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Viscous corrections to the resistance of nano-junctions:

a dispersion relation approach
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It is well known that the viscosity of a homogeneous electron liquid diverges in the limits of zero
frequency and zero temperature. A nanojunction breaks translational invariance and necessarily
cuts off this divergence. However, the estimate of the ensuing viscosity is far from trivial. Here,
we propose an approach based on a Kramers-Krönig dispersion relation, which connects the zero-
frequency viscosity, η(0), to the high-frequency shear modulus, µ∞, of the electron liquid via η(0) =
µ∞τ , with τ the junction-specific momentum relaxation time. By making use of a simple formula
derived from time-dependent current-density functional theory we then estimate the many-body
contributions to the resistance for an integrable junction potential and find that these viscous effects
may be much larger than previously suggested for junctions of low conductance.

PACS numbers:

I. INTRODUCTION

Viscosity, namely the effect of momentum transfer be-
tween adjacent layers of a liquid, is a fundamental con-
cept in both classical and quantum physics [1–3]. In the
case of the electron liquid, it was shown by Abrikosov and
Khalatnikov (AK) more than fifty years ago that the vis-
cosity of a homogeneous liquid diverges at zero frequency
and zero temperature (in this precise order of limits)[4].
The physical reason for this divergence is related to the
fact that at zero temperature the quasi-particles close
to the Fermi energy are very long-lived and can trans-
port momentum to distances arbitrarily far away from
the source of the perturbation. We thus expect that any
potential that breaks translational invariance would cut
off such divergence giving rise to a finite (albeit possibly
large) d.c. viscosity at zero temperature.

The problem has garnered renewed attention in the
past few years in the context of transport in nanoscale
systems [5], where it was shown explicitly that the Lan-
dauer formula for the single-particle resistance of a nano-
junction Rs = h/(2e2

∑

j Tj) (the sum is over the eigen-

channels of transmission Tj) [6], fails to include cer-
tain many-body effects, which cannot be described as
single-particle scattering from an effective potential. [7, 8]
Within the framework of the time-dependent current
density functional theory [9, 10], one clearly sees that
such effects arise from the frequency dependence of the
exchange-correlation (xc) field. [11] More precisely, one
can split the full exchange-correlation potential into a
static component, which controls the transmission proba-
bility Tj of the Landauer formula, and a dynamical com-
ponent, which corrects the Landauer formula [11]. In-
deed, even though the control of nanoscale junctions at
the atomic level is far from being ideal, it is now clear
that the Landauer formula computed within the frame-
work of ground-state density-functional theory (DFT),
overestimates the measured conductance by at least an
order of magnitude in the case of low-conductance struc-

tures (e.g., molecular structures), while it provides rea-
sonable agreement in the case of metallic quantum point
contacts, which show high-conductance values [12]. Part
of this discrepancy has been attributed to errors in de-
termining the position of the energy levels of the system
relative to the electro-chemical potential in the leads –
errors which in turn are related to self-interaction cor-
rections, discontinuities in the xc potential as a function
of particle number, and so on. [13] However, these correc-
tions do not fully solve the discrepancy between theory
and experiments: other many-body effects, in particular
those related to the viscous nature of the electron liquid,
may play an important role.

II. DYNAMICAL CORRECTIONS TO THE

RESISTANCE

Time-dependent current density functional theory pro-
vides some insight into the physical character of these
many-body corrections. Indeed, it was shown that the
dynamical corrections to the xc field give rise to a vis-
cous force [9, 10], similar to the ordinary hydrodynamic
viscous force, but controlled entirely by electron-electron
interactions - the ordinary hydrodynamic viscosity does
not explicitly depend on interactions, but relies implicitly
on the presence of collisions capable of establishing a lo-
cal thermodynamic equilibrium [1]. Thus, the resistance
in excess of the Landauer formula could be interpreted
as the effect of the extra “friction” arising from the xc
viscosity. In Ref. [7], this additional many-body resis-
tance - which was termed “dynamical” precisely because
it vanishes in a strictly ground-state formulation of the
theory [11] - was estimated (assuming no current den-
sity variation in the junction) in terms of the exchange-
correlation (xc) viscosity of the liquid [7, 8]

