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ABSTRACT

The Internet has made it possible, in principle, for scientists to quickly find re-

search papers of interest. In practice, the overwhelming volume of publications makes

this a time consuming task. It is, therefore, important to develop efficient ways to identify

related publications. Clustering, a technique used in manyfields, is one way to facilitate

this. Ontologies can also help in addressing the problem of finding related entities, includ-

ing research publications. However, the development of newmethods of clustering has

focused mainly on the algorithm per se, with relatively lessemphasis on feature selection

and similarity measures. The latter can significantly impact the accuracy of clustering,

as well as the runtime of clustering. Also, to fully realize the high resolution searches

that ontologies can make possible, an important first step isto find automatic ways to

cluster related ontologies. The major contribution of thisdissertation is an innovative

semantic framework for document clustering, called Citonomy, a dynamic approach that

(1) exploits citation semantics of scientific documents, (2) deals with evolving datasets
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of documents, and (3) addresses the interplay between algorithms, feature selections, and

similarity measures in an integrated manner. This improvesaccuracy and runtime per-

formance over existing clustering algorithms. As the first step in Citonomy, we propose

a new approach to extract and build a model for citation semantics. Both subjective and

objective evaluations prove the effectiveness of this model in extracting citation seman-

tics. For the clustering stage, the Citonomy framework offers two approaches: (1) CS-VS:

Combining Citation Semantics and VSM (Vector Space Model) Measures and (2) CS2CS:

From Citation Semantics to Cluster Semantics. CS2CS is a document clustering algorithm

with a 3-level feature selection process. It is an improvement over CS-VS in several as-

pects: i) deleting the requirement of a training step, ii) introducing an advanced feature

selection mechanism, and iii) dynamic and adaptive clustering of new datasets. Compared

to traditional document clustering, CS-VS and CS2CS significantly improve the accuracy

of clustering by 5-15% (on average) in terms of the F-Measure. CS2CS is a linear clus-

tering algorithm that is faster than the common document clustering algorithms K-Means

and K-Medoids. In addition, it overcomes a major drawback ofK-Means/Medoids al-

gorithms in that the number of clusters can be dynamically determined by splitting and

merging clusters. Fuzzy clustering with this approach has also been investigated. The

related problem of ontology clustering is also addressed inthis dissertation. Another se-

mantics framework, InterOBO, has been designed for ontology clustering. A prototype to
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demonstrate the potential use of this framework, has been developed. The Open Biomed-

ical Ontologies (OBOs) are used as a case study to illustratethe clustering technique used

to identify common concepts and links. Detailed experimental results on different data

sets are given to show the merits of the proposed clustering algorithms.

This abstract of 452 words is approved as to form and content.
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CHAPTER 1

INTRODUCTION

Recently, researchers in scientific communities have witnessed the tremendous

growth of publications. Even though search engines on the Internet provide the efficient

way for researchers to find publications of interests, the overwhelming amount of infor-

mation still makes it a time-consuming task. Clustering, animportant technique used in

many fields such as knowledge discovery and information retrieval, can help researchers

find related information more quickly and thus, keep them updated with new findings in

their fields.

Clustering is the process of grouping/dividing a set of objects into subsets (called

clusters) so that the objects are similar to one another within the cluster and are dissimi-

lar to objects in other clusters regarding some selected features of these objects. In other

words, an object is closer to at least one object in the same cluster than any objects in other

clusters in terms of the predefined distance or similarity measure. Document/Text cluster-

ing is a specific clustering technique where objects to be clustered are documents/texts.

Considering features used in document/text clustering, the document/text cluster-

ing algorithms can be divided into two classes – those that use vector space and those that

use frequent terms. The vector space clustering creates a vector for each document where

each dimension represents a term in that document; the valueof each dimension or the
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weight of each term is usually calculated with TF-IDF (Term Frequency-Inverse Docu-

ment Frequency). Then the clustering algorithms compute the distances of two vectors

to determine clustering. The frequent terms clustering algorithm first finds frequent term

sets using association rule mining, then uses the mutual overlap of the frequent term sets

with respect to their sets of supporting documents to determine clustering. It is intended

to solve the high dimensionality problem of vector space clustering.

An ontology is an explicit specification of a conceptualization in a particular do-

main. Its importance in knowledge management, knowledge sharing and information re-

trieval has been realized by researchers, especially in biological and biomedical domains,

where new discoveries and knowledge emerge at a fast pace. Many different ontologies

have been developed in recent years. Whereas each ontology is useful for a particular

domain or subdomain, the interoperability between these ontologies has yet to be built

up.

1.1 Problem Definition

First, in both classes of document clustering algorithms mentioned above, all

words or terms in the document are treated equally. In other words, the context or se-

mantics or words are not taken into consideration in clustering, even in the case of sci-

entific documents. By doing this, the significance of some words or terms in a scientific

document, such as references, titles, and keywords, were ignored. That results in a lower

accuracy of clusters. Some surveys on document clustering algorithms have shown that

these algorithms can hardly achieve higher than 73% (on average) regarding the accuracy

2



of resulted clusters.

Secondly, due to the hight dimensionality of the vectors in vector space model

which is used in most document clustering algorithms, the process of clustering is usually

slow. Even though the approach of using frequent terms reduces the dimensionality, the

step of finding frequent terms is computationally costly andhence, the entire process of

this approach is not fast either.

Thirdly, the traditional document clustering algorithms tend to focus on the pro-

cess of clustering, and pay less attention to the feature selection and similarity measure

process. However, both of them can significantly affect the quality and runtime of a clus-

tering algorithm.

