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Abstract

In this paper, we consider an arbitrary locally compact abelian
group G, with an ordered dual group Γ, acting on a space of mea-
sures. Under suitable conditions, we define the notion of analytic
measures using the representation of G and the order on Γ. Our goal
is to study analytic measures by applying a new transference prin-
ciple for subspaces of measures, along with results from probability
and Littlewood-Paley theory. As a consequence, we will derive new
properties of analytic measures as well as extensions of previous work
of Helson and Lowdenslager, de Leeuw and Glicksberg, and Forelli.

A.M.S. Subject Classification: 43A17, 43A32,
Keywords: orders, transference, measure space, sup path attain-

ing, F.&M. Riesz Theorem

1 Introduction

This paper is essentially providing a new approach to generalizations of the
F.&M. Riesz Theorems, for example, such results as that of Helson and
Lowdenslager [16, 17]. They showed that if G is a compact abelian group
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with ordered dual, and if µ is an analytic measure (that is, its Fourier
transform is supported on the positive elements of the dual), then it follows
that the singular and absolutely continuous parts (with respect to the Haar
measure) are also analytic.

Another direction is that provided by Forelli [12] (itself a generalization
of the result of de Leeuw and Glicksberg [9]), where one has an action of
the real numbers R acting on a locally compact topological space Ω, and
a Baire measure µ on Ω that is analytic (in a sense that we make precise
below) with respect to the action. Then again, the singular and absolutely
continuous parts of µ (with respect to any so called quasi-invariant measure)
are also analytic.

Indeed common generalizations of both these ideas have been provided,
for example, by Yamaguchi [23], considering the action of any locally com-
pact abelian group with ordered dual, on a locally compact topological
space. For more generalizations we refer the reader to Hewitt, Koshi, and
Takahashi [19].

In the paper [4], a new approach to proving these kinds of results was
given, providing a transference principle for spaces of measures. In that
paper, the action was from a locally compact abelian group into a space
of isomorphisms on the space of measures of a sigma algebra. A primary
requirement that the action had to satisfy was what was called sup path at-
taining, a property that was satisfied, for example, by the setting of Forelli
(Baire measures on a locally compact topological space). Using this trans-
ference principle, the authors were able to give an extension and a new
proof of Forelli’s result. This was obtained by using a Littlewood-Paley
decomposition of an analytic measure.

In this paper we wish to continue this process, applying this same trans-
ference principle to provide the common generalizations of the results of
Forelli and Helson and Lowdenslager. What we provide in this paper is
essentially a decomposition of an analytic measure as a sum of martingale
differences with respect to a filtration defined by the order. For each mar-
tingale difference, the action of the group can be described precisely by a
certain action of the group of real numbers, and so we can appeal to the
results of [4].

In this way, we can reach the following generalization (see Theorem 6.4
below): if P is any bounded operator on the space of measures that com-
mutes with the action (as does, for example, taking the singular part), and
if µ is an analytic measure, then Pµ is also an analytic measure.
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In the remainder of the introduction, we will establish our notation, in-
cluding the notion of sup path attaining, and recall the transference principle
from [4]. In Section 2, we will describe orders on locally compact abelian
groups, including the extension of Hahn’s Embedding Theorem provided
in [1]. In Section 3, we define the notions of analyticity. This somewhat
technical section continues into Section 4, which examines the role of ho-
momorphism with respect to analyticity. The technical results basically
provide proofs of what is believable, and so may be skipped on first reading.
It will be seen that the concept of sup path attaining comes up again and
again, and may be seen to be an integral part of all our proofs.

In Section 5, we are ready to present the decomposition of analytic mea-
sures. This depends heavily on transference of martingale inequalities of
Burkholder and Garling, and then using the fact that weakly uncondition-
ally summing series are unconditionally summing in norm for any series
in a space of measures [5]. In Section 6, we then give applications of this
decomposition, giving the generalizations that we alluded to above.

Throughout G will denote a locally compact abelian group with dual
group Γ. The symbols Z, R and C denote the integers, the real and complex
numbers, respectively. If A is a set, we denote the indicator function of A
by 1A. For 1 ≤ p <∞, the space of Haar measurable functions f on G with∫
G
|f |pdx <∞ will be denoted by Lp(G). The space of essentially bounded

functions on G will be denoted by L∞(G). The expressions “locally null”
and “locally almost everywhere” will have the same meanings as in [20,
Definition (11.26)].

Let C0(G) denote the Banach space of continuous functions on G van-
ishing at infinity. The space of all complex regular Borel measures on G,
denoted by M(G), consists of all complex measures arising from bounded
linear functionals on C0(G).

Let (Ω,Σ) denote a measurable space, where Ω is a set and Σ is a sigma
algebra of subsets of Ω. Let M(Σ) denote the Banach space of complex
measures on Σ with the total variation norm, and let L∞(Σ) denote the
space of measurable bounded functions on Ω.

Let T : t 7→ Tt denote a representation of G by isomorphisms of M(Σ).
We suppose that T is uniformly bounded, i.e., there is a positive constant c
such that for all t ∈ G, we have

(1) ‖Tt‖ ≤ c.

Definition 1.1 A measure µ ∈M(Σ) is called weakly measurable (in sym-
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bols, µ ∈ MT (Σ)) if for every A ∈ Σ the mapping t 7→ Ttµ(A) is Borel
measurable on G.

Given a measure µ ∈MT (Σ) and a Borel measure ν ∈M(G), we define
the ‘convolution’ ν ∗T µ on Σ by

(2) ν ∗T µ(A) =

∫
G

T−tµ(A)dν(t)

for all A ∈ Σ.
We will assume throughout this paper that the representation T com-

mutes with the convolution (2) in the following sense: for each t ∈ G,

(3) Tt(ν ∗T µ) = ν ∗T (Ttµ).

Condition (3) holds if, for example, for all t ∈ G, the adjoint of Tt maps
L∞(Σ) into itself. In symbols,

(4) T ∗t : L∞(Σ)→ L∞(Σ).

For proofs we refer the reader to [2]. Using (1) and (3), it can be shown
that ν ∗T µ is a measure in MT (Σ),

(5) ‖ν ∗T µ‖ ≤ c‖ν‖‖µ‖,

where c is as in (1), and

(6) σ ∗T (ν ∗T µ) = (σ ∗ ν) ∗T µ,

for all σ, ν ∈M(G) and µ ∈MT (Σ) (see [2]).

Definition 1.2 A representation T = (Tt)t∈G of a locally compact abelian
group G in M(Σ) is said to be sup path attaining if it is uniformly bounded,
satisfies property (3), and if there is a constant C such that for every weakly
measurable µ ∈MT (Σ) we have

(7) ‖µ‖ ≤ C sup

{
ess supt∈G

∣∣∣∣∫
Ω

hd(Ttµ)

∣∣∣∣ : h ∈ L∞(Σ), ‖h‖∞ ≤ 1

}
.
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The fact that the mapping t 7→
∫

Ω
hd(Ttµ) is measurable is a simple

consequence of the measurability of the mapping t 7→ Ttµ(A) for every
A ∈ Σ.