Rdyn =
ηxc(0)

e2S2

∫
[

4

3
(∂xn

−1)2 + (∂⊥n
−1)2

]

d~r , (2.1)
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where x is the direction of current flow through the junc-
tion, ⊥ represents the transverse directions, S is the
cross-section area of the nano-junction, n is the ground-
state electron density calculated, e.g., from the self-
consistent static density functional theory (DFT) with
the xc functional treated within the local-density ap-
proximation (LDA), ∂x and ∂⊥ are derivatives along the
current flow and perpendicular to it, respectively. Here,
ηxc(0) > 0 is the zero-frequency xc viscosity of the ho-

mogeneous electron liquid at the average electron density
of the junction, and e is the charge of the electron. Thus
the dynamical correction increases the total resistance of
nano-junctions to Rtot = Rs + Rdyn [15]. Notice that
the non-uniformity of the electron density is essential to
the effect: Rdyn vanishes, as it should, if n is spatially
uniform.
The precise definition of ηxc(0) in current density func-

tional theory is [16]

ηxc(0) = −n2 lim
ω→0

ℑmfxc,T (ω)
ω

, (2.2)

where fxc,T (ω) is the transverse component of the dy-
namical exchange-correlation kernel of the homogeneous
electron liquid at density n. The kernel itself is defined
as the difference between the inverse current-current re-
sponse functions of the interacting and non-interacting
system at the same density. This quantity admits a per-
turbative expansion in the interaction parameter rs of
the electron liquid – the average distance between elec-
trons expressed in units of the Bohr radius. Our initial
estimates of Rdyn were based on an extrapolated high-
density expansion of ηxc, which gave Rdyn of about 10%
of Rs for molecular junctions, but considerably smaller
for metallic quantum point contacts [7, 8]. Since then,
the use of a more accurate expression for ηxc as a function
of rs, namely [16]

ηxc ≃
~n

60r
−3/2
s + 80r−1

s − 40r
−2/3
s + 62r

−1/3
s

, (2.3)

has been shown to produce considerably smaller correc-
tions for the case of two infinite jellium electrodes sep-
arated by a vacuum gap. [17] Indeed, this ηxc is of the
order of 10−7 Joule-sec/m3 for typical metallic densities
such as rs = 3 for gold, thus naively suggesting that these
dynamical corrections are small under all circumstances.
Before jumping to conclusions, however, it must be

noted that the expression (2.3) is not the appropriate
zero-frequency viscosity, as required by Eq. (2.2), but
rather was calculated in Ref. [16] under the implicit as-
sumption ω ≫ 1/τ where τ is the momentum relaxation
time for a quasi-particle. This condition is easily sat-
isfied in the homogeneous electron liquid in the limit of
zero temperature T , since τ (in the absence of impurities)
tends to infinity as 1/T 2. It is certainly not satisfied in a
nanojunction where the main limiting factor to the quasi-
particle lifetime is the geometric size of the constriction
itself. [5, 18–20] Indeed, it is precisely the geometrical

constriction experienced by the electron wave packets as
they move into the nanojunction that introduces a short
momentum relaxation time [5, 18], which in turn cuts off
the divergence of the viscosity of the uniform electron
liquid.
We are then led to consider the opposite and physi-

cally correct limit of ω ≪ 1/τ . But here, we run into
the problem that the non-uniformity of the electron liq-
uid must be fully taken into account. If, for instance,
one calculates the d.c. viscosity of the homogeneous elec-
tron liquid, using the techniques developed by AK [4] one
obtains (employing the Thomas-Fermi approximation for
the screened electron-electron (e-e) interaction)

ηAK =
~n

(r̃s)6
(1.813× 103

T

)2
{π(1 + 2r̃s)

