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A Nonlinear IV Likelihood-Based Rank Test

for Multivariate Time Series and Long Panels

J. Isaac Miller

Abstract

A test for the rank of a vector error correction model (VECM) or panel VECM based on the

well-known trace test is proposed. The proposed test employs instrumental variables (IV's)

generated by a class of nonlinear functions of the estimated stochastic trends of the VECM under

the null. The test improves on the standard trace test by replacing the non-standard critical values

with chi-squared critical values. Extending the result to the panel VECM case, the test is robust to

cross-sectional correlation of the disturbances. The nonlinear IV rank test also extends earlier

research on nonlinear IV unit root tests. However, the optimal instrument in the univariate case is

not admissible in the more general multivariate case. The chi-squared result suggests that IV tests

may be used to replace limits of other standard tests with integrated time series that are given by

nonstandard stochastic integrals, even without a panel with which to pool test statistics.
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1. Introduction

The problem of rank estimation in rank-deficient regressions became partic-
ularly important in analyzing multivariate time series data with the birth of
cointegration in the 1980’s. Johansen (1988) and Ahn and Reinsel (1990)
brought cointegration of vector autoregressive processes to the forefront of
research at the time. Johansen (1988) and Johansen and Juselius (1990) in-
troduced likelihood ratio (LR) tests for the rank of a cointegrated vector error
correction model (VECM), but the limits of these test statistics are nonstan-
dard, involving stochastic integrals and nuisance parameters.

Improvements on these tests have been introduced in the literature. For
example, Shintani (2001) developed a nonparametric test based on that of
Phillips and Ouliaris (1990), which utilized degeneracy in the rank of the
long-run variance matrix. Breitung (2002) suggested a generalized variance
ratio statistic to test the rank.

An alternative strand of the literature has sought to replace rank tests with
rank selection using information criteria. Gonzalo and Pitarakis (1998), Chao
and Phillips (1999), Aznar and Salvador (2002), Kapetanios (2004), and Wang
and Bessler (2005) have favored this approach, since consistent estimation of
the rank should outperform tests in large samples. Cheng and Phillips (2009)
have recently shown that the large-sample properties of information criteria
do not require lag specification.

In a separate strand of the time series literature, the notion of instrumental
variables based on nonlinear functions of integrated time series (NIV’s) has
roots in the theoretical contributions of Park and Phillips (1999, 2001).1 As
is well-known, the asymptotic limit of the sample covariance of a vector of
integrated series and a scalar-valued stationary series is given by a vector of
stochastic integrals. The primary intuition underlying NIV tests is that when
a nonlinear transformation of the integrated series is employed, the analogous
limiting vector is mixed normal with a diagonal covariance matrix.

NIV’s have been used primarily in testing for unit roots in cross-sectionally
correlated panels, as first introduced by Chang (2002). Using NIV’s to in-
strument out cross-sectional correlation has been further explored by Chang
(2006), Demetrescu and Tarcolea (2008), Chang and Song (2009), Demetrescu
(2009), and Chang and Nguyen (2010). These tests primarily exploit the diago-
nality of the covariance matrix in panels with large cross-sectional dimensions.

1Additional theoretical contributions have been made along these lines by, inter alia, de
Jong (2004), Pötscher (2004), de Jong and Wang (2005), Jeganathan (2008), and Wang and
Phillips (2009).
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out the non-normality associated with standard unit root tests, such as the
Phillips-Perron tests (Phillips and Perron, 1988). These tests exclusively ben-
efit from the (mixed) normality of covariance asymptotics, since diagonality
of a univariate covariance matrix is moot. Those authors found that the op-
timal instrument for unit root testing is the sign function, which had been
considered previously in unit root testing by So and Shin (1999).

The present analysis aims to further promote the use of nonlinear functions
to instrument out non-normality by extending the use of NIV’s from univari-
ate unit root tests to multivariate rank tests. In this light, the main benefit
of the proposed testing strategy is (mixed) normality. However, the rank de-
ficiency of the system and potentially of the instruments presents nontrivial
complications, and diagonality plays a key role in preserving rank through
the IV transformations. In contrast with the results of Phillips et al. (2004),
the optimal instrument in the univariate case is not even admissible in the
multivariate case, as it leads to a critical singularity.

The basic mechanism of the proposed testing strategy consists of two steps.
The first step involves using a consistent estimate of the long-run variance to
create linear combinations of the series orthogonal to the cointegrating space
(and in the direction of the stochastic trends) and projecting the linearly trans-
formed series onto the space of the instruments. The projection is identical to
the familiar first step of a standard 2SLS procedure. The second step involves
running the familiar reduced rank regression and calculating the trace test
statistic. Implementation of the new test in the second step differs slightly
from the standard LR test, since a different number of eigenvalues are cal-
culated. Under the null, the eigenvalues are all zeros after the initial linear
combination of the series in the direction of the stochastic trends.

I extend the nonlinear IV test to the panel VECM case. The full benefits
of nonlinear IV’s become apparent in a panel, as the diagonality of the co-
variance matrix of the sample moment discussed above is critical with a large
correlated cross-section. Much of the literature on cointegration in panels fo-
cuses on residual-based tests for cointegration in single-equation models for
each cross-sectional unit. These include the tests of Pedroni (2004) based on
the Phillips-Ouliaris (1990) cointegration test and variance ratio test, the LM
test of McCoskey and Kao (1998), the DF/ADF cointegration tests of Kao
(1999), and the recent NIV tests of Chang and Nguyen (2010).2 Larsson et
al. (2001) extended cointegration tests of single-equation panel models to rank
tests of panel VECM’s. Their test (the LR bar test) averages the Johansen LR

2Baltagi and Kao (2000) provide an excellent survey of the early literature on panel unit
root tests and panel cointegration tests.

Phillips et al. (2004) used NIV’s in unit root tests in order to instrument
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test to obtain a normal limiting distribution as the cross-sectional dimension
increases. Groen and Kleibergen (2003) developed an alternative LR test, and
showed that both their LR test and that of Larsson et al. (2001) are robust
to cross-sectional correlation in the variance, which is generally not the case
with the earlier tests. The extension of the proposed test in this analysis is
also robust to cross-sectional correlation as a direct result of the diagonality
discussed above.

The rest of the paper proceeds as follows. I establish the basic models and
assumptions and discuss some preliminary results in Section 2. In Sections 3,
I discuss the mechanics and the chi-squared asymptotic limits of the test. I
extend the test to more general settings in Sections 4 and 5. The proposed
trace test is compared with the standard trace test and LR bar test using
simulations in Section 6. Section 7 briefly concludes. Mathematical proofs are
contained in an appendix.

I use the following notational conventions throughout the paper. ei is a
column vector of zeros with a single unit in the ith row. In particular, for some
matrix or row vector B, Bei selects the ith column of B, and ei is assumed
to be conformable depending on the context of usage. The Euclidean norm
of a matrix B or vector b is denoted by ‖B‖ or ‖b‖. B1/2 denotes the lower
Cholesky decomposition of a positive definite symmetric matrix B, and B−1/2

denotes the inverse of B1/2. vec denotes the vectorization operator and dg
represents a diagonal (or block-diagonal) matrix with diagonal elements (or
blocks) given by its arguments.

2. Model, RR Estimation, and Instruments

Consider an m× 1 VECM given by

4yt = ΓA′yt−1 + εt, (1)

where A is an m × r matrix of cointegrating vectors, Γ is an m × r error
correction matrix, and

[A1] (εt) ∼ iidN (0,Σ)

for t = 1, . . . , T . Normality may be relaxed in the theoretical results below.
However, normality is convenient in formulating the likelihood function.

Consider also a more general model given by

4yt = µ+ ΓA′yt−1 +Πwt + εt (2)

3
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with the addition of a vector of non-zero means µ and stationary covariates
(wt), which may include lags of (4yt). Π is a matrix of nuisance parameters
for the purposes of testing. As is typical for this type of model, (wt) and (εt)
are assumed to be contemporaneously uncorrelated.

For expositional simplicity, I focus on the simpler model in (1) in Sections
2 and 3. Extending the results to accommodate the model in (2) is the central
focus of Section 4.

2.1 Wold Representation and Long-Run Variance

The following set of assumptions, identical to that of Cheng and Phillips
(2009), characterizes the cointegrating properties of the model.

[A2] Γ and A are m× r matrices of rank r for 0 ≤ r ≤ m, such that

(a) The determinantal equation |I − (I + ΓA′)x| = 0 has roots on or
outside the unit circle;

(b) If r = 0, then ΓA′ = 0, and if r = m, then (yt) is (asymptotically)
stationary; and

(c) I + A′Γ has eigenvalues within the unit circle.

Part (a) rules out explosive roots, part (b) codifies the two extreme cases for
r, and part (c) ensures invertibility of I − (I + A′Γ)x.

Define the m× (m− r) orthogonal complements of A and Γ to be A⊥ and
Γ⊥, so that A′A⊥ = Γ′Γ⊥ = 0 and (A,A⊥) and (Γ,Γ⊥) are invertible. Two
key results are collected in the following lemma.

