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We demonstrate that the plasmon frequency and Drude weight of the electron liquid in a
doped graphene sheet are strongly renormalized by electron-electron interactions even in the long-
wavelength limit. This effect is not captured by the Random Phase Approximation (RPA), com-
monly used to describe electron fluids and is due to coupling between the center of mass motion
and the pseudospin degree of freedom of the graphene’s massless Dirac fermions. Making use of dia-
grammatic perturbation theory to first order in the electron-electron interaction, we show that this
coupling enhances both the plasmon frequency and the Drude weight relative to the RPA value. We
also show that interactions are responsible for a significant enhancement of the optical conductivity
at frequencies just above the absorption threshold. Our predictions can be checked by far-infrared
spectroscopy or inelastic light scattering.

I. INTRODUCTION

The first theory of classical collective electron density
oscillations in ionized gases by Tonks and Langmuir1 in
the 1920’s helped initiate the field of plasma physics.
The theory of collective electron density oscillations in
metals, quantum in this case because of higher electron
densities, was developed by Bohm and Pines2,3 in the
1950’s and stands as a similarly pioneering contribution
to many-electron physics. Bohm and Pines coined the
term plasmon to describe quantized density oscillations.
Today plasmonics is a very active subfield of optoelec-
tronics4,5, whose aim is to exploit plasmon properties in
order to compress infrared electromagnetic waves to the
nanometer scale of modern electronic devices. This wide
importance of plasmons across different fields of basic and
applied physics follows from the ubiquity of charged par-
ticles and from the strength of their long-range Coulomb
interactions.

The physical origin of plasmons is very simple. When
electrons in free space move to screen a charge inho-
mogeneity, they tend to overshoot the mark. They are
then pulled back toward the charge disturbance and over-
shoot again, setting up a weakly damped oscillation. The
restoring force responsible for the oscillation is the av-
erage self-consistent field created by all the electrons.
Because of the long-range nature of the Coulomb in-
teraction, the frequency of oscillations ωpl(q) tends to
be high and is given in the long wavelength limit by
ω2

pl(q → 0) = nq2Vq/m where n is the electron den-
sity, m is the bare electron mass in vacuum, and Vq is
the Fourier transform of the Coulomb interaction. This
simple explicit plasmon energy expression is exact be-
cause long-wavelength plasmons involve rigid motion of
the entire plasma, which does not involve the complex
exchange and correlation effects that dress6 the motion

of an individual electron. The exact plasmon frequency
expression is correctly captured by the RPA2,3,6, but
also by rigorous arguments7 in which the selection of
a particular center-of-mass position breaks the system’s
Galilean invariance and plasmon excitations play the role
of Goldstone bosons. In two-dimensional (2D) systems

Vq = 2πe2/q so that ωpl(q → 0) =
√

2πne2q/m, where e
is the magnitude of the electron charge.

Electrons in a solid, unlike electrons in a plasma or
electrons with a jellium model6 background, experience
a periodic external potential created by the ions which
breaks translational invariance and hence also Galilean
invariance. Solid state effects can lead in general to a
renormalization of the plasmon frequency, or even to the
absence of sharp plasmonic excitations. In semiconduc-
tors and semimetals, however, electron waves can be de-
scribed at super-atomic length scales using k ·p theory8,
which is based on an expansion of the crystal’s Bloch
Hamiltonian around band extrema. In the simplest case,
for example for the conduction band of common cubic
semiconductors, this leads us back to a Galilean-invariant
parabolic band continuum model with isolated electron
energy Ec(p) = p2/(2mb). The crystal background for
electron waves appears only via the replacement of the
bare electron mass by an effective band mass mb. In this
type of k·p Galilean-invariant interacting electron model,
valid for many semiconductor and semiconductor hetero-
junction systems, the plasmon dispersion is accurately
given by the random phase approximation (RPA)2,3,6 and
it is given by the classical formula quoted above with the
replacements m → mb and e2 → e2/ε, ε being the high-
frequency dielectric constant of the semiconductor mate-
rial. The absence of electron-electron interaction correc-
tions to plasmon frequencies at very long wavelengths in
these systems, has been demonstrated experimentally by
means of inelastic light scattering9,10.
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The situation turns out to be quite different in
graphene – a monolayer of carbon atoms tightly packed
in a 2D honeycomb lattice11–14. When k · p theory is
applied to graphene it leads to a new type of electron
fluid model, one with separate Dirac-Weyl Hamiltonians
for electron waves centered in momentum space on one
of two honeycomb lattice Brillouin-zone corners K and
K ′:

ĤD = ~v
∑
k,α,β

ψ̂†k,α (σαβ · k) ψ̂k,β . (1)

Here v is the bare electron velocity, k is the k · p
momentum, α, β are sublattice pseudospin labels, and
σαβ = (σxαβ , σ

y
αβ) is a vector of Pauli matrices which

act on the sublattice pseudospin degree-of-freedom. It
follows that the energy eigenstates for a given p have
pseudospins oriented either parallel (upper band) or an-
tiparallel (lower band) to p. Physically, the orientation
of the pseudospin determines the relative amplitude and
the relative phase of electron waves on the two distinct
graphene sublattices.

Electron-electron interactions in graphene are de-
scribed by the usual non-relativistic Coulomb Hamilto-
nian15

ĤC =
1

2S

∑
q 6=0

Vq ρ̂q ρ̂−q , (2)

where S is the sample area, Vq = 2πe2/(εq) is the
2D Fourier transform of the Coulomb interaction (ε be-
ing an effective average dielectric constant), and ρ̂q =∑

k,α ψ̂
†
k−q,αψ̂k,α is the usual density operator. Electron

carriers with density n can be induced in graphene by
purely electrostatic means, creating a circular 2D Fermi
surface in the conduction band with a Fermi radius kF,
which is proportional to

√
n 16. The model described by

Ĥ = ĤD + ĤC requires an ultraviolet wavevector cutoff,
kmax, which should be assigned a value corresponding to
the wavevector range over which ĤD describes graphene’s
π bands. This corresponds to taking kmax ∼ 1/a0 where
a0 ∼ 1.42 Å is the carbon-carbon distance. This model
is useful when kmax is much larger than kF.

The feature of graphene that is ultimately responsible
for the large many-body effects on the plasmon dispersion
and the Drude weight is broken Galilean invariance. The
lattice reference frame remains present in the continuum
model through the coupling between momenta and pseu-
dospins. The oriented pseudospins provide an “ether”
against which a global boost of the momenta becomes
detectable. This is explained in detail in the caption of
Fig. 1.

