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Massive-Star Supernovae as Major Dust Factories
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We present late-time optical and mid-infrared observations of the Type-II su-
pernova 2003gd in NGC 628. Mid-infrared excesses consistent with cooling
dust in the ejecta are observed 499-678 days after outburst,and are accompa-
nied by increasing optical extinction and growing asymmetries in the emission-
line profiles. Radiative-transfer models show that up to 0.02 solar masses of
dust has formed within the ejecta, beginning as early as 250 days after out-
burst. These observations show that dust formation in supernova ejecta can
be efficient and that massive-star supernovae can be major dust producers
throughout the history of the Universe.
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Introduction

Millimeter observations of high-redshift (z > 6) quasars have revealed the presence of copious
amounts of dust when the Universe was as young as 700 million years (1). At the present day,
dust in the interstellar medium of the Milky Way and other galaxies is generally thought to be
injected mainly by the gentle winds of low mass stars when they evolve onto the Asymptotic
Giant Branch (2). However, stellar-evolution timescales of these low-to-intermediate mass stars
are too long for them to be a major contributor to the dust budget in the early universe (3).
Instead, dust in the early universe must reflect the contribution from rapidly-evolving (1-10
million years) massive stars which return their nuclear ashes in explosive type II supernova
(SN) events. Theoretical studies have long suggested that dust can condense in the ejecta from
core collapse (e.g. type II) SNe (4) and calculations predict condensation of 0.08–1M⊙ of
dust within a few years, depending on metallicity and progenitor mass (5, 6, 7). There is also
evidence for the origin of some dust in type II SNe based on isotopic composition of stardust
isolated in meteorites (8).

Direct observational evidence for efficient dust formationin SN ejecta is, however, lack-
ing, largely because SN explosions are rare and far apart. Dust formation was detected in the
ejecta of SNe 1987A and 1999em, but only some10−4 M⊙ were inferred for each (9, 10, 11), a
factor up to103 smaller than typical SNe would have had to produce in order tocontribute effi-
ciently to the early-Universe dust budget (12). Similarly low dust masses have been measured
in evolving SN remnants using the recently-launched Spitzer Space Telescope (13), however
its mid-infrared (IR) instruments are most sensitive to warm (50–500 K) material, while dust
in these remnants has almost certainly cooled to< 30 K. Cold dust has been detected in rem-
nants in the far-IR and sub-mm, however such observations risk strong contamination by cold,
unrelated dust clouds along the line of sight (14). As such, the best way to demonstrate dust
condensation in SN ejecta is to study them within a few years of their explosion, during the
epoch of condensation when the ejecta are much hotter than interstellar dust. The high sensitiv-
ity of the Spitzer’s mid-IR detectors allows us to sample very young core collapse SNe within
∼20 Mpc and opens up the whole nearby Universe for such studies. Here we report on such a
study of the type II-P SN 2003gd in the galaxy NGC 628. A rare combination of contempora-
neous optical and mid-IR observations of this well-studiedSN with a known stellar progenitor
mass of8+4

−2 M⊙ (15, 16) provides an excellent test case for the efficiency of dust formation in
SN ejecta.

Data in Support of Dust Production

As dust condenses in SN ejecta, it increases the internal optical depth of the expanding ejecta,
producing three observable phenomena: (1) a mid-IR excess;(2) asymmetric blue-shifted emis-
sion lines, since the dust obscures more emission from receding gas; and (3) an increase in op-
tical extinction. All of these were observed from one to three years after outburst in SN 1987A
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Figure 1: Hubble and Spitzer Space Telescope images of a 10′′ ×10′′ field centered on the
position of SN 2003gd. (A) HST WFPC2 image taken in the F606W filter in which the SN
progenitor (arrowed) was identified (15, 18), with a resolution of 0.′′045 pix−1. (B–C) False-
color SST IRAC images of the SN taken 2004 Jul 28 (B) and 2005 Jan 15 (C), showing the 3.6
µm images in blue, 4.5µm in green, and 8.0µm in red. All IRAC images were processed by
the SINGS collaboration to a final resolution of 0.′′75 pix−1.

