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Energy Minimization of Portable Video
Communication Devices Based on
Power-Rate-Distortion Optimization

Zhihai He, Senior Member, IEEE, Wenye Cheng, and Xi Chen

Abstract—Portable video communication devices operate on
batteries with limited energy supply. However, video compression
is computationally intensive and energy-demanding. Therefore,
one of the central challenging issues in portable video commu-
nication system design is to minimize the energy consumption
of video encoding so as to prolong the operational lifetime of
portable video devices. In this work, based on power-rate-distor-
tion (P-R-D) optimization, we develop a new approach for energy
minimization by exploring the energy tradeoff between video
encoding and wireless communication and exploiting the non-
stationary characteristics of input video data. Both analytically
and experimentally, we demonstrate that incorporating the third
dimension of power consumption into conventional R-D analysis
gives us one extra dimension of flexibility in resource allocation
and allows us to achieve significant energy saving. Within the
P-R-D analysis framework, power is tightly coupled with rate, en-
abling us to trade bits for joules and perform energy minimization
through optimum bit allocation. We analyze the energy saving
gain of P-R-D optimization. We develop an adaptive scheme to
estimate P-R-D model parameters and perform online resource
allocation and energy optimization for real-time video encoding.
Our experimental studies show that, for typical videos with non-
stationary scene statistics, using the proposed P-R-D optimization
technology, the energy consumption of video encoding can be
significantly reduced (by up to 50%), especially in delay-tolerant
portable video communication applications.

Index Terms—Lifetime maximization, power consumption, rate-
distortion (R-D), resource allocation, video compression.

I. INTRODUCTION

W
IRELESS video communication over portable devices

has become the driving technology of many impor-

tant applications, experiencing dramatic market growth and

promising revolutionary experiences in personal communica-

tion, gaming, entertainment, military, security, environment

monitoring, and more [1], [2]. Portable devices are powered

by batteries. Video encoding schemes are often computation-

ally intensive and energy-demanding, even after being fully
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optimized with existing software and hardware energy-min-

imization techniques [3], [4]. As a result, the operational

lifetime of most portable video systems, such as handheld

video devices, still remains short, mostly in the range of a few

hours. This has become a bottleneck for technological progress

in portable video electronics.

Video data is voluminous. It has to be very efficiently

compressed. Otherwise, the amount of transmission energy,

transmission bandwidth, or required storage space1 will be

tremendous. During the past two decades, many video compres-

sion algorithms and international standards, such as MPEG-2,

H.263, MPEG-4, and H.264 [5], [6], have been developed for

efficient video compression. An efficient video compression

system is often computationally intensive and energy-con-

suming, since it involves many sophisticated operations in

spatiotemporal prediction, transform, quantization, mode selec-

tion, and entropy coding [7]. Recent studies [4], [8], as well as

our experimental analysis to be described in Section III, show

that in typical scenarios of video communication over portable

devices video encoding consumes a significant portion (up to

40%–60%) of the total energy. Therefore, one of the important

issues in portable video communication system design is to

minimize the energy consumption of video encoding so as to

prolong the operational lifetime of portable video devices.

A. Related Work

To reduce the energy consumption of video encoders, a

number of algorithms, software and hardware energy-mini-

mization techniques, including low-complexity encoder design

[9]–[11], low-power embedded video encoding algorithms [12],

adaptive power control methods [13], [4], [8], and joint encoder

and hardware adaptation schemes [3], [14], [15] have been

proposed. During the past decades, fast algorithms for major

video encoding modules, including motion estimation, mode

decision, and transform, have been developed [11], [16]–[19].

[20] provides a comprehensive review of fast algorithms for

motion estimation in video compression. Hardware imple-

mentation technologies have also been developed to improve

the video encoding speed [12], [21], [24], [25]. Recently, re-

searchers have realized the importance of cross-layer design for

energy saving in multimedia systems [3], [15]. Joint adaptation

of video encoder/decoder and hardware scheduling for energy

saving has been studied [3], [14], [15], [22]. Joint encoder and

1In many applications, such as personal video recording, storage space may
still be a major system resource constraint.
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wireless transmission power control schemes have also been

developed, for example [4].

So far, existing methods and algorithms have been focused

on encoder complexity (and power consumption) reduction

through heuristic adaptation or control instead of systematic

energy optimization. This is because they lack an analytic

model to characterize the optimum trade-off between energy

consumption and encoding performance [7]. In addition, even

with existing energy saving technologies, the operational

lifetime of portable video electronics still remains very short,

which has become one of the biggest impediments to our tech-

nology future. Therefore, it is important to develop new energy

minimization approaches for portable video communication

devices.