Fig. 1 explains why the plasmon frequency in graphene
is so strongly affected by exchange and correlation. In a
plasmon mode the region of occupied states (Fermi cir-
cle) oscillates back and forth in momentum space un-
der the action of the self-induced electrostatic field. In
graphene, this oscillatory motion is inevitably coupled

FIG. 1: Breakdown of Galilean invariance in graphene. Panel
1a) shows the occupied electronic states in the upper band
of graphene in the ground state. Notice that every state is
characterized by a value of momentum (the origin of the ar-
row) and a pseudospin orientation (the direction of the ar-
row). Panel 1b) shows the occupied states after a Galilean
boost. An observer riding along with the boost would clearly
see that the orientation of the pseudospins has changed. It
looks like the pseudospins are subjected to a “pseudomagnetic
field” that causes them to tilt towards the +x̂ direction. The
appearance of this pseudomagnetic field is the signature of
broken Galilean invariance. In contrast, in a Galilean invari-
ant system [Panels 1c) and 1d)] the energy eigenstates are
characterized by momentum only: an observer riding along
with the boost would not see any change in the character of
the occupied states.

with an oscillatory motion of the pseudospins. Since ex-
change interactions depend on the relative orientation of
pseudospins they contribute to plasmon kinetic energy
and renormalize the plasmon frequency even at leading
order in q.

In this article we present a many-body theory of this
subtle pseudospin coupling effect and discuss the main
implications of our findings for theories of charge trans-
port and collective excitations in doped graphene sheets.
Our manuscript is organized as follows. In Sect. II we
introduce the most important definitions and the basic
linear-response functions that control the plasmon dis-
persion, the Drude weight, and the a.c. conductivity. In
Sect. III we present the approach we have used to cal-
culate the Drude weight and the a.c. conductivity, i.e.
diagrammatic perturbation theory, and the main ana-
lytical results. Identical results can be obtained using a
kinetic equation approach which will be detailed in a sep-
arate publication17 that is focused on a different applica-
tion. Our main numerical results based on this approach
are illustrated in Sect. IV. In Sect. V we emphasize how
density-density and current-current response functions
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do not lead to the same results for the Drude weight and
a.c. conductivity due to the presence of a rigid cutoff in
momentum space. Finally, in Sect. VI we summarize our
findings and draw our main conclusions. Three Appen-
dices (A-C) highlight some important technical aspects of
the diagrammatic calculation, while Appendix D reports
on the generalized form of the continuity equation that
applies in the presence of a rigid momentum cutoff, and
Appendix E reports numerical results for Thomas-Fermi
screened interactions.

II. FORMULATION

The collective (plasmon) modes of the system de-

scribed by Hamiltonian Ĥ can be found by solving the
following equation 6,

1− Vqχ̃ρρ(q, ω) = 0 , (3)

where χ̃ρρ(q, ω) is the so-called proper18 density-density
response function. In the q → 0 limit of interest here we
can neglect the distinction between the proper and the
full causal response function

χρρ(q, ω) =
χ̃ρρ(q, ω)

1− Vqχ̃ρρ(q, ω)
. (4)

We show below that

lim
ω→0

lim
q→0
<e χρρ(q, ω) =

D
πe2

q2

ω2
, (5)

where D is a as yet unidentified density- and coupling-
constant-dependent quantity. Note the order of limits in
Eq. (5): the limit ω → 0 is taken in the dynamical sense,
i.e. vq � ω � 2εF. Here εF = vkF is the Fermi energy
and 2εF is the threshold for vertical inter-band electron-
hole excitations. Using Eq. (5) in Eq. (3) and solving for
ω we find that, to leading order in q,

ωpl(q → 0) =

√
2πe2n

εmpl
q , (6)

where we have introduced the “plasmon mass”, mpl =
πe2n/D.

In the dynamical limit, the imaginary-part of the a.c.
conductivity, σ(ω) = ie2ω limq→0 χρρ(q, ω)/q2, has the
form

=m σ(ω)→ D
πω

. (7)

It then follows from a standard Kramers-Krönig analysis
that the real-part of the conductivity has a δ-function
peak at ω = 0: <e σ(ω) = Dδ(ω). Thus the quantity
D introduced in Eq. (5) is the Drude weight. In the
presence of disorder the δ-function peak is broadened into
a Drude peak, but the Drude weight is preserved for weak
disorder.

We thus see from Eq. (6) that the Drude weight com-
pletely controls the plasmon dispersion at long wave-
lengths. When electron-electron interactions are ne-
glected D tends to the RPA Drude weight D0 = 4εFσ0,
where σ0 = e2/(4~) is the so-called universal19–23

frequency-independent inter-band conductivity of a neu-
tral graphene sheet. In the same limit mpl → ~kF/v and

ω2
pl(q → 0) =

ε2
F

~2

gαee

2

q

kF
, (8)

where g = gsgv = 4 is a spin-valley degeneracy factor
and we have introduced the dimensionless fine-structure
coupling constant αee = e2/(ε~v), the ratio between the
Coulomb energy scale e2kF/ε and the kinetic energy scale
~vkF. (The fine-structure constant can be tuned exper-
imentally by changing the dielectric environment sur-
rounding the graphene flake24,25.) Eq. (8) is the well-
known RPA26–29 result for the plasmon dispersion at long
wavelengths.

In the following Section we calculate D exactly to
first order in the fine-structure constant αee by means
of diagrammatic perturbation theory, demonstrating in
the process that its value is substantially enhanced by
electron-electron interactions. Our results depend on the
electron density via the ultraviolet cutoff Λ = kmax/kF.
Thus, the momentum sums that appear in the evalua-
tion of the diagrams will be restricted in such a way that
only single-particle states with wave vectors k ≤ kmax

are involved. The value of Λ varies from ∼ 20 for a very
high-density graphene system with n ∼ 1013 cm−2 to
∼ 100 for a density n ∼ 5× 1011 cm−2 just large enough
to screen out the unintended30 inhomogeneities present
in samples on substrates. We will see that our results are
only weakly dependent on Λ. If this were not true the
Dirac model for electron-electron interactions in doped
graphene would not be useful and it would be neces-
sary to correctly account for interaction effects at energy
scales beyond those for which the model is valid. The
cutoff appears only in the well-known electron-electron
interaction enhancement of the quasiparticle velocity.

