothing Splines

In Section 2.5, we discussed a Bayesian interpretation for the reproducing

kernel solution to smoothing splines following Kimeldorf and Wahba (1971).

The Bayesian interpretation is based on equation (2.12), which implies the

prior for c has a Gaussian distribution with mean zero and covariance matrix

δ0/λΣ−. To implement a Bayesian approach, the computation could be in-

tensive since each MCMC step requires the precision of Σ. The alternative

we propose in Section 2.6 transforms the model so the prior has a Gaussian

distribution with covariance matrix proportional to Σ. This not only improves

MCMC computation but facilitates the construction of priors in the Bayesian

approach to SSANOVA. This alternative provides the conditional distribution
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for u in equation (2.36). So the solution for the smoothing spline is v = Fu

given δ0 and λ.

3.1.1 Bayesian hierarchical model

To implement a fully Bayesian approach in a hierarchical model, we require

priors for δ0 and λ. Since we took τ → ∞, we applied the result of equation

(2.35). The prior distribution for u = (u′1, u
′
2)
′ in equation (2.28) is now

u2 | δ0, λ ∼ N(n−M)

(
0,

δ0

λ
(F

′
2ΣF2)

)
. (3.1)

Following many authors seeking objective priors for regression models, we will

use the Jeffrey’s (invariance) prior for δ0. We will follow White (2006) and

Liang et al. (2008) and use the Pareto for λ. Thus we have

[δ0] ∝ 1

δ0

, δ0 > 0,

[λ | a0] =
a0

(a0 + λ)2
, λ ≥ 0. (3.2)

To sample from the Pareto distribution efficiently, we use a hierarchical struc-

ture as in White (2006). With

λ | φ ∼ Exp(φ),

φ | a0 ∼ Exp(a0), (3.3)

the marginal for λ is the Pareto distribution (3.2). Since F
′
2ΣF2 may be sin-

gular, we may need a full rank parameterization. Let F
′
2ΣF2 = QDQ′ be the

spectral decomposition, where Q is the matrix of eigenvectors corresponding
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to the nonzero eigenvalues and D is the diagonal matrix with the nonzero

eigenvalues in the diagonals. Letting u2 = Qv, then

v | δ0, λ ∼ N

(
0,

δ0

λ
D

)
. (3.4)

The full conditionals for each of the parameters are

d | δ0 ∼ N((T ′F1F
′
1T )−1T ′F1F

′
1y, δ0(T

′F1F
′
1T )−1),

v | λ, δ0 ∼ N((Ir + λD−1)−1Q′F
′
2y, δ0(Ir + λD−1)),

λ | v, δ0, φ ∼ Gamma

(
r

2
+ 1,

2δ0

v′D−1v + 2δ0φ

)
,

φ | λ, a0 ∼ Gamma

(
2,

1

λ + a0

)
,

δ0 | λ ∼ Inverse Gamma

(
n + r

2
,
(F ′

2y − u2)
2

2
+

λv′D−1v

2

)
,(3.5)

where r is the rank of D. We demonstrate this model by a simulated example

first, and then apply the model to a dataset from a manufacturing production

line.

3.1.2 Effective Degrees of Freedom in Smoothing Spline and Prior

for λ

Equation (2.38) showed the conditional distribution of v in a Bayesian

smoothing spline model. The Bayes estimate for v given λ is the smoothing

spline estimate,

v = ŷ = FB−1F ′y, (3.6)
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where

B =




IM 0

0 I(n−M) + λ(F
′
2ΣF2)

−1


 . (3.7)

Thus the matrix FB−1F ′ is known as the smoother matrix. Following Hastie

et al. (2001), the complexity of a model can be described by the “effective num-

ber of parameters,” which is defined to be the trace of the smoother matrix.

The smoother matrix S(λ) is

S(λ) = FB−1F ′ = (F1, F2)




IM 0

0 (I(n−M) + λ(F
′
2ΣF2)

−1)−1







F ′
1

F ′
2


(3.8)

Thus the trace of this smoother matrix is

d(λ) = tr(S(λ)) = tr
[
F1F

′
1 + F2(I(n−M) + λ(F

′
2ΣF2)

−1)−1F ′
2

]

= M +
r∑

i=1

1

1 + λd−1
i

. (3.9)

This equation shows how λ is related to the complexity of the model. The

trace of the smoother matrix d(λ) defines the effective degrees of freedom of

a smoothing spline. This very useful tool allows us a more intuitive way to

specify a prior for λ. In the next two examples we discuss how does the effective

degrees of freedom facilitate us to select the prior information on λ. Following

White (2006), since d(λ) is a monotone function of λ, the median of the prior

distribution of d(λ) is d(λm), where λm is the median of the prior on λ. For

the Pareto distribution (3.2), the median is a0. Thus the median for the prior

on d(λ) is d(a0). White (2006) suggested choosing a0 by trial and error to have
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a desirable prior degrees of freedom.

3.1.3 Simulated Example

Consider a simple simulation from a balanced design. The independent

variables include a discrete variable (x1) with two levels and a continuous

variable (x2). Let e = (1, . . . , m)′/m, 11 = (1, 1)′ and 12 = (1, . . . , 1)′m×1

where m = 10. Take x1 = (1, 2)′ ⊗ 12, x2 = e ⊗ 11 and yi = 1 + 2I{x1i=1} +

3 sin(2πx2i − π) + εi with δ0 = 1. The sample size is n = 20. The model

proposed is a smoothing spline function

f(x2) = µ + βx2 + s2(x2), (3.10)

where µ is the constant term, β is the coefficient for the linear effect in x2 and

s2(x2) is the smooth effect of x2.

After assigning a value for the parameter a0, all the parameters can be

sampled by Gibbs sampler in MCMC from their full conditionals by (3.5).

Then the Bayes estimates for each parameter are their posterior means.

The parameter a0 is the median of the Pareto distribution for the prior dis-

tribution of λ. Even though the Pareto distribution has no mean or variance,

the choice of median is still informative (refer to Section 3.1.2 for details). So

what is a reasonable choice for a0? Following Hastie et al. (2001), the com-

plexity of a model can be described by the “effective number of parameters,”

which is defined to be the trace of the smoother matrix as defined in equation

(3.9). Based on the smoother matrix, effective number of parameters are 7.9,

7.2, 4.8 and 2.4 when λ is set to 0.000001, 0.00001, 0.0001 and 0.001 respec-
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tively. We chose a0 to be 0.0001, which provided about 5 effective degrees

of freedom. Note that includes 1 degree of freedom in the linear term plus 5

degrees of freedom from the smooth term to give 6 degrees of freedom for the

fit. This fit should be able to catch the curve effect in the data. To observe

the smoothing effect of λ, we tried different values a0 =0.000001, 0.00001,

0.0001 and 0.001 in the prior distribution for λ. The Bayes estimates for λ

are 0.0006, 0.00062, 0.001 and 0.005, which corresponds to equivalent degrees

of freedom of 2.9, 2.8, 2.2 and 1.3 in (3.8) respectively. Figures 3.1 shows the

MCMC trace plots for samples of the log(λ) from the models with a0=0.001,

a0=0.0001, a0=0.00001 and a0=0.000001. Convergence is rapid in all cases.

Figure 3.2 shows the fits of the models with a0=0.001, a0=0.0001, a0=0.00001,

a0=0.000001 and the true function. The fits for a0=0.00001 and a0=0.000001

are almost identical. The fit is quite robust to choice of a0. With the a0

ranges from 0.001 to 0.000001, those fits are similar. The results suggest that

the prior has little influence in estimating λ.

3.1.4 Manufacturing Example

The data used to illustrate this model come from the monitoring process for

a production line stamping parts for circuit breakers. Regular measurements

were taken on the metal parts and measured in inches. The data consists

of 474 measurements of the metal parts along with the corresponding date

and time when the measurements took place and the operators who took the

measurements. There were 18 operators. The date and time variable has been

converted into Julian date, which transforms the variable into a continuous

scale. In this analysis, we used only nonrepeated measurements. We will use
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the full dataset in later analysis.

The model proposed is again the smoothing spline function

f(x2) = µ + βx2 + s2(x2), (3.11)

where µ is the constant term, β is the coefficient for the linear effect in x2 and

s2(x2) represents the smooth effect of x2.

Based on the smoother matrix (3.8), the effective number of parameters

are 50.7, 30.4, 17.4 and 9.6 when λ is set to a0 = 1 × 10−8, a0 = 1 × 10−7,

a0 = 1 × 10−6 and a0 = 1 × 10−5 respectively. So a0, the median of the

Pareto distribution, was chosen to be a0 = 1 × 10−6, which provided about

17.4 effective degrees of freedom. (Again note that this includes 1 degree of

freedom in the linear term plus 17.4 degrees of freedom from the smooth term,

leading to 18.4 degrees of freedom for the median of the prior distribution.)

The Bayes estimate for λ is 1.77 × 10−5, which corresponds to 8.2 effective

degrees of freedom. To observe the smoothing effect of λ, we select different

values a0 = 1 × 10−8, 1 × 10−7 and 1 × 10−5 in the prior distribution for λ.

The Bayes estimates for λ are 1.70× 10−5, 1.63× 10−5 and 4.76× 10−5, which

corresponds to equivalent degrees of freedom of 8.3, 8.4 and 6.2. Figures 3.3

shows the MCMC trace plots for samples of log(λ) from the models with

a0 = 1×10−5, a0 = 1×10−6, a0 = 1×10−7 and a0 = 1×10−8. Convergence is

rapid in all cases. Figure 3.4 shows the fits of the models with a0 = 1× 10−5,

a0 = 1 × 10−6, a0 = 1 × 10−7 and a0 = 1 × 10−8. The fits for a0 = 1 × 10−6,

a0 = 1 × 10−7 and a0 = 1 × 10−8 are almost identical. With a0 ranges from

1 × 10−5 to 1 × 10−8, the fits are similar. The results suggest that the fit is
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not sensitive to the choice of λ when the right range of degrees of freedom is

chosen.

This section discussed Bayesian smoothing splines with fully Bayesian es-

timates. With the posterior distribution, other statistical inference can be

done for the fitted model such as credible sets. While these quantities can be

computed with GCV, GML and UBR, the uncertainty due to estimating δ0

and λ are not included in the total inference.

3.2 Fully Bayesian approach in SSANOVA

In Section 2.7 we discussed the frequentist approach to SSANOVA based

on Gu (2002). In this section, we will extend the work to a fully Bayesian

approach. As mentioned in the previous section, the alternative proposed

to improve the MCMC computation will also facilitate the construction of

SSANOVA in the Bayesian approach. So we continue to adopt this alternative

approach.