B. This Work

In this work, we study the following problem: given a

portable video encoding system, whose power consumption

has already been fully optimized with existing software and

hardware techniques, can we develop a new approach to

achieve additional energy saving and further extend its opera-

tional lifetime? Our answer is YES. Our approach is based on

power-rate-distortion (P-R-D) optimization and control. In this

work, we will propose an operational framework for analyzing

and modeling the P-R-D behaviors of generic video encoders.

We will demonstrate that extending the traditional R-D analysis

to P-R-D analysis will give us another dimension of flexibility

in resource allocation and performance optimization for wire-

less video communication over portable devices. We will see

that, within the new P-R-D analysis framework, bit and energy

resources are tightly coupled, which enables us to trade “ bits ”

for “ joules ” (energy) so as to achieve significant energy saving

for nonstationary video sources. We will analyze the energy

saving gain of P-R-D optimization. We will develop an adaptive

scheme to estimate the P-R-D model parameters and perform

online energy optimization for real-time video compression.

Our extensive experimental studies show that, for typical

videos with nonstationary statistics, using the proposed P-R-D

optimization technology, the encoder energy consumption can

be significantly reduced. This has many important applications

in low-power portable video communication system design.

The rest of the paper is organized as follows. The operational

P-R-D analysis and analytic P-R-D models for generic video

encoders are presented in Section II. In Section III, we discuss

practical portable video communication system design, study

its energy consumption behaviors, and explain how video en-

coding energy minimization can be performed within the con-

text of wireless video communication over portable devices. In

Section IV, we will study how video encoding energy mini-

mization can be performed through optimum bit allocation and

analyze the energy saving gain. Section V presents the online

energy minimization algorithm for real-time video encoding.

Experimental results are presented in Section VI. Section VII

concludes the paper and discusses future research directions.

II. P-R-D MODELING OF VIDEO ENCODERS

In this section, we introduce a generic operational method to

study the R-D behavior of video encoders under power con-

Fig. 1. Power consumption model with DVS.

straints and establish their P-R-D models. The central task of

P-R-D analysis is to answer the following question: what is the

minimum distortion that a video encoder can achieve under rate

and power constraints?

In our previous work of P-R-D analysis [7], we have intro-

duced a set of complexity control parameters into an MPEG-4

encoder, analyzed the R-D behavior of each parameter, and ob-

tained the P-R-D function for a simple MPEG-4 encoder. We

observe that this analytical approach cannot be easily extended

to other video encoders, such as H.264 video coding [6]. Direct

R-D analysis of complexity control parameters becomes very

difficult when the video encoding mechanism becomes more so-

phisticated. In this work, we propose an operational approach

for offline P-R-D analysis and modeling which can be applied to

generic video encoders. By performing this offline P-R-D anal-

ysis procedure over a wide range of training video data, we will

be able to establish models and a control database for online re-

source allocation and energy minimization.

A. Operational P-R-D Analysis

The operational P-R-D analysis has the following three major

steps. In the first step, we group major encoding operations into

several modules, such as motion prediction, pre-coding (trans-

form and quantization), mode decision, and entropy coding, and

then introduce a set of control parameters

to control the computational complexity of these modules.

Therefore, the encoder complexity (or processor workload)

is then a function of these control parameters, denoted by

. Within the DVS (dynamic voltage scaling)

design framework [23], the microprocessor power consump-

tion, denoted by , is a function of processor workload ,

therefore, is also a function of , denoted by

(1)

where is the power consumption model of the micropro-

cessor [23]. For example, according to our measurement to

be described in III, the power consumption model of the Intel

PXA255 XScale processor is shown in Fig. 1 (solid line). It can

be well approximated by the following expression

(2)

where is a constant. In the second step, we execute the video

encoder with different configurations of complexity control pa-
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Fig. 2. Operational P-R-D functions of “Foreman” (top) and “Football”
(bottom) CIF videos encoded with MPEG-4 at 10 fps.

rameters and obtain the corresponding R-D data, denoted by

. Note that this step is computationally in-

tensive and is intended for offline analysis to obtain the P-R-D

model only. Once the model is established, in Section II -C, we

will discuss how the model parameter can be estimated during

online video encoding.

In the third step, we perform optimum configuration of the

complexity control parameters to maximize the video quality

(or minimize the video distortion) under the power constraint.

This optimization problem can be mathematically formulated as

follows:

(3)

where is the available power consumption for video en-

coding. Given the R-D data set ,

this minimization problem can be easily solved using of-

fline brute-force search. The optimum solution, denoted by

, describes the P-R-D behavior of the video encoder.