III. DIAGRAMMATIC PERTURBATION
THEORY

In Fig. 2 we show the diagrams that contribute to
the density-density response function χρρ(q, ω) up to
first order in the coupling constant; the bare bubble
diagram, two self-energy-correction diagrams, and one
vertex-correction diagram. As usual, partial cancella-
tions between the self-energy and vertex corrections play
an essential role. In Fig. 2 solid lines are noninteracting
Green’s functions31,

G(k, ω) =
1

2

∑
µ=±1

11σ + µσk

ω − ξk,µ + iηk,µ
, (9)

where 11σ is the identity matrix in pseudospin space,
σk = σ · k/k, ξk,µ = µvk − εF, and ηk,µ = η sgn(−ξk,µ)
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a)

ρ̂q ρ̂−q

b)

ρ̂q ρ̂−q

c)

ρ̂q ρ̂−q

d)

ρ̂q ρ̂−q

FIG. 2: Feynman diagrams for the proper density-density re-
sponse function χρρ(q, ω) up to first order in the electron-
electron interaction. Panel a) The bare bubble diagram.
Panel b) Vertex correction. Panels c) and d) Self-energy dia-
grams.

(with η = 0+). Dashed lines are electron-electron inter-
actions.

All wave vectors, q, k, and k′, which appear below
are measured in units of kF, while frequencies and en-
ergies are in units of 2εF. Below we set ~ → 1. We
also introduce the density-of-states at the Fermi energy,
ν(εF) = 2εF/(πv

2).
The diagrams in Fig. 2 are first evaluated in the limit

of small q (i.e. to order q2) and finite ω. Then, for the
real part of χρρ we will retain only the terms that scale as
q2/ω2 for ω → 0 and thus contribute to the Drude weight,
while for the imaginary part of χρρ, which controls the
real part of the a.c. conductivity, we calculate the full
frequency-dependent function.

Proceeding in this manner we see that the empty bub-
ble in Fig. 2 (i.e. the noninteracting diagram), de-

noted by χ
(0)
ρρ (q, ω), reproduces the noninteracting Drude

weight D0, as expected (see Appendix A):

<e χ(0)
ρρ (q, ω) =

D0

4πv2e2

q2

ω2
=

1

8
ν(εF)

q2

ω2
(10)

and

=m χ(0)
ρρ (q, ω) = − π

16
ν(εF)

q2

ω
[Θ(ω − 1) + {ω → −ω}] ,

(11)
where Θ(x) is the usual Heaviside step function and the
notation “{ω → −ω}” means that we have to add to the
first term in square brackets an identical term in which
ω is interchanged with −ω.

The next diagram is the so-called “vertex correction”,

denoted by χ
(V)
ρρ (q, ω), which physically represents the

dressing of the external driving field by the internally
generated exchange field. We find that, up to order q2

and for ω → 0 (see Appendix B for details),

<e χ(V)
ρρ (q, ω) = − 1

32
αeeν(εF)

q2

ω2
[V0(1, 1) + 2V1(1, 1)

+ V2(1, 1)] (12)

and

=m χ(V)
ρρ (q, ω) = − π

16
αeeν(εF)

q2

ω
× [Θ(ω − 1)JV(ω,Λ) + {ω → −ω}] ,

(13)

with

JV(ω,Λ) =
V2(ω, 1)− V0(ω, 1)

2

+
ω

2
P
∫ Λ

1

dk
F (ω, k)

k2 − ω2
(14)

and F (ω, k) = 2kV1(ω, k) + ω[V0(ω, k) + V2(ω, k)]. Here
Vm(k, k′) are dimensionless Coulomb pseudopotentials32,

Vm(k, k′) =

∫ 2π

0

dθ

2π

exp (−imθ)

qTF +
√
k2 + k′2 − 2kk′ cos(θ)

,

(15)
where qTF = 4αee is the Thomas-Fermi screening wave
vector (in units of kF). Making use of these formulas it
is easy to check that the vertex correction to the Drude
weight [i.e. Eq. (12)] is negative and that the integral in
the second line of Eq. (14) converges in the limit Λ→∞.

The last two diagrams are “self-energy” corrections,

denoted by χ
(SE)
ρρ (q, ω), which physically describe the

modification of the response function due to exchange
energy corrections to the quasiparticle dispersion. We
find that (see Appendix C for more details)

<e χ(SE)
ρρ (q, ω) =

1

32
αeeν(εF)

q2

ω2
[V0(1, 1) + 2V1(1, 1)

+ V2(1, 1)] +
1

32
αeeν(εF)

q2

ω2

×
∫ Λ

1

dk [V0(1, k)− V2(1, k)] (16)

and

=m χ(SE)
ρρ (q, ω) = − π

16
αeeν(εF)

q2

ω
× [Θ(ω − 1)JSE(ω,Λ) + {ω → −ω}] ,

(17)

where
JSE(ω,Λ) =

1

ω
Σ(ω,Λ)− ∂ωΣ(ω,Λ)

Σ(ω,Λ) =
1

2

∫ Λ

1

dk kV1(ω, k)

. (18)

In writing Eq. (17) we have excluded a term proportional
to δ(ω− 1) which is an artifact of perturbation theory as
we explain below.
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IV. DRUDE WEIGHT RENORMALIZATION
AND A.C. CONDUCTIVITY

We now combine the terms calculated in the previous
Section. Extensive cancellations occur between vertex
corrections and self-energy contributions. For example
the first term on the right hand side of Eq. (16) cancels
the vertex contribution (12). The final result for the
Drude weight to first order in αee is

D
D0

= 1 +
αee

4

∫ Λ

1

dk [V0(1, k)− V2(1, k)] . (19)

The real part of the a.c. conductivity is given, to the
same order, by

<e σ(ω)

σ0
= Θ(ω − 1){1 + αee[JV(ω,Λ) + JSE(ω,Λ)]} .

(20)
Eqs. (19)-(20) are the most important results of this ar-
ticle.

A. Long-range interactions

For unscreened Coulomb interactions [qTF = 0 in
Eq. (15)] V0(1, k) decays as 1/k at large k (see, for ex-
ample, Ref. 32): we thus find that

D
D0

=
v?

v
+ βαee , (21)

where

v?

v
= 1 +

αee

4
ln (Λ) (22)

is the well-known logarithmic velocity enhancement33

(see also Refs. 32,34,35) and

β ≡ 1

4
lim

Λ→∞

∫ Λ

1

dk

[
V0(1, k)− 1

k
− V2(1, k)

]
= −1

8
+

1

4π

(
2

3
− 4C

)
+

ln 4

4
' −0.017 , (23)

