
SOME CONJECTURES ABOUT INTEGRAL MEANS OF ∂f AND ∂f.

Albert Baernstein II and Stephen J. Montgomery-Smith

1. The problems. In this note we shall discuss some conjectural integral inequalities which are

related to quasiconformal mappings, singular integrals, martingales and the calculus of variations.

For a function f : C→ C, denote the formal complex derivatives by

∂f =
∂f

∂z
=

1
2

(
∂f

∂x
− i∂f

∂y
), ∂f =

∂f

∂z
=

1
2

(
∂f

∂x
+ i

∂f

∂y
).

Define a function L : C× C→ R by

L(z, w) = |z|2 − |w|2, if |z|+ |w| ≤ 1,

= 2|z| − 1, if |z|+ |w| > 1.

Conjecture 1. (V. Šverák) Let f ∈ Ẇ 1,2(C,C). Then

(1.1)
∫
C

L(∂f, ∂f) ≥ 0.

Here we denote by Ẇ 1,2(C,C) denotes the “homogeneous” Sobolev space of complex valued

locally integrable functions in the plane whose distributional first derivatives are in L2 on the plane.

Integrals without specified variables are understood to be with respect to Lebesgue measure.

Since ∂(f) = ∂f, Conjecture 1 is true if and only if (1.1) always holds when L(∂f, ∂f) in the

integral is replaced by L(∂f, ∂f).

The function L, with a plus 1 added to the right hand side, was introduced by Burkholder [Bu4],

[Bu5, p.20]. In his setting, the variables z and w are taken from an arbitrary Hilbert space. It
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appears independently in work of Šverák [Sv1], who considered the question, as yet unresolved, of

whether functions belonging to a certain class which contains a function naturally associated to L

are “quasiconvex”. As will be explained in §5, quasiconvexity of this function implies (1.1).

For p ∈ (1,∞), set

p∗ = max (p, p′), where
1
p

+
1
p′

= 1.

Again following Burkholder [Bu5, p.16], [Bu3, p.77], [Bu4, p.8], define functions Φp : C×C→ R by

Φp(z, w) = αp((p∗ − 1)|z| − |w|) (|z|+ |w|)p−1, αp = p(1− 1
p∗

)p−1.

For 1 < p < 2 and z, w ∈ C one calculates

(1.2a)
∫ ∞

0

tp−1L(
z

t
,
w

t
) dt = βp Φp(z, w), βp = (

1
2
p (2− p)αp)−1.

Set M(z, w) = L(z, w)− (|z|2 − |w|2) = (|w|2 − (|z| − 1)2)1(|z|+|w|>1). Then, for 2 < p <∞,

(1.2b)
∫ ∞

0

tp−1M(
w

t
,
z

t
) dt = γp Φp(z, w), γp = (

1
2
p (p− 1) (p− 2)αp)−1.

For f ∈ Ẇ 1,2(C), one sees by Fourier transforms or otherwise that∫
C

|∂f |2 − |∂f |2 = 0.

If Conjecture 1 is true, the last three identities imply the truth of

Conjecture 2. (R. Bañuelos - G.Wang) For f ∈ Ẇ 1,p(C,C) holds∫
C

Φp(∂f, ∂f) ≥ 0, 1 < p <∞.

Bañuelos and Wang arrived at Conjecture 2 in the course of their work [BW1]. The conjecture is

stated as Question 1’ in [BL, §5], where the reader can find other questions and comments related

to the present paper.

From [Bu3, p.77] follows the inequality

Φp(z, w) ≤ (p∗ − 1)p|z|p − |w|p, z, w ∈ C, 1 < p <∞.

Thus, if Conjecture 2 is true, then so is the following conjecture, which is due to T.Iwaniec [I1,

I3].
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Conjecture 3. (T.Iwaniec) For f ∈ Ẇ 1,p(C,C) holds∫
C

|∂f |p ≤ (p∗ − 1)p
∫
C

|∂f |p, 1 < p <∞.

Like Conjecture 1, each of Conjectures 2 and 3 is true if and only the same inequality always

holds when ∂f and ∂f are interchanged in the corresponding integral.

All three conjectured inequalities are sharp, if they are true. Let f(z) = cz for |z| < 1, f(z) =

c/z for |z| > 1, where c is a nonzero complex constant. Simple calculations show that equality

holds for f in Conjecture 1. Equality holds for f in Conjecture 2 when 1 < p ≤ 2 and for f when

2 ≤ p < ∞. In section 6, we’ll see that equality holds in Conjectures 1 and 2 for a large class of

functions in Ẇ 1,2 and Ẇ 1,p, respectively.

By contrast, it seems plausible that when p 6= 2 equality never holds in Conjecture 3. To construct

sequences which saturate the upper bound in Conjecture 3, take p ∈ (1,∞) and α ∈ (0, 1/p). Define

fα(z) = z|z|−2α, if |z| ≤ 1, fα(z) = 1/z, if |z| ≥ 1. One computes that
∫
C
|∂fα|p/

∫
C
|∂fα|p →

(p − 1)p as α → 1/p. Thus,
∫
C
|∂(fα)|p/

∫
C
|∂ (fα)|p → (p − 1)−p as α → 1/p. From these two

relations, and the interchangeability of ∂f , ∂f in the conjectures, it follows that the constant on the

right hand side of Conjecture 3 must be at least maxp(p− 1, 1
p−1 ) = (p∗ − 1)p.