The corresponding optimum complexity control parameters are

denoted by , . Fig. 2 shows the P-R-D

functions for two test video sequences, “Foreman”
and “Football,” both encoded by our complexity-scalable

MPEG-4 encoder at CIF (352 288) size and 10 fps. We used

two complexity control parameters, the number of SAD (sum of

absolute difference) computations and the fraction of skipped

macroblocks (MBs). Here, a fast algorithm, called diamond

search, is used for motion estimation [20]. It should be noted

that in both plots the encoding power is normalized by the

maximum encoder power where no complexity control

is applied.

Fig. 3. Encoding complexity of video frames and complexity control.

B. Analytic Power-Rate-Distortion Models

During our extensive operational P-R-D analysis over a wide

range of video sequences, we observe that their P-R-D functions

have an exponential behavior, as we can see from Fig. 2. In this

work, for the convenience of analysis, we propose to approxi-

mate them using the following model

(4)

Here, represents the variance of encoded picture. If it is a

motion predicted video frame, is the variance of the different

picture after motion compensation. is a P-R-D model param-

eter which characterizes the resource (bits and energy) utiliza-

tion efficiency of the video encoder. is the inverse power

consumption function after proper normalization such

that and . According to (2), we have

(5)

For example, in our DeerCam system to be described in

Section III-A, . For other microprocessors with DVS

capabilities, we typically have [23].

It should be noted that in this analytic P-R-D model the

encoding power is normalized by the maximum encoder

power . When decreases from 1 to 0, the encoder

complexity will be scaled down accordingly. In this case, can

be considered as the percentage of maximum encoding power.

In this work, we refer to as the encoder power consumption

level. For example, Fig. 3 shows the encoder complexity of a

test video sequence being scaled down at four power consump-

tion levels 1.0, 0.8, 0.5, and 0.2. Here, we cascade the

first 60 frames of “Foreman,” “Coastguard,” and “Bike” CIF

(352 288) videos to form the test video sequence. We use two

parameters, the number of SAD (sum of absolute difference)

computations used by diamond motion search and the number

of skipped MBs [7] to control the computational complexity

of an MPEG-4 encoder. The encoding frame rate is 10 fps.

It can be seen that, because of time-varying scene activities,

the maximum video encoder complexity (when or no

complexity control is applied) changes dramatically over time.

As decreases from 1 to 0, the encoder complexity of each

video frame decreases accordingly.
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Fig. 4. Correlation between the motion statistics  and P-R-D model
parameter !.

C. Online Estimation of the P-R-D Model Parameter

The P-R-D model in (4) has two major parameters, and

. In real-time video encoding, the picture variance can be

obtained directly from the video encoder. Therefore, we only

need to estimate the P-R-D model parameter . In Section II-A,

we have presented an operational approach to obtain the P-R-D

curve. Based on this P-R-D curve, we can determine the value of

using statistical fitting. This approach is computationally in-

tensive and only suitable for offline P-R-D analysis. In real-time

video encoding over portable devices, it is desirable to develop a

low-complexity scheme which is able to estimate from frame

statistics collected at the video encoder.

In this work, we find that the value of is highly correlated

with motion statistics of video frames. Let ,

, be the motion vector of the th MB in the current video

frame. Let be the mean of all motion vectors. Let

be the fraction of Intra MBs in the frame. The motion statistics,

denoted by , is defined as

(6)

Here, “256” is an empirical number which represents the

average motion complexity of an Intra MB. In our experiments,

the motion search range is set to be 16 pixels. To study the

correlation between the motion statistics and the P-R-D

model parameter , we execute the P-R-D video encoder over

a wide range of test video segments. These video segments

are all extracted from standard CIF video sequences, including

“Foreman,” “Flowergarden,” “Carphone,” “Football,” “Bike,”
and “Coastguard”. Each video segment has 60 frames with the

first frame as an Intra frame and the rest as P frames. For each

video segment, we collect its P-R-D data using the operational

approach explained in Section II-A, fit the data with the ana-

lytic P-R-D model in (4), determine the value of , and collect

its motion statistics . Fig. 4 shows that the P-R-D model

parameter is highly correlated with the motion statistics

(in diamonds). The following model is then used to estimate :

(7)

where , and . The model

fitting result is also shown in Fig. 4 in a solid line. In practice,

the values of these three coefficients can be adjusted based on

previous P-R-D statistics. More specifically, for those encoded

video frames or segments, we know their coding distortion ,

coding bit rate , the corresponding power consumption , as

well as their motion statistics . Based on these statistics, we

can determine the values of and update the coefficients ,

, and using (7) with statistical fitting.

III. ENCODING ENERGY MINIMIZATION ON

PORTABLE VIDEO DEVICES

In this section, we use one example to discuss portable video

communication system design, understand its energy consump-

tion behavior, and study how the P-R-D analysis presented in

the previous section can be applied to minimize video encoding

energy consumption.