(9, 10). In this section, we present or confirm all three phenomena from SN 2003gd.
NGC 628 was observed by the Spitzer Infrared Nearby GalaxiesSurvey (SINGS) Legacy

program (17) with Spitzer Space Telescope’s Infrared Array Camera (IRAC) at 3.6, 4.5, 5.8,
and 8.0µm on 2004 Jul 28, or day 499 after outburst (18), and with the Multiband Imaging
Spectrometer for Spitzer (MIPS) on 2005 Jan 23 (day 678) at 24µm; the SN was also observed
with IRAC as part of GO-3248 (P.I. W. P. Meikle) on 2005 Jan 15 (day 670). All data were
acquired from the Spitzer archive, then spatially enhancedusing the SINGS data pipelines to a
final resolution of 0.′′75 pix−1. A point source identified in all four IRAC bands from day 499 is
consistent to within 0.′′17 (0.2 IRAC pixels) with the position of the SN progenitor (Fig. 1), as
measured via careful absolute and differential astrometrybetween the 3.6µm IRAC image and
the archival Hubble Space Telescope (HST) Wide Field and Planetary Camera 2 (WFPC2) data
in which the progenitor was identified (16).

Photometry of the Spitzer data was performed using point-spread-function fitting techniques
(19). The resulting flux densities are20.8± 2.6 µJy at 3.6µm, 73.8± 5.6 at 4.5µm, 64.9± 7.3
µJy at 5.8µm, and103± 22 µJy at 8.0µm on day 499, and106± 16 µJy at 24µm on day 678;
the SN is nearly undetectable in IRAC on day 670, with3σ upper limits of 6.0, 10.6, 13.5, and
26.6µJy at 3.6, 4.5, 5.8, and 8.0µm, respectively (Fig. 2). An excess at 4.5µm could be due
to CO emitting at 4.6µm (10). Otherwise, the rising 5.8–24µm flux densities are not expected
from the gaseous ejecta, which typically have temperaturesof 3000−5000 K at these late times
(10). It is unlikely that this emission is a thermal light echo, since the time variability of the
IRAC fluxes is significantly faster than that expected for a typical circumstellar dust shell (20).
Assuming that the mid-IR emission can be modeled with a single blackbody, the best fit to the
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Figure 2: Spectral-energy distribution of SN 2003gd, showing optical photometry on day 493
(squares) from (18) and extrapolated from day 632 (21) to day 678 (diamonds) using the evo-
lution of SN 1987A (24); IRAC data from day 499 (circles); upper limits to IRAC fromday
670 (arrows), and the MIPS datum from day 678 (triangle). Error bars are computed using a
Poisson-noise model that includes detector charactertistics, flat-field and profile uncertainties.
Fluxes have been dereddened byE(B−V ) = 0.14 (18). The curves are MOCASSIN radiative-
transfer models to the data at day 499 (solid lines) and 678 (dashed lines) using smoothly-
distributed (black) and clumpy (grey) dust. See text and Table 2.

5.8–8.0µm data from day 499 has a temperature of 480 K, which for an adopted distance to the
SN of 9.3 Mpc (18), yields an integrated luminosity of4.6×105 L⊙ and an equivalent radius of
6.8×1015 cm. The size, temperature, and variability implied by the spectral-energy distributions
(SEDs), are thus consistent with lower temperature (T ∼ 500 K) dust that is cooling within the
SN ejecta.