C ' 0.916 being Catalan’s constant. Notice that in
Eq. (23) we have taken the limit Λ → ∞ since the inte-
grand decays like 1/k2 for k → ∞ [β reaches its Λ = ∞
asymptotic value reported in Eq. (23) already at values
of Λ as small as ≈ 10]. For all dopings of experimental
relevance Λ � 1: in this regime the doping dependence
of D is logarithmic and stems from the velocity enhance-
ment factor (22). The enhancement or suppression of D
with respect to D0 depends on the relative strength of
the two terms in Eq. (21), which have opposite sign. In
the low-density Λ � 1 regime the velocity enhancement
completely dominates the “β-term” and D/D0 > 1. The
enhancement of D, or, equivalently of the plasmon fre-
quency, can be understood qualitatively by noting that

electron-electron interactions reduce the pseudospin sus-
ceptibility36 and therefore increase the pseudospin stiff-
ness, i.e. the energy that is required to align pseudospins
along a given direction. According to the discussion given
in the Introduction, the larger pseudospin stiffness results
in higher energy of plasma oscillations. This observation
is consistent with the fact that in a Landau Fermi liquid
description36 the suppression of the pseudospin suscep-
tibility would be driven by the many-body enhancement
of the density of states factor v?/v, while interactions
between the quasiparticles produce the opposite effect.
Once again we must conclude that the many-body en-
hancement of the plasmon frequency is intimately con-
nected to the many-body enhancement of the quasiparti-
cle velocity v?/v. Any physical mechanism that reduces
v?/v without affecting the interaction between quasipar-
ticles could in principle result in a reduction of the plas-
mon frequency and Drude weight.

The Drude weight D and the real part of the a.c. con-
ductivity σ(ω) are plotted as functions of doping n and ω
respectively in Figs. 3 and 4. We observe that the Drude
weight (and hence the coefficient of q1/2 in the plasmon
dispersion relation) is substantially enhanced above the
noninteracting value. As we showed above in Eqs. (21)-
(22), the enhancement grows slowly (logarithmically) as a
function of Λ [it grows linearly with Λ for short-range in-
teractions – see Eq. (24) in Sect. IV B]. The a.c. conduc-
tivity is likewise enhanced above the threshold ω = 2εF.

As we have mentioned above, an unphysical term pro-
portional to δ(ω − 1) has been omitted from Eq. (20).
This singular contribution is due to the shift of the inter-
band absorption threshold from the bare value 2εF to the
dressed value 2ε?F. In first-order perturbation theory the
absorption shift appears as a δ(ω−1) contribution to the
integrand for frequency integrals.

Fig. 4 shows that for ω � 2εF but ω � 2ΛεF the
a.c. conductivity approaches the high-frequency univer-
sal value σ0. However, as ω becomes comparable to 2ΛεF

the conductivity decreases and, in fact, has an unphys-
ical logarithmic divergence at ω = 2ΛεF. This makes
perfect sense, since our model is only valid for energies
that are much smaller that the cutoff energy 2ΛεF. As
long as this condition is met, the calculated spectrum
is essentially independent of the cutoff. This is a very
satisfactory feature of the present calculation.

B. Short-range interactions

It is instructive to examine how the results presented
in the main body of this Section change if the electron-
electron interaction is assumed to be of ultra-short range
in space, i.e. V0 = v = const and all other moments Vm
with m ≥ 1 are zero. The calculations can be carried
out in a completely analytical fashion with the following
results:

D
D0

∣∣∣∣
sr

= 1 +
αeev̄

4
(Λ− 1) , (24)
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FIG. 3: (Color online) The ratio D/D0 between the interact-
ing value of the Drude weight D, calculated from Eq. (19),
and the RPA value D0 = 4εFσ0 is plotted as a function of
electron density n (in units of 1012 cm−2) for different values
of graphene’s fine-structure constant αee. The value αee = 0.9
is believed to be appropriate for graphene deposited on SiO2,
the other side exposed to air. Note that D/D0 > 1 and that
it depends weakly on carrier density.

a)

b)

FIG. 4: (Color online) Panel a) Deviation of the real part of
the a.c. conductivity <e σ(ω) from the noninteracting uni-
versal value σ0 = e2/(4~), as a function of frequency ω/(2εF),
calculated from Eq. (20) for several values of the fine structure
constant αee and for n = 1.5 × 1012 cm−2 (Λ = 50). Panel
b) Same as in the main panel but for a fixed value of the
fine structure constant (αee = 0.9) and two different values of
doping (corresponding to Λ = 50 and 100). Notice that the
dependence of the conductivity on the value of the cutoff Λ is
almost invisible at low frequencies and becomes visible only
at frequencies several times εF.

where v̄ = εkFv/(2πe
2), and

<e σ(ω)

σ0

∣∣∣∣
sr

= Θ(ω − 1)[1 + αeeJsr(ω,Λ)] , (25)

where

Jsr(ω,Λ) =
v̄

2

{
−1 +

ω

2
ln

[
(ω + 1)(Λ− ω)

(ω − 1)(Λ + ω)

]}
. (26)

Note that Jsr(ω,Λ) becomes independent of Λ for Λ →
∞. It is easy to see that, in this limit, <e σ(ω) approaches
the universal value for large ω, since Jsr(ω,∞) goes to
zero like v̄/(6ω2) for ω → ∞. If, on the other hand,
ω is allowed to tend to infinity before Λ then unphysi-
cal cutoff-related features appear, such as a logarithmic
divergence at ω = Λ.

Let us make a brief comment on the limit of zero
doping of our theory. In this limit we predict that the
strength of the Drude peak vanishes as the absorption
threshold at 2εF moves toward zero. Then for finite but
arbitrarily small ω the optical conductivity approaches
the universal value σ0, yielding a result that is indepen-
dent of αee.

V. DENSITY RESPONSE VERSUS CURRENT
RESPONSE

In many models of electronic systems, gauge invari-
ance and the continuity equation allow us to express the
density-density response function in terms of the current-
current response function. In the present model the re-
lation would take the form

χρρ(q, ω) =
v2q2

ω2
χσσ(q, ω) +

vq

ω2
〈[σ̂q, ρ̂−q]〉 , (27)

where σ̂q is the longitudinal component (parallel to q)
of the pseudospin-density fluctuation and [σ̂q, ρ̂−q] is an
anomalous commutator37, reminiscent of the commuta-
tor of Fourier-component-resolved density fluctuations in
a 1D Luttinger liquid38. Because the current in the
Dirac model is proportional to the pseudospin density,
χσσ(q, ω) in Eq. (27) is the current-current response func-
tion. Eq. (27) works perfectly at the noninteracting level,
but fails when electron-electron interactions are taken
into account. Due to the cutoff in momentum space, it
turns out that the continuity equation,

i∂tρ̂q = q · ĵq , (28)

with the current-density operator ĵq given by

ĵq = v
∑
k,α,β

ψ̂†k−q,ασαβψ̂k,β , (29)

