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Abstract 

Laplace transform is used to solve the problem of heat conduction over a finite slab. The temperature 

and heat flux on the two surfaces of a slab are related by the transfer functions. These relationships can be 

used to calculate the front surface heat input (temperature and heat flux) from the back surface 

measurements (temperature and/or heat flux) when the front surface measurements are not feasible to 

obtain. This paper demonstrates that the front surface inputs can be obtained from the sensor data without 

resorting to inverse Laplace transform. Through Hadamard Factorization Theorem, the transfer functions 

are represented as infinite products of simple polynomials. Consequently, the relationships between the 

front and back surfaces are translated to the time-domain without inverse Laplace transforms. These time-

domain relationships are used to obtain approximate solutions through iterative procedures. We select a 

numerical method that can smooth the data to filter out noise and at the same time obtain the time 

derivatives of the data. The smoothed data and time derivatives are then used to calculate the front surface 

inputs. 
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NOMENCLATURE 

psc  mass specific heat of the slab, J/(kg·K) 

G Transfer function  

i  1−  

sk  thermal conductivity, W/(m·K) 

L thickness of 1-D slab, m 

p pole of a transfer function 

q  heat flux, W/m2 

Q  Laplace transform of the heat flux  

t  time, s 

ct  characteristic time, s 

sT  temperature of the slab above the ambient temperature, K 

U  Laplace transform of temperature 

x spatial coordinate variable, m 

z zero of a transfer function 

Greek symbols 

sρ  density of the slab, kg/m3 

τ  dimensionless time 

ω   dimensionless frequency 

ξ   dimensionless length variable 

Subscripts 

b back surface quantity 

f  front surface quantity 

 

 

 

 

Keywords: Inverse problem, transfer function, Savitzky-Golay, sensor compensation, 

temperature measurement 
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1. Introduction 
 

To conduct thermal measurements under harsh environment, it has been proposed that sensors be 

located away from direct contact with the environment. The desired measurements are obtained by 

considering the heat transfer paths between the points of interest and the sensors. Imagine a thin plate 

separating the environment and the sensors that are mounted on the back surface. The front surface 

temperature can be determined indirectly by solving an inverse heat conduction problem [1-13] based on 

the transient temperature and/or heat flux measured at the back surface. Among the many methods 

proposed to solve the inverse heat conduction problem, the Laplace transform method (if applicable) most 

concisely captures the mathematical relationships in terms of transfer functions [14-18]. To obtain the 

desired quantities from the sensor measurements, the inverse Laplace transform must be found. Since 

closed form inverse Laplace transform rarely exists for the heat equations, many algorithms for the 

approximate inverse Laplace transform have been proposed for this purpose [18-24]. 

Most of the approximate inverse Laplace transform algorithms start from known functions in the 

Laplace domain. This presents a severe restriction since the time-domain sensor data must be transformed 

into the Laplace domain. Obtaining meaningful Laplace transform from the sensor data is no trivial matter 

considering the unavoidable noise contamination. Moreover, most sensor data are discretized data 

sampled at equal time intervals. The nature of the sampled data adds to the complexity of reconstructing 

the inverse Laplace transform.   

In our previous work, we have proposed polynomial approximations to the transfer functions 

[18]. In this paper, we use the Hadamard Factorization Theorem to express transfer functions as infinite 

products. Through the infinite product expansion of the transfer functions, time domain relationships 

between the front and back surfaces are obtained. These relationships are implemented in iterative 

procedures.  

 In the following section, we present the simplified model for the heat equation and the transfer 

functions relating the thermal quantities between the front and back surfaces. In section 3, iterative 

procedures are developed. In section 4, we present the results of reconstructed front surface heat flux and 

temperature by using the back surface temperature from the analytical solution as the measurement data. 

Noise is added to the analytical data.  A conclusion is given in section 5.  

  

2. Mathematical model and the Laplace transform solution 
 

 Consider one-dimensional heat conduction over a finite slab. The governing equation is given by 

the following: 
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where sρ , sk  and psc  are the density, thermal conductivity and specific heat of the solid; they are all 

assumed to be constant.   

Since the one dimensional model here represents an approximation of a sheet-like three-

dimensional body when the temperature gradients in the in-plane directions are ignored, it is thus more 

intuitive to regard 0=x and Lx = as the “front” and the “back” surfaces of the sheet-like solid. To 

simplify the problem further, we choose the sheet thickness L as the characteristic length and the constant 
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c k
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as the characteristic time. Thus we simplify the governing equation to 
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  for 10 << ξ       (3) 

where ctt /=τ and Lx /=ξ  now represent the dimensionless time and dimensionless position across the 

thickness.  