To solve these problems, we propose a semantic framework, called Citonomy.

In this framework, we consider the semantic information such as citations, titles, and

keywords, in document clustering. They are like gold buriedin sand. We assume that, if

this hidden gold is explored in designing a document clustering algorithm, it will produce

clusters with higher accuracy. Two approaches of Citonomy are fully discussed in this

dissertation. The first approach, CS-VS, combining citation semantics and vector space

measures, utilizes this information by calculating and combining two similarities between

two documents. In CS-VS, we pay much attention to the issue ofsimilarity measure. We

also use the evolution strategy to train the system. The limitation of CS-VS is that its

runtime complexity is high. The second approach, CS2CS, citation semantics to cluster

semantics, utilizes the semantic information by considering it in constructing document

feature vectors. In CS2CS, we use a 3-level feature selection process with a 2-dimensional
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normalization to extract significant features of documentsand clusters. Not only does

CS2CS solve overcome the runtime problem, but it also produces clusters with higher

quality. In addition, domain knowledge was also utilized inthe process of document

clustering with a domain ontology.

In terms of ontologies, many domain ontologies have been developed in recent

years. To use them effectively, we first need to know the relation or mapping between

them. The current ontology mapping approaches have not covered every aspects of map-

ping. For example, to our knowledge, no one has done clustering over ontologies to

explore their relations. In this dissertation, we propose asemantic framework with a clus-

tering technique to find the relations between ontologies. Also, to keep up with the growth

of a domain knowledge, the ontology of that domain needs to beupdated frequently. In

this dissertation, we demonstrated that ontology and our document clustering algorithms

benefit each other. On one hand, we utilize ontology to improve the document cluster-

ing results. On the other hand, the feature vectors of resulted clusters can help update

ontology.

1.2 Contributions of this Dissertation

The major contributions of this dissertation are as follows:

1. It is the first time that citation semantics is utilized in document clustering.

2. A semantic framework, Citonomy, is proposed. it includesa citation semantics

extraction model and two approaches.
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3. A model, CSE, Citation Semantics Extraction, for reference clustering and label-

ing, together with formulas for similarity measure betweenreference clusters are

proposed.

4. CS-VS, combining citation semantics and vector space similarity measure for doc-

ument clustering is designed. It offers a significant improvement over traditional

document clustering. In CS-VS,

(a) The similarity issue between documents is thoroughly explored.

(b) A system training model utilizing an evolution strategyis designed to find the

optimal similarity weights.

5. CS2CS, citation semantics to cluster semantics, is designed to utilize the citation

semantics by considering them in forming feature vectors. It involves a 3-level

feature selection model with a 2-dimensional normalization process.

(a) CS2CS can do realtime clustering over evolving datasetsof documents.

(b) CS2CS can determine the number of clusters dynamically by cluster splitting

and merging.

(c) CS2CS is not limited to scientific documents. It also outperformed traditional

document clustering algorithms without using the semantics of the documents.

(d) CS2CS based fuzzy clustering algorithm is also proposedand the results are

promising too.

(e) Methods of using ontology in document clustering and updating ontology with

document clustering results are proposed.

6. A semantic framework, InterOBO, is proposed for ontologymapping and clustering
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1.3 Outline of this Dissertation

The rest of this dissertation is organized as follows: Chapter 2 covers the review

over the related literature. Chapter 3 presents Citonomy, which is the overall framework

of utilizing citation semantics in document clustering. Itis followed by discussions on

two approaches of Citonomy – CS-VS and CS2CS that are in Chapter 4 and Chapter

5, respectively. Chapter 6 shows InterOBO that is the framework of knowledge sharing

between ontologies. The detailed experimental results of CS-VS, CS2CS, and InterOBO

are displayed and discussed in Chapter 7. Finally, the summary and discussion on future

work are included in Chapter 8.
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CHAPTER 2

REVIEW OF LITERATURE

In this dissertation, algorithms in document clustering and ontology clustering are

discussed. Before unfolding these discussions, we do a review on clustering, document

clustering, feature selection, and ontologies. Since one of the major contributions of this

dissertation is the use of citation in clustering, we also review the use of citation and

existing research topics on citation.

2.1 Clustering

Clustering is the process of grouping/dividing a set of objects into subsets (called

clusters) so that the objects are similar to one another within the cluster and are dissimilar

to objects in other clusters regarding some selected features of these objects. Clustering

is a method of unsupervised classification. It is a common technique of statistical data

analysis used in many fields and applications such as biology, geology, medicine, market

research, educational research, social network analysis,image segmentation, data mining,

and so on.

The process of clustering typically involves the followingsteps [63]: (1) ob-

ject representation (optionally feature extraction and /or selection), (2) definition of dis-

tance/similarity measure, (3) clustering or grouping, and(4) data abstraction or labeling

(optional).
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Object representation is the step of selecting features to represent objects to be

clustered. Feature selection and/or feature extraction are usually used in this step. Feature

selection is the process of identifying the most effective subset of the original features

to be used in clustering. Feature extraction is the process of using linear or non-linear

transformations on original features to generate projected features to be used in clustering.

Both could reduce the dimensionality of features.

Definition of distance/similarity measure is the step of defining a proper dis-

tance/similarity measure to characterize the conceptual distance/similarity between ob-

jects. Different distance/similarity measures are used indifferent situations. For example,

to cluster points in a two- or three-dimensional space, the Euclidean distance is usually

used, while in document clustering with the vector space model, the cosine coefficient

similarity is commonly adopted.