In [4] were provided many examples of sup path attaining representa-
tions. Rather than give this same list again, we give a couple of examples
of particular interest.

Example 1.3 (a) (This is the setting of Forelli’s Theorem.) Let G be
a locally compact abelian group, and Ω be a locally compact topological
space. Suppose that (Tt)t∈G is a group of homeomorphisms of Ω onto itself
such that the mapping

(t, ω) 7→ Ttω

is jointly continuous. Then the space of Baire measures on Ω, that is, the
minimal sigma algebra such that compactly supported continuous functions
are measurable, is sup path attaining under the action Ttµ(A) = µ(Tt(A)),
where Tt(A) = {Ttω : ω ∈ A}. (Note that all Baire measures are weakly
measurable.)
(b) Suppose that G1 and G2 are locally compact abelian groups and that
φ : G2 → G1 is a continuous homomorphism. Define an action of G2 on
M(G1) (the regular Borel measures on G1) by translation by φ. Hence, for
x ∈ G2, µ ∈M(G1), and any Borel subsetA ⊂ G1, let Txµ(A) = µ(A+φ(x)).
Then every µ ∈M(G1) is weakly measurable, and the representation is sup
path attaining with constants c = 1 and C = 1.

Proposition 1.4 Suppose that T is sup path attaining and µ is weakly mea-
surable such that for every A ∈ Σ we have

Ttµ(A) = 0

for locally almost all t ∈ G. Then µ = 0.

The proof is immediate (see [2]).

We now recall some basic definitions from spectral theory.
If I is an ideal in L1(G), let

Z(I) =
⋂
f∈I

{
χ ∈ Γ : f̂(χ) = 0

}
.
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The set Z(I) is called the zero set of I. For a weakly measurable µ ∈M(Σ),
let

I(µ) = {f ∈ L1(G) : f ∗T µ = 0}.

When we need to be specific about the representation, we will use the symbol
IT (µ) instead of I(µ).

Using properties of the convolution ∗T , it is straightforward to show that
I(µ) is a closed ideal in L1(G).

Definition 1.5 The T -spectrum of a weakly measurable µ ∈ MT (Σ) is
defined by

(8) specT (µ) =
⋂

f∈I(µ)

{
χ ∈ Γ : f̂(χ) = 0

}
= Z(I(µ)).

If S ⊂ Γ, let

L1
S = L1

S(G) =
{
f ∈ L1(G) : f̂ = 0 outside of S

}
.

In order to state the main transference result, we introduce one more defi-
nition.

Definition 1.6 A subset S ⊂ Γ is a T -set if, given any compact K ⊂ S,
each neighborhood of 0 ∈ Γ contains a nonempty open set W such that
W +K ⊂ S.

Example 1.7 (a) If Γ is a locally compact abelian group, then any open
subset of Γ is a T -set. In particular, if Γ is discrete then every subset of Γ
is a T -set.
(b) The set [a,∞) is a T -subset of R, for all a ∈ R.
(c) Let a ∈ R and ψ : Γ → R be a continuous homomorphism. Then
S = ψ−1([a,∞)) is a T -set.
(d) Let Γ = R2 and S = {(x, y) : y2 ≤ x}. Then S is a T -subset of R2 such
that there is no nonempty open set W ⊂ R2 such that W + S ⊂ S.

The main result of [4] is the following transference theorem.
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Theorem 1.8 Let T be a sup path attaining representation of a locally com-
pact abelian group G by isomorphisms of M(Σ) and let S be a T -subset of
Γ. Suppose that ν is a measure in M(G) such that

(9) ‖ν ∗ f‖1 ≤ ‖f‖1

for all f in L1
S(G). Then for every weakly measurable µ ∈ M(Σ) with

specT (µ) ⊂ S we have

(10) ‖ν ∗T µ‖ ≤ c3C‖µ‖,

where c is as in (1) and C is as in (7).

2 Orders on locally compact abelian groups

An order P on Γ is a subset that satisfies the three axioms: P + P ⊂ P ;
P∪(−P ) = Γ; and P∩(−P )−{0}. We recall from [1] the following property
of orders.

Theorem 2.1 Let P be a measurable order on Γ. There are a totally or-
dered set Π with largest element α0; a chain of subgroups {Cα}α∈Π of Γ; and
a collection of continuous real-valued homomorphisms {ψα}α∈Π on Γ such
that:
(i) for each α ∈ Π, Cα is an open subgroup of Γ;
(ii) Cα ⊂ Cβ if α > β.
Let Dα = {χ ∈ Cα : ψα(χ) = 0}. Then, for every α ∈ Π,
(iii) ψα(χ) > 0 for every χ ∈ P ∩ (Cα \Dα),
(iv) ψα(χ) < 0 for every χ ∈ (−P ) ∩ (Cα \Dα).
(v) When Γ is discrete, Cα0 = {0}; and when Γ is not discrete, Dα0 has
empty interior and is locally null.

When Γ is discrete, Theorem 2.1 can be deduced from the proof of Hahn’s
Embedding Theorem for orders (see [13, Theorem 16, p.59]). The general
case treated in Theorem 2.1 accounts for the measure theoretic aspect of
orders. The proof is based on the study of orders of Hewitt and Koshi [18].

For α ∈ Π with α 6= α0, let

Sα ≡ P ∩ (Cα \Dα) = {χ ∈ Cα \Dα : ψα(χ) ≥ 0}(11)

= {χ ∈ Cα : ψα(χ) > 0} .(12)
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For α = α0, set

(13) Sα0 = {χ ∈ Cα0 : ψα0(χ) ≥ 0} .

Note that when Γ is discrete, Cα0 = {0}, and so Sα0 = {0} in this case.
If A is a subset of a topological space, we will use A and A◦ to denote

the closure, respectively, the interior of A.

Remarks 2.2 (a) It is a classical fact that a group Γ can be ordered if and
only if it is torsion-free. Also, an order on Γ is any maximal positively lin-
early independent set. Thus, orders abound in torsion-free abelian groups,
as they can be constructed using Zorn’s Lemma to obtain a maximal posi-
tively linearly independent set. (See [18, Section 2].) However, if we ask for
measurable orders, then we are restricted in many ways in the choices of P
and also the topology on Γ. As shown in [18], any measurable order on Γ has
nonempty interior. Thus, for example, while there are infinitely many orders
on R, only two are Lebesgue measurable: P = [0,∞[, and P =]−∞, 0]. It
is also shown in [18, Theorem (3.2)] that any order on an infinite compact
torsion-free abelian group is non-Haar measurable. This effectively shows
that if Γ contains a Haar-measurable order P , and we use the structure
theorem for locally compact abelian groups to write Γ as Ra ×∆, where ∆
contains a compact open subgroup [20, Theorem (24.30)], then either a is a
positive integer, or Γ is discrete. (See [1].)
(b) The subgroups (Cα) are characterized as being the principal convex
subgroups in Γ and for each α ∈ Π, we have

Dα =
⋃
β>α

Cβ.