 The boundary conditions can be prescribed temperatures on the front and back surfaces )(tTf and 

)(tTb . Or the heat fluxes on the front surface and back surface can be prescribed, i.e.   
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f
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where )(tq f and )(tqb  are normalized heat flux (K) at the front and back surfaces. The actual front 

surface heat flux is Lktq sf /)(  (W/m2) for instance.  

 Assume zero initial conditions. Applying the Laplace transform [14, 15] to equation (3), we 

obtain the following equation 

   2

2 )()(
ξ
ξξ

d
UdsU =

       (5) 

where )(ξU is the Laplace transform of  .),( τξsT  The solution of the resulting equation is written as 

   ξξ ss ececU −+= 21        (6)  



Page 5 
 

If we assume the back surface measurements are known, we have the following relationship [16, 18, 25]  
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where the two vectors represent the Laplace transform of the temperature and heat flux of the front 

surface and back surface respectively.  

 The above matrix equation establishes algebraic relationships in the Laplace domain between the 

temperature and heat flux of the two surfaces. For instance, if the back surface is adiabatic, i.e. 

0)( =sQb , we have the following relationship between the temperatures on two surfaces: 

    )(cosh)( sUssU bf = ,     (8) 
and the following relationship between the front surface heat flux and the back surface temperature: 

    )(sinh)( sUsssQ bf =      (11) 

 
 To obtain the temperature and heat flux in the time domain from the known solution in the Laplace 

domain, inverse Laplace transform must be found. The analytical form of the inverse Laplace transform is 

possible only for a few very special cases [14, 15]. In the literature, solutions in time domain are obtained 

through numerical inverse of the transfer function. Because of the convenience of Laplace transform method 

for various physical problems, there are well over 100 different algorithms available for calculating the inverse 

Laplace transform [19-24]. In our previous work [18], we have proposed the polynomial approximations to 

the transfer functions by matching the zeros and poles of the transfer functions. We present a different 

approach based on the Hadamard Factorization Theorem described in Chapter XI of [24a] in the 

following.  

 

3. Infinite product representation of the transfer functions and the iterative solutions in time domain 
 
 Hadamard Factorization Theorem states that if )(sG is a function analytic on the whole complex 

plane, satisfying a growth condition 
aseCsG ||)( ≤ for a positive constant C and 10 << a (or restated in the 

language of [24a], )(sG is an entire function of order less than one), then )(sG has the representation 
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where kp are the roots of )(sG , repeated if necessary in the case of multiple roots. Since scosh and 

ss /sinh are entire functions of order less than one (specifically we can take 2/1=a ), it follows that 
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and 
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 If finite number of terms are kept in (15) and (16), the resulting polynomials are those obtained in [18]. 

We have examined the magnitude and phase for ωis = of these functions against their polynomial 

approximations in [18] graphically. In the following, we develop an iterative procedure with which it is easy to 

implement polynomial approximations to any order. Figure 1 shows the comparison when the polynomials are 

truncated at 8th order. The exact and approximate curves for magnitude exactly overlap. The difference in 

phase angles is small but increases at frequency increases.  As more terms are included, the phase angle 

difference is reduced.  

 
 With the infinite product representation of the transfer functions, equation (8) can be expressed in the 

time domain as follows: 
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Equation (17) incorporates no approximations. This compact relationship has not been reported in the 

literature. Aside from providing a unique perspective on the solutions of the heat equation, it can be used 

to obtain approximation to the exact solution. The above equation can be written in the iterative form: 
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The exact solution is obtained in the limit: 
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Similarly, equation (11) can be written as 
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which is expressed in time domain as 
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The exact solution for the heat flux can be obtained in the limit: 
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In the above, the sequences are given by the following iterative process: 
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 In summary, by expressing the transfer functions as infinite products, we derived the relationships 

in the time domain. These relationships are further expressed in iterative forms. The iterative forms in (18) 

and (24) are close to identity when k is large. Therefore, approximate solutions can be achieved when 

iterations converge.  

 In practice, the measurements from the back surface are discrete data sampled at a constant rate. 

In order to apply the iterative process to find the solutions on the front surface, we adopt a method that 

can be used when only the discrete data are available.  