Here are three reasons we find these conjectures of interest.

(a) Truth of Conjecture 3 would imply in the limiting case p → ∞ a notable recent theorem of

Astala [As1] about area distortion of quasiconformal mappings in the plane.

(b) Let S be the singular integral operator in the plane defined by

(1.3) Sf(z) = − 1
π

∫
C

f(ζ)
(z − ζ)2

|dζ|2.

Truth of Conjecture 3 would show that the norm of S on Lp(C,C) is precisely p∗ − 1.

(c) Falsity of Conjecture 1 would prove, for 2× 2 matrix valued functions, a conjecture of Morrey

in the calculus of variations which asserts that rank one functions are not necessarily quasiconvex.

In Sections 2-5 we’ll elaborate on statements (a), (b), and (c). In Sections 6-8 we’ll present some

evidence in favor of the conjectures.

We are grateful to Professors Astala, Bañuelos, and Iwaniec for helpful communications, especially

to Professor Iwaniec for sharing some of his unpublished notes with us. Thanks go also to N. Arcozzi,
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D.Burkholder, R. Laugesen and the referee for corrections and comments on the first version of the

manuscript. The first author thanks the organizers of the Uppsala conference for their marvelous

hospitality and efficiency. Above all, he thanks Matts and Agneta for many years of inspiration and

friendship.

2. Area distortion by quasiconformal mappings. The integral in (1.3) is a Cauchy principal

value. The operator S is sometimes called the Beurling-Ahlfors transform. The general theory of

such operators, as developed by Calderón, Zygmund, and others, is presented, for example, in [S].

Among its consequences are the facts that S is bounded on Lp for 1 < p < ∞, and that S may be

defined via Fourier multipliers by

(2.1) (Sf) (̂ξ) = (ξ/ξ)f̂(ξ), ξ ∈ C.

Thus, S acts isometrically on L2(C,C). It follows also from (2.1) that for appropriate functions

f we have

(2.2) S(∂f) = ∂f.

Because of (2.2), the Ahlfors-Beurling operator plays an important role in the theory of quasi-

conformal mapping in the plane. See, for example, [LV]. A homeomorphism F : C → C is said to

be K quasiconformal, K ≥ 1, if F ∈ W 1,2
loc (C,C), and if |∂F (z)| ≤ k|∂F (z)| for a.e z ∈ C, where

k = (K − 1)/(K + 1). In the 1950’s, Bojarski [Bo 1,2] applied the recently proved Lp-boundedness

of S to prove that partial derivatives of K− qc maps, which a priori belong to L2
loc, belong in fact to

Lploc for some p > 2 which depends only on K. Via Hölder’s inequality, this enhanced integrability

leads to an inequality for the distortion of area by qc maps. One way to state the area distortion

property is as follows: If F (0) = 0 and F (1) = 1, then for all measurable sets E ⊂ (|z| < 1),

(2.3) |F (E)| ≤ C|E|κ,

where | · | denotes Lebesgue measure, and C and κ depend only on K.

Gehring and Reich [GR] conjectured in 1966 that the best possible, i.e. smallest, κ for which

(2.3) is valid should be κ = 1/K. Prototypical conjectured extremals were the radial stretch maps

FK(z) = z|z| 1
K−1.



SOME CONJECTURES ABOUT INTEGRAL MEANS OF ∂f AND ∂f. 5

FK is K−qc for each K ≥ 1, and satisfies |FK(B)| = π1− 1
K |B|1/K for balls B centered at the origin.

The Gehring-Reich conjecture withstood many assaults before it was finally proved in the 1990’s

by Astala [As1], by means of very innovative considerations involving holomorphic dynamics and

thermodynamical formalism. Eremenko and Hamilton [EH] gave a shorter proof of the conjecture

using a distillation of Astala’s ideas. More background and related results can be found in the survey

[As2]. In [N] and [AsM], the distortion results are applied to problems about “homogenization” of

composite materials.

To continue our story requires a backup. The weak 1-1 and L2 boundedness of S imply existence

of absolute constants c and α such that for all E ⊂ (|z| < 1),∫
|z|<1

|S(1E)| ≤ c|E| log(
α

|E|
).

Gehring and Reich showed that their area distortion conjecture is more or less equivalent to

proving that the smallest c for which some α exists is c = 1. Let ||S||p denote the norm of S acting

as an operator from Lp(C,C) into itself. Iwaniec [I1] found that “c=1” is implied by

lim inf
p→∞

1
p
||S||p = 1.

This implication, together with the examples fα in Section 1, led Iwaniec to Conjecture 3, which,

as noted in (b) at the end of section 1, can be restated as

(2.4) ||S||p = (p∗ − 1), 1 < p <∞.