The advantage of Bayesian SSANOVA over Bayesian smoothing splines

is the added flexibility of testing fixed effects and interaction effects. After

decomposing the estimated function into several subspaces, we can test each

component in the model and come out with the most parsimonious model.

3.2.1 Bayesian hierarchical SSANOVA model

Based on the procedure discussed in Section 2.7, consider a variable x in do-

main X and a Hilbert space H of functions on X . A tensor sum decomposition
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of the reproducing kernel Hilbert space H has the form

H = ⊕p
k=0Hk (3.12)

with inner product

〈f, g〉 =

p∑

k=0

〈f, g〉k =

p∑

k=0

〈fk, gk〉k (3.13)

and a reproducing kernel

R(x, y) =

p∑

k=0

Rk(x, y), (3.14)

where 〈f, g〉k is an inner product in Hk with corresponding reproducing kernel

Rk, fk is the projection of f in Hk, and H0 is a finite dimensional space with

no penalty.

As discussed in Examples 2.7, 2.8 and 2.9, consider two variables x1 ∈ X1

and x2 ∈ X2 in an experiment with n observations. Suppose H(x1) consists

of functions on X1 and H(x2) consists of functions on X2, and assume the

reproducing kernel Hilbert space is H = H(x1) ⊗H(x2). As in equation (3.12),

suppose H(x1) and H(x2) have tensor sum decompositions

H(x1) = ⊕p1

i=0Hi(x1),

H(x2) = ⊕p2

j=0Hj(x2).

Thus H = H(x1) ⊗ H(x2) = ⊕pHp, where p is the number of all the pairwise

combinations of i = 0, . . . , p1 and j = 0, . . . , p2. Each orthogonal space Hp
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is constructed by taking the product of subspaces Hi(x1) and Hj(x2) of H(x1)

and H(x2) respectively. The subspace Hi(x1) is from the ith tensor sum de-

composition of H(x1), and Hj(x2) is from the jth tensor sum decomposition of

H(x2). Moreover, the corresponding reproducing kernel Rp is the product of

reproducing kernels under Hi(x1) and Hj(x2).

After the model is selected, the reproducing kernel Hilbert space can be

rewritten as H = H0 ⊕
∑p

k=1Hk, and the reproducing kernel Rk in Hk is the

product of Ri(x1) in H(x1) and Rj(x2) in H(x2). Define

Σ =

p∑

k=1

Σk, (3.15)

where Σk is the n× n matrix with the (i, j)th entry Rk((x1i, x2i), (x1j, x2j)).

To view the effect of each Σk, we assigned different weights, θk, to each

term and assume

Σ =

p∑

k=1

θkΣk. (3.16)

Under a fully Bayesian approach, those weights will be estimated through the

smoothing parameters λk = λ/θk. Instead of estimating the θk directly, we

will get the Bayes estimates for each λk, which controls the smoothing effect

under each Σk.

The minimizer for equation (2.65) now is

f̂(t) = Td + Σc = Td +

(
p∑

k=1

Σk

)
c. (3.17)

As the alternative approach considered in equation (2.24), the prior distribu-
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tion for η is

η | δ0, λ ∼ Nn

(
0,

δ0

λ
Σ

)
. (3.18)

To apply the SSANOVA decomposition, refer to the setup for u2 in equa-

tion (3.24), which has a diffuse prior in H0. The covariance matrix for u2 is

F
′
2ΣF2. We decompose this covariance matrix according to the reproducing

kernel under each subspace,

F
′
2ΣF2 =

p∑

k=1

θkF
′
2ΣkF2. (3.19)

So each covariance matrix θkF
′
2ΣkF2 corresponds to a prior distribution wk

for each subspace k from the penalty term. Let

u2 =

p∑

k=1

wk.

If the priors on the wk are independent, the prior on wk satisfies

wk ∼ N
(
0, λkF

′
2ΣkF2

)
, k = 1, . . . , p,

where λk = λ/θk, k = 1, . . . , p. Then u2 has the required prior distribution

(3.24). To implement a fully Bayesian hierarchical model, we need to assign

prior distribution to the smoothing parameter λk = λ/θk.

We now take the prior distributions for δ0 and λk to be

[δ0] ∝ 1

δ0

, δ0 > 0, (3.20)
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[λk | ak] =
ak

(ak + λk)2
, λk ≥ 0 , k = 1 , . . . , p, (3.21)

where the Pareto distribution will be sampled based on the hierarchical struc-

ture in White (2006). Since the covariance matrix F
′
2ΣkF2 might be singular,

again take the spectral decomposition

F
′
2ΣkF2 = QkDkQ

′
k k = 1, . . . , p, (3.22)

where Qk is the matrix of eigenvectors corresponding to the nonzero eigenval-

ues at F
′
2ΣkF2 and Dk is the diagonal matrix with the nonzero eigenvalues on

the diagonal.

Set wk = Qkvk. Then the prior on vk and u2 is given by

vk | δ0, λk ∼ N

(
0,

δ0

λk
Dk

)
k = 1, . . . , p, (3.23)

u2 =

p∑

k=1

Qkvk. (3.24)

The full conditionals for each of the parameters are easily calculated:

d | δ0 ∼ N((T ′F1F
′
1T )−1T ′F1F

′
1y, δ0(T

′F1F
′
1T )−1),

(3.25)

vk | v−k, λk, δ0 ∼ N
(
(Irk

+ λkD
−1
k )−1Q′

k

(
F
′
2y −

p∑

i=1,i6=k

Qivi

)
,

δ0(Irk
+ λkD

−1
k )

)
, k = 1, . . . , p, (3.26)

λk | vk, δ0, φk ∼ Gamma

(
rk

2
+ 1,

2δ0

v′kD
−1
k vk + 2δ0φk

)
,

k = 1, . . . , p, (3.27)
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φk | λk, ak ∼ Gamma

(
2,

1

λk + ak

)
, k = 1, . . . , p, (3.28)

δ0 | λ1, . . . , λp, v1, . . . , vp ∼ Inverse Gamma

(
n +

∑p
k=1 rk

2
,

‖F ′
2y − u2‖2

2
+

p∑

k=1

λkv
′
kD

−1
k vk

2

)
, (3.29)

where r1, . . . , rp are the ranks of the nonzero eigenvalue matrices D1, . . . , Dp,

a1, . . . , ap are the parameters for the prior distributions of λ1, . . . , λp, and

v−k = {vj, j 6= k}, the collection of all vj for j 6= k.

The posterior distributions for each of the parameters can be simulated

based on the full conditionals. Since the decomposition of the reproducing

kernel Hilbert space provides orthogonal subspaces that span main effects and

interaction effects, we will test the components under each subspace for dif-

ferent effects. The model selection criteria for hypothesis testing is based on

Bayes factors.

3.2.2 Priors for one-way ANOVA compared to smoothing spline

ANOVA

Consider X = {1, . . . , K} corresponding to a one-way ANOVA model. The

balanced one-way ANOVA hierarchical model is

yij = µ + αi + εij, i = 1, . . . , K, j = 1, . . . , r, (3.30)

εij
iid∼ N(0, σ2), (3.31)

where r is the number of replicates. The customary prior on αi is

αi
iid∼ N(0, σ2

α), i = 1, . . . , K. (3.32)

42



In smoothing spline ANOVA for the identifiability of α = (α1, . . . , αK)′, the

prior for α is restricted to the complement of the null space. The null space is

H0 = {α = c(1, . . . , 1)′,−∞ < c < ∞}, (3.33)

with the projection matrix

P0 = 1(1′1)−11′ =
1

K
11′. (3.34)

Let H1 be the complement of the null space with projection matrix

P1 = I − 1

K
11′. (3.35)

If we take the projection of α onto H1, the resulting prior is

P1α ∼ N(0, P1σ
2
αIP ′

1) = N(0, σ2
αP1). (3.36)

Now represent the balanced one-way ANOVA hierarchical model (3.30) in

matrices,

y = 1µ + Xα + ε, (3.37)

where y is the n × 1 vector of observed responses, µ is the overall mean,

X = Ik ⊗ 1r is an n ×K design matrix, α is a K × 1 vector for factor level

effects and ε is an n × 1 vector for random errors. Since the prior for α is
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restricted to the complement of null space, the prior is

α ∼ N

(
0, σ2

α

(
I − 1

K
11′

))
= N(0, σ2

αP1). (3.38)

In keeping with the SSANOVA development, we replace σ2
α by δ0/λ. Then the

prior on Xα is

Xα ∼ N

(
0,

δ0

λ
X

(
I − 1

K
11′

)
X ′

)
= N

(
0,

δ0

λ
rΣ

)
, (3.39)

is the same as the prior distribution for η in equation (3.18) with covariance

matrix rΣ for the discrete variable in SSANOVA.

Take P̃ to be a K × (K − 1) matrix whose columns are orthonormal and

P̃ ⊥ 1K . Then P1 = P̃ P̃ ′, P̃ ′P̃ = I(k−1), and α ∼ N
(
0, δ0

λ
P̃ P̃ ′

)
.

Let β = P̃ ′α, so

β = P̃ ′α ∼ N

(
0,

δ0

λ
P̃ ′P̃ P̃ ′P̃

)

∼ N

(
0,

δ0

λ
I(K−1)

)
,

where β is a (K − 1) × 1 vector. Then β has a proper normal distribution

with a non-singular covariance matrix. Thus we can write

y = 1µ + X̃β + ε, (3.40)

where X̃ = XP̃ . With this transformation between α and β, the priors for

both α and β are equivalent but in different dimensions. This is the customary

prior for the coefficients in a full rank linear model.
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Since X̃ has full rank, consider the Zellner’s g-prior (Zellner, 1986) for β:

β ∼ N(0, gδ0(X̃
′X̃)−1) (3.41)

∼ N(0, gδ0(P̃
′X ′XP̃ )−1)

∼ N

(
0,

gδ0

r
I(K−1)

)
.

Without loss of generality, assume that X = IK ⊗ 1r so X ′X = rIK .

The Zellner-Siow prior (Zellner and Siow, 1980) on β is (3.41) with

g ∼ Inverse Gamma

(
1

2
,
n

2

)
. (3.42)

When the prior on smoothing parameter λ is

λ ∼ Gamma

(
1

2
,
K

2

)
, (3.43)

i.e.,

Kλ ∼ Gamma

(
1

2
,
1

2

)
,

∼ χ2
1, (3.44)

then the prior on the discrete term η in the SSANOVA is exactly the Zellner-

Siow prior. In a balanced design, the Zellner’s g-prior is depends on the number

of factor levels K.