Consequently, we have Cα ⊂ Dβ if β < α. By construction, the sets Cα are
open. For α < α0, the subgroup Dα has nonempty interior, since it contains
Cβ, with α < β. Hence for α 6= α0, Dα is open and closed. Consequently,
for α 6= α0, Cα \Dα is open and closed.

(c) Let ψ : Γ1 → Γ2 be a continuous homomorphism between two
ordered groups. We say that ψ is order-preserving if ψ(P1) ⊂ P2. Conse-
quently, if ψ is continuous and order preserving, then ψ(P1) ⊂ P2.

For each α ∈ Π, let πα denote the quotient homomorphism Γ → Γ/Cα.
Because Cα is a principal subgroup, we can define an order on Γ/Cα by
setting ψα(χ) ≥ 0⇐⇒ χ ≥ 0. Moreover, the principal convex subgroups in
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Γ/Cα are precisely the images by πα of the principal convex subgroups of Γ
containing Cα. (See [1, Section 2].)

We end this section with a useful property of orders.

Proposition 2.3 Let P be a measurable order on Γ. Then P is a T -set.

Proof. If Γ is discrete, there is nothing to prove. If Γ is not discrete,
the subgroup Cα0 is open and nonempty. Hence the set Cα0 ∩ {χ ∈ Γ :
ψα0(χ) > 0} is nonempty, with 0 as a limit point. Given an open nonempty
neighborhood U of 0, let

W = U ∩ Cα0 ∩ {χ ∈ Γ : ψα0(χ) > 0}.

Then W is a nonempty subset of U ∩ P . Moreover, it is easy to see that
W + P ⊂ P ⊂ P , and hence P is a T -set.

3 Analyticity

We continue with the notation of the previous section. Using the order
structure on Γ we define some classes of analytic functions on G:

H1(G) =
{
f ∈ L1(G) : f̂ = 0 on (−P ) \ {0}

}
;(14)

H1
0 (G) =

{
f ∈ L1(G) : f̂ = 0 on − P

}
;(15)

and

(16) H∞(G) =

{
f ∈ L∞(G) :

∫
G

f(x)g(x)dx = 0 for all g ∈ H1
0 (G)

}
.

We clearly have

H1(G) =
{
f ∈ L1(G) : f̂ = 0 on (−P ) \ {0}

}
.

We can now give the definition of analytic measures in MT (Σ).

Definition 3.1 Let T be a sup path attaining representation of G by iso-
morphisms of M(Σ). A measure µ ∈MT (Σ) is called weakly analytic if the
mapping t 7→ Ttµ(A) is in H∞(G) for every A ∈ Σ.
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Definition 3.2 Recall the T -spectrum of a weakly measurable µ ∈MT (Σ),

(17) specT (µ) =
⋂

f∈I(µ)

{
χ ∈ Γ : f̂(χ) = 0

}
.

A measure µ in MT (Σ) is called T -analytic if specT (µ) ⊂ P .

That the two definitions of analyticity are equivalent will be shown later
in this section.

Since I(µ) is translation-invariant, it follows readily that for all t ∈ G,

I(Ttµ) = I(µ),

and hence

(18) specT (Tt(µ)) = specT (µ).

We now recall several basic results from spectral theory of bounded func-
tions that will be needed in the sequel. Our reference is [21, Section 40]. If
φ is in L∞(G), write [φ] for the smallest weak-* closed translation-invariant
subspace of L∞(G) containing φ, and let I([φ]) = I(φ) denote the closed
translation-invariant ideal in L1(G):

I(φ) = {f ∈ L1(G) : f ∗ φ = 0}.
It is clear that I(φ) = {f ∈ L1(G) : f ∗ g = 0,∀g ∈ [φ]}. The spectrum of
φ, denoted by σ [φ], is the set of all continuous characters of G that belong
to [φ]. This closed subset of Γ is also given by

(19) σ [φ] = Z(I(φ)).

(See [21, Theorem (40.5)].)
Recall that a closed subset E of Γ is a set of spectral synthesis for L1(G),

or an S-set, if and only if I([E]) is the only ideal in L1(G) whose zero set
is E.

There are various equivalent definitions of S-sets. Here is one that we
will use at several occasions.
A set E ⊂ Γ is an S-set if and only if every essentially bounded function
g in L∞(G) with σ[g] ⊂ E is the weak-* limit of linear combinations of
characters from E.
(See [21, (40.23) (a)].) This has the following immediate consequence.
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Proposition 3.3 Suppose that B is an S-set, g ∈ L∞(G), and spec(g) ⊂
B. (i) If f is in L1(G) and f̂ = 0 on B, then f ∗ g(x) = 0 for all x in G.
In particular, ∫

G

f(x)g(−x) d x = 0.

(ii) If µ is a measure in M(G) with µ̂ = 0 on B, then µ ∗ g(x) = 0 for
almost all x in G.

Proof. Part (i) is a simple consequence of [21, Theorems (40.8) and
(40.10)]. We give a proof for the sake of completeness. Write g as the weak-
* limit of trigonometric polynomials,

∑
χ∈E aχχ(x), with characters in E.

Then ∫
G

f(x)g(y − x) d x = lim

∫
G

∑
χ∈E

aχχ(y)f(x)χ(−x) d x

= lim
∑
χ∈E

aχχ(y)f̂(χ) = 0

since f̂ vanishes on E.
To prove (ii), assume that µ ∗ g is not 0 a.e.. Then, there is f in L1(G)

such that f ∗ (µ ∗ g) is not 0 a.e.. But this contradicts (i), since f ∗ (µ ∗ g) =

(f ∗ µ) ∗ g, f ∗ µ is in L1(G), and f̂ ∗ µ = 0 on B.
The following is a converse of sorts of Proposition 3.3 and follows easily

from definitions.

Proposition 3.4 Let B be a nonvoid closed subset of Γ. Suppose that f is
in L∞(G) and

(20)

∫
G

f(x)g(x)dx = 0

for all g in L1(G) such that ĝ = 0 on −B. Then σ[f ] ⊂ B.

Proof. Let χ0 be any element in Γ \ B. We will show that χ0 is not in

the spectrum of f by constructing a function h in L1(G) with ĥ(χ0) 6= 0
and h ∗ f = 0. Let U be an open neighborhood of χ0 not intersecting B,
and let h be in L1(G) such that ĥ is equal to 1 at χ0 and to 0 outside
U . Direct computations show that the Fourier transform of the function
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g : t 7→ h(x− t), when evaluated at χ ∈ Γ, gives χ(x)ĥ(−χ), and hence it
vanishes on −B. It follows from (20) that h ∗ f = 0, which completes the
proof.