Lemma 1 Let assumption [A1]-[A2] hold for the model given by (1). The
process (4yt) has

(a) a Wold representation given by

4yt = C (L) εt,

where C (x) ≡
∑∞

k=0Ckx
k = I + ΓB (x)A′ and B (x) ≡

∑∞
k=0Bkx

k =

(I − (I + A′Γ) x)−1 with
∑∞

k=0 k
2 ‖Ck‖ < ∞, and

(b) a long-run variance given by

Ξ ≡ lrvar (C (L) εt) = A⊥(Γ
′
⊥A⊥)

−1Γ′
⊥ΣΓ⊥(A

′
⊥Γ⊥)

−1A′
⊥

of rank m− r.

4

Journal of Time Series Econometrics, Vol. 2 [2010], Iss. 1, Art. 5

http://www.bepress.com/jtse/vol2/iss1/art5

DOI: 10.2202/1941-1928.1057



2.2 Reduced Rank (RR) Regression

For notational simplicity and in keeping with Johansen’s notation, let

r0t ≡ 4yt and r1t ≡ yt−1. (3)

(These will be redefined subsequently for the model in (2).) For known A,
RR regression reduces to a simple least squares regression to estimate Γ. The
LS estimator Γ̂ of Γ and the variance estimator Σ̂ of Σ are simply Γ̂LS(A) =
S01A (A′S11A)

−1 and Σ̂LS (A) = S00 − S01A (A′S11A)
−1A′S10, where Sgh ≡

T−1
∑

rgtr
′
ht for g, h = 0, 1 denotes sample moments using r0t and r1t.

The likelihood function may be concentrated so that the maximal value
(up to an irrelevant constant) is given by

L−2/n
max = |S00 − S01A (A′S11A)

−1
A′S10|

= |S00||A′(S11 − S10S
−1
00 S01)A|/|A′S11A|,

and A is chosen to minimize the right-hand side in order to maximize the
likelihood. As is well-known, A may be estimated by finding the r largest
eigenvalues of S11 − S10S

−1
00 S01 subject to A′S11A = I. The m ordered eigen-

values λ̂RR,1, . . . , λ̂RR,r, λ̂RR,r+1, . . . , λ̂RR,m are the same as those obtained by
solving the determinantal equation |λI−S−1

11 S10S
−1
00 S01| = 0. The eigenvectors

corresponding to the r largest of these form the columns of ÂRR. The reader is
referred to Johansen (1995) for very detailed exposition on the RR technique.

2.3 Standardization and Transformation

It is straightforward to conceptualize estimating a reduced rank regression in
a simple IV or 2SLS framework. In place of Γ̂LS(A), the estimator would be

Γ̂IV (A) =
∑

r0tw
′
t−1

(

A′
∑

r1tw
′
t−1

)−1

where either wt−1 ≡ zt−1 for simple IV or wt−1 ≡ A′
∑

r1tz
′
t−1(

∑

zt−1z
′
t−1)

−1

zt−1 for 2SLS. The instrument vector zt−1 = z(yt−1) would be created from in-
tegrable transformations of the m integrated series, similar to Chang’s (2002,
2006) approach. However, such an estimator suffers from several deficiencies.
(a) The contemporaneous variance and long-run variance of (r0t) differ, so
that the sample moments

∑

r0tz
′
t−1 and

∑

r0tr
′
0t (properly scaled by the sam-

ple size) have limits involving different variances. (b) The rank of
∑

r1tz
′
t−1,

which is necessary to ascertain the rank of the limiting chi-squared, is not
well-known. (c) The long-run variances of individual elements of r0t in the
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asymptotic limit of any sample moment involving zt−1 are unknown. The lat-
ter deficiency poses no problem in the asymptotic theory, since the function
may be arbitrarily scaled. However, instrument selection involves a choice of
functions, and arbitrary scaling creates a small-sample estimation problem.

These deficiencies may be overcome by a standardization and transforma-
tion of (r0t) in the direction of the common stochastic trends, using its long-run
variance Ξ defined above. It will shortly become clear that deficiencies (a) and
(c) are remedied by this transformation. That deficiency (b) is remedied is
evident in the proof of Lemma A.2 (in the appendix).

Define the m× (m− r) matrix E ≡ (Im−r, 0)
′ and note that E ′E = Im−r.

The spectral decomposition of the real symmetric matrix Ξ may be denoted
by PΛP ′ where P ′ = P−1. The non-zero eigenvalues coincide with the sin-
gular values, since Ξ is positive semidefinite. Thus, Λ has exactly m − r
non-zero diagonal elements, so that PΛP ′ = PEE ′Λ1/2EE ′Λ1/2EE ′P ′ and
(E ′ΛE)−1/2E ′P ′ΞPE(E ′ΛE)−1/2 = Im−r. By defining Ξ+1/2 ≡ (E ′ΛE)−1/2

E ′P ′, note that Ξ+1/2ΞΞ+1/2′ = Im−r. From the definition of Ξ in Lemma 1,
it follows that Ξ+1/2 = (Γ′

⊥ΣΓ⊥)
−1/2Γ′

⊥, so that Ξ+1/2ΣΞ+1/2′ = Im− r also.
Rewrite (1) as

r0t = ΓA′r1t + Γ⊥A
′
⊥r1t + εt, (4)

where the variance of Γ⊥A
′
⊥r1t is zero under the null. RR estimates m eigen-

values corresponding to both A and A⊥, but only the first r eigenvalues cor-
responding to A are non-zero under the null.

Premultiplying by Ξ+1/2 yields

Ξ+1/2r0t = Ξ+1/2Γ⊥A
′
⊥r1t + Ξ+1/2εt, (5)

since Ξ+1/2Γ = 0. Since the first term has degenerate variance under the null,

Ξ+1/2r0t = Ξ+1/2εt, (6)

and the long-run and contemporaneous variances of both sides are clearly Im−r.
For notational simplicity, let ε0t ≡ Ξ+1/2εt and r0ht ≡ Ξ+1/2rht for h = 0, 1. Note
that (r01t) is a vector of the unique stochastic trends of the model.

2.4 Instrument Selection

My approach to instrument selection closely mirrors Chang’s (2002, 2006) ap-
proach. She uses nonlinear IV’s for a panel of integrated series, transforming
each series separately using a (possibly different) nonlinear function to gener-
ate each instrument. The vector series (r01t) of stochastic trends may be viewed
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as a panel, and instruments may be chosen in exactly the same fashion. Specif-
ically, I individually transform each element e′ir

0
1t for i = 1, . . . ,m− r, so that

z(r01t) represents an element-wise vector function with a vector argument – its
elements are simply zi(e

′
ir

0
1t). Letting zt−1 ≡ z(r01t) denote this vector, z is

called the instrument generating function (IGF) following Chang (2002).
The following definition, due to Chang (2002), delineates the class of reg-

ularly integrable functions introduced by Park and Phillips (1999, 2001).

Definition (Chang, 2002). A transformation g on R is said to be regularly
integrable if g is a bounded integrable function such that for some constants
c > 0 and k > 3, |g(x) − g(y)| ≤ c|x − y|k on each piece Ai of its support
A = ∪`

i=1Ai ⊂ R.

The definition allows for functions that are not continuous but still reasonably
smooth.

Letting B (R) denote the Borel σ-field on the real line, assume that

[Z] z(x) is an (m− r)-vector such that for i = 1, . . . ,m− r,

(a) zi : R 7→ R,

(b) zi (xi) is regularly integrable and satisfies
∫∞

−∞
zi (xi) xidxi 6= 0, and

(c) The inverse image under z of a set on B (R) with Lebesgue measure
zero also has Lebesgue measure zero.

Assuming an element-by-element functional mapping that generates exactly
m − r instruments does not sacrifice generality, but the assumption greatly
simplifies the degrees of freedom of the limiting chi-squared distribution below.
The integrability assumption is identical to Chang’s (2002). As she points out,
this assumption avoids instrument failure, which would otherwise result from
uncorrelatedness of the instrument and the corresponding regressor.

Part (c) of the assumption rules out functions with inverses that concen-
trate mass. The functions must induce continuous distributions. Functions
of the type xa exp(−|x|b) for positive odd powers a and b > 0 are acceptable.
However, variations of an indicator function of the type 1{|x| ≤ K} discussed
by Chang (2002) do not satisfy part (c), since they concentrate probability
mass at zero and one. The moment matrix of instruments may not be invert-
ible in that case. This restriction rules out the sign function considered by
Phillips et al. (2004) to be the optimal instrument in the univariate case.
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2.5 Preliminary Asymptotic Results

Some preliminary asymptotic results help to frame subsequent exposition.

Lemma 2 Let assumptions [A1]-[A2] hold for empirical moments constructed
with instruments satisfying assumption [Z]3 and with (r0t) and (r1t) satisfying
(3). Under the null hypothesis,

(a) T−1
∑

ε0t ε
0′
t →p Im−r,

(b) T−1/2
∑

z(r01t)z(r
0
1t)

′ →d dg(Li (1, 0)
∫

z2i (s) ds) for i = 1, . . . ,m− r,

(c) T−1/4
∑

vec(z(r01t)ε
0′
t )

→d (Im−r ⊗ dg(Li (1, 0)
∫

z2i (s) ds))
1/2N(0, I(m−r)2), and

(d) T−1
∑

z(r01t)r
0′
1t = Op (1)

as T → ∞. The convergences in parts (b) and (c) are joint.