We take a variant prior with K = 1 for λ so

λ ∼ Gamma

(
1

2
,
1

2

)
(3.45)
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for level effects in a discrete variable in SSANOVA. For smooth effect in a

continuous variable, the prior for λ is

λ ∼ Gamma

(
1

2
,
b

2

)
, (3.46)

where the scale parameter b is determined by the effective degrees of freedom.

3.2.3 Prediction at new points

The posterior means d and vk are computed as the mean of the MCMC

samples from equation (3.25) and (3.26) separately.

The estimate at the observed points is

ŷ = Fu = FF ′v = FF ′
(

Td +

p∑

k=1

ηk

)
,

where u = (u′1, u
′
2)
′,

u1 = F ′
1Td

u2 =

p∑

k=1

wk =

p∑

k=1

Qkvk.

Consider predicting at new points s1, . . . , st. The conditional mean for ỹ

at the new points is

ỹ = T̃ d +

p∑

k=1

η̃k, (3.47)

where T̃ spans the null space for the new points and η̃k = (η̃k(s1), . . . , η̃k(st))
′

is the conditional mean of ηk given the data at the new points. The covariance
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matrix between the observed and new points under each reproducing kernel

Hilbert space Hk is

Ck = Cov(η̃k, ηk) = [Rk(si, xj)]t×n. (3.48)

Define the reproducing kernel for the new points as

Σ̃k = [Rk(si, sj)]t×t. (3.49)

Then the prior distribution for η̃k is

η̃k | δ0, λ ∼ N

(
0,

δ0

λ
Σ̃k

)
. (3.50)

The joint distribution of η̃k and wk is




η̃k

wk


 ∼ N







0

0


 ,




δ0
λ
Σ̃k

δ0
λ
CkF2

δ0
λ
F ′

2C
′
k

δ0
λ
F ′

2ΣkF2







Using a standard result on multivariate normal distributions, the condi-

tional distribution of η̃k | wk is

η̃k | wk, δ0, λ ∼ N(CkF2(F
′
2ΣkF2)

−1Qkvk,

δ0

λ
(Σ̃k −CkF2(F

′
2ΣkF2)

−1F ′
2C

′
k)). (3.51)

To predict at the new points, samples from the conditional distribution η̃k |

wk, δ0, λ must be projected onto the complement of the null space for the new

points.
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The projection matrix in the null space for the new points is

PN0 = T̃ (T̃ ′T̃ )−1T̃ ′. (3.52)

Then the projection matrix onto the complement of null space is

PN1 = It − T̃ (T̃ ′T̃ )−1T̃ ′. (3.53)

Finally, the estimate of the new points is

PN1η̃k | wk ∼ N(PN1CkF2(F
′
2ΣkF2)

−1Qkvk,

PN1
δ0

λ
(Σ̃k −CkF2(F

′
2ΣkF2)

−1F ′
2C

′
k)P

′
N1). (3.54)

3.2.4 Bayes Factor in Bayesian approach

A well-known and widely adopted model selection criteria in Bayesian ap-

proach is the Bayes factor. Kass and Raftery (1995), Albert and Chib (1997)

and Bayarri and Garcia-Donato (2007) have discussed the definition, compu-

tation issues and the choice of priors for Bayes factors. The Bayes factor is the

ratio between the posterior odds and prior odds of two models. Let pk denote

the prior distribution for model k, where k = 1, 2, pk ≥ 0, and p1 +p2 = 1. For

the two competing models, suppose model 2 has parameters ωM2 and model 1

nested within model 2 has parameters ωM1. Suppose the prior distribution for

model 1 is p1(ωM1) and that for model 2 is p2(ωM2) = p1(ωM1)pa(γ), where γ

contains the parameters in model 2 but not in model 1. Note that the parame-

ters that appear in both model 2 and model 1 have the same prior distribution
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under both models. Also, pa(γ) must be a proper prior to have a well-defined

Bayes factor. The marginal likelihood function of y under model Mk is

p(y | Mk) =

∫

ωMk

fk(y | ωMk
)pk(ωMk

)dωMk
, k = 1, 2,

and the posterior probability of Mk | y is

p(Mk | y) =
p(y | Mk)pk∑2

k=1 p(y | Mk)pk

.

The Bayes factor for comparing model 2 with model 1 is defined to be

BF21 =
p(M2 | y)/p(M1 | y)

p1/p2

=
p(y | M2)

p(y | M1)
.

Since sometimes it is impossible to integrate out all the parameters, we use

bridge sampling (Meng and Wong, 1996) to estimate the Bayes factor if we

can integrate out γ. Assume we have output from MCMC simulations under

both models. Let ωMk
be the sequence of common parameters generated under

model k, k = 1, 2, and let l1i = q2(eωM1)
q1(eωM1)

, l2i = q2(eωM2)
q1(eωM2)

, where qk is the product

of the likelihood and the marginal prior density of ωMk under model k. The

Meng and Wong (1996) algorithm is iterative. At the (j + 1)th iteration,

compute

B̂F21

j+1
=

1
n1

∑n1
i=1

l1i

d1l1i+d2B̂F21
j

1
n2

∑n2
i=1

1

d1l2i+d2B̂F21
j

, (3.55)

where d1 = 1−d2 = n1

n1+n2
, and nk is the number of random samples generated

from the full conditionals through Gibbs sampling after a suitable burn-in
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period for model k, k = 1, 2. Convergence of B̂F21

j
is generally rapid. Larger

values of BF21 provide increasing evidence to support model 2 and smaller

values of BF21 support model 1.

Kass and Raftery (1995) provided an interpretation of BF21. They suggest

that when 1 < BF21 < 3.2, the evidence against model 1 is negligible. When

3.2 < BF21 < 10, the evidence against model 1 is substantial. When 10 <

BF21 < 100, the evidence against model 1 is strong. When BF21 > 100, the

evidence against model 1 is decisive.

Example 3.1

Consider two variables, x1 ∈ X1 = {1, . . . , K1} and x2 ∈ X2 = [0, 1]. Sup-

pose we want to model the x1 effect using an one-way ANOVA effects model

and the x2 effect using a cubic spline. The tensor product decomposition for

the Hilbert space H is listed in equation (2.58) and the reproducing kernel un-

der each subspace is in equation (2.57). Recall thatH0〈x1〉⊗H00〈x2〉 is the space

of constants with reproducing kernels R0〈x1〉R00〈x2〉; H0〈x1〉 ⊗H01〈x2〉 is the one

dimensional space of a linear effect in x2 with reproducing kernel R0〈x1〉R01〈x2〉;

H0〈x1〉 ⊗ H11〈x2〉 is the space of smooth effect in x2 with reproducing kernel

R0〈x1〉R11〈x2〉; H1〈x1〉⊗H00〈x2〉 is the space of level effects in x1 with reproducing

kernel R1〈x1〉R00〈x2〉. H1〈x1〉⊗H01〈x2〉 is the space of interaction effects between

level effects in x1 and linear effect in x2 with reproducing kernel R1〈x1〉R01〈x2〉.

Finally, H1〈x1〉⊗H11〈x2〉 is the space of interaction effects between level effects

in x1 and smooth effect in x2 with reproducing kernel R1〈x1〉R11〈x2〉. Refer to

Equations (2.59), (2.60), (2.61), (2.62), (2.63) and (2.64) for the corresponding

reproducing kernel under each subspace.

A fully Bayesian approach was implemented with the prior distribution
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assigned for δ0 and λ1, . . . , λ4 from equations (3.20) and (3.21). The prior

distribution on each term corresponding to the penalty on its subspace is given

by equation (3.23) with k = 1, 2, 3, 4. The corresponding full conditionals for

v1, . . . , v4, λ1, . . . , λ4, φ1, . . . , φ4 and δ0 are from equations (3.26), (3.27), (3.28)

and (3.29).

The tensor product decomposition decomposes the Hilbert space H into six

subspaces as discussed in the beginning of this example. The spaces H0〈x1〉 ⊗

H00〈x2〉 and H0〈x1〉 ⊗H01〈x2〉 are finite dimensional spaces containing functions

that are not going to be penalized. We will only smooth the functions from

the other four subspaces.

In this model, we are interested in testing the effects of the estimated

functions from each subspace. We set up a series of partially nested models of

interest and use the Bayes factor as the model selection criteria to test for the

effects. The partially nested models are:

Model 0 : f(x1, x2) = µ + βx2 + s1(x1) + s2(x2)

+l12(x1, x2) + s22(x1, x2), (3.56)

Model 1 : f(x1, x2) = µ + βx2 + s1(x1) + s2(x2) + l12(x1, x2), (3.57)

Model 2 : f(x1, x2) = µ + βx2 + s1(x1) + s2(x2), (3.58)

Model 3 : f(x1, x2) = µ + βx2 + s1(x1), (3.59)

Model 4 : f(x1, x2) = µ + βx2 + s2(x2), (3.60)

where µ is the constant term, β is the coefficient for the linear effect in x2,

s1 represents the level effects in x1, s2 represents the smooth effect in x2,

l12 represents the interaction effects between the level effects in x1 and linear
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effects in x2, and s22 represents the interaction effects between the level effects

in x1 and the smooth effect in x2.

To test if there is evidence to conclude the level effects from x1 interact with

the smooth effect from x2, we will have model 0 compete with model 1. The

parameters for model 0 are ωM0 = {v1, . . . , v4, λ1, . . . , λ4, δ0} and for model

1 are ωM1 = {v1, v2, v3, λ1, λ2, λ3, δ0}. Since it is intractable to compute the

marginal distribution of y for both model 0 and model 1, we will use bridge

sampling to compute the Bayes factor after integrating out the parameters v4

and λ4.