is no longer satisfied in the interacting system (see Ap-
pendix D).
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Similar conclusions have been reached by
Mishchenko39 in the context of calculations of the
a.c. conductivity of undoped graphene sheets. This topic
has indeed attracted considerable interest39–43 and has
been at the center of a dispute.39,41 Mishchenko39, in
particular, was the first to clarify that the calculation
of σ(ω) based on the density-density response function
predicts a very small correction over the noninteracting
conductivity, which is also in agreement with the
experimental findings19,20, while methods based on the
current-current response function41 or on the kinetic
equation39 predict very different results. We have also
found44 that a naive application of Eq. (27) to the inter-
acting system produces strongly cutoff-dependent results
for both the Drude weight and the a.c. conductivity of
the doped system. Moreover, it yields a qualitatively
different behavior of the Drude weight with respect to
that found in the present article [see Eq. (19) and Fig. 3].
The Drude weight calculated from the current-current
response is suppressed44 rather than enhanced. On the
other hand, if Eq. (27) is corrected to take into account
the modification of the continuity equation due to e-e
interactions, then the results of the present analysis are
recovered. The conclusion is that it is generally safer
in an effective low-energy theory with a rigid cutoff
to work with the density-density response function
χρρ(q, ω) rather than with the current-current response
function, since the calculation of the former places less
weight on high-energy intermediate states, which are not
properly described. This observation is consistent with
the findings of other authors39. An alternative solution
is to use a modified Coulomb interaction39,43 such that
the continuity equation (27) remains valid even in the
interacting system.

VI. DISCUSSION AND CONCLUSIONS

Large Fermi velocity enhancements due to exchange
interactions, like the velocity enhancement that occurs
in graphene, are common in the theory of solids. Often
the role of velocity enhancements are fully cancelled in re-
sponse functions by vertex corrections. For example the
Fermi velocity of an ordinary two-dimensional electron
gas diverges when screening is neglected, but the corre-
sponding reduction in density-density response is absent
when vertex corrections like those which appear in this
paper are included. From this point of view the main
finding of this paper, supported by an explicit first order
perturbation theory calculation, is that no such cancella-
tion occurs for graphene’s well-known velocity enhance-
ment. The difference is easy to understand. In the case of
an ordinary two-dimensional electron gas the velocity en-
hancement is due to the rapid variation of the unscreened
exchange self-energy as one goes from occupied states to
empty states across the Fermi surface. When the density
changes, the energy at which the velocity peak occurs
also changes, negating its influence on response. In per-

turbation theory, this effect is captured by the vertex
correction. In graphene on the other hand, the velocity
enhancement occurs over a broad range of energies cen-
tered on the Dirac point, not the Fermi surface. Density
response is influenced by enhanced velocities which in-
crease the energy cost of changing the electron density. In
ordinary two-dimensional electron gases the logarithmic
velocity enhancement vanishes in any event once screen-
ing is accounted for. In graphene, on the other hand
the enhancement comes from interactions at wavevectors
much larger than the Fermi energy at which only inter-
band screening, which does not change the long range
1/r behavior, is relevant. Neither screening nor vertex
corrections fully counter the enhanced Drude weight due
to graphene’s Dirac point velocity enhancement.

We note that a recent experiment45 has clearly estab-
lished the presence of a strong Drude peak which devel-
ops in graphene as the carrier density is increased. These
authors conclude that the Drude weight is reduced com-
pared to the noninteracting electron theory, instead of
being increased as predicted by this theoretical analysis.
It will be interesting to see whether or not this exper-
imental conclusion changes as sample quality improves
and it becomes possible to more cleanly separate inter-
band and Drude conductivity contributions over a wider
regime of carrier density.

Before concluding we would like to mention that a
new theoretical paper reporting a study of the effect
of electron-electron interactions on the conductivity of
doped graphene steets46 has appeared recently. (We refer
the reader to Ref. 47 for studies of band-structure, dis-
order, phonon, and strain effects.) A quantitative com-
parison between our findings and theirs is not possible
since their study takes disorder into account while our
study is for clean graphene. However, we would like to
stress that the authors of this paper have treated inter-
actions only at the vertex level neglecting self-energy ef-
fects. Even though it is well known that this approxima-
tion is not “conserving”48 (e.g. breaks gauge-invariance)
even in a standard parabolic-band electron liquid, we can
adopt the same strategy in our calculations and artifi-
cially “switch-off” self-energy contributions to <e σ(ω)
[diagrams in panels c) and d) in Fig. 2]. If this proce-
dure is followed, we find the results shown in Fig. 5: it is
evident from this point that the neglect of self-energy in-
sertions is responsible for the reduction of <e σ(ω) below
σ0 at large frequencies found in Ref. 46.

Finally, let us comment on the broader implications of
our results. Effects similar to those described in this ar-
ticle occur in graphene bilayers49 and are also expected
in other few-layer systems. The lack of Galilean invari-
ance also affects the cyclotron resonance frequency when
the 2D sheet of graphene is placed in a perpendicular
magnetic field50–55 since Kohn’s theorem56, which as-
serts the absence of many-body effects in cyclotron res-
onance, is not applicable in this case. (The impact of
broken Galilean invariance on the collective cyclotron
motion in graphene has been studied in Ref. 57 in the
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FIG. 5: (Color online) The real part of the a.c. conductivity
(in units of σ0) as a function of ω/(2εF) calculated by includ-
ing only the vertex correction [i.e. by neglecting self-energy
diagrams in panels c) and d) in Fig. 2] for αee = 0.9 and dif-
ferent values of doping n (corresponding to Λ = 100, 200, and
1000). These data have been calculated using long-range (un-
screened) interactions, i.e. qTF = 0 in Eq. (15). We remind
the reader that, in the absence of disorder and within first-
order perturbation theory, <e σ(ω) = 0 for ω < 2εF. Notice

that <e σ(V)(ω) converges rapidly in the limit Λ→∞ [since,
as already stated in the main text, the integral in the second
line of Eq. (14) converges in the same limit] and that it drops
well below the universal value σ0 at large ω.

high-temperature hydrodynamic regime in which Lan-
dau levels are not well resolved.) Undoubtedly much
interesting physics, potentially useful for applications in
opto-electronics, has still to be learned from the study of
graphene and other58 non-Galilean invariant systems.
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Appendix A: Calculation of the noninteracting
contribution to the dynamical density-density

response function

The noninteracting response function χ
(0)
ρρ (q, ω), i.e.

the empty bubble diagram in Fig. 2a), reads

χ(0)
ρρ (q, ω) =

1

S

∑
k

∫ +∞

−∞

dε

2πi
Tr [G(k−, ε)G(k+, ε+ ω)]

= 2

∫
d2k

(2π)2

∑
µ,ν

nk−,µ − nk+,ν

ω + ξk−,µ − ξk+,ν + iη

× Fµν(k−,k+) . (A1)

Here k± = k±q/2 and Tr = gTrσ, where Trσ is the trace
over pseudospin degrees-of-freedom, and Fµν(k,k′) = 1+
µν cos (φk − φk′), φk being the angle between k and the
x̂ axis.