The mixed normality of the result in part (c) of the lemma suggests that
a procedure may be constructed to instrument out non-normality from the
standard trace test, which is precisely the aim of this analysis. The diagonality
of the limits in parts (a)-(c) of the lemma implies that such a procedure also
instruments out cross-sectional correlation. The intuition is only implicit,
because (possibly non-diagonal) Ξ is still explicitly estimated. The subsequent
procedures would not be effective for high-dimensional systems (large m).

Under the null, (ε0t ) may be replaced with (r00t) using the relationship in
(6). The standardization and transformation thus clearly remedies deficiencies
(a) and (c) discussed in Section 2.3 above.

2.6 Estimated Long-Run Variance Matrix

Lemma 2 relies on known long-run variance Ξ, which must be estimated in
practice. This variance may be estimated consistently using standard tech-
niques.4 However, the estimation error may have detrimental effects on the
testing strategy due to the nonlinearity of the IGF. The concern arises from
the nonlinear transformation of an integrated trend premultiplied by the er-
ror itself. Specifically, e′iΞ̂

+1/2r1t = e′iΞ
+1/2r1t + e′i(Ξ̂

+1/2 − Ξ+1/2)r1t, and the
impact of e′i(Ξ̂

+1/2 − Ξ+1/2)r1t on the IGF may be non-negligible.

3Corollary 2.2 of Wang and Phillips (2009) suggests that regularity can be relaxed in the
proof of Lemma 2(b), which may be extended beyond this result.

4See, for example, Andrews (1991), Hansen (1992), or de Jong and Davidson (2000).

8

Journal of Time Series Econometrics, Vol. 2 [2010], Iss. 1, Art. 5

http://www.bepress.com/jtse/vol2/iss1/art5

DOI: 10.2202/1941-1928.1057



Estimation error from (Ξ̂+1/2−Ξ+1/2) may lie in three important subspaces
of Rm. Error may lie in the span of e′iΞ

+1/2, which is one of the (m − r)
stochastic trends, it may lie in the (m − r − 1)-dimensional space spanned
by the stochastic trends orthogonal to e′iΞ

+1/2, and it may also lie in the
cointegrating space. To formalize the decomposition of the estimation error,
let

PΞ = Ξ+1/2′(Ξ+1/2Ξ+1/2′)−1Ξ+1/2 = PEE ′P

be an orthogonal projection onto the space of the trends and let

PΞi
= Ξ+1/2′ei(e

′
iΞ

+1/2Ξ+1/2′ei)
−1e′iΞ

+1/2 = PEeie
′
iE

′P ′

be an orthogonal projection onto the univariate space spanned by e′iΞ
+1/2.

Then
r1t = PΞi

r1t +
∑

j 6=i
PΞj

r1t + (I − PΞ)r1t (7)

decomposes r1t into three terms that project the vector series (r1t) in these
three directions.

In order to address the asymptotic contribution of estimation error of the
long-run variance, it is convenient to assume differentiability of z(x). Let
z(k)(x) denote the kth derivative of z(x). Assume that

[Z’] z(x) is an (m− r)-vector such that for i = 1, . . . ,m− r,

(a) assumption [Z] holds,

(b) zi(xi) is infinitely differentiable, and

(c) xk
i z

(k)
i (xi) also satisfies assumption [Z] for any k ≥ 0.

Although this assumption places restrictions on the class of IGF’s admissible
under [Z], the class of exponential functions suggested by Chang (2002) is still
admissible under assumption [Z’].

The following result gives conditions under which the asymptotics of Lemma
2 are relevant using estimated Ξ.

Lemma 3 Let assumptions [A1]-[A2] hold for empirical moments constructed
with instruments satisfying assumption [Z’] and with (r0t) and (r1t) defined by
(3). Define ε̂0t ≡ Ξ̂+1/2εt and r̂01t ≡ Ξ̂+1/2r1t. Under the null hypothesis,

(a)
∑

(ε̂0t ε̂
0′
t − ε0t ε

0′
t ) = op(T )

9
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as T → ∞. Moreover, if either (i) the null hypothesis is m − r = 1 and
Ξ̂+1/2 − Ξ+1/2 = op (1), or (ii) the null hypothesis is m − r > 1 and Ξ̂+1/2 −
Ξ+1/2 = op

(

T−1/2
)

,

(b)
∑

(z(r̂01t)z(r̂
0
1t)

′ − z(r01t)z(r
0
1t)

′) = op
(

T 1/2
)

(c)
∑

(z(r̂01t)ε̂
0′
t − z(r01t)ε

0′
t ) = op

(

T 1/4
)

, and

(d)
∑

(z(r̂01t)r̂
0′
1t − z(r01t)r

0′
1t) = op(T )

as T → ∞.

The stricter requirement for the case with more than one stochastic trend
arises because of the sample covariance between one stochastic trend and a
regularly integrable nonlinear function of a different stochastic trend. The
non-negligibility occurs because such terms have a larger asymptotic order
(due to Lemma 1 of Chang and Park, 2003) than a sample covariance involving
the same stochastic trend.

If m − r > 1 but the estimation error is not op
(

T−1/2
)

, the limiting dis-
tributions of Lemma 2 are not obtained. Similarly to Zivot’s (2000) analysis
of misspecified predetermined cointegrating vectors, it is useful to note the
implications of recalcitrant estimation error, which will be discussed after the
test is presented.

3. A Nonlinear IV Rank Test

In this section, I put rank testing into the perspective of testing the number
of non-zero eigenvalues after the rth ordered eigenvalue from (4). Under the
null, there are no non-zero eigenvalues beyond the rth. I discuss the relative
merits of a 2SLS-type estimator over a simple IV estimator in this context. I
then introduce the test by way of a two-stage reduced rank (2SRR) regression.
Finally, the simple chi-squared limit of the NIV trace test is presented.

3.1 A Different Perspective on Rank Testing

Before IV estimation, consider a new perspective on rank testing using the
transformed series (r00t). The transformed system in (5) may be written as

r00t = Ξ+1/2Γ⊥

[

(Γ′
⊥ΣΓ⊥)

1/2′(A′
⊥Γ⊥)

−1A′
⊥A⊥

(Γ′A)−1Γ′A⊥

]′ [
(Γ′

⊥ΣΓ⊥)
−1/2Γ′

⊥r1t
A′r1t

]

+ ε0t ,
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since A⊥(Γ
′
⊥A⊥)

−1Γ′
⊥ + Γ(A′Γ)−1A′ = I, or more simply as

r00t = Γ0
⊥A

∗′
⊥r

∗
1t + ε0t , (8)

where Γ0
⊥ ≡ Ξ+1/2Γ⊥, A

∗
⊥ ≡ (A0′

⊥, A
′
⊥Γ(A

′Γ)−1)′, A0
⊥ ≡ (Γ′

⊥ΣΓ⊥)
1/2′(A′

⊥Γ⊥)
−1

A′
⊥A⊥, and r∗1t ≡ (r0′1t, r

′
1tA)

′.
Allowing for reduced rank under the null, the variance estimator is

Σ̂(A∗
⊥) = M00 −M∗

01A
∗
⊥ (A∗′

⊥M
∗
11A

∗
⊥)

+
A∗′

⊥M
∗
10,

where M00 ≡ T−1
∑

r00tr
0′
0t, M

∗
11 ≡ T−1

∑

r∗1tr
∗′
1t, M

∗
01 ≡ T−1

∑

r00tr
∗′
1t, M

∗
10 ≡

M∗′
01, and B+ denotes the Moore-Penrose inverse of a matrix B. Alternatively,

Σ̂(A∗
⊥) = R′

0(I −R1A
∗
⊥(A

∗′
⊥R

′
1R1A

∗
⊥)

+A∗′
⊥R

′
1)R0

by defining R1 ≡ T−1/2(r∗′1t)
T
t=2 and R0 ≡ T−1/2(r0′0t)

T
t=2 to be (T − 1)× (m− r)

matrices. Basic matrix results (e.g., Lütkepohl, 1996, pg. 49) allow

|R′
0(I − R1A

∗
⊥(A

∗′
⊥R

′
1R1A

∗
⊥)

+A∗′
⊥R

′
1)R0|

=
|R′

0R0|
|A∗′

⊥R
′
1R1A∗

⊥|
|A∗′

⊥R
′
1(I −R0(R

′
0R0)

−1R′
0)R1A

∗
⊥|

so that

L−2/n
max = |M00 −M∗

01A
∗
⊥(A

∗′
⊥M

∗
11A

∗
⊥)

+A∗′
⊥M

∗
10|

= |M00||A∗′
⊥(M

∗
11 −M∗

10M
−1
00 M

∗
01)A

∗
⊥|/|A∗′

⊥M
∗
11A

∗
⊥|

which is very similar to the reduced rank case.
In place of (1), (5), or (8), I consider

r00t = Γ0
⊥A

0′
⊥r

0
1t + ε0t (9)

in order to construct the test. As in (5) and (8), the first term has degen-
erate variance under the null, so that (6) holds. This procedure replaces
S−1
11 S10S

−1
00 S01 or (M∗

11)
−1M∗

10M
−1
00 M

∗
01 with M−1

11 M10M
−1
00 M01, where M11 ≡

T−1
∑

r01tr
0′
1t, M01 ≡ T−1

∑

r00tr
0′
1t, and M10 ≡ M ′

01. The result yields m − r
rather than m eigenvalues, which are all zeros under the null.

3.2 IV Estimation

Nonlinear instruments are introduced to alleviate non-normality in the limiting
distributions of rank tests based on the above procedures. Given the testing
framework just introduced, a natural estimator of Γ0

⊥ is

Γ̂0
⊥,IV (A

0
⊥) =

∑

r00tw
′
t−1

(

A0′
⊥

∑

r01tw
′
t−1

)−1

11
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where either wt−1 ≡ zt−1 for simple IV or wt−1 ≡ A0′
⊥

∑

r01tz
′
t−1(

∑

zt−1z
′
t−1)

−1

zt−1 for 2SLS. The estimator may contain the same number of of instruments
as regressors without loss of generality, so these are identical estimators of Γ0

⊥

under reasonable rank assumptions. For hypothesis testing, however, 2SLS has
two advantages over simple IV. (a) The orthogonal projection in the 2SLS es-
timator is convenient, because it allows a simple quadratic form that yields the
chi-squared distribution below. (b) Power of the test converges more rapidly
to unity in the 2SLS case than in the simple IV case, because the variance of
only the second stage is used.