A. Portable Video Encoding System Design and Energy

Characterization

Fig. 5(b) shows an embedded wireless video communication

system, called DeerCam, developed at University of Missouri,

Columbia, for wildlife activity monitoring and behavior anal-

ysis [26], [28]. The system is based on a Crossbow Stargate

platform [27]. As illustrated in Fig. 5(a), it has the following

major components: a low-power USB camera for video capture,

an embedded 400 MHz Intel PXA255 XScale microprocessor, a

PCMCIA card for 802.11-based wireless data transmission, and

a Compact Flash (CF) card for storing/buffering compressed

video bit streams. In our project, we deploy the DeerCam system

with rugged housing as shown in Fig. 5(b) on animals (deer) for

several weeks to collect video samples about their daily activi-

ties for food selection analysis, behavior modeling, and interac-

tion tracking. The video data captured by the digital camera is

compressed by an MPEG-4 video encoder running on the em-

bedded microprocessor. The compressed bit streams are tem-

porarily stored in the 4.0 GBytes CF card. We deploy a wireless

router near a place (e.g., a food station) that the animal visits

often. When the animal comes back, for example, within 10–20

meters from the router, the wireless transmission module will

be activated to upload the compressed video data to the router

and release the storage space in the CF card, as illustrated in

Fig. 5(c).

To characterize the energy consumption of major components

of the DeerCam system, we use the power measurement setup

depicted in Fig. 6(a) and follow a power consumption measure-

ment procedure described in [30]. The operating voltage of the

Stargate system is 3.8–5.0 V [27]. During the video capturing

and encoding process, only these required device components,

such as camera and CF card, are turned on, while other idle com-

ponents on the Stargate, such as Ethernet connection, are con-

figured to shut off. The video encoding pipeline has been opti-

mized such that memory access is reduced as much as possible.

The current draw of the low-power USB camera is about 73 mA.

According to our experience, for this type of wildlife activity

monitoring videos with a size of CIF (352 288) at 7–10 fps,
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Fig. 5. (a) Major modules of the embedded wireless video communication system. (b) Its final configuration during deployment for wildlife behavior monitoring.
(c) Wireless video downloading.

Fig. 6. Average energy consumption of major components of the Stargate system.

the average bit rate is about 400 kbps.2 During wireless video

transmission, the average bandwidth is 2–3 Mbps. Therefore,

the required data transmission time is about 10%–20% of

the total video encoding time. Fig. 6(b) shows the estimated

fractions of energy consumption for major system components.

It can be seen that the video encoder (processor) consumes a

significant portion of the total energy and wireless transmission

energy is about 1/4 of the encoding energy due to delay-tolerant

short-range wireless data transmission. Experimental studies

in the literature (e.g., [4]) with other communication settings,

for example, live video streaming over wireless LAN, also

show similar energy consumption behaviors of portable video

devices.

B. Energy Tradeoff Between Video Encoding

and Wireless Transmission

In this work, we focus on energy minimization of video en-

coding and wireless data transmission since these two consume

a major portion of the total energy while the energy consumption

of the remaining components depends on specific system design

and is not easily controllable from a video encoding perspective.

According to operational P-R-D analysis in Section II, video

encoding power is a function of encoding bit rate and dis-

tortion , denoted by . The wireless data transmission

power is given by

(8)

2This is the average encoding bit rate for video samples of different animal
activities, including feeding, bedding, walking, running, etc.

where is the energy cost that is needed for successful trans-

mission of one data bit. It depends on transmission distance and

path loss index [29], [31]. This is just a simplified model to

demonstrate the energy tradeoff between video encoding and

wireless transmission. In our case, it is reasonable since the

delay is large and the transmission distance is relatively small

and we can consider to be the average transmission energy

cost. For a given video encoding distortion (or equivalently pic-

ture quality) , if we decrease the encoding power , the en-

coder will generate more bits and a higher bit rate is needed

to achieve the target distortion . According to (8), this im-

plies more power is needed for wireless transmission. As illus-

trated in Fig. 7, this leads to an energy tradeoff between video

encoding and wireless transmission. This suggests that, in many

practical video encoding scenarios where the system has access

to sufficient storage (or buffer) space or transmission bandwidth,

the per-bit energy cost in wireless data transmission is relatively

low, while the video encoder operates under severe energy con-

straints, we can lower down the encoding power to an optimum

level , as illustrated in Fig. 7 with a triangle, to minimize the

overall power consumption. This energy tradeoff can conceptu-

ally described by the following minimization problem:

(9)

For a detailed treatment of this energy tradeoff problem, see

[29]. This resource allocation between video encoding and wire-

less transmission determines the optimum bit budget, denoted

by , for video encoding.
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Fig. 7. Energy tradeoff between video encoding and wireless data
transmission.