Clustering or grouping is the step of assigning the objects to different clusters

(or subsets, or groups). It is the major step of the entire clustering process. Different

clustering algorithms usually differ at this step. In termsof the relation of objects and

resulting clusters, clustering algorithms could be categorized as hard (an object belongs

to only one cluster) and fuzzy (an object belongs to multipleclusters each with a de-

gree of membership). In terms of the structure of resulting clusters, clustering algorithms

could be hierarchical or partitional. A hierarchical clustering algorithm produces a nested

series of partitions based on a criterion of merging or splitting clusters with a given dis-

tance/similarity measure. A partitional algorithm partitions the objects into groups at the
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same level with a clustering criterion optimized (usually locally). Other clustering algo-

rithms include Model-based such as SOM (Self-organizing Map, [66]) that is based on an

artificial neural network [60] and graph-based such as [102]and [47].

Data abstraction or labeling is the step to extract brief representations for resulted

clusters. They are compact descriptions or a summary of clusters.

Whereas clustering could be used in many fields, we will focuson its use in docu-

ment management, namely, document/text clustering. The following section is thus dedi-

cated to the review on document/text clustering.

2.2 Document/Text Clustering

Document clustering is the process of grouping a set of documents into clusters

so that the documents within each cluster are similar to eachother, in other words, they

belong to the same topic or subtopic, while documents in different clusters belong to dif-

ferent topics or subtopics. A document clustering algorithm is typically dependent on

the use of a pair-wise distance measure between the individual documents to be clus-

tered. The vector space model (VSM) [90] is commonly used forthe distance measure in

document clustering. Each document is represented by a vector of frequencies of terms

after removing stop words and word stemming (reducing a wordto its canonical form).

In practice, the term frequency is usually the weighted frequency, e.g., TF-IDF (term

frequency-inverse document frequency). That is, in the VSMmodel, the documents in a

collection are converted into vectors in vector space:

D = {d1, d2, ..., dn} → M = {~v1, ~v2, ..., ~vn}. (2.1)
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Wheren the number of documents,~vj, j = 1, ..., n is defined as the following equation:

~vj = (TF − IDF1,j, TF − IDF2,j, ...TF − IDFm,j) (2.2)

Wherem is the number of unique terms in the set of documents to be clustered, and

TF − IDFi,j is calculated through the following three equations:

TF − IDFi,j = tfi,j × idfi (2.3)

tfi,j =
ni,j

∑

k nk,j

(2.4)

idfi = log
|D|

|{d : ti ∈ d}| (2.5)

Whereni,j is the number of occurrences of the considered termti in documentdj , and the

denominator is the sum of the number of occurrences of all terms in documentdj. This

formula is used instead of a simple term count to prevent a bias towards longer documents.

|D| is the total number of documents in the corpus, and|{d : ti ∈ d}| is the number of

documents where the termti appears.

The idea of combining IDF with TF is that if a term is highly frequent across

different documents, then it would have little discriminating power, and vice versa [89].

To compute the similarity between two documents, the corresponding vector rep-

resentations are used with measures like the inner product,dice coefficient, or cosine

coefficient.

All the general purpose clustering algorithms can be applied to document/text

clustering. Some algorithms have been developed solely fordocument/text clustering.

All these algorithms can be classified into partitional, hierarchical, and others such as

probabilistic, graph-based, and frequent term-based.
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Partitional clustering attempts to break the given data setinto k disjoint classes

such that the data objects in a class are nearer to one anotherthan the data objects in other

classes. The most well-known and commonly used partitionalclustering algorithm is

K-Means([59]), as well as its variances Bisecting K-Means ([49]) and K-Medoids ([64]).

Hierarchical clustering proceeds successively by building a tree of clusters. There

are two types of hierarchical clustering methods: agglomerative and divisive. Agglomer-

ative hierarchical clustering is a bottom-up strategy thatstarts by placing each object in its

own cluster and then merges these atomic clusters into larger and larger clusters, until all

of the objects are in a single cluster or until a user-defined criterion is met. Divisive hierar-

chical clustering is a top-down strategy that starts with all objects in one cluster. It divides

the cluster into smaller and smaller pieces, until each object forms a cluster on its own or

until certain termination conditions are satisfied. In terms of the distance/similarity mea-

sure, a hierarchical clustering could use minimum distance(single-link) [95], maximum

distance (complete-link) [65], mean distance, or average distance.

Model-based clustering algorithms try to optimize the fit between the given data

and some mathematical model under the assumption that the data are generated by a

mixture of underlying probability distributions. SOM [66]is one of the most popular

model-based algorithms that uses neural network methods for clustering. It represents

all points in a high-dimensional space by points in a low-dimensional (2-D or 3-D) target

space, such that the distance and proximity relationship are preserved as much as possible.

It assumes that there is some topology or ordering among input objects and that the points

will eventually take on this structure in the target space.
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Graph-based clustering algorithms apply graph theories toclustering. A well-

known graph-based divisive clustering algorithm [102] is based on the construction of

the minimal spanning tree (MST) of the data, and then deleting the MST edges with the

largest lengths to generate clusters. Another popular graph-based clustering algorithm is

MCL (Markov Cluster algorithm [47]). It will be discussed with more details later in this

section.

Whereas there are many document/text clustering algorithms available, we only

have interests in some of them in the context of this dissertation. Some surveys and com-

parison studies such as [96] and [101] over document/text clustering algorithms suggest

that K-Means and Bisecting K-Means algorithms perform better than other clustering al-

gorithms in document/text clustering. Therefore, in this dissertation, we compare the

performance of our algorithms to that of K-Means and Bisect K-Means. In addition, our

CS-VS approach (4) is based on K-Medoids, a variance of K-Means clustering algorithm.