The product of likelihood and priors under model 0 is

lp(M0) = (2πδ0)
− (n−2)

2 e
− 1

2δ0
‖F ′2y−P4

i=1 Qivi‖2 × 1

δ0

×
4∏

i=1

(
(2π)−

ri
2

∣∣∣∣
δ0

λi

Di

∣∣∣∣
− 1

2

e
− λi

2δ0
v′iDivi

)
×

4∏
i=1

(
ai

(ai + λi)2

)
.(3.61)

The product of likelihood and priors under model 1 is

lp(M1) = (2πδ0)
− (n−2)

2 e
− 1

2δ0
‖F ′2y−P3

i=1 Qivi‖2 × 1

δ0

×
3∏

i=1

(
(2π)−

ri
2

∣∣∣∣
δ0

λi

Di

∣∣∣∣
− 1

2

e
− λi

2δ0
v′iD

−1
i vi

)
×

3∏
i=1

(
ai

(ai + λi)2

)
.(3.62)

After integrating out v4 analytically, the term λ4 will be integrated out nu-

merically under model 0. Then

q0 =

∫

R

∫

R
lp(M0) dv4dλ4

=

∫

R
(2πδ0)

− (n−2)
2 |2πA−1δ0| 12 e−

1
2δ0

‖F ′2y−P3
i=1 Qivi‖2 ×

e
1

2δ0
(F
′
2y−P3

i=1 Qivi)
′Q4A−1Q′

4(F
′
2y−P3

i=1 Qivi) ×
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3∏
i=1

(
(2π)−

ri
2

∣∣∣∣
δ0

λi

Di

∣∣∣∣
− 1

2

exp
− λi

2δ0
v′iD

−1
i vi

)
×

3∏
i=1

(
ai

(ai + λi)2

)
× 1

δ0

∣∣∣∣
δ0

λ4

D4

∣∣∣∣
− 1

2

dλ4, (3.63)

where A = Ir4 + λ4D
−1
4 . Finally,

q0

q1

=

∫

R
|2πA−1δ0| 12 e

1
2δ0

(F
′
2y−P3

i=1 Qivi)
′Q4A−1Q′

4(F
′
2y−P3

i=1 Qivi)×,

a4

(a4 + λ4)2

∣∣∣∣
δ0

λ4

D4

∣∣∣∣
− 1

2

(2π)−
r4
2 dλ4 (3.64)

We use the random samples generated from the full conditionals and apply

equation (3.55) to compute the Bayes factor BF01 and test the significance of

v4, the interaction effect between the level effects in x1 and the smooth effect

in x2. A similar approach can be done to calculate BF12 to test the interaction

effect between the level effects in x1 and the linear effect in x2, BF23 to test

the smooth effect in x2, and BF24 to test the level effects in x1. By definition,

BF02 = BF01 × BF12 provided the statistic to test for interaction effects. To

illustrate the application of this model selection method, the simulated and

manufacturing examples in Sections 3.1.3 and 3.1.4 will be revisited and the

results will be compared.

3.2.5 Simulated Example in Bayesian SSANOVA

Consider again the example in Section 3.1.3. Instead of fitting the data

with a smoothing spline, we will fit the data with the five models (3.56),

(3.57), (3.58), (3.59) and (3.60) proposed in Example 3.1.

The effect of each component is tested by model selection. The Bayes
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factors for each pair of models is listed in Table 3.1. The hyper-parameters

a1, a2, a3 and a4 for the Pareto priors on λ was set to be a1 = a2 = a3 =

a4 = 0.01, which corresponding to effective degrees of freedom 1, 1, 1 and 2 for

each term in model (3.56). The results showed BF01 = 0.438 for testing the

effect of s12 was inconclusive, BF12 = 0.192 favored model 2 and concluded

l12 is insignificant, BF23 = 883 strongly favored model 2 and concluded s2 is

significant and BF24 = 75.7 favored model 2 and concluded s1 is significant. As

shown in Figure 3.5, model 0, model 1 and model 2 provided almost the same

fit as confirmed in the model selection, while model 2 is the most parsimonious

model.

Table 3.1: Bayes factors in simulated example
BF01 BF12 BF23 BF24

0.438 0.192 883 75.7

3.2.6 Manufacturing Example in Bayesian SSANOVA

Now we revisit the manufacturing example in Section 3.1.4. Since there

were 18 operators, we do not consider the interaction effects between x1 and

x2. We fit the data with three partially nested models so we can inspect the

linear and smooth effects individually.

Model 2 : f(x1, x2) = µ + βx2 + s1(x1) + s2(x2),

Model 3 : f(x1, x2) = µ + βx2 + s1(x1),

Model 4 : f(x1, x2) = µ + βx2 + s2(x2),
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where µ is the constant term, β is the coefficient for the linear effect in x2, s1

represents the level effects in x1, and s2 represents the smooth effect in x2.

The effect of each component is tested by model selection. The Bayes

factors for each pair of models is listed in Table 3.2. The hyper-parameters a1

and a2 for the Pareto priors of the λ are a1 = a2 = 0.01, which corresponding

to effective degrees of freedom 16.9 and 0.9. Note that BF23 = 4.04 favored

model 2 and BF24 = 4.38 × 10−3 strongly favored model 4. We conclude

that the level effects in x1 are insignificant since we favored model 4 over 2.

The smooth effect in x2 is significant since we favored model 2 over model

3. As shown in Figure 3.6, model 2 and model 4 provide almost the same fit

as confirmed in the model selection, while model 4 is the most parsimonious

model.

Table 3.2: Bayes factors in manufacturing example
BF23 BF24

4.04 4.38× 10−3

3.2.7 Alternative Bayes Factor Computation

As discussed in Section 3.2.4, bridge sampling provides one way to compute

Bayes factors for fully Bayesian smoothing spline ANOVA models. So far,

bridge sampling has been used to test the smooth effect, the level effects and

the interaction effects among independent variables. In addition to testing for

these effects, it is sometimes interesting to test for variables in the null space.

In particular, when testing for the effect of a continuous variable, one wants

to simultaneously test for the linear and smooth effects.

Consider p independent discrete variables x1, . . . , xp, q independent contin-
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uous variables xp+1, . . . , xp+q and the response variable y. The model proposed

to fit the data is a smoothing spline function

Model 2 : f(x1, . . . , xp+q) = µ +

p+q∑
i=p+1

βixi +

p∑
i=1

li(xi) +

p+q∑
i=p+1

si(xi) +

∑
j>i

fij(xi, xj),

where µ is the constant term, βp+1, . . . , βp+q are the coefficients for the lin-

ear effects in xp+1, . . . , xp+q, l1, . . . , lp represent the level effects for discrete

variables x1, . . . , xp, sp+1, . . . , sp+q represent the smooth effects for continuous

variables xp+1, . . . , xp+q and fij represent the interaction effects between xi and

xj for both linear and nonlinear effects.

Suppose we are interested in testing the significance of some independent

variables, smooth effects or interaction effects such as {ls1 , . . . , lp1 , βt1 , . . . , βq1 ,

st1 , . . . , sq1 , fs1,t1 , . . . , fp1,q1}, where 1 ≤ s1, p1 ≤ p, p + 1 ≤ t1 and q1 ≤ p + q .

The corresponding reduced model for testing is

Model 1 : f(x1, . . . , xp+q) = µ +

p+q∑

i=p+1,i6=(t1,...,q1)

βixi +

p∑

i=1,i6=(s1,...,p1)

li(xi)

+

p+q∑

i=p+1,i6=(t1,...,q1)

si(xi)

+
∑

j>i,i 6=(s1,...,p1),j 6=(t1,...,q1)

fij(xi, xj)

With Zellner-Siow priors assigned for (βt1 , . . . , βq1), (ls1 , . . . , lp1) and the

interaction effects between level effects as discussed in Section 3.2.2 and the

scaled χ2
1 priors assigned for (st1 , . . . , sq1) and the interaction effects between

the linear effects and nonlinear effects, we can consolidate the terms receiving
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the same type of priors. Let p2 represent the number of terms receiving Zellner-

Siow priors and q2 represent the number of terms receiving scaled χ2
1 priors

in model 2, and let p3 represent the number of terms receiving Zellner-Siow

priors and q3 represent the number of terms receiving scaled χ2
1 priors in model

1. Both model 2 and model 1 can be rewritten as

Model 2 : f(x1, . . . , xp+q) = µ +

p+q∑
i=p+1

βixi +

p2∑
i=1

li(xi) +

q2∑
i=1

si(xi)

Model 1 : f(x1, . . . , xp+q) = µ +

p+q∑

i=p+1,i6=(t1,...,q1)

βixi +

p3∑
i=1

li(xi) +

q3∑
i=1

si(xi),

where li represents the terms received Zellner-Siow priors, si represents the

terms received scaled χ2
1 priors, p2 ≥ p3 and q2 ≥ q3.

The parameters in model 2 are ωM2 = {βp+1, . . . , βp+q, v1, . . . , vp2+q2 , λ1,

. . . , λp2+q2 , g, δ0}. The parameters in model 1 are ωM1 = {βp+1, . . . , βt1 ,

βq1 , . . . , βp+q, v1, . . . , vp3+q3 , λ1, . . . , λp3+q3 , δ0}. One way to implement bridge

sampling for computing the Bayes factor BF21 is to integrate out those para-

meters that are in model 2 but not in model 1 from the product of likelihood

and priors under model 2. This is intractable.

An alternative has been proposed to accommodate the computation of

Bayes factor BF21. Instead of integrating out those parameters that are in

model 2 but not in model 1 to match the parameter spaces for both model

2 and model 1, those parameters will be included in the MCMC steps under

model 1 by sampling from the full conditionals derived from the priors those

parameters received under model 2. The product of likelihood and priors under
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model 2 is

lp(M2) = (2πδ0)
−n/2e

− 1
2δ0

‖F ′1y−F
′
1T d‖2

e
− 1

2δ0
‖F ′2y−Pp2+q2

i=1 Qivi‖2

×
q2∏

i=1

(2π)−ri/2δ
−ri/2
0 λ

ri/2
i |Di|− 1

2 e
− λi

2δ0
v′iD

−1
i vi

q2∏
i=1

b
1/2
i

Γ(1/2)
λ
−1/2
i e−λibi

×
p2∏
i=1

(2π)−ri/2δ
−ri/2
0 λ

ri/2
i (

n

ki

)ri/2e
− λin

2δ0ki
v′ivi

p2∏
i=1

(1/2)1/2

Γ(1/2)
λ
−1/2
i e−λi/2

×(2πgδ0(T
′
2T2)

−1)−1/2e
− 1

2gδ0(T
′
2T2)−1

β2

×
(n/2)1/2

Γ(1/2)
g−3/2e−

n
2g × 1

δ0

, (3.65)

where T = [xp+1, . . . , xp+q], T1 = [xp+1, . . . , xt1−1, xq1+1, . . . , xp+q], T2 =

[xt1 , . . . , xq1 ], β = (βt1 , . . . , βq1)
′, bi is the scale parameter for χ2

1 and g is

the hyperparameter for the Zellner-Siow prior. The full conditionals for d1 =

(βp+1, . . . , βt1−1, βq1+1, . . . , βp+q)
′, vi, λi and δ0 refer to equations (3.25), (3.26),

(3.27) and (3.29) in Section 3.2.1.

The full conditionals for β and g are

β | δ0, g ∼ N((T ′
2F1bF

′
1bT2 + (gT ′

2T2)
−1)−1(T ′

2F1bF
′
1by),

δ0(T
′
2F1bF

′
1bT2 + (gT ′

2T2)
−1)−1), (3.66)

g | β, δ0 ∼ Inverse Gamma

(
1,

T ′
2T2β

2

2δ0

+
n

2

)
, (3.67)

where F1 = [F1a, F1b], F1 is the n× q matrix of vectors spanning the column

space of T and F1b has dimension n× (q1 − t1).