The first indication of such dust formation in SN 2003gd came in a comparison of broad-
band photometry and Hα spectra of the SN between days 124 and 493 (18), in which a small
decline in the late-time luminosity was accompanied by a slight blueshift in the emission-line
peaks. New spectroscopic observations of SN 2003gd were obtained in long-slit mode, covering
∼4500–7000̊A with a spectral resolution of∼7 Å using the Gemini Multi-Object Spectrograph
(GMOS) on Gemini North on 2004 August 19 (day 521). Two spectra of SN 2003gd were ob-
tained, which have been de-biased, flattened, wavelength-calibrated, sky-subtracted, extracted
and then combined. The wavelength calibration is accurate to about 2Å. The Hα and [O I]
spectra from days 157 and 493 (18) are compared to the newer data in Fig. 3. Inspection of the
lines confirms that the emission peak is indeed blueshifting, while the red high-velocity wing
seen at the earliest epoch has diminished. Additionally, the most recent spectra show a clear
asymmetry in the first few hundredkm s−1 redward of each line peak. These blueshifted peaks
and asymmetric profiles are consistent with a simple model inwhich dust with an increasing
optical depth is located within an expanding sphere of uniform emission (11); in particular, the
day 521 profiles suggest an optical extinctionAR . 5.
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Figure 3: Optical spectra of SN 2003gd showing [OI] λλ6300,6363Å (top panel) and Hα
(bottom panel). Spectra have been corrected for the redshift z = 0.00219 of NGC 628. The grey
curves are taken from the data presented in (18), showing the profiles at days 157 (solid line)
and 493 (broken line). The solid black curve is the new data taken on day 521 with GMOS-N
on Gemini North. The profiles are normalized to an arbitrary flux scale. A monotonic blueshift
in the Hα line peak, first reported by (18) is confirmed. The most recent spectra in all three
lines also show a clear profile asymmetry redward of each linepeak. This evolution is expected
from dust forming homogenously within the ejecta, which preferentially extinguishes emission
from the receding (i.e. redshifted) gas.

The B, V , andR light curves of SN 2003gd through day 493 (18) have been combined
with theB andR-band photometry from day 632 (21) in Fig. 4. Over this 500-day period, the
SN is evolving almost identically to SN 1987A, with the exception that SN 2003gd is slightly
subluminous inV andR around day 493. The close match between the light curves of these
two SNe implies an increase in optical extinction of SN 2003gd as well.

The observed dust extinction is measured by comparing the change in photometry over
time to a standard intrinsic luminosity. The internal extinction in SN 1987A is believed to
have increased byAR = 0.8 mag between days 525 and 700, as determined in broad-band
photometry by comparing the light curve after day 525 to the best-fit line through the data from
days 450–525 (9). The slope of this line (Fig. 4) is extremely sensitive to the subset of the SN
1987A light curve used, and the resulting dust extinction can vary by over 1 mag depending on
the days included in the least-squares fit. Thus we deem this apoor measure of the intrinsic
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Figure 4: Light curves of SN 2003gd, showing the increase of extinction with time.B, V , and
R light curves of SN 2003gd compiled from (18) through day 493 after outburst, and (21) for
day 632, are plotted and offset as marked. Error bars are all smaller than the point markers. For
comparison, the corresponding light curves of SN 1987A (24, and references therein) are also
shown as thick grey lines, and theR-band light curve of SN 1990E is shown as filled stars. Also
plotted in black are the light curves expected from Eq. (1) with (dashed) and without (dotted)
the effective opacity term, as well as the linear fit to SN 1987A from days 450–525 (dashed
grey) used by (9).

luminosity.
The broad-band evolution of Type II SNe past∼500 days is poorly documented, since very

few SNe have ever been observed beyond this epoch. At these late times, the light curve is
dominated by the energy input of gamma rays from56Co decay, which decreases with ane-
folding time of τ56 = 111.2 days. TheR-band photometry of the Type II SN 1990E (22)
closely follows this evolution through 540 days (Fig. 4), suggesting simple Co-decay is a good
estimate of the unextinguishedR-band light curve for at least that long. However, as the ejecta
expand, their opacity to gamma rays is expected to decrease,which results in a modified light
curve (23)

L56(t) ∝ e−t/τ56
[

1 − e−κ56φ0(t0/t)2
]

(1)

where the term in brackets is the “effective opacity,” withκ56 = 0.033 cm2 g−1 the average
opacity to56Co-decay gamma rays, andφ0 = 7 × 104 g cm−2 the column depth at the fiducial
time t0 = 11.6 days, chosen to match the bolometric light curve of SN 1987A (23, 24). Note
that Eq. (1) begins fading relative to simple56Co decay around 500 days.