In the following subsections, we are going to review these algorithms and works that are

closely related to our work.

2.2.1 K-Means Clustering Algorithm

The K-Means clustering algorithm partitions a set of objects intok clusters (k is

provided) so that the resulted intra-cluster similarity ishigh but the inter-cluster similarity

is low. It starts by randomly selectingk objects as the initial means. Each of the other

remaining objects is then assigned to one of thesek means of cluster to which it is the

most similar. The means of clusters are updated after all objects are assigned. The process
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iterates until the criterion function converges. Typically, the following criterion is used:

E =

k
∑

i=1

∑

o∈Ci

|o−mi|2 (2.6)

WhereE is the sum of the square error for all objects in the data set,k is the number of

clusters,o is the representation of a given object, andmi is the mean of clusterCi. The

complete algorithm follows:

(1) Choose k objects as initial cluster means (or centers)

(2) Repeat

(3) assign each remaining object to the cluster to which the object is the most

similar based on the mean of the cluster

(4) update the cluster means, i.e., calculate the mean valueof the objects in

each cluster

(5) until there is no change in any cluster

The runtime complexity of this algorithm isO(nkt), wheren is the number of

objects,k is the number of clusters, andt is the number of iterations. Normally,k << n

andt << n. The method often terminates at a local optimum. It is sensitive to noise data

since a small number of such data can substantially influencethe mean value and hence

affect the quality of resulted clusters. The following algorithm, K-Medoids clustering

algorithm, can be used to replace the K-Means to reduce the sensitivity to noise.

2.2.2 K-Medoids Clustering Algorithm

The K-Medoids clustering algorithm is a variance of the K-Means algorithm. In-

stead of finding the mean value of the objects in a cluster as a reference point, it uses an
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actual object as the center (called medoid) of each cluster.The remaining objects are then

assigned to these clusters represented by these medoids based on their similarities with

the medoids. The process terminates as the following criterion converges:

E =
k

∑

i=1

∑

o∈Ci

|o−mi|2 (2.7)

WhereE is the sum of the square error for all objects in the data set,k is the number of

clusters,o is the representation of a given object, andmi is the medoid of clusterCi. The

complete algorithm follows:

(1) Choose k objects as initial cluster medoids (or centers)

(2) Repeat

(3) assign each remaining object to the cluster with the nearest medoid

(4) for each medoid m

(5) for each non-medoid object o

(6) Swap m and o and compute the total cost of the configuration

(7) Select the configuration with the lowest cost

(8) until there is no change in any cluster

The runtime complexity of this algorithm isO(k(n−k)2t), wheren is the number

of objects,k is the number of clusters, andt is the number of iterations. Obviously, it is

not as scalable as the K-Means algorithm. However, the K-Medoids algorithm is desirable

when the mean of a cluster cannot be defined, such as when categorical attributes (or

features) are involved, or the insensitivity to noise is a major concern.
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2.2.3 Bisecting K-Means Clustering Algorithm

The bisecting K-Means is a simple version of K-Means algorithm. It starts with

a single cluster of all the objects and continually splits a (chosen) cluster using K-Means

with k = 2, until the desired number ofk is reached. The complete algorithm follows:

(1) Repeat

(2) Pick a cluster to split

(3) Split the chosen cluster into two using K-Means

(4) until the k clusters are produced

Steinbach et al. in [96] state that there is not a big difference between the possible

methods for selecting a cluster to split and choosing the largest remaining cluster to split.

Step 2 involves using K-Means clustering algorithm which isreviewed in Subsection 2.2.1

. The runtime complexity of this algorithm in terms of the number of objectsn isO(n).

2.2.4 MCL

The MCL (Markov Cluster algorithm [47]) is a graph-based clustering algorithm.

It is based on the graph clustering paradigm that if there arenatural clusters in a graph,

then they have the following property:A random walk in the graph that visits a dense

cluster will likely not leave the cluster until many of its vertices have been visited.The

idea of MCL is to simulate flow within a graph, to promote flow where the current is

strong, and to demote flow where the current is weak. If clusters are present in the graph,

then the current across borders between different clusterswill wither away, thus revealing

the clusters in the graph. The complete MCL algorithm is as follows:
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(1) Given an adjacency matrix M representing a weighted graph along with{ei}∞i=1

and{ri}∞i=1

(2) LetT1 = M ′

(3) Repeat

(4) T2k = (T2k−1)
ei

(5) T2k+1 = γrk(T2k)

(6) k=k+1

(7) until T2k+1 is a (near-)idempotent matrix that contains the clusters

Whereei ∈ N and ei > 1, i = 1, 2, ..., ri ∈ R and ri > 0, i = 1, 2, ...; M ′

is a column-normalized M, that is, the element at thep − th row andq − th column,

M ′
pq =

Mpq∑
i Miq

, γr is called the inflation operator with power coefficientr. It is defined as

(γr(M))pq =
(Mr

pq)∑
i(Miq)r

.

The runtime of MCL isO(n3) wheren is the number of nodes of the graph.