The product of likelihood and priors under model 1 is

lp(M1) = (2πδ0)
−n/2e

− 1
2δ0

‖ eF ′1y− eF ′1T1d1‖2e−
1

2δ0
‖ eF ′2y−Pp3+q3

i=1 Qivi‖2
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×
q3∏
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(2π)−ri/2δ
−ri/2
0 λ
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i |Di|− 1

2 e
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×
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, (3.68)

where F̃ = [F̃1, F̃2], F̃1 is the n× (q − q1 + t1) matrix of vectors spanning the

column space of T1.

Take the ratio of lp(M2) to lp(M1),

q0

q1

=
e
− 1

2δ0
‖F ′1y−F

′
1T d‖2

e
− 1

2δ0
‖F ′2y−Pp2+q2

i=1 Qivi‖2

e
− 1

2δ0
‖ eF ′1y− eF ′1T1d1‖2e−

1
2δ0

‖ eF ′2y−Pp3+q3
i=1 Qivi‖2

. (3.69)

Utilize the random samples generated from the full conditionals under both

model 2 and model 1, then apply equation (3.55) to compute the Bayes factor

BF21 to test the significance of {ls1 , . . . , lp1 , βt1 , . . . , βq1 , st1 , . . . , sq1 , fs1,t1 , . . . ,

fp1,q1}.

In order to adapt the Bayes factor for testing the linear effects in continuous

variables, the linear terms must have informative priors such as Zellner-Siow

priors, which is different from the estimation and prediction situation where

a flat prior in the null spaces constructed by the linear effects of continuous

variables is favored. So if the goal of the study is parameter estimation or

prediction, then the flat prior in the null space is chosen. However, if the goal

is testing the linear effects in continuous variables, then the informative priors

are needed.

Two simulated examples demonstrate this alternative approach in comput-
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ing Bayes factors.

Example 3.2

Consider simulated data from a balanced design with two independent

continuous variables x1 and x2 and one response variable y. Take x1i = (i −

1)/(m − 1), x2j = (j − 1)/(m − 1) and yij = 1 + 3 sin(2πx1i − π) + εij with

δ0 = 1, where i = 1, . . . , m, j = 1, . . . , m. We vectorized this model as follows.

Let e = (0, . . . , (m − 1))′/(m − 1) and 1 = (1, . . . , 1)′m×1 with m = 30. Then

let x1 = e ⊗ 1 and x2 = 1 ⊗ e, where ⊗ is the Kronecker product. Let

yi = (yi1, . . . , yim)′ and y = (y′1, . . . , y
′
m)′. The sample size is n = 900.

Suppose one wants to test if x2 is a significant variable to predict y. The

models proposed for testing are

Model 2 : f(x1, x2) = µ + β1x1 + β2x2 + s1(x1) + s2(x2), (3.70)

Model 1 : f(x1, x2) = µ + β1x1 + s1(x1),

where µ is the constant term, β1 is the coefficient for the linear effect in x1, β2

is the coefficient for the linear effect in x2, s1 represents the smooth effect in

x1 and s2 represents the smooth effect in x2.

To test for the effect of x2, it is required to test f(x2) = β2x2 + s2(x2).

The Zellner-Siow prior was used for β2, the coefficient for the linear effect in

x2. The scaled χ2
1 priors were applied to test smooth effects, both s1 and s2.

The scale parameters in χ2
1 priors were selected to be 0.01 for both s1 and s2,

which provided 5.25 effective degrees of freedom for each of the smooth effects,

s1 and s2. Figure 3.7 shows the MCMC trace plots for parameters u10, λ1, λ2

and δ0 under model 2. Convergence is rapid in all cases.
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Followed the procedure of the alternative approach for computing the Bayes

factor, BF21 = 8.24× 10−88, providing conclusive evidence that x2 contributes

no information in predicting y. This conclusion agrees with the true model.

The second simulated dataset is also a balanced design with two indepen-

dent variables, one discrete (x1) and one continuous (x2), and response variable

y. Take x1i = i, x2j = (j − 1)/(m− 1) and yij = 1 + 2I{x1i=1} + 3 sin(2πx2j −

π) + εij with δ0 = 4, where i = 1, 2, 3, 4, j = 1, . . . , m. We vectorized this

model as follows. Let e = (0, . . . , (m − 1))′/(m − 1), 11 = (1, . . . , 1)′4×1

and 12 = (1, . . . , 1)′100×1, with m = 100, and let x1 = (1, 2, 3, 4)′ ⊗ 12 and

x2 = 11⊗e. Finally, let yi = (yi1, . . . , yim)′ and y = (y′1, . . . , y
′
4)
′. The sample

size is n = 400.

Again the goal is to identify if x2 is a significant variable to predict y, and

the models proposed for testing are

Model 2 : f(x1, x2) = µ + β2x2 + l1(x1) + s2(x2), (3.71)

Model 1 : f(x1, x2) = µ + l1(x1), (3.72)

where µ is the constant term, β2 is the coefficient for the linear effect in x2, l1

represents the level effects in x1 and s2 represents the smooth effect in x2.

To test for the effect of x2, it is required to test f(x2) = β2x2 +s2(x2). The

Zellner-Siow priors were used for β2 and the level effects in x1. The scaled

χ2
1 prior was applied to test the smooth effects in x2. The scale parameter

in χ2
1 prior was selected to be 0.001, which provided 5.33 effective degrees of

freedom for the smooth effect, s2. Figure 3.8 shows the MCMC trace plots

for parameters u10, λ1, λ2 and δ0 under model 2. Convergence is rapid in all
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cases.

The result for testing f(x2) = β2x2+s2(x2) is BF21 = 1.70×10130, providing

conclusive evidence that x2 contributes information in predicting y. This again

agrees with the true model.

Example 3.3

We revisit the manufacturing dataset in Section 3.2.6 using the alternative

Bayes factor to test the effect of time. The models proposed for testing are

equations (3.71) and (3.72), where x1 represents the variable operator and x2

represents the variable time.

To test for the effect of time, it is required to test f(time) = β2time +

s2(time). The same set of priors for model 2 in equation (3.71) were used.

The scale parameter in the χ2
1 prior was selected to be 0.0001, which pro-

vided 5.01 effective degrees of freedom for the smooth effect, s2. Figure 3.9

shows the MCMC trace plots for parameters u10, λ1, λ2 and δ0 under model

2. Convergence is rapid in all cases.

The corresponding BF21 = 3.44 × 1014 provides conclusive evidence that

time contributes information in predicting y.

3.2.8 Simulated Example 1

Consider a simulated dataset with three independent variables, a discrete

variable (x1) with four levels, a second discrete variable (x2) with twenty lev-

els and one continuous variable (x3), along with response variable y. Take

(x11, x12, x13, x14)
′ = (a, b, c, d), x2j = j, x3k = (k − 1)/(m − 1) and yijk =

1 + 2I{x1i=a} + 3 sin(2πx3k − π) + εijk with δ0 = 1, where i = 1, 2, 3, 4, j =

1, . . . , 20, k = 1, . . . , m. We vectorized this model as follows. Let e =
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(0, . . . , (m − 1))′/(m − 1), 11 = (1, . . . , 1)′100×1 and 12 = (1, . . . , 1)′20×1, where

m = 20 then x1 = (a, b, c, d)′ ⊗ 11, x2 = (1, . . . , 20)′ ⊗ 12 and x3 = e ⊗ 12.

Let yij = (yij1, . . . , yijm)′, and yi = (y′i1, . . . , y
′
i,20)

′ and y = (y′1, . . . , y
′
4)
′. The

sample size is n = 400.

The model proposed to analyze the effect of each covariate is a smoothing

spline function

Model 7 : f(x1, x2, x3) = µ + β3x3 + s3(x3) + l1(x1) + l2(x2) + l13(x1, x3)

+ls13(x1, x3) + l23(x2, x3) + ls23(x2, x3), (3.73)

where µ is the constant term, β3 is the coefficient for the linear effect in x3,

s3 represents the smooth effect in x3, l1 represents the level effects in x1, l2

represents the level effects in x2, l13 represents the interaction effects between

the level effects in x1 and linear effects in x3, ls13 represents the interaction

effects between the level effects in x1 and smooth effect in x3, l23 represents

the interaction effects between the level effects in x2 and linear effects in x3

and ls23 represents the interaction effects between the level effects in x2 and

smooth effect in x3.

To test for the significance of each term in the model 7, a series of partially

nested models of interest is proposed:

Model 6 : f(x1, x2, x3) = µ + β3x3 + s3(x3) + l1(x1) + l2(x2) + l13(x1, x3)

+ls13(x1, x3) + l23(x2, x3), (3.74)

Model 5 : f(x1, x2, x3) = µ + β3x3 + s3(x3) + l1(x1) + l2(x2) + l13(x1, x3)
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+ls13(x1, x3), (3.75)

Model 4 : f(x1, x2, x3) = µ + β3x3 + s3(x3) + l1(x1) + l2(x2)

+l13(x1, x3), (3.76)

Model 3 : f(x1, x2, x3) = µ + β3x3 + s3(x3) + l1(x1) + l2(x2), (3.77)

Model 2 : f(x1, x3) = µ + β3x3 + s3(x3) + l1(x1), (3.78)

Model 1 : f(x3) = µ + β3x3 + s3(x3), (3.79)

Model 0 : f(x1, x3) = µ + β3x3 + l1(x1). (3.80)

The Zellner-Siow prior was used for β3, the coefficient for the linear effect in

x3. Two different types of priors, Pareto and scaled χ2
1, were applied to test

the smooth effects. The scale parameters in the Pareto priors or those for the

χ2
1 priors were selected by the effective degrees of freedom method as discussed

in Section 3.1.2. The values of λ corresponding to reasonable prior effective

degrees of freedom for each term in model 7 are listed in Table 3.3. Figure

3.10 shows the MCMC trace plots for parameters u10, λ1, λ2, λ3, λ4, λ5, λ6,

λ7 and δ0 under model 7 with scaled χ2
1 priors. Convergence is rapid in all

cases. These were used in the computation of the Bayes factors. The Bayes

factors under both the Pareto and scaled χ2
1 priors for model comparison and

the specific terms to be tested are listed in Table 3.4.