The second point is illustrated by considering a parameter matrix Υ0
⊥ =

Γ0
⊥A

0′
⊥ (cf. Johansen 1995, pg. 94) for the transformed model in (9). In the

RR case, the variance estimator is

Σ̂(Υ0
⊥) = M00 −M01M

−1
11 M10.

Under the null, this is simply M00, but the distribution of the second term
collapses at the rate of T−1 because of the linear transformation in the direction
of the trends. In this direction, M01,M10 = Op (1) and M11 = Op(T ). Under
the alternative, both terms converge to a stable limit distribution. The null
and alternative variances thus diverge at the rate of T .

Consider now the simple IV case. The variance estimator is

Σ̂(Υ0
⊥) = M00 +M rz

01 (M
rz
11 )

−1M11(M
zr
11 )

−1M zr
10

−M01(M
zr
11 )

−1M zr
10 −M rz

01 (M
rz
11 )

−1M10

using the notation M rz
h1 ≡ T−1

∑

r0htz
′
t−1 for h = 0, 1, and M zr

1h ≡ M rz′
h1 . Under

the null, using Lemma 2,

Σ̂(Υ0
⊥) = M00 + T−1/2(T 3/4M rz

01 (M
rz
11 )

−1T−1M11(M
zr
11 )

−1T 3/4M zr
10 )

− T−3/4(M01(M
zr
11 )

−1T 3/4M zr
10 )− T−3/4(T 3/4M rz

01 (M
rz
11 )

−1M10),

so that terms after the first are Op

(

T−1/2
)

. The null and alternative variances

thus diverge at the slower rate of T 1/2. The simple IV test is therefore less
powerful.

As shown below, a 2SLS-type estimator restores the rate of T .

3.3 Two-Stage Reduced Rank (2SRR) Regression

The second stage of a 2SLS regression is a linear regression onto the space of
the regressors projected onto the instrument space. In the VECM case, the
second-stage regression may be written as

r00t = Γ0
⊥A

0′
⊥

∑

r01tz
′
t−1(

∑

zt−1z
′
t−1)

−1zt−1 + ε0t ,
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or more succinctly as

r00t = Γ0
⊥A

0′
⊥M

rz
11 (M

zz
11 )

−1zt−1 + ε0t (10)

using the notation M zz
11 ≡ T−1

∑

zt−1z
′
t−1.

The 2SLS estimator is

Γ(A0
⊥) = Q01A

0
⊥(A

0′
⊥Q11A

0
⊥)

+

with variance estimator in the second stage regression given by

Σ̂(A0
⊥) = M00 −Q01A

0
⊥(A

0′
⊥Q11A

0
⊥)

+A0′
⊥Q10,

where Qgh ≡ M rz
g1 (M

zz
11 )

−1M zr
1h for g, h = 0, 1. The likelihood at the second

stage is

L−2/n
max = |M00 −Q01A

0
⊥(A

0′
⊥Q11A

0
⊥)

+A0′
⊥Q10|

= |M00||A0′
⊥(Q11 −Q10M

−1
00 Q01)A

0
⊥|/|A0′

⊥Q11A
0
⊥|,

using similar arguments as above.
Let λ̂NIV,i for i = 1, . . . ,m − r refer to the m − r eigenvalues of Q11 −

Q10M
−1
00 Q01 subject to A0′

⊥Q11A
0
⊥ = I. These may be estimated by solving

|λI−Q−1
11 Q10M

−1
00 Q01| = 0. In other words, running a reduced rank regression

on (10) instead of on (1) or (9) is a two-stage reduced rank (2SRR) regression.
These eigenvalues are all zeros under the null.

Finally, note that the variance estimator may be written as

Σ̂(Υ0
⊥) = M00 −Q01Q

−1
11 Q10

where Q01, Q10 = Op

(

T−1/4
)

and Q11 = Op(T
1/2) by Lemma 2 under the null,

so that Q01Q
−1
11 Q10 = Op(T

−1). Like the RR case, but unlike the simple IV
case, the rate of divergence between the null and alternative is T .

The reason for the improvement of 2SRR over simple IV (even though the
2SLS and IV estimators of Γ0

⊥ are the same when the number of instruments
equals the number of regressors) is that the variance estimator for the second
stage is not the same as the variance estimator for the original model.

3.4 Proposed Rank Test

Johansen (1995) details a battery of tests that may be run for various types
of restrictions on the cointegrating vectors in A. While many of these tests
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have chi-squared distributions, the most important of these – tests for the
cointegrating rank – have nonstandard distributions.

The well-known trace test for the cointegrating rank of a VECM is derived
as a likelihood ratio test. The null is H0 : r = r0, and the alternative is
HA : r = m (stationary, no cointegration). The likelihoods under the null

and alternative are given by L
−2/n
max = |S00| |A′(S11−S10S

−1
00 S01)A|. The second

determinant equals the product of (1 − λRR,i) corresponding to the first r0
eigenvalues under the null, or it equals the product corresponding to all m
eigenvalues under the alternative. The familiar trace test is therefore

−2 logQRR(Hr0|m) = −T
∑m

i=r0+1
log(1− λ̂RR,i)

since the common factor |S00| cancels.
For the NIV test, the likelihood is given simply by L

−2/n
max = |M00| under

the null, because (9) reduces to (6). Under the alternative that r = m, the

likelihood is given by L
−2/n
max = |M00||A0′

⊥(Q11 − Q10M
−1
00 Q01)A

0
⊥|, so that the

common factor |M00| cancels, and

−2 logQNIV (Hr0|m) = −T
∑m−r0

i=1
log(1− λ̂NIV,i) (11)

is the analog to the standard trace test. Note that the summation is across all
of the m − r0 eigenvalues estimated by 2SRR. I refer to the proposed test as
the NIV trace test.

3.5 Limiting Distribution of the Test Statistic

It is straightforward to show that the NIV trace statistic is T
∑m−r0

i=1 λNIV,i up
to an asymptotically negligible term, using a Taylor-series expansion of λNIV,i

around zero. Letting UT ≡ (M zz
11 )

−1/2M zr
11 (M

rz
11 (M

zz
11 )

−1M zr
11 )

−1/2′ allows

T
∑m−r0

i=1
λNIV,i = T tr

{

(M zz
11 )

−1/2′UTU
′
T (M

zz
11 )

−1/2M zr
10M

−1
00 M

rz
01

}

by expanding Q11, etc., and using the equality of the sum of the eigenvalues
and the trace of a matrix. Using further properties of the trace,

T
∑m−r0

i=1
λNIV,i = v′T (Im−r ⊗ UTU

′
T )vT (12)

by defining vT ≡ (M00 ⊗ T 1/2M zz
11 )

−1/2vec(T 3/4M zr
10 ).

As I show in the following theorem, the quadratic form in (12), and there-
fore the trace test statistic in (11), has a limiting chi-squared distribution.
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Theorem 4 Let the conditions for Lemma 2 or 3 hold for the model in (10)
with (r0t) and (r1t) defined by (3). The LR test of H0 : r = r0 against
HA : r = m has a limiting distribution given by

−2 logQNIV (Hr0|m) →d χ
2
(m−r0)

2

as T → ∞.

Convenient critical values of the chi-squared limiting distribution replace the
nonstandard critical values of the usual trace test.

The implications of m−r > 1 and Ξ̂+1/2−Ξ+1/2 = op (1) but not op(T
−1/2)

may now be considered. In this case, from the proof of Lemma 3, the asymp-
totically dominant terms of the kth-order term of expansions of the nonlinear
functions in M zz

11 and M zr
10 are

∑

j 6=i
e′i(Ξ̂

+1/2 − Ξ+1/2)Ξ+1/2′ej(e
′
jΞ

+1/2Ξ+1/2′ej)
−1Op(T

1/2+k/2)

and

∑

j 6=i
e′i(Ξ̂

+1/2 − Ξ+1/2)Ξ+1/2′ej(e
′
jΞ

+1/2Ξ+1/2′ej)
−1Op(T

1/4+k/2)

respectively. Thus

vT = T k/4(M00 ⊗ T 1/2−k/2M zz
11 )

−1/2vec(T 3/4−k/2M zr
10 )

so that the quadratic in (12) is explosive. The test should over-reject.