However, the matricesTi are generally very sparse, or at least the vast majority of the

entries are near zero. Pruning in MCL involves setting near-zero matrix entries to zero,

and can allow sparse matrix operations to improve the speed of the algorithm vastly. One

advantage of MCL is that it does not need the user to provide the number of clusters

that fits the situations of the references clustering and ontology clustering that will be

discussed later in this dissertation. And in both situations, the numbers of nodes are

ignorably small, therefore, runtime is not an issue at all.
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2.2.5 Other Related Document Clustering Approaches

In [70], Larsen and Aone described a document clustering algorithm that is similar

to K-Means. However, they did extra work on seed selection (selection of initial means),

center adjustment by adding a damping parameter for the average function in finding

the cluster mean, and cluster refinement by splitting each cluster to two then joining the

closest pairs. But the authors did not compare their resultswith other approaches such as

traditional K-Means. Nevertheless, in this paper, the authors mentioned using part of a

vector in VSM model to represent a document. They used a default length of 25 and did

experiments on other lengths as well, with a conclusion thatthe longer the vectors they

used, the higher the quality of the clustering will be. It is different from the conclusion

in Chapter 5 of this dissertation. We point out that at a certain point, the quality will turn

worse when the vectors get longer.

In [91], Saracoglu et al. presented an algorithm for similardocuments search (or

document retrieval). The steps it used are similar to our CS2CS linear clustering discussed

in Chapter 5. That is, it first does clustering over the existing documents, then finds the

means of each cluster to represent that cluster. When an input document is presented, it

will be compared to the mean of each cluster to find the cluster(s) and hence the “candidate

documents,” the simlarities between the input document andthe “candidate documents”

are then calculated to order the candidates before being returned to the user. However, we

have a more delicate approach in selecting features to represent a cluster, and it is shown

to be better than simply using means of clusters.

In [101], not only did Yoo and Hu do a comprehensive study and concluded that
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K-Means and Bisecting K-Means perform better than other algorithms in document clus-

tering, but they also used MeSH ([18]) in their experiments and found that it does improve

the clustering quality for biomedical documents. However,they used MeSH to find se-

manticly similar terms and replace them by a MeSH descriptorterm. In our approach,

not only do we use MeSH to find similar terms, but we also increase the weights of those

terms which leads to better results.

2.3 Feature Selection

The major problem with VSM [90] is the high dimensionality ofvectors that

makes the algorithms based on VSM computationally expensive. Feature selection can

be used to reduce the dimensionality. Feature selection is aprocess that selects a subset

of original features. Strictly speaking, feature selection is involved in every clustering

algorithm. This is because to cluster a given set of objects,one needs to decide on which

feature(s) of those objects the clustering is going to be conducted. The selected features

are usually a subset of all the features of each object in question.

In the context of document/text clustering, stop words removal is the first step

of feature selection which discards those common words suchas “a” and “the”. Then

IDF ([90]) could remove other common words across the data set if TF-IDF is used.

Furthermore, one can use a subset of a vector in VSM to represent a document. For

example, Larsen and Aone in [70] choose the top terms in a vector based on their weights

computed from TF-IDF. The length of the vectors is set heuristically. This subset could

also be obtained using other models or strategies instead ofVSM. For example, Beil et
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al. in [35] proposed a text clustering method using frequentterms. The problem is the

setting of the threshold of term frequency. If it is too big, many small clusters will be

overlooked, thus resulting in low clustering quality; if itis too small, frequent terms will

lose their meaning.

Some other popular methods used for feature selection in thecontext of docu-

ment/text clustering are document frequency and term strength [100], entropy-based rank-

ing method [44], and term contribution [72]. Document frequency is the number of doc-

uments in which a term occurs in a data set. It could be considered as a simple version of

TF-IDF. The term strength is computed based on the conditional probability that a termt

occurs in documentdj given it occurs in documentdi, that isP (t ∈ dj|t ∈ di), di, dj ∈

D ∩ sim(di, dj) > β, whereβ is the threshold of similarities between documents. To

calculate term strength of each term, one needs to find the similarity of each pair of doc-

uments and hence, the runtime complexity of this process will beO(n2), wheren is the

number of documents to be clustered.

The entropy-based ranking method ranks terms by the entropyreductions when

they are removed. The entropy is defined as follows.

E(t) = −
n

∑

i=1

n
∑

j=1

(Sij × log(Sij) + (1− Sij)× log(1− (Sij))) (2.8)

WhereSij is the similarity between documentsdi and dj, and it is defined asSij =

e−α×distij , wheredistij is the distance between the documentsdi anddj after termt is

removed, andα = − ln(0.5)
|dist|

, where|dist| is the average distance among the documents

after termt is removed. Its runtime complexity is alsoO(n2), wheren is the number of

documents.
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The term contribution methods ranks the terms according to their contributions to

the similarities between documents. It is defined by this equationTC(t) =
∑

i,j∩i 6=j f(t, di)×

f(t, dj), wheref(t, di) is the TF-IDF weight of termt in documentdi. The runtime com-

plexity of this feature selection process is alsoO(n2), wheren is the number of docu-

ments.

2.4 Use of Citation

Citations have been playing an important role in literaturewriting, and more par-

ticularly, in scientific research and publications. As Blaise Cronin [1] put it, “Metaphori-

cally speaking, citations are frozen footprints in the landscape of scholarly achievement;

footprints which bear witness to the passage of ideas.” [41]. Systematic use of citations

can be traced back as early as 1873, when the Frank Shepherd Company [9] began its

legal service by publishing its citators - lists of all the authorities citing a particular case,

statute, or other legal authority. However, in the context of scientific literature, there had

not been formal research on citations until the 1950s.

Starting with Eugene Garfield’s [7] Citation Indexes for Science [51] in 1955,

research on citations began to draw more and more attention and effort from scientific

communities. Two other scientists who have made significantcontributions to this area

are Henk Moed [15] and Blaise Cronin [1]. Whereas Garfield hasdone breakthrough

work on citation index such as the paper mentioned above, journal impact factor [53] and

[52], and funding Institute for Scientific Information (ISI), both Moed and Cronin have

done outstanding research on bibliometric measurement ([74] – [79], [41] – [43]).
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With the foundation on citation research laid by these threegiants, researchers

around the globe have been able to explore other aspects and use of citations, such as using

citations to build citation networks, to do document clustering, as well as more research

on citation indexing, ranking journals or papers using citations. In this section, we present

a comprehensive review on research topics and applicationsfocusing on different aspects

of citation and discussing future possible topics on citations.