Thus, if Conjecture 3 is true, it could be regarded as a significantly stronger form of Astala’s area

distortion theorem.

3. Norms of singular integral operators and martingale transforms. The prototypical

singular integral operator is the Hilbert transform H, defined for functions on R by

Hf(x) =
1
π

∫
R

f(y)
x− y

dy.

When the Fourier transform f̂ is defined as in [S], we have the multiplier equation (Hf) (̂ξ) =

i ξ|ξ| f̂(x). Thus H is an isometry on L2(R). M.Riesz, in 1927, proved that H is in fact bounded on

Lp(R), for 1 < p <∞. The sharp Lp bounds for real valued functions were found by Pichorides [Pi]

in 1972. Let ||H||p denote the norm of H acting on Lp(R,R). Recall that p∗ = max(p, p′).
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Pichorides’s Theorem. ||H||p = cot π
2p∗ , 1 < p <∞.

Let F be the harmonic extension of f + iHf to the upper half plane. Then F is holomorphic.

If φ is subharmonic on the range of F then φ ◦ F is subharmonic. Pichorides proved his theorem

by making a good choice for φ. According to [G], the best constant for Riesz’s theorem was found

independently by B.Cole, whose work established a generalized version of the theorem in the context

of “Jensen measures” on uniform algebras.

Verbitsky [V], and a little later Essén [E], gave a shorter proof of Pichorides’s theorem by finding

an even better choice for the subharmonic function φ. Grafakos [Gr] found a still shorter proof.

Verbitsky and Essén also proved sharp bounds for the analytic projection operator I + iH, where I

denotes the identity, acting as an operator from Lp(R,R) to Lp(R,C):

(3.1) ||I + iH||p = csc
π

2p∗
.

As explained in [Pe], the norm of H acting on Lp(R,C) is still cot π
2p∗ . But for I + iH acting

on Lp(R,C) the norm is apparently not known. See [Pe], [KV]. The sharp weak 1-1 constant for

H acting on L1(R,R) was found by B.Davis in 1974, but seems to be not known for H acting on

L1(R,C). See [Pe], [Bu4, p.6] for discussion.

The Beurling-Ahlfors operator S furnishes one analogue of the Hilbert transform in dimension

2. But the most basic generalizations to higher dimensions of the Hilbert transform are the Riesz

transforms Rj , j = 1, ..., n. In terms of Fourier multipliers, they are defined by

(Rjf) (̂ξ) = i
ξj
|ξ|
f̂(ξ), ξ ∈ Rn,

and in terms of integrals by convolution with the kernel Cnxj/|x|n+1, where

Cn = Γ(n+1
2 )π−

n+1
2 .

Let ||Rj ||p denote the norm of Rj acting on Lp(Rn,R) or Lp(R,C). T.Iwaniec and G.Martin [IM

3], proved that Rj has the same norm as H.

Iwaniec-Martin Theorem. ||Rj ||p = cot π
2p∗ , 1 < p <∞.

Iwaniec and Martin use the method of rotations to show that ||Rj ||p is bounded above by Pi-

chorides’s constant. The lower estimate for ||Rj ||p is proved by a simple but clever “transference”

argument.
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Bañuelos and Wang [BW1] obtained another proof of ||Rj ||p ≤ cot π
2p∗ as a consequence of a “

cot π
2p∗ theorem” they proved for transformations of certain stochastic integrals. In addition, they

proved that (3.1) holds when H is replaced by one of the Rj . Apparently, the Lp norms of operators

such as I
⊕
R1

⊕
R2 : Lp(Rn,R)→ Lp(Rn,R3) remain unknown when n ≥ 2 and p 6= 2.

Arcozzi [Ar1], see also [Ar2], [ArL], carried the martingale methods over to compact manifolds,

Lie groups, and Gauss space. Among other things, he proves that for suitable definitions of Riesz

transforms R on n-spheres and on certain compact Lie groups again hold ||R||p = cot π
2p∗ and

||I+ iR||p = csc π
2p∗ . For general compact Lie groups, Arcozzi proves that one has the upper bounds

||R||p ≤ cot π
2p∗ and ||I + iR||p ≤ csc π

2p∗ .

Recall that Conjecture 3 can be stated as ||S||p = p∗−1, where S is the Ahlfors-Beurling operator

(1.3). This conjecture differs from the established result ||Rj ||p = cot π
2p∗ in two respects: (i) The

kernel z−2 for S is even, so the method of rotations is not applicable. (ii) The kernel for S is complex-

valued.

At least two sharp inequalities for S, not involving Lp, do exist. See [EH] and [I2]. Additional

evidence for Conjecture 3 is provided in [AIS], where it is shown that the operator I−Sµ is invertible

in Lp for all functions µ ∈ L∞(C,C) with ||µ||L∞ ≤ k if and only if k < 1/p∗.