A certain class of S-sets, known as the Calderón sets, or C-sets, is par-
ticularly useful to us. These are defined as follows. A subset E of Γ is
called a C-set if every f in L1(G) with Fourier transform vanishing on E
can be approximated in the L1-norm by functions of the form h ∗ f where
h ∈ L1(G) and ĥ vanishes on an open set containing E.
C-sets enjoy the following properties (see [21, (39.39)] or [22, Section 7.5]).

• Every C-set is an S-set.

• Every closed subgroup of Γ is a C-set.

• The empty set is a C-set.

• If the boundary of a set A is a C-set, then A is a C-set.

• Finite unions of C-sets are C-sets.

Since closed subgroups are C-sets, we conclude that P ∩ (−P ), and Cα,
for all α, are C-sets. ¿From the definition of Sα0 , (13), and the fact that
Cα0 is open and closed, it follows that the boundary of Sα0 is the closed
subgroup ψ−1

α0
(0) ∩ Cα0 . Hence Sα0 is a C-set. For α 6= α0, the set Sα

is open and closed, and so it has empty boundary, and thus it is a C-set.
Likewise Cα \ Dα is a C-set for all α 6= α0. ¿From this we conclude that
arbitrary unions of Sα and Cα \Dα are C-sets, because an arbitrary union
of such sets, not including the index α0, is open and closed, and so it is a
C-set.
We summarize our findings as follows.

Proposition 3.5 Suppose that P is a measurable order on Γ. We have:
(i) P and (−P ) are C-sets;
(ii) Sα is a C-set for all α;
(iii) arbitrary unions of Sα and Cα \Dα are C-sets.

As an immediate application, we have the following characterizations.

Corollary 3.6 Suppose that f is in L∞(G), then
(i) σ[f ] ⊂ Sα if and only if

∫
G
f(x)g(x)dx = 0 for all g ∈ L1(G) such that

12



ĝ = 0 on −Sα;
(ii) σ[f ] ⊂ Γ \ Cα if and only if µα ∗ f = 0;
(iii) σ[f ] ⊂ P if and only if f ∈ H∞(G).

Proof. Assertions (i) and (iii) are clear from Propositions 3.5 and 3.4.
To prove (ii), use Fubini’s Theorem to first establish that for any g ∈ L1(G),
and any µ ∈M(G), we have∫

G

(µ ∗ f)(t)g(t)dt =

∫
G

f(t)(µ ∗ g)(t)dt.

Now suppose that σ[f ] ⊂ Γ \Cα, and let g be any function in L1(G). From
Propositions 3.5 and 3.4, we have that

∫
G
fgdt = 0 for all g with Fourier

transform vanishing on Γ \ Cα, equivalently, for all g = µα ∗ g. Hence,∫
G
f(µα ∗ g)dt =

∫
G

(µα ∗ f)gdt = 0 for all g in L1(G), from which it follows
that µα ∗ f = 0. The converse is proved similarly, and we omit the details.

Aiming for a characterization of weakly analytic measures in terms of
their spectra, we present one more result.

Proposition 3.7 Let µ be weakly measurable in M(Σ).
(i) Suppose that B is a nonvoid closed subset of Γ and specTµ ⊂ B. Then
σ[t 7→ Ttµ(A)] ⊂ B for all A ∈ Σ.
(ii) Conversely, suppose that B is an S-set in Γ and that σ[t 7→ Ttµ(A)] ⊂ B
for all A ∈ Σ, then specTµ ⊂ B.

Proof. We clearly have I(µ) ⊂ I([t 7→ Ttµ(A)]). Hence, specTµ =
Z(I(µ)) ⊃ Z(I([t 7→ Ttµ(A)])) = σ[t 7→ Ttµ(A)], and (i) follows.
Now suppose that B is an S-set and let g ∈ L1(G) be such that ĝ = 0 on
−B. Then, for all A ∈ Σ, we have from Proposition 3.4:∫

G

g(t)Ttµ(A)dt = 0.

Equivalently, we have that∫
G

g(−t)T−tµ(A)dt = 0.

Since the Fourier transform of the function t 7→ g(−t) vanishes on B, we see

that I(µ) ⊃ {f : f̂ = 0 onB}. Thus Z(I(µ)) ⊂ Z({f : f̂ = 0 onB}) = B,
which completes the proof.

Straightforward applications of Propositions 3.5 and 3.7 yield the desired
characterization of weakly analytic measures.

13



Corollary 3.8 Suppose that µ ∈MT (Σ). Then,
(i) µ is weakly T−analytic if and only if specTµ ⊂ P if and only if σ[t 7→
Ttµ(A)] ⊂ P , for every A ∈ Σ;
(ii) specTµ ⊂ Sα if and only if σ[t 7→ Ttµ(A)] ⊂ Sα for every A ∈ Σ.
(iii) specTµ ⊂ Cα if and only if σ[t 7→ Ttµ(A)] ⊂ Cα for every A ∈ Σ.
(iv) specTµ ⊂ Γ\Cα if and only if σ[t 7→ Ttµ(A)] ⊂ Γ\Cα for every A ∈ Σ.

The remaining results of this section are simple properties of measures in
MT (Σ) that will be needed later. Although the statements are direct ana-
logues of classical facts about measures on groups, these generalization re-
quire in some places the sup path attaining property of T .

Proposition 3.9 Suppose that µ ∈MT (Σ) and ν ∈M(G). Then specTν∗T
µ is contained in the support of ν̂, and specTν ∗T µ ⊂ specTµ.

Proof. Given χ0 not in the support of ν̂, to conclude that it is also not
in the spectrum of ν ∗T µ it is enough to find a function f in L1(G) with

f̂(χ0) = 1 and f ∗T (ν ∗T µ) = 0. Simply choose f with Fourier transform
vanishing on the support of ν̂ and taking value 1 at χ0. By Fourier inversion,
we have f ∗ ν = 0, and since f ∗T (ν ∗T µ) = (f ∗ ν) ∗T µ, the first part of the
proposition follows. For the second part, we have I(µ) ⊂ I(ν ∗T µ), which
implies the desired inclusion.

We next prove a property of L∞(G) functions similar to the charac-
terization of L1 functions which are constant on cosets of a subgroup [21,
Theorem (28.55)].

Proposition 3.10 Suppose that f is in L∞(G) and that Λ is an open sub-
group of Γ. Let λ0 denote the normalized Haar measure on the compact
group A(G,Λ), the annihilator in G of Λ (see [20, (23.23)]. Then, σ[f ] ⊂ Λ
if and only if f = f ∗λ0 a. e. This is also the case if and only if f is constant
on cosets of A(G,Λ).

Proof. Suppose that the spectrum of f is contained in Λ. Since Λ is an
S-set, it follows that f is the weak-* limit of trigonometric polynomials with
spectra contained in Λ. Let {fα} be a net of such trigonometric polynomials
converging to f weak-*. Note that, for any α, we have λ0 ∗ fα = fα. For g
in L1(G), we have

lim
α

∫
G

fαgdx =

∫
G

fgdx.
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In particular, we have

lim
α

∫
G

fα(λ0 ∗ g)dx =

∫
G

f(λ0 ∗ g)dx,

and so

lim
α

∫
G

(fα ∗ λ0)gdx =

∫
G

(f ∗ λ0)gdx.