4. Extension: Mean and Covariates

Extending the rank test from the model in (1) to that in (2) requires additional
steps. The first step of the standard ML procedure of a VECM along the lines
of Johansen (1988) is to use residuals from regressing out (1, w′

t)
′ from both

(4yt) and (yt−1) in order to focus on the term ΓA′yt−1. If A were known, this
would be exactly the first step of a standard partitioned regression to estimate
Γ with unknown µ and Π.

More care must be used with the NIV strategy, however, because the non-
linear nonstationary asymptotics require the argument of the IGF to have the
martingale property – at least up to a negligible term if the IGF is sufficiently
smooth. The NIV framework therefore necessitates a mixed approach such
that (4yt) and (yt−1) are handled differently.
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4.1 Handling (4yt)

The main appeal of regressing out (1, w′
t)

′ from (4yt) is to orthogonalize the
regressand. This may be accomplished by subtracting A⊥(Γ

′
⊥A⊥)

−1Γ′
⊥(µ +

Πwt) from both sides, a transformation of the mean and covariates in the
direction of the stochastic trends. The modified model becomes

r0t = ΓA′yt−1 + ηt

where

r0t ≡ 4yt − A⊥(Γ
′
⊥A⊥)

−1Γ′
⊥(µ+Πwt), and (13)

ηt ≡ εt + Γ(A′Γ)−1A′(µ+Πwt).

Note that (6) holds under the null, as in the case with no additional regressors.
Consistently estimating A⊥(Γ

′
⊥A⊥)

−1Γ′
⊥(µ + Πwt) is straightforward, so

that µ and Π need not be known in practice.

Lemma 5 The matrix A⊥(Γ
′
⊥A⊥)

−1Γ′
⊥(µ,Π) may be

√
T -consistently esti-

mated by regressing (4yt) onto (1, w′
t)

′.

The lemma confirms the intuitive appeal of using residuals from this regression,
so that (4yt) may be handled in exactly the same way as in the standard
Johansen ML procedure.

4.2 Handling (yt−1)

On the other hand, (yt−1) must be handled differently from the standard ML
procedure. Rather than regressing (yt−1) onto (1, w′

t)
′, there are three differ-

ences: (i) (wt) may be ignored, (ii) linear detrending using (1, t)′ rather than
demeaning must be used, and (iii) the detrending must be adaptive.

Chang (2002) used asymptotic arguments along the lines of Phillips and
Solo (1992) to suggest that (yt−1) need not be regressed onto lagged (4yt) in
the univariate unit root case. Chang’s arguments extend to the multivariate
case. The same logic may be applied to additional stationary covariates in
(wt), as long as they have moving average representations with absolutely
summable coefficients.

In order for the argument of the IGF to retain the martingale property,
Chang suggested adaptively detrending the argument of the IGF. In the case
of a VECM, the mean in differences becomes a mean and linear trend in levels,
so (1, t)′ should be used in adaptively detrending (yt−1), rather than simply
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demeaning. Specifically, letting dt ≡ (1, t)′ and dTt = κTdt with κT = dg(1, T ),
adaptively detrended (yt−1) is given by

r1t ≡ yt−1 −
∑t−1

i=1
yid

′
T i

(

∑t−1

i=1
dT id

′
T i

)−1

dT,t−1, (14)

which Chang (2002) showed converges to detrended Brownian motion when
properly normalized.

4.3 Modified Model and Results

Using this detrending strategy, the model in (2) may be rewritten as

r0t = ΓA′r1t + η∗t , (15)

where (r0t) and (r1t) are defined by (13) and (14) and

η∗t ≡ εt + Γ(A′Γ)−1A′(µ+Πwt) + Γ
∑t−1

i=1
A′yid

′
T i

(

∑t−1

i=1
dT id

′
T i

)−1

dT,t−1.

Note again that (6) holds under the null.
In this case, the NIV model to be estimated is

r00t = Γ0
⊥A

0′
⊥M

rz
11 (M

zz
11 )

−1zt−1 + η∗0t (16)

with η∗0t ≡ Ξ+1/2η∗t in place of (ε0t ) in (10). Lemmas 2 and 3 are no longer
directly useful. However, using Chang’s (2002) asymptotic arguments, the
results of parts (b) and (d) extend to the adaptively detrended case. The
following lemma allows the extension of the results of part (a) and (c) of those
lemmas to the model in (16).

Lemma 6 Define η̂∗0t ≡ Ξ̂+1/2η∗t with (r0t) and (r1t) defined by (13) and
(14).

(a)
∑

(η̂∗0t η̂∗0′t − ε̂0t ε̂
0′
t ) = op(T )

(b)
∑

z(r01t)(η̂
∗0′
t − ε̂0′t ) = op(T

1/4)

as T → ∞.

The following theorem replaces Theorem 4 for the more general model with
non-zero mean and stationary covariates.
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Theorem 7 Let the conditions for Lemma 2 or 3 hold for the model in (16)
with (r0t) and (r1t) defined by (13) and (14). The LR test of H0 : r = r0
against HA : r = m has a limiting distribution given by

−2 logQNIV (Hr0|m) →d χ
2
(m−r0)

2

as T → ∞.

The resulting distribution is exactly the same as in the case of the simpler
model.

5. Extension: Panel VECM

In a single VECM, nonlinear instruments may be used to instrument out non-
normality. Correlation across the vector are explicitly estimated, but implicitly
instrumented out by the diagonality of the results of Lemma 2(a)-(c). The
advantage of instrumenting out correlation becomes more apparent in a panel
with a potentially large cross-sectional dimension N . In large-T and large-N
panels, normal limiting distributions are the norm rather than the exception.
In this case, the main advantage of nonlinear instruments is robustness to
cross-sectional correlation.

Let the panel model be denoted by (1) with Γ ≡ dg(Γn) and A ≡ dg(An)
for n = 1, . . . , N . For simplicity, assume that rk(ΓnA

′
n) = r for all n under

the null, so that rk(ΓA′) = Nr. The system may be written as






4yt1
...

4ytN






=







Γ1A
′
1 0

. . .

0 ΓNA
′
N













yt−1,1
...

yt−1,N






+







εt1
...

εtN







using this convention. Assuming zero cross-sectional correlation in the mean
(block-diagonality of ΓA′) is a common feature of such models for parsimony
(e.g., Groen and Kleibergen, 2003). All cross-sectional correlation is therefore
relegated to the variance Σ of (εt). No restrictions on the off-diagonal blocks
of this variance are assumed. The nonlinear IV procedure instruments out
this cross-sectional correlation, similarly to the panel unit root tests of Chang
(2002, 2006).

In principle, a test may be constructed by simply running a trace test or
NIV trace test on the entire system. However, this requires estimating the
variance (εt) for the entire system, which is infeasible for large N .

It is more practical to estimate the individual variances of (εtn), thus calcu-
lating a rank test for each cross-sectional unit. Larsson et al. (2001) suggested
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this approach for the standard trace test (the LR bar test). An NIV trace test
may be similarly performed on each cross-sectional unit. After the transforma-
tion in the first step, all of the diagonal blocks of the asymptotic variances are
themselves diagonal. It is not obvious, however, that the off-diagonal blocks
may be ignored before the transformation. In other words, it is not obvious
that only the diagonal blocks Ξ11, . . . ,ΞNN of Ξ must be estimated.

To see this, define ε0tn ≡ Ξ
+1/2
nn εtn and r0htn ≡ Ξ

+1/2
nn rhtn for h = 0, 1 and

n = 1, . . . , N , where Ξ
+1/2
nn is defined as above for the nth diagonal block of

Ξ. Redefine ε0t ≡ (ε0′t1, . . . , ε
0′
tN)

′ and r0ht ≡ (r0′ht1, . . . , r
0′
htN)

′. The series (ε0t ) and
(r0ht) are thus defined using only the diagonal blocks Ξnn of Ξ. Only these
blocks must be estimated. Using these definitions,

Ω ≡ var(ε0t ε
0′
t )

=







Ξ
+1/2
11 0

. . .

0 Ξ
+1/2
NN













Σ11 · · · Σ1N
...

. . .
...

ΣN1 · · · ΣNN













Ξ
+1/2′
11 0

. . .

0 Ξ
+1/2′
NN







which by construction has diagonal blocks of Im−r.
An NIV test of the whole panel is

−2 logQNIV (Hr0|m) = −T
∑N(m−r0)

i=1
log(1− λ̂NIV,i)

for i = 1, . . . , N(m − r0), but this requires calculating particularly large co-
variance matrices as the cross-sectional dimension grows. Similarly to the
non-panel case, the test is equal to T

∑N(m−r0)
i=1 λ̂NIV,i up to an asymptotically

negligible term. By properties of eigenvalues, this sum is equal to the trace of
a matrix with those eigenvalues, which is equal to the trace of another matrix
with the same diagonals. Specifically,

T tr
{

(M zz
11 )

−1/2′UTU
′
T (M

zz
11 )

−1/2M zr
10M

−1
00 M

rz
01

}

for the whole panel is equivalent to

∑N

n=1
T tr

{

E ′
n(M

zz
11 )

−1/2′UTU
′
T (M

zz
11 )

−1/2M zr
10Ω

−1/2′

×Ω1/2′M−1
00 Ω

1/2Ω−1/2M rz
01En

}

,

where En is the Nm×m matrix that selects the nth set of m columns of the
matrix preceding it.