8
√

r̃s + r̃2s
− π

4

}−1

,(2.4)

where r̃s = αrs/π and α = (4/9π)1/3 ≃ 0.521. This
expression has two major shortcomings. First and fore-
most, it diverges at low temperature as 1/T 2, which
is the consequence of undisturbed momentum trans-
port by the long-lived quasi-particles of the homogeneous
electron liquid to distances arbitrarily far away from
the source of perturbation. Even at room temperature
ηAK = 1.12 × 104/T 2 Joule-sec/m3 (temperature T is
in Kelvin) for gold (rs = 3), which, if used in Eq. (2.1)
would produce unreasonably large values of Rdyn. Sec-
ond, the AK viscosity is conceptually different from the
xc viscosity: it arises from the full current-current re-
sponse function, not just from the exchange-correlation
kernel, and there is no simple way to separate the latter,
since the AK calculation is non-perturbative with respect
to the electron-electron coupling strength. Instead, in our
case, such a separation is essential, since the larger (elas-
tic) part of the resistance is already taken into account
exactly by the Landauer formula, and only the xc ker-
nel contributes to the dynamical (inelastic) correction.
Thus, we need a way to “zero-in” on the xc viscosity (de-
fined formally in terms of the xc kernel fxc in Eq. (2.2))
just as we did in Ref. [16] – but now we must go to the
opposite regime of ω ≪ 1/τ .
Equipped with this understanding, we first show that

the viscosity of the electron liquid in the nanojunc-

tion can be estimated by a dispersion relation approach,
which combines information about the high-frequency
elastic properties of the interacting electron liquid with
the short momentum relaxation time induced by the con-
striction. We then estimate the dynamical contribution
to the resistance of nanostructures from Eq. (2.1) and
show that this contribution is relatively small for nearly
transparent junctions but becomes sizeable in the limit
of zero transmission.

III. DISPERSION RELATION APPROACH

Let us then start by recalling that the viscosity η(ω)
and the shear modulus µ(ω), regarded as functions of fre-
quency, are respectively the imaginary and the real part
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FIG. 1: The comparison between the viscosity calculated by
Abrikosov and Khalatnikov, ηAK , and the viscosity calculated
using the dispersion relation (3.2) for different values of rs.
The connecting lines are a guide to the eye.

of a visco-elastic modulus µ̃(ω) ≡ µ(ω)−iωη(ω). [1, 3, 16]
The shear modulus vanishes at zero frequency, since we
are in a liquid state, and tends to a finite value µ∞ at
infinite frequency, where by “infinite” we mean a fre-
quency much larger than 1/τ . On the other hand, the
viscosity, η(ω), varies from the desired value, η(0), at
zero frequency to zero at “infinite” frequency. Then, the
Kramers-Krönig dispersion relation tells us that

0 = µ(0) = µ∞ − 2

π

∫ ∞

0

η(ω)dω . (3.1)

We do not know the detailed frequency dependence of
η(ω), but we can assume that it roughly switches from
the d.c. value η(0) for ω < 1/τ to approximately zero for
ω > 1/τ . This simple reasoning leads from Eq. (3.1) to
the relation [5, 20]

η(0) ≃ µ∞τ . (3.2)

The importance of this relation, in the present context,
is that it connects the quantity of primary interest, the
zero-frequency viscosity, to two quantities that can be
rather easily estimated, namely, the high-frequency shear
modulus – a positive definite quantity that can be ex-
pressed in terms of the exact energy of the electron liq-
uid – and the momentum relaxation time τ , which, as
we have discussed above, in a nano-junction is mostly
controlled by elastic boundary scattering from the con-
fining geometry. A crucial feature of this relation is
that it allows a neat separation of η(0) into two parts:
a “single-particle” contribution, which arises from the
non-interacting kinetic part of the shear modulus (see
Eq. (3.3) below), and an “exchange-correlation” contri-
bution, which actually determines, via Eq. (2.1), the dy-
namical correction to the resistivity.
As a first test of the reasonableness of this approach

and also to lend support to its quantitative accuracy, let
us apply it to the calculation of η(0) for the homogeneous

electron liquid, with µ∞ the full high-frequency shear
modulus given, for example, in Eq. (103) of Ref. [21].
This can be written as

µ∞ = µs + µxc,∞

=
2

5
nǫF − n

[

14

15
ǫxc(rs) +

4

5
rsǫ

′
xc(rs)