In [IM 1,2,3], Iwaniec and Martin introduce operators Sn which operate on functions f : Rn → Λ,

where Λ is the usual Grassmann algebra of Rn. The operator S2 can be identified with S. Iwaniec

and Martin conjecture that in all dimensions, one still has ||S||p = p∗− 1. They point out that such

a result would have strong consequences for the regularity theory of quasiregular maps in Rn. For

subsequent work on Sn, see [BL]. The survey [I4] discusses sundry related subjects in n dimensions.

4. Differential subordination. The Bañuelos-Wang work continues a line of sharp constant inves-

tigation initiated by Burkholder in the late 1970’s. The survey [Bu5] contains a good bibliography

for this rich and varied body of work. Here we’ll confine discussion to the parts most pertinent to

Conjectures 1 and 2.

Following [Bu5, p.16], let {fn} and {gn}, n ≥ 0, be Hilbert space valued martingales with respect

to the same filtration on some probability space (Ω,F , P ). Denote the corresponding difference
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sequences by {dn} and {en}, so that

fn =
n∑
k=0

dk, gn =
n∑
k=0

ek.

For p ≥ 1, write ||fn||p for the Lp norm of fn with respect to P. Then ||f ||p ≡ limn→∞ ||fn||p
exists.

Burkholder’s Theorem. Suppose that, for all k ≥ 0 and P − a.e ω ∈ Ω,

(4.1) |ek(ω)| ≤ |dk(ω)|.

Then

(4.2) ||g||p ≤ (p∗ − 1)||f ||p,

and the constant p∗ − 1 is best possible. If 0 < ||f ||p <∞, then equality occurs in (4.2) if and only

if p = 2 and equality holds a.e in (4.1) for all k ≥ 0.

Burkholder’s proof of (4.2) is similar in spirit to the proofs of Pichorides’s theorem: He shows

that, with Φp the function we defined in section 1, the sequence of expectations EΦp(fn, gn) is

nondecreasing for n ≥ 0, with EΦp(f0, g0) ≥ 0. It follows that the analogue of Conjecture 2 holds in

Burkholder’s setting, and hence so does the analogue (4.2) of Conjecture 3.

By 1984, Burkholder [Bu1] had proved that (4.1) implies (4.2) whenever the martingales are real

valued. Among other features of the proof in [Bu1] is a reduction to the case when ek = εkdk,

where the εk are constants, each of which is 1 or −1. Then f and g are somewhat like conjugate

harmonic functions, and the transform f → g can be viewed as an analogue of the Hilbert transform.

Extension of (4.1) =⇒ (4.2) to the Hilbert space valued case followed in 1988.

When martingales f and g as above satisfy (4.1), Burkholder says that g is differentially subordi-

nate to f. He introduced also, in [Bu4], the notion of differentially subordinate harmonic functions.

If u and v are Hilbert space valued harmonic functions on a domain D ⊂ Rn, then v is said to be

differentially subordinate to u if |∇v(x)| ≤ |∇u(x)| at each x ∈ D. For example, when n = 2 each

member of a pair of conjugate harmonic functions is differentially subordinate to the other. It turns

out that Φp(u, v) is subharmonic in D when v is differentially subordinate to u. Let x0 ∈ D, and
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let µ denote the harmonic measure of D at x0. If we assume also that |v(x0)| ≤ |u(x0)|, then the

subharmonicity leads to the inequality

(4.3) ||v||p ≤ (p∗ − 1)||u||p, 1 < p <∞,

where the Lp norm is taken with respect to µ.

It is not known if p∗−1 is best possible in (4.3). Pichorides’s theorem implies that the best constant

cp must satisfy cp ≥ cot π
2p∗ . Related papers about differential subordination include [Bu6], [C1],

and [C2].

The function L apparently first appears in [Bu4]. A related function appears in [Bu2, (8)].

In [Bu4], Burkholder proves integral inequalities analogous to our Conjecture 1 for differentially

subordinate martingales f, g and differentially subordinate harmonic functions u, v with |v(x0)| ≤

|u(x0)|. These inequalities, valid in the Hilbert space valued case, imply, for n ≥ 0, the weak-type

inequalities

(4.4) P (|fn|+ |gn| ≥ 1) ≤ 2||f ||1, µ(|u|+ |v| ≥ 1) ≤ 2||u||1.

The constant 2 in (4.4) is best possible even when |fn|+ |gn| is replaced by |gn| and |u|+ |v| by

|v|. See [Bu4, p.11] and [Bu6, Remark 13.1].

Burkholder proved versions of his discrete parameter martingale results for some continuous pa-

rameter martingales. Bañuelos and Wang [BW1,2] and Wang [W] extended the theory to cover a

wider class of continuous parameter martingales. Theorem 1 of [BW1], about real-valued differ-

entially subordinate martingales, when combined with a probabilistic representation of the Riesz

transforms due to Gundy and Varopoulos [GV], leads to the new proof of the upper bound in the

Iwaniec-Martin theorem and the proof of (3.1) with H replaced by Rj mentioned at the end of

the section 3. Theorem 2 of [BW1] leads to the following Lp estimates for the Beurling- Ahlfors

transform S.