Based on Table 3.4, both the Pareto and scaled χ2
1 priors have come up

with the same conclusion that there is insufficient evidence to conclude that

ls23(x2, x3), l23(x2, x3), ls13(x1, x3) and l13(x1, x3) are significant and sufficient

evidence to conclude that l2(x2), l1(x1) and s3(x3) are significant in predicting

y. The most parsimonious model to predict y is model 3. Figure 3.11 shows
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the model 7 and model 3 provided almost the same fit and is a more suitable

fit than those in model 1 and model 0 as confirmed in the model selection.

When constructing the response variable y, the x2 is not involved. But the

hypothesis testing concluded that l2(x2) is significant. This is caused by the

confounding effect between x1 and x2. There are 5 levels of x2 for each level

of x1 in this data. Since the x1 is significant, so is x2.

Table 3.3: The λs for each term in Model 7 giving the desirable effective
degrees of freedom.

s3 l13 ls13 l23 ls23

λ 0.0001 0.1 0.1 10 1
Effective df 4.44 2.83 2.781 2.775 5.92

Table 3.4: The Bayes factors for testing each term in model 7 adapted both
the scaled χ2

1 and the Pareto priors in all the terms except l2(x2) and l1(x1),
which received Zellner-Siow priors.

BF76 BF65 BF54 BF43

scaled χ2
1 0.202 0.371 0.357 0.121

Pareto 0.351 0.539 0.479 0.244
Terms ls23(x2, x3) l23(x2, x3) ls13(x1, x3) l13(x1, x3)

BF32 BF21 BF20

scaled χ2
1 1.0× 1070 1.4× 10104 ∞

Pareto 1.0× 1070 2.5× 10104 ∞
Terms l2(x2)

∗ l1(x1)
∗ s3(x3)

3.2.9 Potassium Measurement on Dogs

In this section, a dataset from Wang and Ke (2004) is revisited using fully

Bayesian SSANOVA models. Thirty-six dogs were assigned to four groups:

control, extrinsic cardiac denervation three weeks prior to coronary occlusion,

extrinsic cardiac denervation immediately prior to coronary occlusion, and bi-

lateral thoratic sympathectomy and stellectomy three weeks prior to coronary
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occlusion. Coronary sinus potassium concentrations were measured on each

dog every two minutes from 1 to 13 minutes after occlusion. The goal is to

identify if the variables group, dog and time are useful to predict the potassium

concentrations.

In order to adapt the model setting in Section 3.2.8, x1 represents the

variable group, x2 represents the variable dog, x3 represents the variable time

and y represents the response variable potassium. The model proposed to fit

the data is model 7 in equation (3.73). To test the significance of each term,

a series of models in equations (3.74), (3.75), (3.76), (3.77), (3.78), (3.79) and

(3.80) are proposed with the same priors, linear/level effects with Zellner-Siow

priors and smooth effects with Pareto or scaled χ2
1 priors, chosen in the Section

3.2.8. The scale parameter in the Pareto prior or that for the scaled χ2
1 prior

were selected by effective degrees of freedom. The values of λ corresponding

to desirable effective degrees of freedom for each term in model 7 are listed

in Table 3.5. Figure 3.12 shows the MCMC trace plots for parameters u10,

λ1, λ2, λ3, λ4, log(λ5), log(λ6), log(λ7) and δ0 under model 7 with scaled χ2
1

priors. Convergence is rapid in all cases. The Bayes factors under both Pareto

and scaled χ2
1 priors for model comparison and the specific terms to be tested

are listed in Table 3.6.

Based on Table 3.6, under either the Pareto or the scaled χ2
1 priors, we

conclude that there is sufficient evidence that ls23(dog , time), l23(dog , time),

l13(dog , time), l2(dog), l1(group) and s3(time) are significant in predicting

potassium. However BF54 didn’t provide sufficient evidence to conclude if

ls13(group, time) is significant or not. Figure 3.13 shows the fits from model

7, model 3, model 1 and model 0, while the most suitable fit to the dataset is
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model 7 as confirmed in the model selection.

In the study conducted by Wang and Ke (2004), model 7, model 6 and

model 5 in equations (3.73), (3.74) and (3.75) were fit to the data. Through

the AIC criteria, model 7 was judged best. The Bayes factor analysis suggests

that the ls13(group, time) term could be omitted. The focus of their study is

more in model fitting and parameter estimation rather than hypothesis testing.

The flexibility of hypothesis testing is the advantage of this fully Bayesain

SSANOVA approach.

Table 3.5: The λs for each term in Model 7 giving the desirable effective
degrees of freedom.

s3(time) l13(group, time) ls13(group, time)
λ 0.0001 0.1 0.1

Effective df 3.09 2.59 2.01

l23(dog , time) ls23(dog , time)
λ 10 1

Effective df 2.08 5.13

Table 3.6: The Bayes factors for testing each term in model 7 adapted both
scaled χ2

1 and Pareto priors in all the terms except l2(dog) and l1(group), which
received Zellner-Siow priors.

BF76 BF65 BF54 BF43

scaled χ2
1 954 1.58× 104 1.23 4.56× 105

Pareto 116 3.85× 103 1.27 3.86× 105

Terms ls23(dog , time) l23(dog , time) ls13(group, time) l13(group, time)

BF32 BF21 BF20

scaled χ2
1 9× 1063 4.3× 1051 8.08× 1063

Pareto 6× 1062 3.8× 1051 8.07× 1063

Terms l2(dog)∗ l1(group)∗ s3(time)
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Chapter 4

Fully Bayesian SSANOVA for Binary response

variables

In Chapter 3, the fully Bayesian SSANOVA model is for Gaussian response

variables. In this chapter it will be extended to binary response variables.

4.1 Binary response variable

Let y denotes the vector with components yi, i = 1, 2, . . . , n, where yi is the

observed response with only two possible outcomes. Take yi to be independent

Bernoulli random variables with probability pi = p(yi = 1) = H(x
′
iβ), where

x
′
i = (xi1, . . . , xip), the data vector for the ith case, β = (β1, . . . , βp)

′ are

the parameters to be estimated and H is a cumulative distribution function

for a continuous random variable. The inverse, H−1, is also known as the

link function. There are many choices for link function. One popular choice is

H = Φ, the cumulative distribution function of a standard normal distribution,

leading to the probit model. Thus the probability function of y is

p(y | β) =
n∏

i=1

pyi

i (1− pi)
(1−yi)
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=
n∏

i=1

Φ(x
′
iβ)yi(1− Φ(x

′
iβ))(1−yi)

As in Hastie and Tibshirani (1999), Gu (2002) and Wang and Ke (2004), this

generalized linear model setup can be extended to a generalized additive model

with the probability

pi = p(yi = 1) = H

(
µ +

k∑
j=1

fj(xij)

)
, (4.1)

where µ is the constant term and the fj represent linear effects, smooth effects

or interaction effects.

The SSANOVA approach has been applied to generalized linear models

by Gu (2002). In this section, we extend the fully Bayesian SSANOVA mod-

els of Section 3.2.1 to the case of probit regression. The solution for fully

Bayesian SSANOVA model discussed in Section 3.2.1 was for a Gaussian re-

sponse variable. To extend the work for binary response variables, one solution

is through data augmentation. Followed Albert and Chib (1993), introduce

n independent latent variables z = (z1, . . . , zn), where the zi are independent

N((Td+(
∑p

k=1 Σk) c)i, 1), and yi = 1 if zi > 0 and yj = 0 if zj < 0. With the

solution for the fully Bayesian SSANOVA model discussed in Section 3.2.1,

the distribution of the latent variables z is




F ′
1z

F ′
2z


 | d, u2, λ ∼ N







F ′
1Td

u2


 , In


 ,

z | d, u2, λ ∼ N(Td + F2u2, In), (4.2)

where the variance is set to be 1 for identifiability.
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The prior for d is assigned to be flat. The prior distribution for u2 is

suggested as equations (3.23) and (3.24). As discussed by Sun et al. (2001), the

posterior distribution for z is proper. For the linear effects, Zellner-Siow priors

in equation (3.44) are suggested as discussed in Section 3.2.2. For smooth

effects, the scaled χ2
1 priors are suggested as discussed in Section 3.2.2. The

scale for the scaled χ2
1 is selected by the effective degrees of freedom discussed

in Section 3.1.2.

Given the data yi, the full conditional truncated normal distribution for

the latent variables z given y satisfies

p(z | y, d, u2, λ) ∝
n∏

i=1

{1(zi>0)1(yi=1) + 1(zi<0)1(yi=0)}

×(2π)−n/2e{−
1
2
(z−T d−F2u2)2},

where 1(x∈A) is the indicator function, 1(x∈A) = 1 if x ∈ A and 0 otherwise.

This can be simplified as

yi = 1, zi | d, u2, λ ∼ N+((Td + F2u2)i, 1), (4.3)

yi = 0, zi | d, u2, λ ∼ N−((Td + F2u2)i, 1), (4.4)

where N+ is the positive normal distribution restricted to (0,∞) and N− is

the negative normal distribution restricted to (−∞, 0).

Followed the algorithm in Devroye (1986), sampling from the full condi-

tionals in equations (4.3) and (4.4) can be accomplished as follows:

yi = 1, zi > 0 : zi = (Td + F2u2)i + Φ−1(1− uΦ((Td + F2u2)i)),
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yi = 0, zi < 0 : zi = (Td + F2u2)i + Φ−1(uΦ(−(Td + F2u2)i)),

where u is a random draw from the uniform distribution on [0, 1].

The full conditionals for each of the parameters are similar to equations

(3.25), (3.26), (3.27) except that z is involved, scaled χ2
1 priors have been

assigned for smooth effects, and δ0 = 1:

d | vk ∼ N
(
(T ′T )−1T ′

(
z − F2

p∑
i=1

Qivi

)
,
(
T ′T

)−1)
, (4.5)

vk | v−k, λk, ∼ N
(
(Irk

+ λkD
−1
k )−1Q′

kF
′
2

(
z − Td− F2

( p∑

i=1,i6=k

Qivi

)
,

(Irk
+ λkD

−1
k )−1

)
, k = 1, . . . , p, (4.6)

λk | vk ∼ Gamma
(rk + 1

2
,
( 2

v′kD
−1
k vk + 2βk

))
, (4.7)

k = 1, . . . , p,

where r1, . . . , rp are the ranks of the nonzero eigenvalue matrices D1, . . . , Dp,

β1, . . . , βp are the scale parameters in the prior distribution for each smoothing

parameter λ1, . . . , λp, and v−k denotes the set of vectors {vj,j 6= k}. When

the covariates are discrete, the full conditionals for each of the parameters

stay the same except in equation (4.6), where the diagonal elements in D−1
k

are replaced by n/K and in equation (4.7), where βk is replaced by 1/2.