IV. ENERGY SAVING USING P-R-D OPTIMIZATION

Once the optimum bit budget for video encoding is de-

termined, in this section, we will study how the P-R-D model

developed in Section II can be used to minimize the overall

encoding energy through optimum allocation of the bit budget

within the video sequence. The major result in this section

can be summarized as follows: if the input video data is non-

stationary with time-varying scene characteristics, the P-R-D

model enables us to explore the input source diversity, to trade

bits for joules (energy) between different video segments, and

to achieve significant encoding energy saving by performing op-

timum bit allocation.

In practice, a video scene under surveillance or monitoring

often experiences a series of events with time-varying scene ac-

tivity levels. Therefore, the video sequence to be encoded by

the portable device is often highly nonstationary. For example,

in our DeerCam system, the animal has a wide variety of daily

activities, such as feeding, walking, and bedding, which cause

significant content changes in the input video. This observa-

tion also holds in personal video recording and many remote

video surveillance applications. In the following, we will study

how this nonstationary nature of video input can be exploited

by P-R-D optimization to minimize the energy consumption of

video encoding and prolong the operational lifetime of portable

video devices.

A. Energy Saving Through Optimum Rate Allocation

We consider two video encoding schemes. In Scheme A, de-

noted by , the encoder assumes that the video input is sta-

tionary, uses the average P-R-D statistics to determine the op-

timum encoding power as illustrated in Fig. 7, and encodes all

video frames in the session using this constant power, denoted

by . In Scheme B, denoted by , the encoder partitions the

input video into segments and performs optimum resource al-

location among these video segments to minimize the overall

encoding power consumption. Both theoretically and experi-

mentally, we are going to demonstrate that, for the same bit

budget and video quality, encoder requires less energy than

. We will analyze the energy saving gain and discuss how

this can be achieved in practical system design. Let be the

video sequence to be encoded. The time duration of is de-

noted by , which corresponds to the operational lifetime of

device. We partition into a number of segments, denoted by

. Suppose that the average picture variance of

video segments (after motion compensation) and P-R-D model

parameter in (4) for each video segment are and , respec-

tively. Let and be the amount of bits and power consump-

tion level used by video encoder to compress video seg-

ment . Let be the total number of bits that can be gener-

ated by the video encoder. We assume that the video sequence

is encoded at a constant quality . In general, this assumption

is reasonable because most applications require that videos be

encoded at a target quality. Rewriting (4), for video segment ,

we have

(10)

where

(11)

and

(12)

is called scene activity level. The constraint in (11) makes sure

that . We can see that within the P-R-D analysis

framework, the encoder power consumption depends on the

encoding bit rate . Our objective is to minimize the total

power consumption of encoder in compressing all video

segments. For the convenience of analysis, let’s ignore the rate

constraint in (11) at this moment. During online resource allo-

cation in Section V, we will handle this constraint. The energy

minimization problem can be formulated as follows:

(13)

(14)

B. Optimum Encoding Power

To determine the optimum encoding bit rate and power

for each video segment , we need to solve the constrained

optimization problem in (13) using a Lagrange multiplier ap-

proach. Let

(15)

where is the Lagrange multiplier. For the minimum solution,

the following condition holds

(16)
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That is

(17)

Since , we have

(18)

From (17), we have

(19)

which is the optimum bit allocation. The minimum overall

power consumption is then given by

(20)

C. Analysis of Energy Saving Gain

In this section, we will demonstrate that, for the same bit

budget and video quality , encoder requires less en-

ergy than . As discussed above, in encoder , a con-

stant encoder power is used. If is the target video en-

coding quality, according to (10), the corresponding number of

encoding bits of , denoted by , is given by

(21)

Therefore, the total number of bits generated by encoder is

(22)

and the total power consumption levels of encoder is given

by . For the same number of encoding bit budget

and video distortion , according to (20) and (22), the minimum

total power consumption of encoder is

(23)

Therefore, the energy saving ratio of encoder over is

then given by

(24)

According to the proof in Appendix A, we have

(25)

and the equality holds if and only if the scene activity levels

are equal to each other, which implies that the input video

is stationary. Note that in the P-R-D model in (4), we have

. However, the above energy minimization has not

considered this constraint. It is highly possible that if

is very close to 1. If this happens, one option is to crop this

optimum value and set it to be . In this case, the solu-

tion becomes sub-optimum and the energy minimization perfor-

mance degrades.