 
4. Calculation of the front surface temperature and heat flux from back surface measurement 
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 Although there is a vast literature in digital signal processing in dealing with discrete data, our 

solution also requires time derivatives of the sampled data. We have selected the Savitzky-Golay method [26-

29] for its proven satisfactory performance in handling similar problems. This method is widely used across 

different disciplines. In fact, the original paper has received well over two thousand citations.  

 
 The Savitzky-Golay method performs least-squares fit of a point and m points on either side of it with 

a chosen order of polynomial. For points on either edges of the data, asymmetric 2m+1 data points are chosen 

for the fit. This corresponds to performing a moving 2m+1 least-squares fit across the data. The weights can be 

easily calculated using Gram polynomials. The weights for a 7 point, quartic polynomial fit are given in the 

Appendix. As illustrations on using the weights, for given data ,,, 21 nyyy K the smoothed value 

corresponding to 1y is given by 

  )51920103525456(
462
1

76543211 yyyyyyyY +−++−+= ,  (26) 

where the weights are given in the second column of the table in the Appendix.  The weights in the next 

two columns are used to calculate 2Y and 3Y respectively. From 4Y to 3−nY , i.e. the points away from the 

edges, the following formula is used:   

  )5307513175305(
231
1

321123 +++−−− +−+++−= iiiiiiii yyyyyyyY .  (27) 

The derivative calculations are conducted similarly using the weights in the table given in the Appendix.  

 We apply the methods developed above to calculate the front surface temperature and heat flux 

while the back surface is assumed to be adiabatic; see Figure 1. Assume that the front surface heat flux is 

a unit step. The analytical solution is available in the literature [30]:   

       )0,()( ττ TTf =      (28) 

       )1,()( ττ TTb =      (29) 
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 Our computation starts from the sampled back surface data )( ibT τ  given by (29), where 

...,2,,0 ττ δδτ =i and τδ is the sampling interval. The sampling interval is set to 0.1 in the following. To the 

sampled exact data, we have added noises as follows:  

    iibii nTny 2211 )()1( ατα ++=      (29) 

where 1α and 2α are two scaling factors and in1 and in2 are pseudorandom numbers following standard 

normal distribution. Together they simulate sensor noises. The noisy data are fed to Savitzky-Golay algorithm 

to obtain the smoothing and differentiation of the data and )()1( τfT and )()1( τfq are calculated using (19) and 

(25). These results are then substituted into (18) and (24) to obtain )()2( τfT and )()2( τfq . The iteration is 

continued until sequences converge.  

 The two panels in Figure 2 show the reconstructed front surface and temperature from the exact back 

surface temperature with 8 and 16 iterations respectively. We note that the effect of doubling the number of 

iterations has a small though noticeable effect. Further doubling of the iteration number generates results 

which are indistinguishable from those with 16 iterations. Even with only 8 iterations, the front surface 

temperature agrees with the analytical solution very well. For the front surface heat flux, the agreement is very 

good except the initial two points. Since the front surface heat flux is discontinuous at τ =0, larger errors occur 

nearby. The errors at the first two points do not decrease much as the number of iteration is increased further. 

Other than these two points, the heat flux is very close to the constant input assumed in the analytical solution.  

 The sampled back surface temperature data are the only data used in the calculation. Sensor noise 

will unavoidably affect the accuracy of the reconstructed front surface temperature and heat flux. Since 

the iterative scheme in our approach involves numerical derivatives, noise could potentially get amplified 

in the process causing the iteration scheme to diverge. In [18], we have found that to recover the front 

surface heat flux, the noise in the back surface measurement must be so small that it is not feasible using 

today’s sensors. The above iterative procedure uses Savitzky-Golay algorithm for data smoothing and 

differentiation. The Savitzky-Golay algorithm employs least square fit to the data which has filtering effect. As 

a result, we found that our iterative procedure can tolerate much larger noise than in [18]. Figure 3 shows the 

results when noise with 21 αα = =0.01 is included. Again the data used are sampled temperature marked with 

symbol ‘+’. Deviation of the noisy back surface temperature denoted by ‘+’ from the exact result is 

noticeable. The top and bottom panels correspond to 8 iterations and 16 iterations respectively. The small 

differences between the two panels are hardly noticeable.  