We are interested in the long-wavelength q → 0 limit
of the density-density response function: we thus expand
Eq. (A1) to second order in q:

Fµν(k−,k+) = (1 + µν)− µν q
2 sin2(φk)

2k2
, (A2)

where we have assumed that q is along the x̂ (i.e. that
φq = 0). When µ = ν = −1, the “Lindhard ratio” in
Eq. (A1) vanishes. For µ = −ν, Eq. (A2) is already of
order q2 and one can just put q = 0 in the Lindhard ratio.
For µ = ν = +1 we need instead to expand the Lindhard
ratio to second order in q with the result

nk−,+ − nk+,+

ω + ξk−,+ − ξk+,+ + iη
=

q cos(φk) δ(kF − k)

ω

+
vq2 cos2(φk)δ (kF − k)

ω2
.

(A3)

Here we have used nk±,+ ' nk,+∓ q cos(φk)δ(kF− k)/2,
and we have dropped iη in the denominator since the
expansion on the right hand side is always real. The
first term in Eq. (A3) gives zero contribution to the re-
sponse function after angular integration. Now, replacing
Eqs. (A2) and (A3) in Eq. (A1), we find

χ(0)
ρρ (q, ω) =

4vq2

ω2

∫
d2k

(2π)2
cos2(φk)δ(kF − k)

+ q2
∑
µ

∫
d2k

(2π)2

sin2(φk)

k2

nk,µ − nk,µ̄
ω + 2µvk + iη

,

(A4)

where µ̄ = −µ. Performing the integral over k and in-
troducing dimensionless variables, one finds Eqs. (10)
and (11) for the real and imaginary parts of the non-
interacting response function, respectively.
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Appendix B: Calculation of the vertex correction

The vertex correction [i.e. see Fig. 2b)] contribution
to the density-density response function reads

χ(V)
ρρ (q, ω) = − 1

S2

∑
k,k′

Vk−k′
∫ +∞

−∞

dε

2πi

∫ +∞

−∞

dε′

2πi
Tr
[
G(k−, ε)G(k+, ε+ ω)G(k′+, ε

′ + ω)G(k′−, ε
′)
]

= − 1

16

∫
d2k

(2π)2

∫
d2k′

(2π)2

∑
µ,ν,µ′,ν′

Vk−k′
nk−,µ − nk+,ν

ω + ξk−,µ − ξk+,ν + iη

nk′−,µ′ − nk′+,ν′
ω + ξk′−,µ′ − ξk′+,ν′ + iη

× Tr[(11σ + µσk−)(11σ + νσk+)(11σ + ν′σk′+
)(11σ + µ′σk′−

)] . (B1)

The trace in the previous equation can be expanded in
powers of q:

Tr[(11σ + µσk−)(11σ + νσk+
)(11σ + ν′σk′+

)(11σ + µ′σk′−
)]

= 16

∞∑
n=0

wn (k,k′, φq;µ, ν, µ′, ν′) qn .

(B2)

If we choose q = qx̂, it is straightforward to show that

w0 =
(1 + µν)(1 + µ′ν′)

2
Fµµ′(k,k′) , (B3)

and

w1 = (µ−ν)(µ′+ν′)
sin(φk) sin(φk′ − φk)

4k
+Perm , (B4)

where “Perm” is obtained from the first term in Eq. (B4)
by interchanging primed with non-primed variables. The

complete expression of w2 is quite cumbersome and will
not be reported here. The only terms that contribute to

χ
(V)
ρρ (q, ω) up to order q2 are given by

w2|ν=µ̄,ν′=µ̄′ =
sin(φk) sin(φk′)

2kk′
Fµµ′(k,k′) . (B5)

Collecting all terms up to O(q2) we can write χ
(V)
ρρ (q, ω)

in the following form:

χ(V)
ρρ (q, ω) =

2∑
n=0

χ(V−n)
ρρ (q, ω) , (B6)

where χ
(V−n)
ρρ (q, ω) denotes terms proportional to wn.

We find that

χ(V−0)
ρρ (q, ω) = −2

∫
d2k

(2π)2

∫
d2k′

(2π)2
Vk−k′ [1 + cos (φk′ − φk)]

nk−,+ − nk+,+

ω + v|k−| − v|k+|+ iη

nk′−,+ − nk′+,+
ω + v|k′−| − v|k′+|+ iη

= −2q2

ω2

∫
d2k

(2π)2

∫
d2k′

(2π)2
vk−k′δ(kF − k)δ(kF − k′) cos(φk) cos(φk′) [1 + cos(φk′ − φk)] . (B7)

Introducing the Coulomb pseudopotentials Vm, performing the integrations over k and k′, and using dimensionless
variable we find immediately Eq. (12).

For n = 1 we find

χ(V−1)
ρρ (q, ω) = −2q2

ω

∑
µ

∫
d2k

(2π)2

∫
d2k′

(2π)2

Vk−k′

k
δ(kF − k′) sin(φk) cos(φk′) sin(φk′ − φk)

µ (nk,µ − nk,µ̄)

ω + 2µvk + iη

= − q
2kF

8π2ω

∑
µ

P
∫ ∞
kF

dk
V0(k, kF)− V2(k, kF)

ω + 2µvk + iη
. (B8)

Since this contribution vanishes for ω → 0 it does not contribute to the renormalization of the Drude weight. Never-
theless, its imaginary part for finite positive frequency gives precisely the term in the first line of Eq. (14).
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Finally, for n = 2, we find that

χ(V−2)
ρρ (q, ω) = −q

2

2

∑
µ,µ′

µµ′
∫

d2k

(2π)2

∫
d2k′

(2π)2

Vk−k′

kk′
sin(φk) sin(φk′)

(1− nk,+) (1− nk′,+)

(ω + 2µvk + iη) (ω + 2µ′vk′ + iη)
Fµµ′(k,k′)

= − q2

25π2

∑
µ,µ′

P
∫ ∞
kF

dk

∫ ∞
kF

dk′
V0(k, k′) + V2(k, k′) + 2µµ′V1(k, k′)
(ω + 2µvk + iη)(ω + 2µ′vk′ + iη)

. (B9)

It is possible to show that this expression does not scale
like ω−2 for ω → 0: thus it does not contribute to the
renormalization of the Drude weight. The imaginary part
of Eq. (B9) at finite frequency gives precisely the term in
the second line of Eq. (14). Summing the contributions

to =m χ
(V)
ρρ (q, ω) coming from the two terms with n = 1

and n = 2 we find Eq. (13).