Since this holds for any g in L1(G), we conclude that λ0 ∗ fα converges
weak-* to λ0 ∗ f . But λ0 ∗ fα = fα, and fα converges weak-* to f , hence
f ∗ λ0 = f . The remaining assertions of the lemma are easy to prove. We
omit the details.

In what follows, we use the symbol µα to denote the normalized Haar
measure on the compact subgroup A(G,Cα), the annihilator in G of Cα.
This measure is also characterized by its Fourier transform:

µ̂α = 1Cα

(see [20, (23.19)]).

Corollary 3.11 Suppose that µ ∈MT (Σ). Then,
(i) specTµ ⊂ Cα if and only if µ = µα ∗T µ;
(ii) specTµ ⊂ Γ \ Cα if and only if µα ∗T µ = 0.

Proof. (i) If µ = µα ∗T µ, then, by Proposition 3.10, σ[t 7→ µα ∗T Ttµ(A)] ⊂
Cα. Hence by Corollary 3.8, specTµ ⊂ Cα. For the other direction, suppose
that specTµ ⊂ Cα. Then by Corollary 3.8 we have that the spectrum of the
function t 7→ Ttµ(A) is contained in Cα for every A ∈ Σ. By Proposition
3.10, we have that

Ttµ(A) =

∫
Gα

Tt−yµ(A)dµα = Tt(µα ∗ µ)(A)

for almost all t ∈ G. Since this holds for all A ∈ Σ, the desired conclusion
follows from Proposition 1.4.
Part (ii) follows from Corollary 3.6 (ii), Proposition 3.7(ii), and the fact that
Γ \ Cα is an S-set.

Corollary 3.12 Suppose that µ ∈ MT (Σ) and specTµ ⊂ Cα, and let y ∈
Gα = A(G,Cα). Then Tyµ = µ.
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Proof. For any A ∈ Σ, we have from Corollary 3.11

Tyµ(A) = Ty(µα ∗ µ)(A) = µα ∗ Tyµ(A)

=

∫
Gα

Ty−xµ(A)dµα(y)

=

∫
Gα

T−xµ(A)dµα(y) = µα ∗ µ(A) = µ(A).

4 Homomorphism theorems

We continue with the notation of the previous section: G is a locally compact
abelian group, Γ the dual group of G, P is a measurable order on Γ, T is
a sup path attaining representation of G acting on M(Σ). Associated with
P is a collection of homomorphisms ψα, as described by Theorem 2.1. Let
φα denote the adjoint of ψα. Thus, φα is a continuous homomorphism of R
into G. By composing the representation T with the φα, we define a new
representation Tφα of R acting on M(Σ) by: t ∈ R 7→ Tφα(t). If µ in M(Σ)
is weakly measurable with respect to T then µ is also weakly measurable
with respect to Tφα . We will further suppose that Tφα is sup path attaining
for each α. This is the case with the representations of Example 1.7.

Our goal in this section is to relate the notion of analyticity with respect
to T to the notion of analyticity with respect to Tφα . More generally, suppose
that G1 and G2 are two locally compact abelian groups with dual groups Γ1

and Γ2, respectively. Let
ψ : Γ1 → Γ2

be a continuous homomorphism, and let φ : G2 → G1 denote its adjoint
homomorphism. Suppose ν is in M(G2). We define a Borel measure Φ(ν)
in M(G1) on the Borel subsets A of G1 by:

(21) Φ(ν)(A) =

∫
G2

1A ◦ φ(t) dν(t) =

∫
G1

1AdΦ(ν),

where 1A is the indicator function of A. We have ‖Φ(g)‖M(G1) = ‖ν‖M(G2)

and, for every Borel measurable bounded function f on G1, we have

(22)

∫
G1

fdΦ(ν) =

∫
G2

f ◦ φ(t) dν(t).
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In particular, if f = χ, a character in Γ, then
(23)

̂Φ(ν)(χ) =

∫
G1

χdΦ(ν) =

∫
G2

χ ◦ φ(t) dν(t) =

∫
G2

ψ(χ)(t) dν(t) = ν̂(ψ(χ)),

where ψ is the adjoint homomorphism of φ. So,

(24) ̂Φ(ν) = ν̂ ◦ ψ.

Our first result is a very useful fact from spectral synthesis of bounded
functions. The proof uses in a crucial way the fact that the representation is
sup path attaining, or, more precisely, satisfies the property in Proposition
1.4.

Lemma 4.1 Suppose that T is a sup path attaining representation of G1

acting on M(Σ), φ is a continuous homomorphism of G2 into G1 such
that Tφ is a sup path attaining representation of G2. Suppose that B is
a nonempty closed S-subset of Γ1 and that µ is in M(Σ) with specTµ ⊂ B.
Suppose that C is an S-subset of Γ2 and ψ(B) ⊂ C. Then specTφµ ⊂ C.

Proof. Since C is an S-subset of Γ2, it is enough to show that for every
‘A ∈ Σ, specTφ(x 7→ Tφ(x)µ(A)) ⊂ C, by Proposition 3.7. For this purpose,
it is enough by [21, Theorem (40.8)], to show that

g ∗ Tφ(·)µ(A) = 0

for every g in L1(G2) with ĝ = 0 on C. For r ∈ G2 and x ∈ G1, consider
the measure

Tx(g ∗Tφ Tφ(r)µ) = g ∗Tφ Tx+φ(r)µ.

For A ∈ Σ, we have

g ∗Tφ Tx+φ(r)µ(A) =

∫
G

T−t+x(Tφ(r)µ)(A) dΦ(g)(t)

= Φ(g) ∗ [t 7→ Tt(Tφ(r)µ)(A)](x)

= 0

for almost all x ∈ G1. To justify the last equality, we appeal to Proposition

3.3 and note that ̂Φ(g) = ĝ ◦ψ and so ̂Φ(g) = 0 on B ⊂ ψ−1(C). Moreover,
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σ[t 7→ Tt(Tφ(r)µ)(A)] ⊂ specT (µ) ⊂ B. Now, using Proposition 1.4 and the
fact that, for every A ∈ Σ,

Tx[g ∗Tφ Tφ(r)]µ(A) = g ∗Tφ Tx+φ(r)µ(A) = 0,

for almost all x ∈ G1, we conclude that the measure g ∗Tφ Tφ(r)µ is the zero
measure, which completes the proof.

Given C, a collection of elements in L1(G1) or M(G1), let

Z(C) =
⋂
δ∈C

{
χ : δ̂(χ) = 0

}
.

This is the same notation for the zero set of an ideal in L1(G) that we
introduced in Section 1. Given a set of measures S in M(G2), let

Φ(S) = {Φ(ν) : ν ∈ S} ⊂M(G1).