Bañuelos-Wang Theorem.

(4.5) ||S||p ≤ 4(p∗ − 1), 1 < p <∞.

The constant 4 in (4.4) is the smallest known at present which works for all p. Recall that

||S||2 = 1, and that Conjecture 3 may be stated as ||S||p = p∗ − 1.



10 ALBERT BAERNSTEIN II AND STEPHEN J. MONTGOMERY-SMITH

Here are some ideas from the proof of (4.5). Take a rapidly decreasing smooth function f : C→ C.

Extend f to a harmonic function in the half space R3
+, denoted also by f. Then, using Itô’s formula,

f(B0) =
∫ 0

−∞
∇f(Bs) · dBs,

where Bs is the R3
+ - valued Gundy-Varopoulos “background radiation process”, and ∇f ·dBs is the

complex number obtained by splitting ∇f into real and imaginary parts, then taking dot products

in R3. For suitable functions A whose values are complex 3× 3− matrices, define random variables

A ∗ f by

A ∗ f =
∫ 0

−∞
(A(Bs)∇f(Bs)) · dBs.

When the limit 0 in the integrals is replaced by t ∈ (−∞, 0), one obtains complex valued mar-

tingales to which the extended Burkholder theory is applicable. Let ||A|| = sup{|A(z)v| : z ∈

R
3
+, v ∈ C

3, |v| ≤ 1}, where |.| denotes the Euclidean norm in C3. From Theorem 2 of [BW1] follows

(4.6) ||A ∗ f ||p ≤ ||A||(p∗ − 1)||f(B0)||p.

Now S can be expressed in terms of Riesz transforms: S = R2
2 −R1

2 + 2iR1R2. If A is taken to

be the constant matrix

A =

 0 0 0
0 2 2i
0 2i −2

 ,

it turns out that

(4.7) Sf(z) = E(A ∗ f |B0 = z), z ∈ C.

The conditional expectation operator in (4.7) is a contraction on Lp when p ≥ 1, and the distri-

bution of B0 on C is Lebesgue measure. These facts together with (4.6) yield

(4.8) ||Sf ||p ≤ ||A ∗ f ||p ≤ ||A|| (p∗ − 1)||f(B0)||p = (p∗ − 1)||A|| ||f ||p.

Calculation gives ||A|| = 4. So (4.5) follows from (4.8).

How is the pair ∂f, ∂f like a pair of differentially subordinate martingales or harmonic functions?

That, it seems, is what we really need to know to get the full conjectured result ||Sf ||p ≤ (p∗−1)||f ||p
by the route of this section.
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5. Quasiconvex and rank one convex functions. Let Rnm denote the set of all m×n matrices

with real coefficients. A function Ψ : Rnm → R is said to be rank one convex on Rnm if for each

A, B ∈ Rnm with rank B = 1 the function

h(t) ≡ Ψ(A+ tB), t ∈ R,

is convex. Ψ is said to be quasiconvex on Rnm if it is locally integrable and for each A ∈ Rnm, each

bounded domain D ⊂ Rn and each compactly supported Lipschitz function f : D → R
m holds

1
|D|

∫
D

Ψ(A+∇f) ≥ Ψ(A).

If n = 1 or m = 1 then Ψ is quasiconvex or rank one convex if and only if it is convex. If m ≥ 2

and n ≥ 2, then convexity =⇒ quasiconvexity =⇒ rank one convexity. See [D1], where one finds

also a discussion of polyconvexity, a property which lies in between convexity and quasiconvexity.

Additional relevant works include [DDGR], [AD], [D2], [Sv1], [Sv2], and [Sv3].

Morrey [M, p.26] conjectured in 1952 that rank one convexity does not imply quasiconvexity when

m and n are both ≥ 2. Šverák [Sv2], in 1992, proved that Morrey’s conjecture is correct if m ≥ 3

and n ≥ 2. The cases m = 2, n ≥ 2 remain open.

Define α : R2,2 → C
2 by α(

[
a b

c d

]
) = (z1, z2), where

z1 =
1
2

((a+ d) + i(c− b)), z2 =
1
2

((a− d) + i(c+ b)).

For f : C → C, represent ∇f as a real 2× 2 matrix in the usual way: ∇f =
[
ux uy
vx vy

]
, where u and

v are the real and imaginary parts of f. Then α(∇f) = (∂f, ∂f).

Recall that the Burkholder-Šverák function L : C2 → R is defined by

L(z1, z2) = |z1|2 − |z2|2, if |z1|+ |z2| ≤ 1,

= 2|z1| − 1, if |z1|+ |z2| ≥ 1.

Define L1 = L ◦ α. Then, for D ⊂ C,

∫
D

L(∂f, ∂f) =
∫
D

L1(∇f).
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Thus, Conjecture 1 may be restated as: L1 is quasiconvex at 0.

In [Sv1], Šverák introduced a class of functions containing L1 whose members he proved to be

rank one convex, and noted that he was unable to determine if these functions are quasiconvex. We

supply below a simple proof that L1 is rank one convex.