Since all of the factors M zz
11 , UTU

′
T , M zr

10Ω
−1/2′, and Ω1/2′M−1

00 Ω
1/2 are

asymptotically block diagonal, looking at the diagonal blocks of the whole
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expression inside the trace is asymptotically equivalent to looking at the same
expression created from diagonal blocks of each factor. The latter approach
may be denoted by

∑N

n=1
T tr

{

(M zz
11,n)

−1/2′UT,nU
′
T,n(M

zz
11,n)

−1/2M zr
10,nM

−1
00,nM

rz
01,n

}

(17)

where M zz
11,n ≡ E ′

nM
zz
11En, M

zr
10,n ≡ E ′

nM
zr
10En, and M−1

00,n ≡ E ′
nM

−1
00 En. The

asymptotic equality of these expressions holds because the limits of E ′
nM

zr
10

Ω−1/2′En and M zr
10,n coincide, as do those of E ′

nΩ
1/2′M−1

00 Ω
1/2En and M−1

00,n, by
the fact that Ω has identity diagonal blocks.

The expression in (17) is simply the sum of the traces of the individual
blocks (cross-sectional units). The test statistic is therefore equivalent to

−2 log Q̃NIV (Hr0|m) = −
∑N

n=1
T
∑(m−r0)

i=1
log(1− λ̂NIV,i,n) (18)

which is easier to compute in practice, as it does not require computing any
covariance matrices larger than m×m. I refer to the test in (18) as the panel
NIV trace test. Clearly, the panel NIV trace test reduces to the NIV trace test
when N = 1.

Theorem 8 Let the conditions for Lemma 2 or 3 hold for the model in (10)
with n = 1, . . . , N and with notation as defined in Section 5. The LR test of
H0 : r = r0 against HA : r = m has a limiting distribution given by

−2 log Q̃NIV (Hr0|m) →d χ
2
N(m−r0)

2

as T → ∞ for fixed N .

Any cross-sectional correlation is effectively eliminated by the nonlinear IV
testing strategy, just as in the case of panel unit root tests (Chang, 2002,
2006).

In the case without instruments, the simple trace statistic may still have the
stochastic integral limit derived by Johansen (1988), but with a large number of
degrees of freedom N(m−r0) from the panel dimension. This distribution has
been tabulated up to 11 degrees of freedom by Osterwald-Lenum (1992) and
12 degrees of freedom by Johansen (1995), but N(m− r0) ≤ 12 is unrealistic
for most panels.

For large N , an approach similar to Chang (2002, 2006) or Larsson et
al. (2001) is reasonable. Letting Qn(Hr0|Hm) denote the test for one cross-
sectional unit n, tests of this type take the form

Q̄(Hr0|m) =
√
N

1
N

∑N
n=1 Qn(Hr0|m)− E(Qn(Hr0|m))

√

var(Qn(Hr0|m))
(19)

20

Journal of Time Series Econometrics, Vol. 2 [2010], Iss. 1, Art. 5

http://www.bepress.com/jtse/vol2/iss1/art5

DOI: 10.2202/1941-1928.1057



for large N . A central limit theorem allows the distribution of this statistic to
approximate a standard normal. Larsson et al. (2001) called this test the LR
bar test when Qn is QRR,n.

I consider only the test in (18) and not an analogous test of the type in
(19). A principal advantage of a test of the latter type lies in replacing the
non-standard distribution with a normal distribution for large N . However,
this approach relies on a CLT approximation. The test proposed in this paper
may be extended in the same way for large N , but such an extension is unnec-
essary. Similarly to the case without instruments, a straightforward extension
of the non-panel test in (11) to the panel test in (18) necessitates finding the
critical value from a distribution with a large number of degrees of freedom.
However, since this limiting distribution is a chi-squared rather than a non-
standard stochastic integral, critical values for large degrees of freedom may
be ascertained easily.

6. Small-Sample Results

Empirical size and power from Monte Carlo experiments are presented Tables
1-3, using the usual LR trace test of Johansen (1988), the LR bar test of
Larsson et al. (2001), and the NIV trace and panel NIV trace tests with
consistently estimated long-run variances, conducted on the model in (1).

The experiments used sample sizes of T = (24, 60, 120, 360, 600) and N =
(1, 5, 10, 25, 50, 100) with pseudo-true values of r = 0, . . . ,m for m = 2. For
simulations, I chose parameters to mimic macroeconomic data while satisfying
assumptions [A1] and [A2]. Specifically, I set Σ to be an Nm × Nm matrix
with ones on the diagonal and 0.9 elsewhere.5 I set An = (Ir,−Am−r)

′ for n =
1, . . . , N with Am−r an r×(m− r) matrix with all elements equal to (r−m)−1.
And, I set Γn = (Γr,Γm−r)

′ for n = 1, . . . , N with Γr = δ2ιι
′ − (δ1 + δ2)Ir (ι

denotes a vector of ones) and with Γm−r an r×(m− r) matrix with all elements
equal to δ1 (m− r) /r. I set δ1 = 0.1 and δ2 = 0.05. This experimental design
generates time series with at least one root of |I − (I + ΓA′) x| = 0 (in each
block) outside the unit circle. Some results are dissimilar to those of Larsson
et al. (2001), because the pseudo-true parameters they employed appear to
contain some explosive roots.

For each of these specifications, I conducted 5, 000 repetitions. I employed
the usual strategy of starting with r0 = 0 and increasing until rejection fails
or until m − 1, in which case r = m is chosen if all r0 < m are rejected. For

5I also tried the same set of simulations with off-diagonals geometrically decreasing by
0.9, with qualitatively similar results.
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the standard trace test, I used the critical values given by Osterwald-Lenum
(1992), with a nominal size of 0.05.

After extensive experimentation with different instrument types, I found

zi (xi) = xi exp(−T−1/2x2
i )

(in the class suggested by Chang, 2002) to work reasonably well in small
samples. Since the argument of the function is normalized by the long-run
variance in the NIV procedure, using this function is robust to changes in the
long-run variance of actual data.

When the true rank is full (r = 2), all of the tests enjoy high power. Since
all of the tests are designed with an alternative of full rank, good power is
expected.

Similarly, when r = 0, the first test of r0 = 0 usually fails to reject,
because there is the most contrast between the two hypotheses of zero rank
and full rank. In the non-panel case, the LR test does not have very much size
distortion even for T as small as 24. The size distortion of the LR bar and NIV
trace tests are not unreasonable for N = 1. As N increases, the size increases
for all of the panel tests, but is especially bad for the NIV tests with relatively
small T . A formal requirement of Larsson et al. (2001) is that

√
N/T → 0,

which suggests that T should be much larger than
√
N in practice. Similarly,

the result for the NIV panel test is valid for finite N . Clearly, all tests perform
poorly when N is too large relative to T , such as N = 100 and T = 24.

The reason why the NIV trace test performs worse in this situation is
because the rate of divergence T 1/4 in Lemma 2(c) translates into a relatively
slow rate of convergence to the chi-squared. This slowness is the price paid
for (mixed) normality. The NIV trace test should not be used in samples with
T < 120 if N > 1.

In contrast, when r = 1, size distortion is extreme for all of the tests when
T ≤ 120. The size improves substantially for all tests as T increases, and the
NIV trace test is competitive for T = 360 and 600 for all N . As in the case of
r = 0, the size distortion with both panel tests increases as N increases.

Overall, the NIV trace test appears to be competitive with Johansen’s trace
test when N = 1 even when T is as small as 24. In a panel, the NIV trace test
is competitive with the LR bar test for a relatively large time dimension, say
T ≥ 120. Even though an “off-label” use of the LR bar test, the LR bar test
outperforms the NIV trace test for N substantially larger than T .
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7. Concluding Remarks

I have introduced rank tests alternative to the standard reduced rank trace
test for a VECM and LR bar test for a panel VECM. These tests employ the
nonlinear instrument approach that Chang (2002) applied to testing for unit
roots in panel data, and the nonlinearity instruments out both non-normality
and cross-sectional correlation. In a non-panel setting, this innovation may
be viewed as an extension of the nonlinear IV unit root tests of Phillips et al.
(2004). However, the rank testing strategy is vastly different from the unit root
testing strategy. The optimal instrument of Phillips et al. is not admissible in
the multivariate case. The class of regularly integrable instrument generating
functions discussed by Chang (2002) (but restricted so that its inverse image
does not concentrate mass) is more appropriate in this context.

Based on small-sample results, the main advantages of NIV tests lie not
in increasing the power or controlling the size of standard tests, although the
NIV tests appear to be competitive with extant tests, particularly when T is
relatively large and N is relatively small. Rather, the asymptotic results show
that the desirability of these tests lies in standard chi-squared critical values,
rather than the critical values of model-dependent stochastic integrals.