V. ONLINE RESOURCE ALLOCATION AND

ENERGY MINIMIZATION

Section IV provides a theoretical analysis on the energy

saving performance of P-R-D optimization. In this section, we

discuss how this theoretical energy saving performance can

be realized in practical video compression. More specifically,

we will discuss how to perform online power allocation and

control in real-time video compression. There are three major

issues that need to be addressed. 1) First, the optimal resource

allocation in Section IV-A requires global knowledge of scene

activity levels of all video segments, which

is infeasible in real-time video communication because we do

not have access to future video segments and their statistics.

2) Second, in energy allocation between video encoding and

wireless transmission as discussed in Section III-B, we assume

that the input video is stationary and its P-R-D behavior does

not change over time. 3) Third, once the optimum power

consumption level of the video segment is determine, we

need to develop a scheme to configure the complexity control

parameters to achieve the target power consumption level. In

the following, we will address these issues.

A. Predicting Scene Activity Levels of Future Frames for

Resource Control

To address the first issue, we propose to model the scene ac-

tivity levels using a Markov model. Based on this model and

past statistics, we predict the scene activity levels of future

video segments. More specifically, using the method presented

in Section II-C, we are able to estimate the value of . According

to its definition in (12), we can obtain the value of scene ac-

tivity level once video segment is encoded. We quantize

the value of scene activity level into discrete levels. Here,

for the ease of implementation, a uniform quantizer is used.

We then use an -state Markov model, which has scene

activity states, denoted by , to model the

temporal change of scene activity levels of the video sequence.
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Let be the state transition matrix and the

probability of state . In the proposed online resource allo-

cation scheme, we assume that temporal changing patterns of

scene activity levels of future video segments would be similar

to those of previous encoded video segments. In this way, the

probability distribution of scene activity levels of future video

segments would be the same as that of past video segments.

B. Online Power Allocation Between Video Encoding and

Wireless Transmission

In the following, we propose an online scheme to explore

the tradeoff between video encoding and wireless transmission

so as to determine the optimum encoding bit rate target .

Suppose we are encoding video segment . Let be the

distribution of scene activity states of previously encoded video

segments. According to the P-R-D model in (10) and the scene

activity prediction in Section V-A, the average P-R-D behavior

of previous video segments is given by

(26)

Let be the average per-bit energy cost during past wireless

transmission sessions. As discussed in Section III-B, the op-

timum encoding bit rate can be determined by solving the

following optimization problem

(27)

This 1-D minimization can be numerically solved using gradient

search. Once the target bit rate is determined, using the rate

allocation scheme for energy minimization scheme presented

in Section IV-A, we can determine the encoding bit rate target

for the current video segment. Suppose is the current video

segment. Let be the average bit rate used by previously

encoded video segments. Note that the total bit budget is .

The following formula, which is adapted from (19), is used to

determine the bit budget for video segment

(28)

C. Configuration of Encoder Complexity Control Parameters

Using (28), we can determine the target encoding bit rate

of the video segment to be encoded. Suppose the target

video distortion (quality) is . Using the P-R-D model (10),

we can determine the target encoder power consumption level

. The next step is how to configure the complexity control

parameters of the video encoder to achieve the P-R-D triplet

. During operational P-R-D analysis in Section II-A,

we are able to determine the optimum encoder complexity con-

trol parameters using offline measurements and nu-

merical optimization. However, this approach cannot be applied

in real-time video encoding over portable device because it is

too computationally intensive. To address this issue, we pro-

pose a training-classification based approach. More specifically,

Fig. 4 suggests that the P-R-D behaviors of video segments are

highly correlated with their motion statistics. This implies that

video segments of similar motion statistics will have similar

P-R-D behaviors.

During the training stage, we collect a set of training video

segments with a wide range of motion statistics. We partition

them into a number of clusters according to their motion statis-

tics . According to our experience, 5 to 7 clusters will be suf-

ficient. For each cluster of video segments, we find their average

P-R-D function and optimum encoder complexity control pa-

rameters using the operational P-R-D analysis. These optimum

encoder complexity control parameters for all clusters are then

stored in a database. During real-time video encoding, we com-

pute the motion statistics of the video segment, determine

its cluster based on the value of , and then use the average

optimum encoder complexity control parameters of that cluster

retrieved from the database to control the video encoder.

D. Summary of the Algorithm

The proposed online resource allocation and energy mini-

mization algorithm is summarized in this section. In this work,

we assume that the target video distortion (or quality) of the

portable video device is , which is often pre-configured by

users. Let be the average per-bit energy cost of wireless data

transmission. In the initialization stage, we assume that the dis-

tribution of scene activity levels is uniform, which will be up-

dated later on using scene activity statistics obtained from the

video encoder. The following steps are performed during on-

line resource allocation, control, and energy minimization:

1) Collect motion statistics and estimate the P-R-D param-

eter. Compute the average motion statistics of the cur-

rent video segment. Using (7), estimate the P-R-D param-

eter . This is actually a chicken-egg problem: we cannot

collect motion statistics before a video segment is en-

coded, however, is needed for estimating the value

of P-R-D parameter and for determining the optimum en-

coding bit rate and power. To solve this problem, we can

use motion statistics of encoded frames in the current video

segment and progressively update the value of and as

more and more frames are encoded within the segment.