 

 The two panels in Figure 3 demonstrate that the iterative procedures can tolerate sensor noises. With 

the sensor noise, the results noticeably deviate from the analytical solutions. The differences in front surface 
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heat flux are significant. However, it is not reasonable to regard the differences as errors since the input data 

(with the sensor noise) no longer correspond to those for the analytical solutions. To further illustrate this point, 

we show the results in Figure 4 when even large sensor noise, 21 αα = =0.03, is included. We found that the 

results change little with the number of iterations. However, they deviate from the analytical solutions even 

more significantly. The noisy input data are 15 temperature values denoted by ‘+” symbol in Figure 4. While 

21 αα = =0.03 may appear to be very small numbers, the corresponding noise is so significant that it has 

changed the back surface temperature qualitatively. In particular, the temperature at 7.0=τ is lower than at 

6.0=τ . Since the back surface temperature data are the only input to our iterative procedures, results are 

obtained accordingly. In other words, deviations from the analytical results corresponding to the constant heat 

flux are not the correct measures for the accuracy of the procedures. If fact, the results would be suspicious if 

they show no deviations. Note also that our procedure makes no assumptions about the constant heat flux on 

the front surface. It is uniquely suited for the transient solutions.  

 Finally, we consider the implementation of our algorithm when the actual data are the back 

surface temperature  

  ],,,[ 21 ni yyyy L=         (32) 

with sampling time interval tδ . We regard the sampled temperature as corresponding to the rescaled time 

  ])1(,,,0[ δτδττ −= ni L ,       (33) 

where  

  
ct
tδδτ =  

and ct is given in (2). The recovered front surface temperature retains the unit of the back surface measurement. 

The front surface  is given by Lkq sif /)(τ .  

5. Conclusion 

 Based on the Hadamard Factorization Theorem, we developed an iterative procedure to calculate 

the front surface heat flux and temperature using measurements on the back surface. Combining our 

procedure with the well-known Savitzky-Golay method for smoothing and differentiation of the sampled 

data, our procedure is able to tolerate measurement noise. The noise tolerance is a significantly 

improvement to the work in [18]. Our procedure is not limited to constant heat flux input on the front 

surface.  
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Appendix. Tables of weights for seven point, quartic fit 

 
Convolution weights for quartic smoothing 
 

i -3 -2 -1 0 1 2 3 
-3 456 25 -35 5 20 -19 5 
-2 25 356 155 -30 -65 70 -19 
-1 -35 155 212 75 25 -65 20 
0 10 -60 150 131 150 -60 10 
1 20 -65 25 75 212 155 -35 
2 -19 70 -65 -30 155 356 25 
3 5 -19 20 5 -35 25 456 

norm 462 462 462 231 462 462 462 
 
First order derivative: 

i -3 -2 -1 0 1 2 3 
-3 -4420 -104 158 22 -136 -20 746 
-2 5059 -25 -1619 -67 607 59 -2375 
-1 1504 68 -50 -58 -764 -16 1378 
0 -2394 84 1218 0 -1218 -84 2394 
1 -1378 16 764 58 50 -68 -1504 
2 2357 -59 -607 67 1619 25 -5059 
3 -746 20 136 -22 -158 104 4420 

norm 2772 252 2772 252 2772 252 2772 
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Figure Captions 

 

Figure 1 Comparison of the transfer function in (16) with its polynomial approximations. The three 

magnitude curves exactly overlap. The difference in phase angles decreases as more terms as included in 

the product. 

 

Figure 2 One dimensional heat conduction problem with an adiabatic back surface 

 

Figure 3 Comparison of the reconstructed solutions (points) after 16 iterations with the analytical solutions 

(lines). No noise is included in the back surface temperature, i.e. 21 αα = =0. Top: 8 iterations; bottom: 16 

iterations. 

 

Figure 4 Comparison of the recovered data (points) and the analytical results (lines) with 8 iterations. The 

symbol ‘+’ represents back surface temperature with noise added. The symbol ‘o’ represents the 

calculated front surface temperature and ‘*’ represents the calculated front surface heat flux. Calculation 

is based on data for ]5.1,0[=τ . Noise scale factors are 21 αα = =0.01. Top panel: 8 iterations; bottom panel: 

16 iterations. 

 

Figure 5 Comparison of the recovered data (points) and the analytical results (lines) with 16 iterations. 

The symbol ‘+’ represents back surface temperature with noise added. The symbol ‘o’ represents the 

calculated front surface temperature and ‘*’ represents the calculated front surface heat flux. Calculation 

is based on data for ]5.1,0[=τ . Noise scale factors are 21 αα = =0.03;. Top panel: 8 iteration; bottom panel: 

16 iteration. 
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