Appendix C: Calculation of the self-energy
insertions

We now turn to calculate the two first-order self-energy
diagrams in Figs. 2c) and d). The first diagram reads

χ(SE−c)
ρρ (q, ω) = −

∫
d2k

(2π)2

∫
d2k′

(2π)2
Vk−k′

∫ +∞

−∞

dε

2πi

∫ +∞

−∞

dε′

2πi
Tr
[
G(k−, ε)G(k+, ε+ ω)G(k′+, ε

′ + ω)G(k+, ε+ ω)
]

= − 1

16

∑
µ,ν,λ,γ

∫
d2k

(2π)2

∫
d2k′

(2π)2
Vk−k′nk′+,γ

×
∫ +∞

−∞

dε

2πi

Tr
[
(11σ + µσk−)(11σ + νσk+)(11σ + γσk′+

)(11σ + λσk+)
]

(ε− ξk−,µ + iηk−,µ)(ε+ ω − ξk+,ν + iηk+,ν)(ε+ ω − ξk+,λ + iηk+,λ)
, (C1)

It is easy to show that for λ = ν the trace becomes

Tr
[
(11σ + µσk−)(11σ + νσk+

)(11σ + γσk′+
)(11σ + λσk+

)
]∣∣∣
λ=ν

= 16 Fµν(k+,k−) Fγν(k+,k
′
+) , (C2)

and that the contribution arising from λ = −ν averages
to zero after performing the integrations over k and k′.

Inserting Eq. (C2) in Eq. (C1) we find that

χ(SE−c)
ρρ (q, ω) = −

∑
µ,ν,γ

∫
d2k

(2π)2

∫
d2k′

(2π)2
Vk−k′nk′+,γ

∫ +∞

−∞

dε

2πi

Fµν(k+,k−)Fγν(k+,k
′
+)

(ε− ξk−,µ + iηk−,µ)(ε+ ω − ξk+,ν + iηk+,ν)2

= ∂ω
∑
µ,ν,γ

∫
d2k

(2π)2

∫
d2k′

(2π)2
Vk−k′nk′+,γFµν(k+,k−)Fγν(k+,k

′
+)

nk−,µ − nk+,ν

ω + ξk−,µ − ξk+,ν + iη
. (C3)

For the diagram in Fig. 2d) we find that

χ(SE−d)
ρρ (q, ω) = −∂ω

∑
µ,ν,γ

∫
d2k

(2π)2

∫
d2k′

(2π)2
Vk−k′nk′−,γFµν(k−,k+)Fγν(k−,k

′
−)

nk−,ν − nk+,µ

ω + ξk−,ν − ξk+,µ + iη
. (C4)

We now sum Eqs. (C3) and (C4) together and separate
inter-band (ν = −µ) from intra-band (ν = µ) terms. In

the inter-band channel Fµν(k+,k−) is already of order
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q2, and thus the other factors can be calculated at q = 0:

χ(SE−inter)
ρρ (q, ω) = −q2∂ω

∑
µ

∫
d2k

(2π)2

∫
d2k′

(2π)2
Vk−k′ sin

2(φk) cos(φk′ − φk)
(1− nk′,+)(1− nk,+)

k2(ω + 2µvk + iη)
. (C5)

The real part of this expression vanishes for ω → 0, but
its imaginary part gives Eq. (17). On the other hand the
intra-band contribution is entirely real and gives Eq. (16).

Appendix D: Generalized continuity equation for an
interacting system of massless Dirac fermions

In the presence of a rigid momentum cutoff, the conti-
nuity equation (27) needs to be modified. To show this we

start by introducing field operators Ψ̂k,α in a restricted
Hilbert space (RHS):

Ψ̂k,α = Θ(kmax − k)ψ̂k,α , (D1)

where kmax is the ultraviolet momentum cutoff and ψ̂k,α

is the regular field operator. All other operators should
be defined in terms of these new field operators, e.g. the
density operator reads

ρ̂q =
∑
k,α

Ψ̂†k−q,αΨ̂k,α . (D2)

Now an interesting observation is that the commutator
[ρ̂q, ρ̂q′ ], which is zero in the regular space, becomes finite

in the RHS:

[ρ̂q, ρ̂q′ ] =
∑

k,k′,α,β

[Ψ̂†k−q,αΨ̂k,α, Ψ̂
†
k′−q′,βΨ̂k′,β ]

=
∑
k,α

[Θ(kmax − |k − q′|)− {q′ → q}]

× Ψ̂†k−q−q′,αΨ̂k,α . (D3)

This is not zero in general. One can show that its expec-
tation value 〈. . . 〉0 over the noninteracting ground state
is zero: 〈[ρ̂q, ρ̂q′ ]〉0 = 0. It is also straightforward to show
that the commutator of the density operator with the ki-
netic part of the Hamiltonian, ĤD, remains unchanged

[ρ̂q, ĤD] = q · ĵq = vqσ̂q , (D4)

where the Dirac-Weyl Hamiltonian ĤD, the current-

density operator ĵq, and the longitudinal component of
the pseudospin-density operator σ̂q are also redefined in
the RHS.

As a consequence of Eq. (D3), the commutator of ρ̂q
with the Coulomb interaction ĤC is non-zero in the RHS:

Γ̂q = [ρ̂q, ĤC] =
1

2S

∑
q′ 6=0

Vq′
∑

k,k′,p,α,β,γ

[Ψ̂†p−q,γΨ̂p,γ , Ψ̂
†
k−q′,αΨ̂†k′+q′,βΨ̂k′,βΨ̂k,α]

=
1

S

∑
q′ 6=0

Vq′
∑
k,α

∑
k′,β

[Θ(kmax − |k − q′|)− {q′ → q}] Ψ̂†k−q−q′,αΨ̂†k′+q′,βΨ̂k′,βΨ̂k,α . (D5)

Again, one can show that the expectation value of Γ̂q over

the noninteracting ground state vanishes: 〈Γ̂q〉0 = 0.
Now applying twice the following identity6

〈〈Â; B̂〉〉ω =
1

ω
〈[Â, B̂]〉+

1

ω
〈〈[Â, Ĥ]; B̂〉〉ω , (D6)

where

〈〈Â; B̂〉〉ω = −i
∫ ∞

0

dt 〈[Â(t), B̂(0)]〉e−iωte−ηt (D7)

is the usual Kubo product6, to the density-density re-

sponse function (Â = ρ̂q, B̂ = ρ̂−q), one gets

ω2〈〈ρ̂q; ρ̂−q〉〉ω = ω〈[ρ̂q, ρ̂−q]〉+ vq〈[σ̂q, ρ̂−q]〉
+ 〈[Γ̂q, ρ̂−q]〉+ v2q2〈〈σ̂q; σ̂−q〉〉ω
+ vq〈〈σ̂q; Γ̂−q〉〉ω − vq〈〈Γ̂q; σ̂−q〉〉ω
− 〈〈Γ̂q; Γ̂−q〉〉ω . (D8)

We remind the reader that the linear-response function
χAB(ω) is directly related to the Kubo product by the

relation χAB(ω) = 〈〈Â; B̂〉〉ω/S. In the noninteracting
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limit the first term on the r.h.s. of Eq. (D8) is identically
zero, the second term is the anomalous commutator37,
and all terms involving Γ̂q vanish.