2) Scene classification and resource allocation. Using (12),

determine the scene activity level of the current video

segment and its Markov state. Using (28), compute the bit

rate target for the current segment. With (10), deter-

mine the encoding power .

3) Encoder complexity control. Based on the motion statistics

, determine the P-R-D cluster of the current video seg-

ment, use the optimum complexity control parameters of

this cluster to control the video encoder, as explained in

Section V-C.

4) Model parameters update. After the current video segment

is encoded, based on the statistics of current and previous

video segments, update the coefficients , , and

in model (7). Also, update the probability distribution of

scene activity states .

5) Repeat the above steps until all video segment are encoded.
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Fig. 8. Sample video frames from the test video sequence captured by the DeerCam system during our field evaluation.

The proposed online P-R-D parameter estimation and energy

minimization algorithm operates at the video segment or group

of pictures (GOP) level. We recognize that portable video com-

munication device is often expected to operate for hours. There-

fore, there is no need to adjust the power allocation at very fine

scales, such as frame-level. Instead, it would be sufficient to per-

form power allocation and control at the video segment level.

From a computational complexity perspective, the computation

overhead of this type of segment-level resource allocation and

energy minimization scheme is very small.

VI. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the proposed

scheme for resource allocation and energy minimization. We

will also analyze the sensitivity of energy saving gain to the

power consumption model of computing microprocessors. We

then study how the wireless transmission energy cost affects

the overall energy saving gain.

We have implemented the energy scalable MPEG-4 video en-

coder described in Section II on a PC. For each video segment,

we are able to measure the number of cycles used by the video

encoder. At this moment, we have not ported this energy-scal-

able encoder onto the Stargate platform and linked it with its

online dynamic voltage control. Instead, we use the power con-

sumption model depicted in Fig. 1, which is obtained during

our offline study, to map the computational complexity into en-

coder power consumption. The test videos used in this exper-

iment are deer activity monitoring videos. In November 2006,

we deployed the DeerCam system with a nonenergy-scalable

MPEG-4 encoder on deer and obtained more than 60 h of an-

imal activity videos of CIF size at approximately 5 fps. Here, the

frame rate is relatively low, however, it is sufficient for wildlife

activity analysis. In addition, a low frame rate requires less en-

coding power and enables us to monitor animals over an ex-

TABLE I
PERFORMANCE EVALUATION OF ENERGY MINIMIZATION

tended period of time. In Table I, we list 6 of these test video

sequences which are labeled by its day and time, as well as

the total number of frames we have tested. For example, the

test video sequence “DeerCam D1(AM)” means that this video

was captured at day 1 in the morning. We used the first 40 000

frames from this sequence during our experiment. Fig. 8 shows

a sample video frame for each of these DeerCam videos. Be-

sides these 6 DeerCam videos, we also include a standard test

video sequence, labeled as “MPEG,” which is generated by cas-

cading the first 150 frames of 6 CIF videos: “Foreman,” “Car-

phone,” “Flowergarden,” “Coastguard,” “NBA,” and “News.”

During our experiments, each video segment has 60 frames with

the first frame as an I-frame and the rest as P-frames.

A. Performance Evaluation of Resource Control and

Energy Minimization

First, we evaluate the energy saving performance of the pro-

posed scheme. Fig. 9 (top) shows the motion statistics of

each video frame of “DeerCam D1(AM).”Fig. 9 (bottom) shows

the motion statistics from frames 20 000 to 20 250. It can be

seen that the video scene activity is highly nonstationary and

changes dramatically over time. To evaluate the performance

of P-R-D parameter estimation as described in Section II-C,

which is one of the key components of our proposed algorithm,
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Fig. 9. Motion statistics  of each video frame.

Fig. 10. Estimation results of the P-R-D parameter !.

we perform the operational P-R-D analysis over 90 video seg-

ments randomly selected from the test videos, and obtain the

true values of their P-R-D parameter . We then compare them

with those estimated by the formula in (7). Fig. 10 shows that

the estimated values of are very close to their actual values.