Lemma 4.2 In the above notation, if µ ∈M(Σ) is weakly measurable, then

Z
(
Φ(ITφµ)

)
= ψ−1

(
Z(ITφµ)

)
= ψ−1

(
specTφµ

)
.

Proof. It is enough to establish the first equality; the second one follows
from definitions. We have

Z
(
Φ(ITφµ)

)
=

⋂
δ∈Φ(ITφ (µ))

{
χ ∈ Γ : δ̂(χ) = 0

}
=

⋂
g∈ITφ (µ)

{
χ ∈ Γ : ̂Φ(g)(χ) = 0

}
=

⋂
g∈ITφ (µ)

{χ ∈ Γ : ĝ(ψ(χ)) = 0}

=
⋂

g∈ITφ (µ)

ψ−1 (Z(g))

= ψ−1

 ⋂
g∈ITφ (µ)

(Z(g))


= ψ−1

(
Z
(
ITφ(µ)

))
= ψ−1

(
specTφµ

)
.
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Lemma 4.3 Suppose that C is a nonempty closed S-subset of Γ2 and that
ψ−1(C) is an S-subset of Γ1. Suppose that µ is in M(Σ) and specTφ(µ) ⊂ C.

Then specTµ ⊂ ψ−1(C).

Proof. We will use the notation of Lemma 4.2. If f ∈ ITφ(µ) and
t ∈ G1, then f ∈ ITφ(Ttµ). So, for A ∈ Σ, we have f ∗Tφ (Ttµ)(A) = 0. But

f ∗Tφ (Ttµ)(A) =

∫
R

Tt−φ(x)µ(A)f(x) dx

=

∫
G

Tt−xµ(A) dΦ(f),

where Φ(f) is the homomorphic image of the measure f(x) dx. Hence,
Φ(f) ∈ IT ([t 7→ Ttµ(A)]), and so Φ(ITφ(µ)) ⊂ IT ([t 7→ Ttµ(A)]), which
implies that

Z
(
Φ(ITφ(µ))

)
⊃ Z (IT ([t 7→ Ttµ(A)])) = specT (t 7→ Ttµ(A)).

By Lemma 4.2,

Z
(
Φ(ITφ(µ))

)
= ψ−1

(
specTφµ

)
⊂ ψ−1(C).

Hence, specT (t 7→ Ttµ(A)) ⊂ ψ−1(C) for all A ∈ Σ, which by Proposition
3.7 implies that specT (µ) ⊂ ψ−1(C).

Taking G1 = G, G2 = R and ψ = ψα to be one of the homomorphisms
in Theorem 2.1, and using the fact that [0,∞[, Sα, Cα \Dα are all S-sets,
we obtain useful relationships between different types of analyticity.

Theorem 4.4 Let G be a locally compact abelian group with ordered dual
group Γ, and let P denote a measurable order on Γ. Suppose that T is a
sup path attaining representation of G by isomorphisms of M(Σ), such that
Tφα is sup path attaining, where φα is the adjoint of ψα in Theorem 2.1.
(i) If µ ∈M(Σ) and specT (µ) ⊂ Cα \Dα. Then

specT (µ) ⊂ Sα ⇔ specTφα (µ) ⊂ [0,∞[.

(ii) If µ ∈M(Σ) and specT (µ) ⊂ Cα0. Then

specT (µ) ⊂ Sα0 ⇔ specTφα0
(µ) ⊂ [0,∞[.
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We can use the representation Tφ to convolve a measure ν ∈M(G2) with
µ ∈M(G1):

ν ∗Tφ µ(A) =

∫
G2

T−φ(x)µ(A)dν(x) =

∫
G2

µ(A− φ(x)) dν(x),

for all Borel A ⊂ G1.
Alternatively, we can convolve Φ(ν) in the usual sense of [20, Definition

19.8] with µ to yield another measure in M(G1), defined on the Borel subsets
of G1 by

Φ(ν) ∗ µ(A) =

∫
G1

∫
G1

1A(x+ y)dΦ(ν)(x)dµ(y).

Using (22), we find that

Φ(ν) ∗ µ(A) =

∫
G1

∫
G2

1A(φ(t) + y)dν(t)dµ(y)

=

∫
G2

µ(A− φ(t))dν(t) = ν ∗Tφ µ(A).

Thus,

(25) Φ(ν) ∗ µ = ν ∗Tφ µ.

We end the section with homomorphism theorems, which complement the
well-known homomorphism theorems for Lp-multipliers (see Edwards and
Gaudry [11, Appendix B]). In these theorems, we let G1 act on M(G1) by
translation. That is, if µ ∈ M(G1), x ∈ G1, and A is a Borel subset of G1,
then

Txµ(A) = µ(A+ x).

Let φ : G2 → G1 be a continuous homomorphism. By Example 1.3, T
and Tφ are sup path attaining. (Recall that if t ∈ G2, µ ∈ M(G1), then
Tφ(t)µ(A) = µ(A+ φ(t)).) A simple exercise with definitions shows that for
µ ∈M(G1)

specTµ = suppµ̂.

Theorem 4.5 Suppose that Γ1 and Γ2 contain measurable orders P1 and
P2, respectively, and ψ : Γ1 → Γ2 is a continuous, order-preserving homo-
morphism (that is, ψ(P1) ⊂ P2). Suppose that there is a positive constant
N(ν) such that for all f ∈ H1(G2)

(26) ‖ν ∗ f‖1 ≤ N(ν)‖f‖1.
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Then

(27) ‖Φ(ν) ∗ µ‖ ≤ N(ν)‖µ‖

for all Borel measures in M(G1) such that µ̂ is supported in P1.

Proof. We have Φ(ν) ∗ µ = ν ∗Tφ µ. Also P2 is a T -set. So (27) will

follow from Theorem 1.8 once we show that specTφµ ⊂ P2. For that purpose,
we use Lemma 4.1. We have

specTµ = suppµ̂ ⊂ P1,

and ψ(P1) ⊂ P2 is an S-set. Hence specTφµ ⊂ P2 by Lemma 4.1.
The following special case of Theorem 4.5 deserves a separate statement.

Theorem 4.6 With the above notation, suppose that there is a positive
constant N(ν) such that for all f ∈ H1(G2)

(28) ‖ν ∗ f‖1 ≤ N(ν)‖f‖1.

Then for all f ∈ H1(G1) we have

(29) ‖Φ(ν) ∗ f‖1 ≤ N(ν)‖f‖1.

Theorem 4.7 Suppose that there is a positive constant N(ν) such that for
all f ∈ H1(R)

(30) ‖ν ∗ f‖1 ≤ N(ν)‖f‖1.

Then for all µ ∈ M(G) with support of µ̂ contained in Cα \ Dα, where
α < α0, we have

(31) ‖Φα(ν) ∗ µ‖1 ≤ N(ν)‖µ‖.