The Co-decay curves, both with and without the effective-opacity correction, are much more
luminous than the aforementioned linear fit to SN 1987A at thetime of dust formation (Fig. 4).
The slopes of these Co-decay curves also closely resemble that of SN 1987A after day 775,
when dust production is believed to have ended (10). Thus, Eq. (1) offers a more realistic
standard luminosity for the unextinguishedR-band light curve of SN 1987A. Comparison of
L56 to the SN 1987A photometry yields extinctions of 1.5 mags around day 700 when effective
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Table 1:R-band extinction of SN 2003gd. Eq. (1) is used with and without the effective opacity
term to estimate the average and maximal extinction, respectively. The observed values are
listed first, and these were used along with theR-band light curve of SN 1987A to extrapolate
the extinction of the SN at the epochs ofSST observation.

Day AR (mags)
average maximal error

observed
493 0.52 0.73 0.09
632 1.36 1.78 0.12

extrapolated
499 0.53 0.74 0.14
678 1.51 2.13 0.20

opacity is included, and 2.5 mag when it is excluded. Since the evolution of SNe 1987A and
2003gd are so similar, Eq. (1) is also used to estimate the extinction of SN 2003gd at each
epoch, as listed in Table 1.

Dust-Mass Analysis and Interpretation

The observations presented above overwhelmingly point toward dust forming within the ejecta
of SN 2003gd, beginning sometime between 250 and 493 days after outburst. To estimate the
mass of dust present, we employ the three-dimensional MonteCarlo radiative-transfer code
MOCASSIN (25). Briefly, the paths of photon absorption, scattering and escape are followed
from a specified source through a given composition, grain-size distribution, and geometry of
dust. The particular choices of these are either constrained a priori or varied until the model
emission and extinction match the observed values.

Since our hypothesis is that dust condenses within the ejecta, the radiative-transfer model is
constructed under the initial assumption that the dust and source luminosity are mixed within a
spherical, expanding shell with inner radiusrin, outer radiusY ·rin, andρ ∝ r−2 density profile,
and with the illuminating radiation proportional to the dust density. Initial values for the shell
size, source luminosity and temperature are guided by the blackbody previously fit to the mid-IR
data, and by models of SN 1987A at similar epochs (10). There are numerous models for dust
formation within SN ejecta (for a review, see26), most of which predict grain sizes will remain
small. We adopt a standarda−3.5 size distribution (27), with grain radii between0.005 − 0.05
µm, and the dust composition is taken to be 15% amorphous carbon and 85% silicates (7), with
optical constants taken from (28, 29). Finally, since there are very few optical and mid-IR data
to constrain a given model, the source luminosity is restricted to evolve according to Eq. (1)
while its temperature remains constant (10).

Two dust distributions are considered. In the first, “smooth” model, the dust is uniformly
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Table 2: Dust masses andR-band extinction calculated by the radiative-transfer code MO-
CASSIN.

day Model AR Mdust (M⊙)
499 Smooth 0.40 2.0 × 10−4

499 Clumpy 0.65 1.7 × 10−3

678 Smooth 1.48 2.7 × 10−3

678 Clumpy 1.22 2.0 × 10−2

distributed throughout the shell according to the adopted density profile. However, as early as a
few hours after outburst, post-shock ejecta become Rayleigh-Taylor unstable (30, 31), forming
an inhomogenous or “clumpy” distribution, which we model asa two-phase medium, in which
spherical clumps with sizerc = δ·(Y rin), volume filling factorfc and density contrastα = ρc/ρ
are embedded within an interclump medium of densityρ. This is analogous to the mega-grains
approximation (32) with the addition of a radial density profile. Only macroscopic mixing
has been found in the clumpy ejecta of SN remnant Cas A (33), which suggests elemental
ejecta layers remain heterogeneous. We therefore assume the source luminosity is completely
separated from the dust clumps. For a given geometry, a clumpy model will always require more
mass than a smooth one to fit a given SED, since clumping lowersthe overall optical depth for a
given mass of dust (32). Rather than explore the extensive parameter space of clumpy models,
we study the limiting case where all dust is in clumps, i.e.α → ∞, which should provide upper
mass limits, while the smooth models will provide lower masslimits. Finally, as suggested from
hydrodynamic simulations (31), we fix δ = 0.025.