For A,B ∈ R2,2, write α(A) = (z1, z2), α(B) = (w1, w2). If rankB ≤ 1, then |w1| = |w2|. Let

a = |z1|2 − |z2|2, b = 2Re (z1w1 − z2w2), and I = {t ∈ R : |z1 + tw1| + |z2 + tw2| < 1}. Then, for

g(t) = L1(A+ tB), we have, when rankB ≤ 1,

g(t) = a+ bt, t ∈ I,

= 2|z1 + tw1| − 1, t ∈ R \ I.

Now g is continuous, I is either empty or a bounded interval, and t → |z1 + tw1| is convex. It

follows that g is convex on R. Hence, L1 is rank one convex. Thus, if Conjecture 1 is false, then

Morrey’s conjecture for m = n = 2 will be confirmed.

It can also be shown that L1 is not polyconvex. One way to do this is to show that L1 does not

satisfy condition (6) on [D1, p.107] when A = 0.

For A ∈ R2,2, let |A|2 = a2 + b2 + c2 + d2. Let

E = {A ∈ R2,2 : (|A|2 + 2 det A)1/2 + (|A|2 − 2 det A)1/2 ≤ 2}.

Then

L1(A) = det A, A ∈ E,

= (|A|2 + 2 det A)1/2 − 1, A ∈ R2,2 \ E.

Some rank one convex functions which look something like L1 are studied in [DDGR] and [Sv3].

The connection between Morrey’s conjecture and the Beurling-Ahlfors transform is discussed also

in [As2] and [BL].

6. Stretch Functions. There is a large class of functions for which equality holds in Conjectures

1 and 2. Write z = reiθ. Functions f : C→ C of the form

f(z) = g(r)eiθ,
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where g is a nonnegative locally Lipschitz function on (0,∞) with

g(0) ≡ g(0+) = 0, and lim
r→∞

g(r) = 0,

will be called stretch functions. Let S denote the set of all stretch functions. For f ∈ S, we have

(6.1) ∂f =
1
2

(g′ + r−1g), ∂f =
1
2
e2iθ(g′ − r−1g), |∂f |+ |∂f | = max(r−1g, |g′|).

Let S1 denote the subclass of f ∈ S such that, for a.e. r ∈ [0,∞), holds

(6.2) |g′(r)| ≤ r−1g(r).

For example, for each α ∈ (0, 1], β ∈ (0, 1], and positive constant c, the functions

f(z) = crαeiθ, |z| ≤ 1,

= cr−βeiθ, |z| ≥ 1,(6.3)

belong to S1.

Theorem 1. If f ∈ S1 ∩ Ẇ 1,2(C,C), then

(6.4)
∫
C

L(∂f, ∂f) = 0.

If f ∈ S1 ∩ Ẇ 1,p(C,C), then

(6.5)
∫
C

Φp(∂f, ∂f) = 0, 1 < p ≤ 2,
∫
C

Φp(∂f, ∂f) = 0, 2 ≤ p <∞.

Proof. From (1.1a), (1.1b) and an approximation argument, it follows that we need only prove (6.4).

Let h(r) = g(r)/r. Then h is continuous and nonincreasing on (0,∞), with limr→∞ h(r) = 0. From

the last equation in (6.1) follows |∂f(z)|+ |∂f(z)| = h(r).

Let E = {r ∈ (0,∞) : h(r) > 1}. Then

L(∂f(z), ∂f(z)) = r−1g(r) + g′(r)− 1, r ∈ E,

= r−1g(r)g′(r), r /∈ E.(6.6)
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Thus,

rL(∂f(z), ∂f(z)) =
d

dr
(rg − 1

2
r2), r ∈ E,

=
1
2
d

dr
g2, r /∈ E.(6.7)

Now E is either empty, or is a single interval (0, R], with 0 < R < ∞. Moreover, g(0) = 0 and

limr→∞ g(r) = 0. If E is nonempty, then from (6.7) follows

(6.8)
1

2π

∫
C

L(∂f, ∂f) = (Rg(R)− 1
2
R2)− 1

2
g2(R) = −1

2
(g(R)−R)2.

The definition of R implies that g(R) = R. Hence (6.4) is true when E is nonempty. If E is empty,

then it follows again from (6.7) that the integral on the left hand side of (6.8) equals 0. Theorem 1

is proved.

Theorem 2. If f ∈ S ∩ Ẇ 1,2(C,C), then

(6.9)
∫
C

L(∂f, ∂f) ≥ 0.

If f ∈ S ∩ Ẇ 1,p(C,C), 1 < p <∞, then

(6.10)
∫
C

Φp(∂f, ∂f) ≥ 0.

Thus, Conjectures 1 and 2 are true for stretch functions. According to Theorem 1, the equality

sign holds in (6.9) for the stretch functions which also satisfy (6.2). When 1 < p ≤ 2, the equality

sign holds in (6.10) for stretch functions which satisfy (6.2), while for 2 ≤ p <∞ equality holds for

their complex conjugates.