We set the target video quality to be 33 dB, i.e.,

(mean squared error). Fig. 11 shows the encoding bit rate (in

megabits per second) of each video segment. The top plot

shows the offline bit allocation results given by (19) while the

bottom one shows the actual bit rate used by each video seg-

ment controlled by our online resource allocation and control

algorithm in Section V-D. Fig. 12 shows the results for offline

and online power allocation. It can be seen that in the offline

case, the normalized encoding power sometimes is larger than

1.0 which is invalid. However, in the online case, the maximum

power consumption level constraint is satisfied. We compare

the proposed algorithm against encoder (described in

Section IV-A) where a fixed encoding power is used without bit

allocation for energy minimization. Table I shows the overall

energy saving ratio for each test video sequence, as well as

Fig. 11. Bit allocation of each vide segment.

Fig. 12. Power allocation of each video segment.

the rate control results. We can see that for the same video

quality and bit budget, the proposed algorithm is able to save

about 30%–50% of encoding energy, which is quite significant.

It should be noted that this encoding energy saving is made

possible by the proposed resource allocation and P-R-D opti-

mization scheme. It is achieved by exploring the nonstationary

nature of input video by trading bits for joules between video

segments, therefore, is independent of existing software and/or

hardware techniques for video encoder optimization. In other

words, it achieves further significant encoding energy saving

(about 30%–50%) on top of existing software and hardware

energy minimization schemes.

B. Sensitivity Analysis of Energy Saving Gain

In the following, we analyze the sensitivity of energy saving

ratio to different microprocessor power consumption models,

i.e., different values of . In the above experiments, the value

of is 2.5. Fig. 13 shows the histogram of scene activity levels

of all video segments in “DeerCam D1(AM)”. It can be

seen that it follows a Gamma distribution. Based on this obser-

vation, for the convenience of sensitivity analysis purpose, we

approximate the distribution of scene activity levels using

the following Gamma distribution:

Scene Activity level

(29)

where is the shape parameter and is the scale parameter of

the Gamma distribution. Its mean and variance are given by

and , respectively. Based on this distribution, we generate a

large number of Gamma random processes, each representing
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Fig. 13. Distribution of activity levels of video segments.

Fig. 14. Energy saving ratios of the P-R-D video encoder at different distribu-
tions of scene activity parameters.

the scene activity levels of a simulated video input. For

each simulated video input, we compute the energy saving ratio

using (24) with different values of microprocessor power con-

sumption model parameters . In Fig. 14, we plot the energy

saving ratio at different variance of scene activity levels and dif-

ferent values of . Here, we set the average scene activity level

to be 2. It can be seen that when the variance of scene activity

level is larger, which implies that the input video has a larger

variation in its scene content, the energy saving is more signif-

icant. As we can see from the proof in Appendix A, the energy

saving ratio given by (24), becomes 1 when all scene activity

levels are equal to each other. In this case, their variance is zero.

When their variance becomes larger, (24) moves further aways

from this extreme condition and the energy saving ratio becomes

smaller than 1 (more energy saving). We can also see that when

is larger, which implies that the power consumption of the

microprocessor is more sensitive to its work load or application

complexity, the overall energy saving is more significant.

VII. CONCLUDING REMARKS

In this work, based on P-R-D optimization, we develop

a new approach for energy minimization for delay-tolerant

video communication over portable devices. Theoretically,

we demonstrated that extending the traditional R-D analysis

to P-R-D analysis gives us another dimension of flexibility

in resource allocation and performance optimization. Within

the new P-R-D optimization framework, the bit and energy

resources are tightly coupled, which enables us to trade “bits”

for “joules” (energy) so as to save energy in data compression.

We have analyzed the energy saving performance of P-R-D

optimization. We have also developed an adaptive scheme to es-

timate the P-R-D model parameters and perform online energy

optimization and control for real-time video compression. Our

simulation results show that, for typical videos with nonsta-

tionary scene statistics, using the proposed P-R-D optimization

technology, the video encoding energy can be significantly

reduced, especially for delay-tolerant video communication

applications where the per-bit energy cost of wireless trans-

mission is relatively low. This has a significant impact on

energy-efficient portable video communication system design.

In our future work, we shall study and evaluate resource al-

location and energy minimization for real-time video encoding

and communication on embedded computing platforms with

dynamic voltage control. In this work, we focus on applica-

tion-layer encoder control and optimization. In our next step

of research, we shall also study how the P-R-D analysis could

be used for joint hardware-layer scheduling and application-

layer encoder control to minimize the overall system energy

consumption.

APPENDIX

We prove that the energy saving ratio in (24) is less

than or equal to 1. To this end, we need to use the Holder’s

inequality: Given two -dimensional vectors

and , according to Holder’s inequality, we have

(30)

where and

(31)

The equality holds when

(32)

where is a constant. We let

(33)

(34)

Using the Holder’s inequality, we have

(35)

(36)
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That is

(37)

Therefore

(38)

According to (32), the equality holds when

(39)

which implies that the scene activity level of each video seg-

ment is constant.
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