Appendix: Mathematical Proofs

Before proceeding to the proofs of the main results, I present two ancillary
lemmas. The relevant parts of Lemma 5 of Chang et al. (2001) are presented
as Lemma A.1 simply for the reader’s convenience and no proof is given here.

Lemma A.1 (Chang et al., 2001) Let zi be the ith element of the function
z defined by assumption [Z]. Let (xit) be the ith element of an I(1) vector series
(xt) with increments satisfying an invariance principle, such that the limiting
Brownian motion has unit variance and local time Li(1, 0). Let (ut) be a
univariate I(0) series satisfying an invariance principle with unit variance.
Then

(a) T−1/2
∑

z2i (xit) →d Li(1, 0)
∫∞

−∞
zi(s)

2ds,

(b) T−1/2
∑

zi(xit)zj(xjt) →p 0 for i 6= j,

(c) T−1/4
∑

zi(xit)ut →d (Li(1, 0)
∫∞

−∞
zi(s)

2ds)1/2 N(0, 1), and

(d) T−1
∑

zi(xit)xjt = Op (1) for i 6= j

as T → ∞. The convergences in (a) and (c) hold jointly.
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Lemma A.2 Let assumptions [A1]-[A2] and [Z] hold. Then UTU
′
T = Im−r

with probability 1.

Proof of Lemma A.2 Let QT (r) ≡ T−1/2
∑[Tr]

t=1 ε
0
t and let “ =d” denote dis-

tributional equivalence. There exists some stochastic process Q0
T (r) such that

QT (r) =d Q0
T (r) and Q0

T (r) →a.s. Q (r), according to the Skorokhod repre-
sentation theorem, where Q (r) is standard Brownian motion. The T ×(m−r)
matrix defined by Q ≡ (Q′

T (r))Tt=1, has full column rank with probability 1,6

because its rows consist of continuously distributed random variables that are
not perfectly correlated, even in the limit.

Let Z ≡ (z′t−1)
T
t=2. Since z (x) is assumed to be an element-wise transfor-

mation of x, Z may preserve the rank of Q if constructed properly. Z is a
random matrix with full column rank and imperfectly correlated elements if
their distributions are also continuous. Using a change of variables theorem
(e.g., Theorem 4.1.11 of Dudley, 2002), the distribution of one such element
is Pzi,t−1

=
∫

pzi,t−1
d(µ ◦ z−1) where µ is Lebesgue measure. This distribution

is continuous if the measure µ ◦ z−1 is absolutely continuous w.r.t. Lebesgue
measure. Absolute continuity holds if the inverse image under z of any set with
measure zero also has measure zero. Then the Borel-Cantelli lemma applies to
the distribution of zi,t−1. Thus, Z also has full column rank with probability
1. Letting R ≡ (r0′1t)

T
t=2, note that R also has full column rank m − r, using

the same arguments as above for Q.
The matrix in the lemma may be rewritten as

UTU
′
T = (Z ′Z)−1/2Z ′R(R′Z(Z ′Z)−1Z ′R)−1R′Z(Z ′Z)−1/2′,

which is a square matrix of dimension m− r, having full rank with probability
1. Since it is also idempotent, it must be equal to Im−r with probability 1. �

Proof of Lemma 1 A′yt−1 = B (L)A′εt using (1) and invertibility due to
assumption [A2](c). Plugging this back into (1), 4yt = (I + ΓB (L)A′) εt
easily follows. To establish that this is in fact a Wold representation, write Ck

explicitly in terms of k. By defining Ck ≡ I + ΓBkA
′, the representation in

the lemma follows. Summability is straightforward to verify from assumption
[A2](c). Finally, the derivation of long-run variance is given by Cheng and
Phillips (2009), for example. �

Proof of Lemma 2 The proof of part (a) follows from a standard law of
large numbers for iid sequences and by construction of (ε0t ). The instrument

6See, e.g., Feng and Zhang (2007).
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is defined to be z(r01t) = z(Ξ+1/2yt−1), where T
−1/2y[Tr] converges to Brownian

motion under assumptions [A1]-[A2]. The stated result in part (b) therefore
follows directly from Lemma A.1(a) and (b). The limiting distribution of part
(c) follows from a straightforward generalization of Lemma A.1(c) to account
for the vectorization operation. The proof of part (d) follows from Lemma
A.1(d). �

Proof of Lemma 3 The proof of part (a) is straightforward and is omitted.
For the proof of part (b), first consider the diagonals of z(r̂01t)z(r̂

0
1t)

′, which
are z2i (e

′
ir̂

0
1t). The first-order term of a Taylor series expansion of

∑

(z2i (e
′
ir̂

0
1t)−

z2i (e
′
ir

0
1t)) around e′ir

0
1t is

aiiT
∑

z̃2i (e
′
ir

0
1t)e

′
ir

0
1t+

∑

j 6=i
aijT

∑

z̃2i (e
′
ir

0
1t)e

′
jr

0
1t+

∑

z̃2i (e
′
ir

0
1t)biT (I−PΞ)r1t

(20)
where

aiiT ≡ e′i(Ξ̂
+1/2 − Ξ+1/2)Ξ+1/2′ei(e

′
iΞ

+1/2Ξ+1/2′ei)
−1

aijT ≡ e′i(Ξ̂
+1/2 − Ξ+1/2)Ξ+1/2′ej(e

′
jΞ

+1/2Ξ+1/2′ej)
−1

biT ≡ e′i(Ξ̂
+1/2 − Ξ+1/2)

and z̃2i (xi) ≡ ∂
∂xi

z2i (xi), using the decomposition in (7). Now, assuming that

z̃2i (x)x is regularly integrable, the first term of (20) is Op(aiiTT
1/2) = op(T

1/2).
The third term of (20) is Op(‖biT‖T 1/4) = op(T

1/2) with the rate T 1/4 from
Theorem 5 of Jeganathan (2008).7 If m− r = 1, then the second term of (20)
is zero and z(r̂01t)z(r̂

0
1t)

′ is a scalar, since there is only one stochastic trend
in that case. The proof of part (b) is completed by noting that higher-order
terms in the expansion are negligible.

On the other hand, if m− r > 1, then the second term of (20) is Op(aijTT )
by Lemma 1 of Chang and Park (2003). Moreover, in this case, the matrix
z(r̂01t)z(r̂

0
1t)

′ contains off-diagonal terms of the form zi(e
′
ir̂

0
1t)zk(e

′
kr̂

0
1t). The

first-order term of a Taylor series expansion of
∑

(zi(e
′
ir̂

0
1t)zk(e

′
kr̂

0
1t)− zi(e

′
ir

0
1t)

zk(e
′
kr

0
1t)) around e′ir

0
1t and e′kr

0
1t is given by

aiiT
∑

zike
′
ir

0
1t + akkT

∑

zkie
′
kr

0
1t

+
∑

j 6=i,k
aijT

∑

zike
′
jr

0
1t +

∑

j 6=i,k
akjT

∑

zkie
′
jr

0
1t

+
∑

zikbiT (I − PΞ)r1t +
∑

zkibkT (I − PΞ)r1t

7Jeganathan’s (2008) result requires generalized linear processes with summable coeffi-
cients, as Lemma 1 shows is the case in the present context. Also, his relevant moment
conditions are satisfied by the assumptions about (εt).
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where zik(xi, xk) = ∂
∂xi

zi(xi)zk(xk). The summands in the first and second
terms may be written as products of two regularly integrable functions, since
e′ir

0
1t and e′kr

0
1t are arguments of zik and zki. These terms are op(aiiTT

1/2) and
op(akkTT

1/2) by Lemma A.1(b) and thus pose no problem. The fifth and sixth
terms also pose no problem, since the Cauchy-Schwarz inequality allows

T−3/8
∑

zkibiT (I − PΞ)r1t

≤
√

T−1/2
∑

z
(1)
i (e′ir

0
1t)T

−1/4
∑

zk(e′kr
0
1t)biT (I − PΞ)r1t

so that these terms are Op(‖biT‖T 3/8) and Op(‖bkT‖T 3/8). The third and
fourth terms are more problematic. Note that

∑

zike
′
jr

0
1t ≤

√

T−1/2
∑

z
(1)
i (e′ir

0
1t)T

−1
∑

zk(e′kr
0
1t)e

′
jr

0
1t

so that these terms are Op(aijTT
3/4) and Op(akjTT

3/4). The largest term is
Op(aijTT ), which is op(T

1/2) only if the estimation error is op(T
1/2) in the

direction of the trends. In this case, higher order terms will also be negligible.
For parts (c) and (d), the first-order term of a Taylor series expansion of

∑

(zi(e
′
ir̂

0
1t)− zi(e

′
ir

0
1t)) around e′ir

0
1t is

aiiT
∑

z̃i(e
′
ir

0
1t)e

′
ir

0
1t +

∑

j 6=i
aijT

∑

z̃i(e
′
ir

0
1t)e

′
jr

0
1t +

∑

z̃i(e
′
ir

0
1t)biT (I − PΞ)r1t

(21)
where z̃i(xi) ≡ ∂

∂xi
zi(xi).