As was pointed out to us by Iwaniec, by no means do all extremals for Conjectures 1 and 2 belong

to S1. For example, start with the unit disk B in the plane. For j = 1, 2, ..., let Bj = {z : |z−aj | < rj}

be disjoint sub-disks of B, and let {fj} be a sequence in S1, with fj(z) = z on |z| = 1. Define

f : C→ C by

f(z) = aj + rjfj(
z − aj
rj

), if z ∈ Bj ,

= z, if z ∈ B \ ∪∞j=1Bj ,

= 1/z, if z ∈ C \B.
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Then, for each choice of {fj}, equality holds for f in Conjecture 1, and for f in Conjecture 2

when 1 < p ≤ 2. Equality holds for f in Conjecture 2 when 2 ≤ p <∞.

Internal evidence, together with Burkholder’s martingale results, suggests that when p 6= 2 there

are no nontrivial functions for which equality is achieved in Conjecture 3.

Proof of Theorem 2. As with Theorem 1, it suffices to prove (6.9). In our proof of (6.9) we shall

assume that g is continuously differentiable on [0,∞). The case when g is locally Lipschitz then

follows by an approximation argument.

Let E = {r ∈ (0,∞) : |∂f(z)|+ |∂f(z)| > 1}. Then, from (6.1),

L(∂f(z), ∂f(z)) = |r−1g(r) + g′(r)| − 1, r ∈ E,

= r−1g(r)g′(r), r /∈ E.(6.11)

For r ∈ [0,∞), define F (r) = r−1g + g′ − 1. If r ∈ E, then

(6.12) F (r) ≤ L(∂f(z), ∂f(z)),

by (6.11). If r /∈ E, then the third equation in (6.1) implies that g(r) ≤ r and |g′(r)| ≤ 1. Hence,

for r /∈ E,

F (r)− L(∂f(z), ∂f(z)) = r−1g + g′ − 1− r−1gg′ = (1− r−1g)(g′ − 1) ≤ 0.

Thus, (6.12) holds for all r ∈ [0,∞).

If the set {r ∈ [0,∞) : g(r) ≥ r}, is nonempty, let R denote its supremum. If the set is empty,

define R = 0. Then 0 ≤ R <∞, since g = o(1) at∞, and g(R) = R. Since (6.12) holds for r ∈ [0,∞),

we have

(6.13)
1

2π

∫
|z|<R

L(∂f, ∂f) ≥
∫ R

0

rF (r) dr = (Rg(R)− 1
2
R2) =

1
2
g2(R).

Let G(r) = L(∂f(z), ∂f(z)). Then rG = gg′ on [0,∞) \ E, by (6.11), and

(6.14)
1

2π

∫
|z|>R

L(∂f, ∂f) =
∫ ∞
R

gg′ dr +
∫
E∩(R,∞)

(rG− gg′) dr.
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From (6.13) and (6.14), it follows that

(6.15)
1

2π

∫
C

L(∂f, ∂f) ≥
∫
E∩(R,∞)

(rG− gg′) dr.

Since g(r) < r for r > R, it follows from (6.1) that E ∩ (R,∞) = {r ∈ (R,∞) : |g′(r)| > 1}. If

E ∩ (R,∞) is empty, then (6.9) follows from (6.15). Assume E ∩ (R,∞) is nonempty. Then it is a

finite or countable union of open intervals (r1, r2) ⊂ (R,∞), on each of which either g′ is everywhere

> 1 or g′ is everywhere < −1. The hypothesis f ∈ Ẇ 1,2 insures that all endpoints r2 are finite. To

prove (6.9), it suffices, in view of (6.15), to prove that, for each such (r1, r2),

(6.16)
∫ r2

r1

(rG− gg′) dr ≥ 0.

Suppose that g′ > 1 on (r1, r2). Then, on (r1, r2),

rG− gg′ = g + rg′ − r − gg′ = −1
2
d

dr
(r − g)2.

Hence,

(6.17)
∫ r2

r1

(rG− gg′) dr =
1
2

[(r1 − g(r1))2 − (r2 − g(r2))2].

But

g′ > 1 =⇒ g(r2)− g(r1) > r2 − r1 =⇒ r1 − g(r1) > r2 − g(r2) > 0.

Thus, the integral in (6.17) is > 0.

Suppose that g′ < −1 on (r1, r2). Then, on (r1, r2),

rG− gg′ = −g − rg′ − r − gg′ = −1
2
d

dr
(r + g)2.

Hence,

(6.18)
∫ r2

r1

(rG− gg′) dr =
1
2

[(r1 + g(r1))2 − (r2 + g(r2))2].

But

g′ < −1 =⇒ g(r2)− g(r1) < −r2 + r1 =⇒ r1 + g(r1) > r2 + g(r2) > 0.

Thus, the integral in (6.18) is > 0. The proof of (6.9) is complete.