The posterior distributions for each of the parameters can be simulated

based on the full conditionals.
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4.1.1 Simulated Example 2

Consider a simulated dataset with two continuous independent variables.

The sample size is n = 500, and x1i and x2i are independent samples from the

uniform distribution on [0, 1]. The binary response variable yi is 0 if 0.25x1i +

1.5 sin(2πx2i− π) + εi is negative and yi is 1 if 0.25x1i + 1.5 sin(2πx2i− π) + εi

is positive. The variance δ0 = 1. The model proposed for this study is a

smoothing spline function

Model 6 : f(x1, x2) = µ + β1x1 + β2x2 + s1(x1) + s2(x2) + ls12(x1, x2)

+sl12(x1, x2) + s12(x1, x2), (4.8)

where µ is the constant term, β1 is the coefficient for the linear effect in x1,

β2 is the coefficient for the linear effect in x2, s1 represents the smooth effect

in x1, s2 represents the smooth effect in x2, ls12 represents the interaction

effects between the level effects in x1 and smooth effect in x2, sl12 represents

the interaction effects between the smooth effect in x1 and level effects in x2

and s12 represents the interaction effects between the smooth effect in x1 and

smooth effect in x2. To test for the significance of each term in model 6, a

series of partially nested models of interest is proposed:

Model 5 : f(x1, x2) = µ + β1x1 + β2x2 + s1(x1) + s2(x2) + ls12(x1, x2)

+sl12(x1, x2), (4.9)

Model 4 : f(x1, x2) = µ + β1x1 + β2x2 + s1(x1) + s2(x2) +

ls12(x1, x2), (4.10)

Model 3 : f(x1, x2) = µ + β1x1 + β2x2 + s1(x1) + s2(x2), (4.11)

72



Model 2 : f(x1, x2) = µ + β1x1 + β2x2 + s1(x1), (4.12)

Model 1 : f(x1, x2) = µ + β1x1 + β2x2 + s2(x2). (4.13)

Two different types of priors, Pareto and scaled χ2
1, were applied to test the

smooth effects. The scale parameters in the Pareto priors or those for the χ2
1

priors were selected by effective degrees of freedom. The values of λ corre-

sponding to desirable effective degrees of freedom for each term in model 6 are

listed in Table 4.1. Figure 4.1 shows the MCMC trace plots for parameters

u10, log(λ1), log(λ2), log(λ3), log(λ4) and log(λ5) under model 6 with scaled

χ2
1 priors, which have converged in all cases. These were used in the compu-

tation of Bayes factors. The Bayes factors under both the Pareto and scaled

χ2
1 priors for model comparison and the specific term to be tested are listed in

Table 4.2.

Based on Table 4.2, under either the Pareto or the scaled χ2
1 priors, we con-

clude that there is insufficient evidence that s12(x1, x2), sl12(x1, x2), ls12(x1, x2)

and s1(x1) are significant and sufficient evidence that s2(x2) is significant in

predicting y. The most parsimonious model to predict y is model 1, which

agrees with the true model. Figure 4.3 shows the fits of components in model

6 with 95% credible sets, and Figure 4.2 shows the fits of each component in

model 6 and prediction by model 6, which help us to visualize the effects.

Table 4.1: The λs for each term in Model 6 giving the desirable effective
degrees of freedom.

s1(x1) s2(x2) ls12(x1, x2) sl12(x1, x2) s12(x1, x2)
λ 0.005 0.005 0.005 0.005 0.005

Effective df 5.27 5.25 4.57 4.43 5.57
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Table 4.2: The Bayes factors for testing each term in model 6 adapted both
scaled χ2

1 and Pareto priors.
BF65 BF54 BF43 BF32 BF31

scaled χ2
1 0.471 0.345 0.125 3.02× 107 0.232

Pareto 0.347 0.272 0.156 2.15× 107 0.260
Terms s12(x1, x2) sl12(x1, x2) ls12(x1, x2) s2(x2) s1(x1)

4.1.2 Wisconsin Epidemiological Study of Diabetic Retinopathy

A dataset from Wahba et al. (1995) is revisited using a fully Bayesian binary

response SSANOVA model. The Wisconsin Epidemiological Study of Diabetic

Retinopathy (WESDR) is an epidemiological study of a cohort of diabetic pa-

tients receiving their medical care in an 11-county area in Southern Wisconsin.

Detailed descriptions of the data can be found in Klein and DeMets (1988). A

number of medical and demographical variables were collected for this study.

We analyze the subgroup of the younger onset population, consisting of 669

subjects with no or non-proliferative retinopathy at the start, and no missing

data from the variables we studied. The goal of this study was to examine

how the progression of diabetic retinopathy at the first follow-up depends on

the following continuous covariates: dur (duration of diabetes at baseline), gly

(glycosylated hemoglobin, a measure of hyperglycemia), and bmi (body mass

index = weight in kg/(height in m)2).

A smoothing spline function is proposed to study the effect of each covari-

ate.

Model 13 : f(gly , dur , bmi) = µ + β1gly + β2dur + β3bmi + s1(gly)

+s2(dur) + s3(bmi) + sl12(gly , dur)

+ls12(gly , dur) + s12(gly , dur), (4.14)
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where µ is the constant term, β1 is the coefficient for the linear effect in gly,

β2 is the coefficient for the linear effect in dur, β3 is the coefficient for the

linear effect in bmi, s1 represents the smooth effect in gly, s2 represents the

smooth effect in dur, s3 represents the smooth effect in bmi, sl12 represents

the interaction effects between the smooth effect in gly and linear effects in

dur, ls12 represents the interaction effects between the linear effects in gly and

smooth effect in dur, s12 represents the interaction effects between the smooth

effect in gly and smooth effect in dur.

To test for the significance of each term in model 13, a series of partially

nested models of interest is proposed. The partially nested models are:

Model 12 : f(gly , dur , bmi) = µ + β1gly + β2dur + β3bmi + s1(gly)

+s2(dur) + s3(bmi) + sl12(gly , dur)

+ls12(gly , dur), (4.15)

Model 11 : f(gly , dur , bmi) = µ + β1gly + β2dur + β3bmi + s1(gly)

+s2(dur) + s3(bmi)

+sl12(gly , dur), (4.16)

Model 10 : f(gly , dur , bmi) = µ + β1gly + β2dur + β3bmi + s1(gly)

+s2(dur) + s3(bmi), (4.17)

Model 9 : f(gly , dur , bmi) = µ + β1gly + β2dur + β3bmi + s1(gly)

+s2(dur), (4.18)

Model 8 : f(gly , dur , bmi) = µ + β1gly + β2dur + β3bmi

+s1(gly), (4.19)

Model 7 : f(gly , dur , bmi) = µ + β1gly + β2dur + β3bmi
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+s2(dur). (4.20)

The scaled χ2
1 priors have been applied to test the smooth effects. The scale

parameters for the χ2
1 priors were selected by effective degrees of freedom. The

values of λ corresponding to desirable effective degrees of freedom for each term

in model 13 are listed in Table 4.3. Figure 4.4 shows the MCMC trace plots for

parameters log(λ1), log(λ2), log(λ3), log(λ4), log(λ5) and log(λ6) under model

13, which have converged in all cases. These were used in the computation of

Bayes factors. The Bayes factors with scaled χ2
1 priors for model comparison

and the specific term to be tested are listed in Table 4.4.

Based on Table 4.4, there is insufficient evidence to conclude that

s12(gly , dur), ls12(gly , dur), sl12(gly , dur) and s1(gly) are significant and suf-

ficient evidence to conclude that s3(bmi) and s2(dur) are significant in pre-

dicting progression of diabetic retinopathy. The most parsimonious model to

predict y is

f(gly , dur , bmi) = µ + β1gly + β2dur + β3bmi + s2(dur)

+s3(bmi). (4.21)

Wahba et al. (1995) analyzed this dataset and concluded the model to be

Model 6 : f(gly , dur , bmi) = µ + β1gly + β2dur + β3bmi + s2(dur)

+s3(bmi) + sl32(bmi , dur) + ls32(bmi , dur)

+s32(bmi , dur). (4.22)
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Table 4.3: The λs for each term in Model 13 giving the desirable effective
degrees of freedom.

s1(gly) s3(bmi) s2(dur)
λ 0.01 0.01 0.01

Effective df 3.88 3.66 3.37

sl12(gly , dur) ls12(gly , dur) s12(gly , dur)
λ 0.001 0.001 0.001

Effective df 3.73 5.11 4.41

Table 4.4: The Bayes factors for testing each term in model 13 with scaled χ2
1

priors.
BF13,12 BF12,11 BF11,10

scaled χ2
1 0.450 0.349 0.068

Terms s12(gly , dur) ls12(gly , dur) sl12(gly , dur)

BF10,9 BF98 BF97

scaled χ2
1 10.3 525 0.145

Terms s2(dur) s3(bmi) s1(gly)

Wahba et al. (1995) excluded s1(gly) from the model, agreeing with our conclu-

sion based on BF97. However, they claimed that the interaction effects between

bmi and dur, f(bmi , dur) = sl32(bmi , dur) + ls32(bmi , dur) + s32(bmi , dur),

were not negligible by the evidence of examining the size of the fitted f(bmi , dur)

term, along with cross sections of its confidence intervals, suggesting that the

components were not negligible in a practical sense.

To verify the significance of f(bmi , dur), another set of partially nested

models of interest was proposed based on model 6 in equation (4.22) to test

the interaction effects between “dur” and “bmi”:

Model 5 : f(gly , dur , bmi) = µ + β1gly + β2dur + β3bmi + s2(dur)

+s3(bmi) + sl32(bmi , dur)

+ls32(bmi , dur), (4.23)
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Model 4 : f(gly , dur , bmi) = µ + β1gly + β2dur + β3bmi + s2(dur)

+s3(bmi) + sl32(bmi , dur), (4.24)

Model 3 : f(gly , dur , bmi) = µ + β1gly + β2dur + β3bmi + s2(dur)

+s3(bmi), (4.25)

Model 2 : f(gly , dur , bmi) = µ + β1gly + β2dur + β3bmi

+s2(dur), (4.26)

Model 1 : f(gly , dur , bmi) = µ + β1gly + β2dur + β3bmi

+s3(bmi). (4.27)

Scaled χ2
1 priors were applied to test each smooth effect. The scale parameters

for the χ2
1 priors were selected by effective degrees of freedom. The values

of λ corresponding to desirable effective degrees of freedom for each term in

model 6 are listed in Table 4.5. Figure 4.5 shows the MCMC trace plots for

parameters u10, log(λ1), log(λ2), log(λ3), log(λ4) and log(λ5) under model 6,

which have converged in all cases. These were used in the computation of the

Bayes factors. The Bayes factors with scaled χ2
1 priors for model comparison

and the specific terms to be tested are listed in Table 4.6.