Model results are summarized in Fig. 2 and Table 2. A good fit tothe day 499 photometric
and extinction data was achieved for the smooth model usingY = 7, rin = 5 × 1015 cm,
L = 6.6 × 105 L⊙, andT = 5000 K, while fitting the day 678 data required changingrin to
6.8×1015 cm andL to9.2×104 L⊙. Clumpy models used these same parameters, withfc = 0.02
on day 499, andfc = 0.05 on day 678. A complete exploration of the model parameter space
is beyond the scope of this work, and will be presented elsewhere. In general, small changes to
the model parameters have only modest effects. For example,including maximum grain sizes
up to 0.25µm (typical of dust in the interstellar medium) decreases thedust mass by less than
10%. A 10% change inδ or fc results in a 1–5% change in mass for our adopted parameter
ranges. Thus, the smooth and clumpy model results shown in Table 2 offer reasonably robust
lower and upper mass limits, respectively.

These clumpy-model masses, up to2 × 10−3 M⊙ on day 499 and2 × 10−2 M⊙ on day
678, are significantly higher than most analytic estimates of the dust mass for SN 2003gd.
For example, using the same grain properties as above,5 × 10−4 and2 × 10−3 M⊙ of dust
are required to produce the mid-IR emission at days 499 and 678, if all grains are visible and
isothermal (34). Using the mega-grains approximation for dust uniformly mixed with diffuse
emission within a spherical shell (32), theR-band extinction yields masses of only10−5 and
4 × 10−4 M⊙ of smooth dust for days 499 and 678. In contrast, up to5 × 10−3 M⊙ of clumpy
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dust is deduced from the mega-grains model for day 499, whichagrees well with our radiative-
transfer model. However, once clumps become optically thick, only geometry (δ, fc) determines
their extinction, thus an arbitrarily-large mass of clumpydust reproduces the extinction from
day 678. This behavior of the mega-grains model makes it of limited use in determining dust
masses when the observed optical depth reaches unity. We conclude that the most-often used
analytic approximations can provide unreliable estimatesof dust masses.

Observations similar to those presented here have demonstrated the condensation of dust in
the ejecta of SN 1987A and 1999em, but the inferred masses forthese SNe were only modest,
of order10−4 M⊙ (10, 11). Asymmetric Hα line profiles have been detected for type II SNe
1970G, 1979C and 1980K (35), however this phenomenon on its own is also consistent withan
expanding ionization front shell of emission catching up with and passing through a pre-existing
dust shell, and does not prove the presence of newly-formingdust. For SN 1998S, asymmetric
line profiles and near-IR (λ < 4.7µm) excess emission also point towards dust condensation
in the ejecta (36). In all these cases, the absence of contemporaneous mid-IRobservations
precluded a quantitative estimate of the condensation efficiency. In the light of our quantitative
clumpy-dust analysis, the amounts of dust believed to have formed in the ejecta of SN 1987A
and 1999em – which were based upon analytical estimates – arebeing carefully revisited.

For a progenitor mass for SN 2003gd between 10–12M⊙ (18), roughly 0.16–0.42M⊙ of
refractory elements are expected to form if the progenitor had solar metallicity (37). Assuming
dust formation has finished by day 678, our derived dust mass of 2×10−2 M⊙ for this progenitor
translates into a condensation efficiency, defined here as (mass of refractory elements condensed
into dust)/(mass of refractory elements in ejecta), of≤ 0.12 for clumpy dust. Having found that
analytic analyses of optical and IR observations tend to underestimate the dust mass by an order
of magnitude or more, we deem it likely that dust formation incore collapse SNe is significantly
more efficient than previously believed. In particular, theeffiency implied by SN 2003gd is
close to the value of 0.2 needed for SNe to account for the dustcontent of high redshift galaxies
(12). As noted earlier, too few SNe have been followed sufficiently in time and wavelength to
establish the frequency with which SNe form dust. We are currently addressing this question
through continued, long-term monitoring of a much larger sample of young, type II SNe. If
dust formation is found to be common in core collapse SNe, then since a majority of dust is
expected to survive later passage through high-velocity SNshocks (38), we can conclude that
core collapse SNe played a significant role in the productionof dust in the early Universe.
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