7. Some other partial results. There are a few other classes of functions, in addition to the

stretch functions, for which we can confirm Conjectures 1 and or 2.
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Theorem 3. For a, b ∈ C, k = 1, 2, 3, ..., Conjecture 1 is true for

f(z) = azk + bzk, |z| ≤ 1,

= az −k + bz−k, |z| ≥ 1.

Theorem 4. For 1 < p <∞, Conjecture 2 is true for f ∈ Ẇ 1,p(C,C) provided

(7.1) f is harmonic in C ∪ {∞} \ {|z| = 1},

or

(7.2) f = F ◦ f1 or f = F ◦ f1,

where f1 ∈ S and F is holomorphic on f1(C),

Recall that S denotes the class of stretch functions defined in Section 6. The function Φp is

homogeneous but the function L is not; that is the main reason we can verify Conjecture 2 for more

functions than we can for Conjecture 1.

Theorem 3 can be proved by direct computation. The proof of Theorem 4 requires computation

plus the fact that p′th means of subharmonic functions on circles increase as the radius increases.

We’ll confine ourselves to sketching the proof of (7.1) when p > 2.

Suppose that f ∈ Ẇ 1,p(C) is harmonic in |z| < 1 and in 1 < |z| ≤ ∞. Then there exist holomorphic

functions g and h in |z| < 1 such that

f(z) = g(z) + h(z), |z| < 1,

= f(1/z), |z| > 1.

Let p > 2. Then computation gives

1
αp

∫
C

Φp(∂f, ∂f) =
∫
|z|<1

((p− 1)|g′(z)| − |h′(z)|)(|g′(z)|+ |h′(z)|)p−1 dx dy

+
∫
|z|>1

((p− 1)|h′(1/z)| − |g′(1/z)|)(|h′(1/z)|+ |g′(1/z)|)p−1|z|−2p dx dy

= 2π
∫ 1

0

((p− 1)− r2p−4)I1(r) r dr + 2π
∫ 1

0

((p− 1)r2p−4 − 1)I2(r) r dr,
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where I1(r), I2(r) are the respective mean values on the circle |z| = r of the functions |g′|(|g′| +

|h′|)p−1 and |h′|(|g′|+ |h′|)p−1. The logarithms of these functions are subharmonic, hence so are the

functions themselves. Thus, I1 and I2 are nondecreasing functions of r on [0, 1]. From I2 ↗, one

easily shows that the integral containing I2 is nonnegative. The integral containing I1 is clearly

nonnegative, because its integrand is. Hence,
∫
C

Φp(∂f, ∂f) ≥ 0.

8. Numerical Evidence. In this section, we present numerical evidence in favor of Conjecture 1.

Let T be the space [0, 1] with 0 and 1 identified. Then W 1,2(T2,C) will denote the Sobolev space

of complex valued functions f : [0, 1]2 → C such that f(0, y) ≡ f(1, y), f(x, 0) ≡ f(x, 1), and both

f and its distributional derivatives are in L2. We will work with the following conjecture, which is

equivalent to Conjecture 1.

Conjecture 4. Let f ∈W 1,2(T2,C). Then∫
T2
L(∂f, ∂f) ≥ 0.

The approach is to consider piecewise linear functions described as follows. Let N be a natural

number. Let pn be the fractional part of n/N (so that pN+n = pn). Split T2 into triangles ∆+
m,n

with corners (pm, pn), (pm+1, pn), (pm, pn+1), and triangles ∆−m,n with corners (pm, pn), (pm−1, pn),

(pm, pn−1).

We will say that u : T2 → C is an element of PN if u is continuous, and linear on each of the

triangles ∆+
m,n and ∆−m,n. In this way, once one knows that u is an element of PN , then u is totally

determined by its values at (pm, pn)0≤m,n≤N−1. Thus PN is a 2N2 real dimensional space. Let

ι : R2N2 → PN denote an isomorphism. Our goal is to check whether the function FN : R2N2 → R

always takes positive values, where

FN (x) =
∫
T2
L(∂(ιx), ∂(ιx)).

In fact, by an approximation argument, Conjecture 4 is equivalent to showing that FN (x) ≥ 0 for

all x ∈ R2N2
and all N ≥ 1.

We obtained much numerical evidence to support this conjecture. The algorithm was to choose a

vector x ∈ R2N2
at random, then minimize FN , with x as starting point, using the conjugate gradient
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method described in Chapter 10.6 in [PTVF]. This was done for various values of N , ranging from

6 to 100. In every case, it was found, up to machine precision, that FN always takes non-negative

values. The results were verified independently using Maple.

To implement this algorithm, it was necessary to compute the gradient ∇FN . Because of the

special nature of this function, the computations needed to do this were not much more arduous

than the computations required for FN . The formulae required to find ∇FN were determined using

Maple.

Other interesting facts emerged. For a given x ∈ R2N2
, we may consider the function h : R→ R

given by

h(t) = FN (tx).

It was found that this function is always increasing for t ≥ 0, and always decreasing for t ≤ 0.

However, it was also found that the function h is not necessarily convex.

This last fact is interesting, because if in Conjecture 4 the function L were to be replaced by a

convex function, then h would be convex.
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