Based on Table 4.6, there is insufficient evidence to conclude that

sl32(bmi , dur), ls32(bmi , dur) and s32(bmi , dur) are significant and sufficient

evidence to conclude that s3(bmi) and s2(dur) are significant in predicting

progression of diabetic retinopathy. Figure 4.6 shows the fits of s3(bmi) and

s2(dur) with 95% credible sets in Model 3 and the fit by model 3, which

helps us to visualize the effects. Based on the definition of Bayes factor, the

statistic to test f(bmi , dur) is BF63 = BF65 × BF54 × BF43 = 0.011. This
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is fairly strong evidence that the effect of f(bmi , dur) is insignificant, which

disagrees with the conclusion by Wahba et al. (1995). Thus we conclude the

most parsimonious model is model 3. This fully Baysesian SSANOVA method

has provided a more powerful tool for hypothesis testing in the interaction

effects than the frequentist approach.

Table 4.5: The λs for each term in Model 6 giving the desirable effective
degrees of freedom.

s2(dur) s3(bmi) sl32(bmi , dur)
λ 0.01 0.01 0.001

Effective df 3.66 3.37 3.20

ls32(bmi , dur) s32(bmi , dur)
λ 0.001 0.0005

Effective df 4.07 3.87

Table 4.6: The Bayes factors for testing each term in model 6 with scaled χ2
1

priors.
BF65 BF54 BF43

scaled χ2
1 0.609 0.703 0.340

Terms s32(bmi , dur) ls32(bmi , dur) sl32(bmi , dur)

BF32 BF31

scaled χ2
1 10.1 48.9

Terms s3(bmi) s2(dur)
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Chapter 5

Comments and Future Work

Previous research in smoothing spline ANOVA models has focused on sta-

tistical inference in estimation and prediction while the needs of hypothesis

testing for model selection have emerged. This study adapts a Bayesian ap-

proach to smoothing spline ANOVA models. These fully Bayesian smoothing

spline ANOVA models provide flexibility for hypothesis testing and better sta-

tistical inference on parameters of interest since the posterior distribution for

those parameters are available.

Smoothing spline ANOVA models have a tensor sum decomposition of in-

ner product spaces to ensure that the estimated functions are from the or-

thogonal subspaces. This nice property facilitates Bayesian computation with

better mixing in the MCMC steps, which provided more efficient estimation.

However, computation in fully Bayesian smoothing spline ANOVA models is

still intensive. To promote fully Bayesian SSANOVA models, we would like

to improve the computation performance. Nychka (2000) suggests selecting a

subset of the full bases derived from locations that are widely separated, which

will give a good approximation to the full expansion. This is an opportunity

for us to cut down the computation but still obtain a good approximation.
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An alternative to model selection in some contexts is Bayesian model aver-

aging (see, e.g. Clyde (1999)). One advantage is that Bayesian model averag-

ing can be applied with improper priors, so it’s not necessary to use different

priors for testing and estimation. We plan to explore model averaging methods

in Bayesian SSANOVA models.
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Figure 3.1: MCMC trace plots for samples of the log(λ) from the models with
a0=0.001, a0=0.0001, a0=0.00001 and a0=0.000001 for the simulated example
in Section 3.1.3. This is based on 50,000 iterations with 5,000 iterations for
burnin.
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Figure 3.2: The estimated f(x2) of the models with a0=0.001 (dashed line),
a0=0.0001 (dotted line), a0=0.00001 (dotdash line) and a0=0.000001 (longdash
line). The fits for a0=0.00001 and a0=0.000001 are overlapped. The solid line
represents the true function. This is for the simulated example in Section 3.1.3
and based on 50,000 iterations with 5,000 iterations for burnin.

83



0 10000 20000 30000 40000

−
1

4
−

1
2

−
1

0
−

8
−

6

a0=1e−5

Index

lo
g

(l
a

m
b

d
a

m
c
1

[[
1

]]
[i
x
])

0 10000 20000 30000 40000
−

1
4

−
1

2
−

1
0

−
8

a0=1e−6

Index

lo
g

(l
a

m
b

d
a

m
c
1

[[
1

]]
[i
x
])

0 10000 20000 30000 40000

−
1

4
−

1
2

−
1

0
−

8

a0=1e−7

Index

lo
g

(l
a

m
b

d
a

m
c
1

[[
1

]]
[i
x
])

0 10000 20000 30000 40000

−
1

4
−

1
2

−
1

0
−

8
−

6
−

4

a0=1e−8

Index

lo
g

(l
a

m
b

d
a

m
c
1

[[
1

]]
[i
x
])

Figure 3.3: MCMC trace plots for samples of the log(λ) from the models with
a0 = 1 × 10−5, a0 = 1 × 10−6, a0 = 1 × 10−7 and a0 = 1 × 10−8 for the
manufacturing example in Section 3.1.4. This is based on 50,000 iterations
with 5,000 iterations for burnin.
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Figure 3.4: The estimated f(x2) of the models with a0 = 1×10−5 (dotted line),
a0 = 1 × 10−6 (dashed line), a0 = 1 × 10−7 (dotdash line) and a0 = 1 × 10−8

(longdash line). The fits for a0 = 1 × 10−6, a0 = 1 × 10−7 and a0 = 1 × 10−8

are almost overlapped. This is for the manufacturing example in Section 3.1.4
and based on 50,000 iterations with 5,000 iterations for burnin.
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Figure 3.5: The estimated f of the model 0, model 1, model 2, model 3 and
model 4 (corresponds to panels a, b, c, d and e) for the simulated example in
Section 3.2.5 when a0=0.001. This is based on 30,000 iterations with 5,000
iterations for burnin.
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Figure 3.6: The estimated f of the model 2, model 3 and model 4 (corresponds
to panels a, b and c) for the manufacturing example in Section 3.2.6 when
a0=0.001. This is based on 30,000 iterations with 5,000 iterations for burnin.
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Figure 3.7: MCMC trace plots for samples of the u10, the 10th component
of u, λ1, λ2 and δ0 (corresponds to panels a, b, c and d) under model 2 in
equation (3.70) for the Example 3.2 in Section 3.2.7. This is based on 30,000
iterations with 5,000 iterations for burnin.
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Figure 3.8: MCMC trace plots for samples of the u10, the 10th component
of u, λ1, λ2 and δ0 (corresponds to panels a, b, c and d) under model 2 in
equation (3.71) for the Example 3.2 in Section 3.2.7. This is based on 30,000
iterations with 5,000 iterations for burnin.
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Figure 3.9: MCMC trace plots for samples of the u10, the 10th component
of u, λ1, λ2 and δ0 (corresponds to panels a, b, c and d) under model 2 for
manufacturing example in Section 3.2.7. This is based on 30,000 iterations
with 5,000 iterations for burnin.
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Figure 3.10: MCMC trace plots for samples of the u10, the 10th component
of u, λ1, λ2, λ3, λ4, λ5, λ6, λ7 and δ0 (corresponds to panels a, b, c, d, e,
f, g, h and i) under model 7 in equation (3.73) with scaled χ2

1 priors for the
Simulated Example 1 in Section 3.2.8. This is based on 30,000 iterations with
5,000 iterations for burnin.
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Figure 3.11: The estimated f of the model 7, model 3, model 1 and model 0 for
the Simulated Example 1 in Section 3.2.8. This is based on 30,000 iterations
with 5,000 iterations for burnin.
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Figure 3.12: MCMC trace plots for samples of the u10, the 10th component of
u, λ1, λ2, λ3, λ4, log(λ5), log(λ6), log(λ7) and δ0 (corresponds to panels a, b,
c, d, e, f, g, h and i) under model 7 with scaled χ2

1 priors for the Dogs Example
in Section 3.2.9. This is based on 30,000 iterations with 5,000 iterations for
burnin.
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Figure 3.13: The estimated f of the model 7, model 3, model 1 and model 0
for the Dogs Example in Section 3.2.9. This is based on 30,000 iterations with
5,000 iterations for burnin.
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Figure 4.1: MCMC trace plots for samples of the u10, the 10th component of
u, log(λ1), log(λ2), log(λ3), log(λ4) and log(λ5) (corresponds to panels a, b,
c, d, e and f) under model 6 in equation (4.8) with scaled χ2

1 priors for the
Simulated Example 2 in Section 4.1.1. Those samples are the every 10th of the
MCMC samples from the 30,000 iterations after 10,000 iterations for burnin.
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Figure 4.2: The estimate of each component in Model 6, s1(x1), s2(x2),
ls12(x1, x2), sl12(x1, x2), s12(x1, x2) and the fit by model 6 in equation (4.8)
with scaled χ2

1 priors for the Simulated Example 2 in Section 4.1.1. Those
samples are the every 10th of the MCMC samples from the 30,000 iterations
after 10,000 iterations for burnin.
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Figure 4.3: The estimates of s12(0.5, x2), ls12(0.5, x2), s2(x2), s12(x1, 0.5),
sl12(x1, 0.5) and s1(x1) with 95% credible sets in Model 6 with scaled χ2

1 priors
for the Simulated Example 2 in Section 4.1.1(corresponds to panels a, b, c, d,
e and f). Those samples are the every 10th of the MCMC samples from the
30,000 iterations after 10,000 iterations for burnin.
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Figure 4.4: MCMC trace plots for samples of the log(λ1), log(λ2), log(λ3),
log(λ4), log(λ5) and log(λ6) (corresponds to panels a, b, c, d, e and f) under
model 13 in equation (4.14) with scaled χ2

1 priors for the Diabetic Retinopathy
Example in Section 4.1.2. Those samples are the every 10th of the MCMC
samples from the 30,000 iterations after 10,000 iterations for burnin.
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Figure 4.5: MCMC trace plots for samples of the u10, the 10th component of
u, log(λ1), log(λ2), log(λ3), log(λ4), and log(λ5) (corresponds to panels a, b,
c, d, e and f) under model 6 in equation (4.22) with scaled χ2

1 priors for the
Diabetic Retinopathy Example in Section 4.1.2. Those samples are the every
10th of the MCMC samples from the 30,000 iterations after 10,000 iterations
for burnin.
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Figure 4.6: The estimates of s3(bmi) and s2(dur) with 95% credible sets in
Model 3 and the fit by model 3 in equation (4.25)(corresponds to panels a, b
and c) with scaled χ2

1 priors for the Diabetic Retinopathy Example in Section
4.1.2. Those samples are the every 10th of the MCMC samples from the 30,000
iterations after 10,000 iterations for burnin.
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