]

, (3.3)

where µs = 2nǫF /5 is the non-interacting shear modulus
(arising from Pauli exclusion principle) with ǫF being
the Fermi energy, and the remainder, µxc,∞, is expressed
in terms of the exchange-correlation energy per particle,
ǫxc, and its derivative ǫ′xc with respect to the electron
liquid parameter rs. [22] In the homogeneous electron
liquid the momentum relaxation time, τ , is limited only
by electron-electron interactions and therefore diverges
with temperature T as 1/T 2:[3]

1

τee
=

π

8~ǫF

(εk − ǫF )
2 + (πkBT )

2

1 + e−(εk−ǫF )/kBT
ξ3(rs) (3.4)

where εk is the energy of the quasi-particle. For a typical
density of rs = 3, ξ3(rs = 3) ≃ 0.5 and τee ≃ 5×10−7/T 2

s at the Fermi energy. For this set of parameters, from
Eq. (3.2) we then obtain η(0) = µ∞τee ∼ 1.6 × 104/T 2

Joule-s/m3 which is in good agreement with ηAK =
1.12×104/T 2 Joule-s/m3. The same level of agreement is
found for a wide range of rs values of typical metallic sys-
tems, as shown in Fig. 1. It is also worth stressing that
the agreement we find with our dispersion relation ap-
proach is extremely good for rs < 4 despite the assump-
tions we have made in reaching Eq. (3.2). The reason why
the agreement between the two viscosities decreases with
increasing rs can be attributed to the fact that Eq. (3.4)
for the relaxation time is strictly valid for small values of
rs. These results thus lend strong support to the present
approach to compute viscosity in terms of the relaxation
time τ .

IV. AN INTEGRABLE MODEL

Having checked that the dispersion relation (3.2) gives
both a qualitative and a quantitative account of the d.c.
viscosity we can now proceed to the estimate of the lat-
ter in the presence of a nanojunction. We consider the
following confining potential (see Fig. 2 for its schematic)
which - despite its simplicity - is a reasonable choice to
mimic the scattering properties of nanostructures

V (x, y, z) =
A+B(y2 + z2)

cosh2(αx)
. (4.1)

where x is along the direction of charge flow. The param-
eters A and B determine the strength of the potential
in the longitudinal and transverse direction, respectively,
and 1/αmeasures the extension of the potential along the
x direction. Here, we are interested to study transport on
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FIG. 2: A schematic of the potential (4.1) - for a constant
value of z - used in this work to represent the scattering off a
nanojunction.

a length scale such that 1/α≪ lee ≃ √
Dτee, with D be-

ing the diffusion constant. This simple integrable model
allows us to calculate both the elastic momentum relax-
ation time τk, the longitudinal transmission coefficient
Tkx

(defined as the transmission probability for processes
which do not change the incident transverse momentum),
and the equilibrium density n(x). In the linear-response
regime, τk due to boundary scattering from the poten-
tial (4.1) can be estimated by employing the generalized
Fermi golden rule,

1

τk
= LxL

2
⊥

∫

k′ 6=k

dk′

4π2~
δ(ǫk′ − ǫk) |〈φk|V (x, y, z)|ψk′〉|2,(4.2)

with Lx ∼ lee along x and L⊥ being the length of the elec-
trodes in the direction perpendicular to x. We use ǫk =
~
2k2/2me with me being the electron mass. The general-

ized Fermi golden rule allows us to study the full range of
longitudinal transmission for all values V (x, y, z), while
in the Born approximation of the Fermi golden rule one

could only study longitudinal transmission near unity
since its validity is limited for V (x, y, z) ≪ EF .

We choose the incident wave-function φk(x, y, z) with

three components of initial momentum kx, k
j
y, k

j′

z as a
combination of plane-waves with proper boundary con-
ditions, i.e., open boundary condition along the direc-
tion of transport and φk(x, y = 0, L⊥, z) = φk(x, y, z =
0, L⊥) = 0.