Proof. The proof is very much like the proof of Theorem 4.5. We have
Φα(ν) ∗ µ = ν ∗Tφ µ. Apply Theorem 1.8, taking into consideration that

specTµ = suppµ̂ ⊂ Cα \Dα

is an S-set and so

specTφαµ ⊂ ψα(Cα \Dα) ⊂ [0,∞[.
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5 Decomposition of Analytic Measures

Define measures µα0 and dα by their Fourier transforms: µ̂α0 = 1Cα0
, and

d̂α = 1Cα\Dα . Then we have the following decomposition theorem.

Theorem 5.1 Let G be a locally compact abelian group with an ordered
dual group Γ. Suppose that T is a sup path attaining representation of G in
M(Σ). Then for any weakly analytic measure µ ∈ M(Σ) we have that the
set of α for which dα ∗T µ 6= 0 is countable, and that

(32) µ = µα0 ∗T µ+
∑
α

dα ∗T µ,

where the right side converges unconditionally in norm in M(Σ). Further-
more, there is a positive constant c, depending only upon T , such that for
any signs εα = ±1 we have

(33)

∥∥∥∥∥∑
α

εαdα ∗T µ

∥∥∥∥∥ ≤ c‖µ‖.

One should compare this theorem to the well-known results from Littlewood-
Paley theory on Lp(G), where 1 < p < ∞ (see Edwards and Gaudry [11]).
For Lp(G) with 1 < p <∞, it is well-known that the subgroups (Cα) form
a Littlewood-Paley decomposition of the group Γ, which means that the
martingale difference series

f = µα0 ∗ f +
∑
α

dα ∗ f

converges unconditionally in Lp(G) to f . Thus, Theorem 5.1 above may be
considered as an extension of Littlewood-Paley Theory to spaces of analytic
measures.

The next result, crucial to our proof of Theorem 5.1, is already known
in the case that G = T

n with the lexicographic order on the dual. This
is due to Garling [15], and is a modification of the celebrated inequalities
of Burkholder. Our result can be obtained directly from the result in [15]
by combining the techniques of [3] with the homomorphism theorem 4.5.
However, we shall take a different approach, in effect reproducing Garling’s
proof in this more general setting.
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Theorem 5.2 Suppose that G is a locally compact group with ordered dual
Γ. Then for f ∈ H1(G), for any set {αj}nj=1 of indices less than α0, and for
any numbers εj ∈ {0,±1} (1 ≤ j ≤ n), there is an absolute constant a > 0
such that

(34)

∥∥∥∥∥
n∑
j=1

εjdαj ∗ f

∥∥∥∥∥
1

≤ a‖f‖1.

Furthermore,

(35) f = µα0 ∗ f +
∑
α

dα ∗ f,

where the right hand side converges unconditionally in the norm topology on
H1(G).

Proof. The second part of Theorem 5.2 follows easily from the first part
and Fourier inversion.

Now let us show that if we have the result for compact G, then we
have it for locally compact G. Let πα0 : Γ → Γ/Cα0 denote the quotient
homomorphism of Γ onto the discrete group Γ/Cα0 (recall that Cα0 is open),
and define a measurable order on Γ/Cα0 to be πα0(P ). By Remarks 2.2 (c),
the decomposition of the group Γ/Cα0 that we get by applying Theorem
2.1 to that group, is precisely the image by πα0 of the decomposition of the
group Γ. Let G0 denote the compact dual group of Γ/Cα0 . Thus if Theorem
5.2 holds for H1(G0), then applying Theorem 4.5, we see that Theorem 5.2
holds for G.

Henceforth, let us suppose that G is compact. We will suppose that
the Haar measure on G is normalized, so that G with Haar measure is a
probability space.

Since each one of the subgroups Cα, and Dα (α < α0) is open, it fol-
lows that their annihilators in G, Gα = A(G,Cα), and A(G,Dα), are com-
pact. Let µα and να denote the normalized Haar measures on A(G,Cα) and
A(G,Dα), respectively. We have µ̂α = 1Cα (for all α), and ν̂α = 1Dα (for all
α 6= α0), so that dα = µα − να.

For each α, let Bα denote the σ-algebra of subsets of G of the form
A + Gα, where A is a Borel subset of G. We have Bα1 ⊂ Bα2 , whenever
α1 > α2. It is a simple matter to see that for f ∈ L1(G), the conditional
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expectation of f with respect to Bα is equal to µα ∗ f (see [11, Chapter 5,
Section 2]).

We may suppose without loss of generality that α1 > α2 > . . . > αn.
Thus the σ-algebras Bαk form a filtration, and the sequence (dα1 ∗ f, dα2 ∗
f, . . . , dαn ∗ f) is a martingale difference sequence with respect to this filtra-
tion.

In that case, we have the following result of Burkholder [7, Inequality
(1.7)], and [8]. If 0 < p <∞, then there is a positive constant c, depending
only upon p, such that

(36)

∥∥∥∥∥ sup
1≤k≤n

(
k∑
j=1

εjdαj ∗ f

)∥∥∥∥∥
p

≤ c

∥∥∥∥∥ sup
1≤k≤n

(
k∑
j=1

dαj ∗ f

)∥∥∥∥∥
p

.

Lemma 5.3 For any index α, 0 < p < ∞, and f ∈ H1(G) ∩ Lp(G), we
have almost everywhere on G

(37) |µα ∗ f |p ≤ µα ∗ |f |p ,

where µα is the normalized Haar measure on the compact subgroup Gα =
A(G,Cα).

Proof. The dual group of Gα is Γ/Cα and can be ordered by the set πα(P ),
where πα is the natural homomorphism of Γ onto Γ/Cα.

Next, by convolving with an approximate identity for L1(G) consisting
of trigonometric polynomials, we may assume that f is a trigonometric
polynomial. Then we see that for each x ∈ G that the function y 7→ f(x+y),
y ∈ Gα, is in H1(Gα). To verify this, it is sufficient to consider the case
when f is a character in P . Then

f(x+ y) = f(x)πα(f)(y),

and by definition πα(f) is in H1(Gα).
Now we have the following generalization of Jensen’s Inequality, due to

Helson and Lowdenslager [16, Theorem 2]. An independent proof based on
the ideas of this section is given in [3]. For all g ∈ H1(G)

(38)

∣∣∣∣∫
G

g(x)dx

∣∣∣∣ ≤ exp

∫
G

log |g(x)|dx.
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Apply (38) to y 7→ f(x+ y), y ∈ Gα to obtain∣∣∣∣∫
Gα

f(x+ y)dµα(y)

∣∣∣∣ ≤ exp

∫
Gα

log |f(x+ y)|dµα(y).

Extending the integrals to the whole of G (since µα is supported on Gα),
raising both sides to the pth power, and then applying the usual Jensen’s
inequality for the logarithmic function on finite measure spaces, we obtain∣∣∣∣∫

G

f(x+ y)dµα(y)

∣∣∣∣p ≤ exp

∫
G

log |f(x+ y)|pdµα(y)

≤
∫
G

|f(x+ y)|pdµα(y).

Changing y to −y, we obtain the desired inequality.