2.4.1 Citation indexes/networks

A citation index is an ordered list of cited articles, each with a list of citing articles.

The citing article is identified as a source, and the cited article as a reference ([61]). A

citation index allows users to easily establish which laterdocuments cite which earlier

documents. One can use citation indexes to build a citation network. For example, starting

from the newest citation index, we can build a citation network by tracing back to the

oldest papers along citations. A citation index can be thought of as a two-layer or shallow

citation network, while a citation network can be considered as a multi-layer citation

index.

Inspired by Shepherd’s Citations ([9][31]), Garfield proposed a bibliographic sys-

tem for science literature in [51]. Its intention was to use acitation index to offer “a new

approach to subject control of the literature.” Besides theadvantages of a citation index,

such as evaluating the significance of a particular work, andthe coding of citation en-

tries, preparation/realization of the citation index werealso discussed in this paper. With

this idea, Garfield founded the Institute for Scientific Information in 1960, that maintains

21



citation databases covering thousands of academic journals, including a continuation of

its longtime print-based indexing service the Science Citation Index (SCI), as well as

the Social Sciences Citation Index (SSCI), and the Arts and Humanities Citation Index

(AHCI). ISI was acquired by Thomson Scientific & Healthcare in 1992, and then became

Thomson Scientific ([33]) that now provides the online academic service - Web of Sci-

ence ([34]). According to their website, Web of Science covers over 10,000 of the highest

impact journals worldwide, including Open Access journalsand over 110,000 conference

proceedings in areas of the sciences, social sciences, arts, and humanities, with coverage

available back to 1900.

More citation index systems have been developed and readilyavailable since SCI.

Another popular commercial general-purpose citation index system is Scopus ([30]) that

is published by Elsevier. It is available only online and similarly combines subject search-

ing with citation browsing and tracking in the sciences, social sciences, arts, and human-

ities. According to their website, Scopus indexes 16,500 titles from more than 4,000

international publishers. It has 100% coverage of Medline titles and its coverage is over

99% complete as of 1996 on the issue level. It also indexes abstracts back to 1823.

Besides these two commercial citation index systems, we also want to discuss

some notable free-accessible ones- CiteSeerX [4], PubMed [24], Google Scholar [14],

and RePEc (Research Papers in Economics [28]) .

The CiteSeerX system provides citations and the function tosearch for scientific

literature, primarily in the fields of computer and information science. It is the next gen-

eration of CiteSeer ([3]) with new architecture and data models to better meet the needs
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of the research community. CiteSeer was developed in 1997 atthe NEC Research Insti-

tute, Princeton, New Jersey, by Steve Lawrence, Lee Giles, and Kurt Bollacker. It was the

first digital library and search engine to provide automatedcitation indexing and citation

linking using the autonomous citation indexing method [71]. In the paperCiteSeer: An

Automatic Citation Indexing System[55], Giles et al. claim that CiteSeer autonomously

locates, parses, and indexes articles found on the World Wide Web. It thus has some

significant advantages to traditional commercial citationindexes (TCCIs). First, it can

index articles as soon as they are available on the web (as long as the hosting web servers

allow crawling) so that researchers can keep up to date in their relevant fields. Secondly,

it requires no manual effort during indexing. Thirdly, it can be used to make a more in-

formed estimation of the impact of a given article by making the context of citations easily

and quickly browsable as well as countable. Nevertheless, they also identified a couple

of disadvantages compared to TCCIs. First, it does not coverthe significant journals as

TCCIs do. However, this disadvantage can be gradually overcome as more journals be-

come available online and agreements with publishers to index their journals are reached.

The second disadvantage is that CiteSeer cannot distinguish subfields as accurately as

TCCIs since it retrieves this information automatically instead of manually. This could

be improved by accumulating more articles and updating algorithms. We will have more

detailed information on this in Subsection 2.4.6.

The MEDLINE (Medical Literature Analysis and Retrieval System) database con-

tains more than 18 million records of citations and abstracts created by the U.S. National
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Library of Medicine (NLM) from approximately 5,000 selected publications [17], cover-

ing biomedicine and health from 1950 to the present. A distinctive feature of MEDLINE

is that the records are indexed with NLM’s controlled vocabulary, the Medical Subject

Headings (MeSH [18]) for information retrieval. The 2009 version of MeSH contains

a total of 25,186 subject headings, also known as descriptors. Descriptors are arranged

in both an alphabetic and a hierarchical structure. Most of these are accompanied by a

short description or definition, links to related descriptors, and a list of synonyms or very

similar terms (known as entry terms). Because of these synonym lists, MeSH can also be

viewed as a thesaurus.