φk(x, y, z) =
2√
LxL⊥

eikxx cos(kjyy) cos(k
j′

z z) , (4.3)

We use the exact scattering state ϕk′
x
(x) of the one-

dimensional potential 1/ cosh2(αx) along the x−direction
and plane waves with the same boundary conditions
as the incident state in the transverse directions. For
the transverse wave-functions, plane-waves are a bet-
ter choice than the harmonic potential eigenstates in
the asymptotic region, since in that region the curva-
ture of the harmonic potential becomes infinitesimally
small. Surely, the use of plane waves - instead of an ex-
act scattering state |ψk′〉 of the full potential in Eq. (4.1)
- would seem a limitation of our calculations. How-
ever, we stress that the use of an asymptotic state of
ψk′(x, y, z) is also not the right choice in Eq. (4.2),
since the asymptotic state is a better approximation
only far away from the action of the potential (where
V (x, y, z) = 0), while |〈φk|V (x, y, z)|ψk′〉| of Eq. (4.2) is
nonzero only for V (x, y, z) 6= 0.

The scattered wave-function ψk′(x, y, z) with momen-

tum k′x, k
p
y , k

p′

z is thus

ψk′(x, y, z) =
2√
NL⊥

ϕk′
x
(x) cos(kpyy) cos(k

p′

z z) , (4.4)

with

ϕk′
x
(x) = (1− ξ2)−ik′

x/2αF[−ik′x/α− s,−ik′x/α+ s+ 1,−ik′x/α+ 1, (1− ξ)/2] , (4.5)

and ξ = tanh(αx), where kpy = (2p + 1)π/L⊥ and

kp
′

z = (2p′ + 1)π/L⊥with p, p′ = 0,±1,±2.., s = (−1 +
√

1− 8meA/α2~2)/2 and F (β, γ, δ, z) is the hypergeo-
metric function. The normalization factor N is fixed by
∫ Lx/2

−Lx/2
dx |ϕk′

x
(x)|2 = N .

We separately evaluate τ
||
k
, τ⊥

k
the longitudinal and

transverse relaxation times, respectively, with 1/τk =

1/τ
||
k
+ 1/τ⊥

k
. We include in τ

||
k
only those contributions

of momentum relaxation which do not change the index
of incident transverse channels, while all other processes
are included in τ⊥

k
. Due to its symmetry in the trans-

verse plane, the potential in Eq. (4.1) does not allow

processes in which the y and z components of the in-
cident momentum change simultaneously. For example,
if we choose the incident state with j, j′ = 0, the allowed
contributions in τ⊥

k
come from the channels with indices

p = 1, 2, · · · , pc, p′ = 0 and p = 0, p′ = 1, 2, · · · , pc,
where pc is the maximum number of allowed transverse
channels.

On physical grounds of local thermodynamic equilib-
rium in the electrodes, we can assume that the incident
state is prepared with the lowest transverse momentum
component, i.e., j, j′ = 0. Therefore, for an incident
state at the Fermi energy, kx = kF

√

1− 2(π/kFL⊥)2

and k0y = k0z = π/L⊥. The longitudinal transmission co-
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FIG. 3: Longitudinal momentum relaxation time τ
||
k
as a func-

tion of the transmission coefficient Tkx along the x-direction
for rs = 3. Inset shows the corresponding transverse momen-
tum relaxation time τ⊥

k .

efficient Tkx
along x for the longitudinal momentum kx of

the incident state is calculated from ϕkx
(x), and is given

by [23]

Tkx
=

sinh2(πkx/α)

sinh2(πkx/α) + cosh2(π2
√

8meA/~2α2 − 1)
,(4.6)

with 8meA/α
2
~
2 > 1. We find after some algebra

1

τ
||
k

=
me

~3|kx|
|I(−k0x)|2

(

A+BL2
⊥

(π2 − 6)

6π2

)2
, (4.7)

1

τ⊥
k

=
meB

2L4
⊥

π4~3

pc
∑

s=±1,p=1,2..