Let us continue with the proof of Theorem 5.2. We may suppose that
f is a mean zero trigonometric polynomial, and that the spectrum of f is
contained in

⋃n
j=1 Cαj \Dαj , that is to say

f =
n∑
j=1

dαj ∗ f.

By Lemma 5.3, we have that

sup
1≤k≤n

|µαk ∗ f | =

(
sup

1≤k≤n
|µαk ∗ f |

1/2

)2

≤
(

sup
1≤k≤n

µαk ∗ |f |1/2
)2

.(39)

Also, we have that (µαj ∗ |f |1/2)nj=1 is a martingale with respect to the
filtration (Bj)nj=1. Hence, by Doob’s Maximal Inequality [10, Theorem (3.1),
p. 317] we have that∥∥∥∥ sup

1≤k≤n′
µβk ∗ |f |1/2

∥∥∥∥2

2

≤ 4
∥∥µβn′ ∗ |f |1/2∥∥2

2

≤ 4
∥∥|f |1/2∥∥2

2
= 4‖f‖1.(40)
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The desired inequality follows now upon combining Burkholder’s Inequality
(36) with (39), and (40).

Proof of Theorem 5.1. Transferring inequality (34) by using Theorem
1.8, we obtain that for any set {αj}nj=1 of indices less than α0, and for any
numbers εj ∈ {0,±1} (1 ≤ j ≤ n), there is a positive constant c, depending
only upon the representation T , such that

(41)

∥∥∥∥∥
n∑
j=1

εjdαj ∗T µ

∥∥∥∥∥ ≤ c‖µ‖.

Now suppose that {αj}∞j=1 is a countable collection of indices less than
α0. Then by Bessaga and Pe lczyński [5], the series

∑∞
j=1 dαj ∗T µ is uncon-

ditionally convergent. In particular, for any δ > 0, for only finitely many
k do we have that ‖dαk ∗T µ‖ > δ. Since this is true for all such countable
sets, we deduce that the set of α for which dα ∗T µ 6= 0 is countable.

Hence we have that
∑

α dα ∗T µ is unconditionally convergent to some
measure, say ν. Clearly ν is weakly measurable. To prove that µ = ν,
it is enough by Proposition 1.4 to show that for every A ∈ Σ, we have
Ttµ(A) = Ttν(A) for almost all t ∈ G.

We first note that since for every f ∈ L1(G) the series µα0 ∗f+
∑

α dα∗f
converges to f in L1(G), it follows that, for every g ∈ L∞(G), the series
µα0 ∗ g +

∑
α dα ∗ g converges to g in the weak-* topology of L∞(G). Now

on the one hand, for t ∈ G and A ∈ Σ, we have µα0 ∗T Ttµ(A) +
∑

α dα ∗T
Ttµ(A) = Ttν(A), because of the (unconditional) convergence of the series
µα0 ∗T µ+

∑
α dα ∗T µ to ν. On the other hand, by considering the L∞(G)

function t 7→ Tt(A), we have that µα0 ∗T Ttµ(A) +
∑

α dα ∗T Ttµ(A) =
µα0 ∗ Ttµ(A) +

∑
α dα ∗ Ttµ(A) = Ttµ(A), weak *. Thus Ttµ(A) = Ttν(A)

for almost all t ∈ G, and the proof is complete.

6 Generalized F. and M. Riesz Theorems

Throughout this section, we adopt the notation of Section 5, specifically,
the notation and assumptions of Theorem 5.1.

Suppose that T is a sup path attaining representation of R by isomor-
phisms of M(Σ). In [4], we proved the following result concerning bounded
operators P from M(Σ) into M(Σ) that commute with the representation
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T in the following sense:
P ◦ Tt = Tt ◦ P

for all t ∈ R.

Theorem 6.1 Suppose that T is a representation of R that is sup path
attaining, and that P commutes with T . Let µ ∈ M(Σ) be weakly analytic.
Then Pµ is also weakly analytic.

To describe an interesting application of this theorem from [4], let us
recall the following.

Definition 6.2 Let T be a sup path attaining representation of G in M(Σ).
A weakly measurable σ in M(Σ) is called quasi-invariant if Ttσ and σ are
mutually absolutely continuous for all t ∈ G. Hence if σ is quasi-invariant
and A ∈ Σ, then |σ|(A) = 0 if and only if |Tt(σ)|(A) = 0 for all t ∈ G.

Using Theorem 6.1 we obtained in [4] the following extension of results
of de Leeuw-Glicksberg [9] and Forelli [12], concerning quasi-invariant mea-
sures.

Theorem 6.3 Suppose that T is a sup path attaining representation of R
by isometries of M(Σ). Suppose that µ ∈ M(Σ) is weakly analytic, and σ
is quasi-invariant. Write µ = µa + µs for the Lebesgue decomposition of µ
with respect to σ. Then both µa and µs are weakly analytic. In particular,
the spectra of µa and µs are contained in [0,∞).

Our goal in this section is to extend Theorems 6.1 above to representa-
tions of a locally compact abelian group G with ordered dual group Γ. More
specifically, we want to prove the following theorems.

Theorem 6.4 Suppose that T is a sup path attaining representation of G
by isomorphisms of M(Σ) such that Tφα is sup path attaining for each α.
Suppose that P commutes with T in the sense that

P ◦ Tt = Tt ◦ P

for all t ∈ G. Let µ ∈ M(Σ) be weakly analytic. Then Pµ is also weakly
analytic.
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As shown in [4, Theorem (4.10)] for the case G = R, an immediate
corollary of Theorem 6.4 is the following result.

Theorem 6.5 Suppose that T is a sup path attaining representation of G by
isometries of M(Σ), such that Tφα is sup path attaining for each α. Suppose
that µ ∈M(Σ) is weakly analytic with respect to T , and σ is quasi-invariant
with respect to T . Write µ = µa + µs for the Lebesgue decomposition of µ
with respect to σ. Then both µa and µs are weakly analytic with respect to
T . In particular, the T -spectra of µa and µs are contained in P .

Proof of Theorem 6.4. Write

µ = µα0 ∗T µ+
∑
α

dα ∗T µ,

as in (5.1), where the series converges unconditionally in M(Σ). Then

(42) Pµ = P(µα0 ∗T µ) +
∑
α

P(dα ∗T µ).

It is enough to show that the T -spectrum of each term is contained in P .
Consider the measure µα0 ∗T µ. We have specT (µα0 ∗T µ) ⊂ Sα0 . Hence by
Theorem 4.4, µα0 ∗T µ is Tφα0

-analytic. Applying Theorem 6.1, we see that

(43) specTφα0
(P(µα0 ∗T µ)) ⊂ [0,∞[.

Since P commutes with T , it is easy to see from Proposition 3.10 and Corol-
lary 3.11 that

specT (P(µα0 ∗T µ)) ⊂ Cα0 .

Hence by (43) and Theorem 4.4,

specT (P(µα0 ∗T µ)) ⊂ Sα0 ,

which shows the desired result for the first term of the series in (42). The
other terms of the series (42) are handled similarly.
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