Here, we are mainly interested in the imaginary part
of Eq. (D8):

=m χρρ(q, ω) =
v2q2

ω2
=m χσσ(q, ω)

+
vq

ω2
[=m χσΓ(q, ω)−=m χΓσ(q, ω)]

+
1

ω2
=m χΓΓ(q, ω) . (D9)

The last term on the r.h.s. of Eq. (D9) is at least of
second order in the electron-electron interaction. Thus,
up to first order in the Coulomb interaction, we can write

=m χ(1)
ρρ (q, ω) =

v2q2

ω2
=m χ(1)

σσ (q, ω)

+
vq

ω2

[
=m χ

(0)
σΓ(q, ω)−=m χ

(0)
Γσ(q, ω)

]
,

(D10)

where the superscript “(n)” on the response functions
in the previous equation indicates that they have to be

evaluated up to the n-th order in the electron-electron
interaction.

In order to evaluate χ
(0)
σΓ(q, ω) and χ

(0)
Γσ(q, ω) we start

from the well known exact-eigestate representation ex-
pression for a response function at zero temperature6:

χAB(ω) =
∑
n

[
〈0| Â |n〉 〈n| B̂ |0〉
ω − ωn0 + iη

− 〈0| B̂ |n〉 〈n| Â |0〉
ω + ωn0 + iη

]
.

(D11)
Before proceeding further let us also introduce the follow-
ing unitary transformation which diagonalizes the Dirac-
Weyl Hamiltonian ĤD:{

Ψ̂k,α =
∑
µ Uαµ(k)ĉk,µ

Ψ̂†k,α =
∑
µ U†µα(k)ĉ†k,µ

, (D12)

where

U(k) =
1√
2

(
e−iφk/2 e−iφk/2

eiφk/2 −eiφk/2

)
. (D13)

The full Hamiltonian H after this unitary transformation
reads

Ĥ′ =
∑
k,µ

εk,µĉ
†
k,µĉk,µ +

1

2S

∑
q 6=0

Vq
∑

k,k′,µ,ν,µ′,ν′

Iµνk,k+qI
µ′ν′

k′,k′−q ĉ
†
k,µĉ

†
k′,µ′ ĉk′−q,ν′ ĉk+q,ν , (D14)

where εk,± = ±vk are Dirac-band energies and the ma-
trix elements Iµνk,k′ are defined as

Iµνk,k′ =
[
U†(k)U(k′)

]
µν

(D15)

=
ei(φk−φk′ )/2 + µνe−i(φk−φk′ )/2

2
. (D16)

We also introduce

Xµν
k,k′ =

[
U†(k)σxU(k′)

]
µν

=
µe−i(φk+φk′ )/2 + νei(φk+φk′ )/2

2
. (D17)

Now we can write

χ
(0)
σΓ(q, ω) = g

∑
n

[
〈0| σ̂xq |n〉0 〈n| Γ̂−q |0〉0

ω − ωn0 + iη
−
〈0| Γ̂−q |n〉0 〈n| σ̂xq |0〉0

ω + ωn0 + iη

]

= g
∑
p,γ,λ

Xγλ
p−q,p

〈ĉ†p−q,γ ĉp,λΓ̂−q〉0 − 〈Γ̂−q ĉ†p−q,γ ĉp,λ〉0
ω + εp−q,γ − εp,λ + iη

. (D18)

Using the expression of Γ̂q given above in Eq. (D5) and Wick’s theorem6, and keeping only terms linear in q we
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finally find that

χ
(0)
σΓ(q, ω) =

qg

S2

∑
λ,ν

∑
k,p<kmax

X λ̄λ
p,pI

λν
p,kI

νλ̄
k,pVp−knk,ν [2 cos(φk)δ(kmax − k|) + cos(φp)δ(kmax − p)]

np,λ − np,λ̄
ω − 2εp,λ + iη

.

(D19)

In deriving this expression we have assumed that the
Coulomb interaction is screened (i.e. that Vq is not sin-
gular for q → 0).

The imaginary part of Eq. (D19) for 0 < ω < 2vkmax

reads

=m χ
(0)
σΓ(q, ω) =

gπq

S2

∑
k,p<kmax

Vp−k(1− nk,+)(1− np,+) sin(φp) sin(φp − φk) cos(φk)δ(kmax − k)δ(ω − 2vp)

=
qkmaxω

32πv2
Θ(ω − 2εF)[V0(ω/(2v), kmax)− V2(ω/(2v), kmax)] . (D20)

Using a similar expression for =m χ
(0)
Γσ(q, ω) we finally obtain

=m χ
(0)
σΓ(q, ω)−=m χ

(0)
Γσ(q, ω) =

qkmaxω

24πv2
Θ(ω − 2εF)[V0(ω/(2v), kmax)− V2(ω/(2v), kmax)] . (D21)

Taking the limit kmax → ∞ the previous equation sim-
plifies considerably to

=m χ
(0)
σΓ(q, ω)−=m χ

(0)
Γσ(q, ω) =

qωαee

8v
Θ(ω − 2εF) .

(D22)
Using this result in Eq. (D10) we find

=m χ(1)
ρρ (q, ω) =

v2q2

ω2
=m χ(1)

σσ (q, ω) +
αeeq

2

8ω
Θ(ω− 2εF) ,

(D23)
or, in terms of the a.c. conductivity,

<e σ(1)(ω) = −e
2v2

ω
=m χ(1)

σσ (ω)− αee

2
σ0 . (D24)

Appendix E: Numerical results for Thomas-Fermi
screened interactions

In Figs. 6-8 we present numerical results for D,
<e σ(ω), and <e σ(V)(ω) obtained by using Thomas-
Fermi screened interactions, i.e. qTF 6= 0 in Eq. (15).
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