PubMed is a free search engine to access the MEDLINE database. In addition,

PubMed also contains ([19])

1. In-process citations that provide a record for an articlebefore it is indexed with

MeSH and added to MEDLINE or converted to an out-of-scope status

2. Citations that precede the date that a journal was selected for MEDLINE indexing

(when supplied electronically by the publisher)

3. Some OLDMEDLINE citations that have not yet been updated with current vocab-

ulary and converted to MEDLINE status

4. Citations to articles that are out-of-scope (e.g., covering plate tectonics or astro-

physics) from certain MEDLINE journals, primarily generalscience and general

chemistry journals, for which the life sciences articles are indexed with MeSH for

MEDLINE

5. Some life science journals that submit full text to PubMedCentral and may not yet
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have been recommended for inclusion in MEDLINE although they have undergone

a review by NLM, and some physics journals that were part of a prototype PubMed

in the early to mid-1990’s

6. Citations to author manuscripts of articles published byNIH-funded researchers

Google Scholar is a free web search engine that indexes the full text of schol-

arly literature across an array of publishing formats and disciplines. Released in beta

in November 2004, the Google Scholar index includes most peer-reviewed online jour-

nals of the world’s largest scholarly publishers. According to [82], it has the following

advantages:

1. It provides international coverage of journals and scholarly resources.

2. There is no bias due to subjective selection of journals.

3. Besides journal papers, it also indexes preprints, technical reports, theses, disserta-

tions, and conference proceedings. It contains links to thefull text in approximately

half of the results.

Disadvantages include

1. Language bias - it does not index complex script languagessuch as Japanese and

Chinese.

2. Some results are not scholarly material such as library tours and student handbooks.

3. It does not offer a publisher list, a journal list, or any clues about the time-span or

the disciplinary distribution of records [62].

RePEc - Research Papers in Economics, started in 1997, is a collaborative effort
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of hundreds of volunteers in 57 countries to enhance the dissemination of research in eco-

nomics. RePEc is an online open library [68] that is open for contribution (third parties

can add to it), and for implementation (many user services may be created). Conven-

tional libraries (including most digital libraries) are closed in both directions. Using its

IDEAS database, RePEc provides links to 752,000 full text articles for 2009. Among

them, 638,000 are freely downloadable. It uses CiteSeer algorithms in the process of

identification and parsing of references.

A couple of significant differences among these four citation index systems are 1)

MEDLINE is manually indexed, while indexing in the other three is done automatically.

2) CiteSeerX and Google Scholar show the number of citationsof each article in the

search results, along with the link to the list of citing articles. This enables users to

quickly evaluate the popularity of the cited article and trace those citing articles. The

other two do not have this feature.

Almost as early as citation index was proposed, citation network began draw-

ing researchers’ attentions. Actually, in [51] about citation index, Garfield mentioned its

potential use in historical research, and thus implied the building of a citation network.

However, the citation network had not been systematically studied until 1964 when the

bookThe Use of Citation Data in Writing the History of Science[54] was published. In

this book, Garfield et al. discussed their findings in whethercitation data, in particular,

citation network, could help identify key events in the history of science. With the history

of DNA as an example to apply their models on, they concluded that, even though the

citation network cannot replace human memory and evaluation in writing the history of
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science, it can definitely “reveal historical dependencieswhich can be easily overlooked

by the historian” and help to identify “key events, their chronology, their interrelation-

ships, and their relative importance” in writing the history of science.

The citation network can also be used to find other useful characteristics of sci-

entific researches. The concept “research front” was originally introduced in [84] and

refers to the body of articles that scientists actively citein a given field, which Price

believes, distinguishes the scientific literature from nonscientific literature, and thus en-

abling science to accumulate much faster than nonscience. Price also observed an inter-

esting phenomenon-“immediacy factor.” There seems to be a tendency for scientists to

cite the most recently published articles; hence, papers are considered obsolete after a

decade.

Almost all the online citation index systems, such as CiteSeer and Google Scholar,

have a hidden network of their indexed articles that can be traced forward in terms of the

time line of their publication date by following their “Cited by” or “Citation” feature links.

Nevertheless, the citation network building and visualization are still research topics to be

fully explored. CiteSpace [38] is one of the most popular results of such research. CiteS-

pace is a Java application for analyzing and visualizing citation networks. Its primary

goal is to facilitate the detecting and analysis of emergingtrends in a knowledge domain.

It also can be used to identify the nature of a research front by first extracting terms from

titles, abstracts, descriptors, and identifiers of citing articles in a dataset and finding the

sharp growth rate of their frequencies. The intellectual base, defined as cited articles [83],

can also be determined along with the research front. CiteSpace could potentially be used
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by a wide range of users to explore the dynamics of a specialtyin terms of a time-variant

mapping from a research front to its intellectual base, as well as help find other interest-

ing aspects of a research community. [40] and [39] present two applications of detailed

citation analysis by the aid of CiteSpace.

2.4.2 Bibliometric Measurement

Intuitively, the number of citations is a good measure for ranking papers. The

more a paper has been cited, the better it is, or at least we cansay the more popular it is.

The same argument can be used for a journal or a conference, aswell as the performance

of a research group or institute. So, not surprisingly, thisresearch topic on citations

came up almost as early as the citation index did. InNew Factors in the Evaluation of

Scientific Literature through Citation Indexing[53], Garfield pointed out that using an

absolute number of citations to a journal to determine its importance is not much more

sophisticated than using the quantity of articles it published. Rather, using the ratio of

number of citations to the number of articles it has published could get a more meaningful

measure of the importance of a journal. In revisiting this topic in [52], he ranked 100

journals with the highest impact using this measure over two-year, seven-year, and 15-

year periods. As expected, top journals retain their prominent rankings over these three

different periods. However, significant changes did happento some journals. Journals

in slow-moving fields moved up when measured in the long-termand all letters journals

moved downward in the long term. Also, a few highly cited “Citation Classics” made

some journals improve in the long term ranking.
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The Journal Citation Reports [16], a by-product of the Science Citation Index

(now a division of Thomson Scientific), annually publishes statistical information on the

citation data of journals indexed. It shows the relationship between citing and cited jour-

nals, and helps in measuring journals’ influence. However, as Cameron in [37] studied,

there are serious methodological issues in the applicationof citation analysis to scholarly

evaluations. To such a problem, a universal citation database might be a solution. A uni-

versal citation database would value all forms of publications equally and thus, allowing

the impact of works to be judged without measurement bias.