Consider multiplying each term of (21) by ε′tΞ̂
+1/2′ for part (c). The first

term becomes

aiiT
∑

z̃i(e
′
ir

0
1t)e

′
ir

0
1tε

′
tΞ̂

+1/2′ = Op(aiiTT
1/4),

and the third term similarly becomes

∑

z̃i(e
′
ir

0
1t)biT (I − PΞ)r1tε

′
tΞ̂

+1/2′ = Op(‖biT‖T 1/4),

since (I − PΞ)r1tε
′
t is an MDS with finite conditional variance, due to the

stationarity of (I−PΞ)r1t. The second term is zero if m− r = 1. Higher order
terms are similarly negligible.

If m−r > 1, then the second term of (21) multiplied by ε′tΞ̂
+1/2′ is a sum of

aijT
∑

z̃i(e
′
ir

0
1t)e

′
jr

0
1tε

′
tΞ̂

+1/2′, which is Op(aijTT
3/4) by Lemma 1 of Chang and

Park (2003). The result for m−r > 1 in part (c) again requires the estimation
error to be op(T

1/2) in the direction of the trends.
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Consider first the diagonal elements of the matrix in the summand of part
(d). The first-order term of a Taylor series expansion of

∑

(zi(e
′
ir̂

0
1t)e

′
ir̂

0
1t −

zi(e
′
ir

0
1t)e

′
ir

0
1t) around e′ir

0
1t is

aiiT
∑

z∗i (e
′
ir

0
1t)e

′
ir

0
1t+

∑

j 6=i
aijT

∑

z∗i (e
′
ir

0
1t)e

′
jr

0
1t+

∑

z∗i (e
′
ir

0
1t)biT (I−PΞ)r1t

where z∗i (xi) ≡ xi
∂
∂xi

zi(xi) + zi(xi). The first and third term have the same
asymptotics as the respective terms of (20), as long as z∗i (xi) is regularly
integrable, which completes the proof for m− r = 1.

For m−r > 1, the second term is non-zero, but Op(aijTT ), similarly to part
(b). For the off-diagonal elements of the summand in the case of m−r > 1, the
first-order term of a Taylor series expansion of

∑

(zi(e
′
ir̂

0
1t)e

′
kr̂

0
1t−zi(e

′
ir

0
1t)e

′
kr

0
1t)

around e′ir
0
1t and e′kr

0
1t is given by

aiiT
∑

z∗ike
′
ir

0
1t + akkT

∑

z(e′ir
0
1t)e

′
kr

0
1t

+
∑

j 6=i,k
aijT

∑

z∗ike
′
jr

0
1t +

∑

j 6=i,k
akjT

∑

z(e′ir
0
1t)e

′
jr

0
1t

+
∑

z∗ikbiT (I − PΞ)r1t +
∑

z(e′ir
0
1t)bkT (I − PΞ)r1t

where z∗ik(xi, xk) = ∂
∂xi

z(xi)xk. The asymptotics of each term follow from
Lemma 1 of Chang and Park (2003). The first and second terms are Op(aiiTT )
and Op(akkTT ). The third and fourth are Op(aijTT

3/2) and Op(akjTT ). Finally,
the last two terms are Op(‖biT‖T 3/4) and Op(‖bkT‖T 1/4). As the largest term
is Op(aijTT

3/2), the estimation error must again be op(T
1/2) in the direction

of the trends when m− r > 1. �

Proof of Theorem 4 The proof follows by noting from Lemma A.1 that
the convergences are joint, so that the local times, though random, may be
canceled directly. As a result, vT →d N(0, I(m−r)2), so that v

′
T (I⊗UTU

′
T )vT →d

χ2
(m−r)2 by the continuous mapping theorem and Lemma A.2. �

Proof of Lemma 5 Let Π∗ ≡ (µ,Π) and w∗
t = (1, w′

t)
′. The Wold repre-

sentation in Lemma 1 may be modified to 4yt = C (L) (Π∗w∗
t + εt), although

it is no longer an MA if (wt) contains lagged (4yt)’s. A Beveridge-Nelson
decomposition of C(L) allows

4yt = C (1)Π∗w∗
t + C (1) εt + C̃ (L) (Π4wt + εt)
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where C̃(z) is defined by
∑∞

k=0

∑∞
s=k+1Csz

k as in Phillips and Solo (1992).
The least squares estimator of C (1)Π∗ is given by

Ĉ (1)Π∗ − C (1)Π∗ =
(

∑

C (1) εtw
∗′
t +

∑

C̃ (L) (Π4wt +4εt)w
∗′
t

)

×
(

∑

w∗
tw

∗′
t

)−1

The first term is Op(T
−1/2) due to the fact that (w∗

t ) includes a constant and
stationary covariates, and (εtw

∗′
t ) is a martingale difference sequence due to

the serial independence of (εt) and contemporaneous independence of (εt) and
(wt). The second term is op(T

−1/2) along the lines of the proof of Theorem
3.4 of Phillips and Solo (1992). Finally, the definition of C(1) in terms of
A⊥(Γ

′
⊥A⊥)

−1Γ′
⊥ gives the stated result. �

Proof of Lemma 6 From the definitions,

η̂∗0t − ε̂0t = Ξ̂+1/2(C (1)Π∗ − Ĉ (1)Π∗)w∗
t + (Ξ̂+1/2 − Ξ+1/2)Γ(A′Γ)−1A′Π∗w∗

t

(22)

+ (Ξ̂+1/2 − Ξ+1/2)Γ
∑t−1

i=1
A′yid

′
T i

(

∑t−1

i=1
dT id

′
T i

)−1

dT,t−1

may be verified, using the facts that Ξ+1/2Γ = 0 and

I = Γ(A′Γ)−1A′ + A⊥(Γ
′
⊥A⊥)

−1Γ′
⊥,

and using an estimate of C (1)Π∗. Now, from the definition of dT i,

Γ
∑t−1

i=1
A′yid

′
T i

(

∑t−1

i=1
dT id

′
T i

)−1

dT,t−1 = 2
∑t−1

i=1

3i− t

t(t− 1)
ΓA′yi

and it is straightforward to verify that

2
∑t−1

i=1

3i− t

t(t− 1)
ΓA′yi = −Γ(A′Γ)−1A′µ+ 2

∑t−1

i=1

3i− t

t(t− 1)
ΓB(L)A′ (Πwi + εi)

Now, the common term (Ξ̂+1/2−Ξ+1/2)Γ(A′Γ)−1A′µ cancels, so that (22) may
be rewritten as

η̂∗0t − ε̂0t = Ξ̂+1/2(C (1)Π∗ − Ĉ (1)Π∗)w∗
t + (Ξ̂+1/2 − Ξ+1/2)Γ(A′Γ)−1A′Πwt

+ (Ξ̂+1/2 − Ξ+1/2)
∑t−1

i=1
ΓB(L)A′ (Πwi + εi)

× d′T i

(

∑t−1

i=1
dT id

′
T i

)−1

dT,t−1
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or more simply as

η̂∗0t − ε̂0t = Op(T
−1/2)Ξ̂+1/2w∗

t +Op(T
−1/2)(Ξ̂+1/2 − Ξ+1/2)dT,t−1 (23)

+ (Ξ̂+1/2 − Ξ+1/2)Γ(A′Γ)−1A′Πwt

where the Op(T
−1/2) in the first term comes directly from Lemma 5 and the

Op(T
−1/2) in the second term may be deduced from a FCLT for weakly de-

pendent processes (e.g., Davidson, 1994).
An expansion of the summation in part (a) of the lemma reveals that all

terms are op (1), as long as (Ξ̂+1/2 − Ξ+1/2) = op (1). Many of these terms
involve a product of a stationary series and a properly scaled deterministic
trend, and their asymptotic orders may be deduced from CLT’s for martingale
difference sequences for (ε̂0t ) (e.g., McLeish, 1974) or weakly dependent pro-
cesses for (wt) (e.g., de Jong, 1997). The asymptotic orders of the remaining
terms are standard.

The summation in part (b) may be written as

Op(T
−1/2)

∑

z(r01t)w
∗′
t Ξ̂

+1/2′ + op(T
−1/2)

∑

z(r01t)d
′
T,t−1 (24)

+ op(1)
∑

z(r01t)w
′
tΠ

′A(Γ′A)−1Γ′

using (23) and the consistency of Ξ̂+1/2 − Ξ+1/2. The first column of the
first term is Op(1) due to the unit in the first element of w∗

t . As the remaining
columns involve stationary (wt), they are Op(T

−1/4). The second term is op (1)
using Lemma 5(g) of Chang et al. (2001). The last term is op(T

1/4) using
standard Park and Phillips (1999) asymptotics. The stated result holds since
all terms in (24) are thus op(T

1/4). �

Proof of Theorem 7 By Lemma 6 and the convergence of an adaptively de-
trended I(1) process to detrended Brownian motion (Chang, 2002), the asymp-
totic results of the appropriate sample moments reduce to those of Lemma 2.
The same result as that of Theorem 4 is thus obtained. �

Proof of Theorem 8 The proof follows directly from Theorem 4 by noting
that the sum of independent χ2 variates is also a χ2 variate with degrees of
freedom given by the sum of the degree of freedom. �
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