1

|kpx|
(2p+ 1)2

p4(p+ 1)4
|I(skpx)|2,(4.8)

where I(kpx) = (1/
√
N )

∫ Lx/2

−Lx/2
dxe−ikxxϕkp

x
(x)/ cosh2(αx).

kpx [= kF
√

1− ((2p+ 1)2 + 1)π2/(kFL⊥)2] is the lon-
gitudinal momentum of the scattered electron in the
transverse channel of indices p and p′ = 0.
The transverse and longitudinal relaxation times are

plotted in Fig. 3 for the electron density rs = 3, and
typical dimensions of nanoscale junctions, namely Lx =
20 nm, L⊥ = 5 nm and 1/α = 2 nm. We always keep
the transverse confinement potential strength (BL2

⊥ >
55 eV) at far above the Fermi energy (ǫF = 5.57 eV
for rs = 3), and tune the height (A) of the longitudinal
barrier across the Fermi energy to have different values
of the transmission coefficient Tkx

.
Figure 3 confirms our initial hypothesis, namely that

the elastic relaxation time is the dominant contribution
to the total relaxation time for |k| = kF and for a wide
range of temperatures: 1/τ = 1/τee + 1/τk ≈ 1/τk. We
finally note that if we start with an incoming state with
j, j′ 6= 0, then the incident longitudinal momentum kx at
the Fermi energy is smaller than that of the incident state
j, j′ = 0 we have considered so far. The corresponding
longitudinal transmission Tkx

is also relatively smaller for
the same longitudinal barrier height A. Thus, we find a
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FIG. 4: Zero-frequency xc viscosity ηxc in a nanojunction as
a function of the transmission coefficient for rs = 3.

faster longitudinal relaxation and a slower transverse re-
laxation time at the same barrier height. However, if we
plot the total relaxation time as a function of the longi-
tudinal transmission coefficient by reducing the barrier
height, we find that the total relaxation time is qualita-
tively and quantitatively similar as for the j, j′ = 0 initial
state.

We are now ready to estimate the desired viscosity
from Eq. (3.2), and from Eq. (2.1) the dynamical correc-
tions to the single-particle resistance. For this we need
only the xc component of the shear modulus, since the
xc viscosity in the d.c. limit is ηxc(0) = µxc,∞τF . This
quantity is plotted in Fig. 4 with µxc,∞ given by the
second term on the right hand side of Eq. (3.3) and τF
evaluated above for different values of Tkx

.

Finally, since in the present model the transverse vari-
ation of the density is small, we evaluate only the lon-
gitudinal contribution to Rdyn from Eq. (2.1) using the
full wavefunction ψk(x, y, z) and by defining the planar
average

〈n(x)〉 = 1

L2
⊥

∫ L⊥/2

−L⊥/2

∫ L⊥/2

−L⊥/2

dydz
∑

k≤kF

|ψk(x, y, z)|2(4.9)

with the proper normalization of 〈n(x)〉 corresponding
to the bulk density of rs = 3 deep into the leads. This
quantity is plotted in Fig. 5. Introduction of the poten-
tial V (x, y, z) induces two effects: one is the reduction
of the xc viscosity entering Eq. (2.1) due to fast momen-
tum relaxation, and the other is the increase of the den-
sity gradient. These two effects together determine the
value of the dynamical resistance corrections in Fig. 5.
In agreement with what was previously reported [7], this
dynamical resistance is relatively small at large trans-
missions due to the small variation of the density across
the junction. However, it increases substantially at very
low transmissions with values that can greatly exceed,
for this particular model, the dynamical resistances esti-
mated previously [17].
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V. CONCLUSION

In conclusion, we have introduced a dispersion-relation
approach to estimate the d.c. viscosity which provides

very good agreement with the estimates obtained us-
ing the standard non-perturbative calculation for the
homogeneous electron liquid. This approach tremen-
dously simplifies the calculations of the viscosity and
allows to estimate this quantity in the presence of a
nano-constriction where the momentum relaxation time
is dominated by the elastic collisions at the junction.
We have then computed the many-body contribution to
the resistance of the junction for an integrable potential
and found that while this resistance is relatively small
for transparent barriers it is substantially higher for low
transmission barriers, a fact which goes in the right di-
rection in explaining the well-known (and yet unsolved)
discrepancy between theory and experiments in molecu-
lar junctions [12].
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