Compared to journal ranking, ranking papers in a given field by citations count

seems much more reasonable. It could be the most important reason why the “cited by”

or “citation” feature provided by Google Scholar or CiteSeerX are so welcomed by the

scientific communities. However, as Redner in [87] pointed out, the citation distribution

provides a much more complete measure of popularity than thetotal number of citations.

Redner also observed that the number of papers with x citations, N(x), has a large-x

power law decayN(x) ∼ x−α, with α ≈ 3.

Moed and Cronin both did research on measuring academic performance of in-

dividuals or groups [42][43][74][75][76][77][78][79]. Realizing citation analysis plays

an important role in such bibliometric measurement, both also acknowledged its limita-

tion, therefore suggesting it should be used with other information such as “qualitative

knowledge about the scholars” and their “subdisciplines” [78], or “to complement other

information, both quantitative and qualitative” [42].

29



2.4.3 Citation Function Analysis

In [80] on the in-depth study of the quality of citations, Moravcsik and Muruge-

san examined each reference made by a paper from the following aspects: a) conceptual

or operational (the reference is a concept or theory, or is a tool or physical technique

used in the referring paper), b) organic or perfunctory (thereference is truly needed in

understanding the referring paper or is it mainly an acknowledgement), c) evolutionary

or juxtapositional (the referring paper is built on the foundations provided by the refer-

ence or an alternative to it), and d) confirmative or negational (the reference is correct

or not claimed by the referencing paper). In their study, they found that one-third of the

references are redundant. There are slightly more conceptual references than operational

ones, 60% of the references are evolutionary, 40% juxtapositional, two-fifths of them are

perfunctory, and one-seventh of them are negational.

In [67], Kostoff categorized references into the followingsubjective functions. a)

Bookmark - for the efficiency of presentation, awareness of related work; b) Intellectual

heritage linkage - a link to intellectual heritage foundation showing historical context of

unique contribution; c) Tracking research impacts - to convince research sponsors; d)

Self-serving purpose. Kostoff introduced two concepts in explaining self-serving purpose

- the “Citation club,” where each member cites the other members regularly, and the

“Pied piper effect,” where citation clubs could exclude competitive concepts that threaten

existing mainline infrastructures.

Interestingly, both papers were motivated by investigating the validity of the ci-

tation counting as a measurement of scholarly work. Both papers concluded that there
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are limitations of such a measurement due to different functions of the references served

in the referring papers and authors’ biases. The MacRobertsin [73] concluded likewise.

In addition, they also discussed two different philosophies regarding scientific papers -

the traditional scientific view that is behind citation counting. This view affirms that the

scientific paper is value free and that nature writes papers,not human beings. Hence, sci-

entific papers are objective and rational. Another view is social constructivism. This view

maintains that science was found to be “subjective, contingent, social, and historical”.

While a scientific paper presents a story, “the citations present an array, but not the only

array possible.”

2.4.4 Analysis of Relations Between Papers

Using a citation index, one can build citation networks (or literature networks).

A citation network, in turn, can help historical research ofscience, or other research in a

given scientific field. However, it would be more useful if we can obtain more information

between a citing paper and cited papers. For example, if we can find the relations between

a citing paper and cited papers, or the function of a cited paper as discussed in Subsection

2.4.3, we can label the citation network and hence, researchers would be able to get richer

information from such a citation network.

Teufel et al. in [98] redefined the citation functions into four top level classes with

a total of twelve different categories. Then with a supervised machine learning frame-

work, they automatically classified a citation into one of these twelve categories using

both shallow and linguistically-inspired features. Theirexperimental results reached 57%
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on average in F-Measure.

In [81], a neologism (citances) was first introduced to mean the sentence(s) sur-

rounding the citation within a document. Nakov et al. proposed the use of citances as

a tool for semantic interpretation of a bioscience text. They believe that citances in bio-

science text usually state known biological facts discovered in the cited papers. More-

over, the citances describe these facts in a more concise wayin the citing papers than in

the original papers. Thus, the citances could be a potentially valuable resource in mining

bioscience literature. They addressed three issues for processing citances: determining

text span, identifying the different topics, and normalizing or paraphrasing citances.

2.4.5 Scientific Document Clustering

Both [36] and [99] (our previous work) presented the use of citations in scientific

literature clustering. The former used citation graph information to discover a set of

words that are most informative in terms of identifying citation relationships, and then

emphasized those words in a text-based clustering stage to improve the quality of topical

clustering.

However, the later used a different aspect of citations – citation semantics in lit-

erature clustering. A two-level model was introduced. The first level is to cluster and

label references of each scientific paper of a given collection to get citation semantics.

The second level is to combine the vector space similarity measure and the “Citonomy”

similarity measure that includes similarities between titles, keywords, citation semantics,

and co-citation, to do paper level clustering. Promising results reported that at least a 5%
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average improvement was achieved in the F-Measure.

Some other works also considered citations in text classifications. For example,

[103] used co-citation information together with abstract, title, or abstract plus title to do

text classification. CiteSeerX also utilized co-citation information in their citation index

system. However, none of them considered citation graphs, or citation semantics – labeled

clusters of references. Tong et al. in [99] argued that papers in the same field most likely

would cite the same kinds of previous work, but not necessarily the same work. Hence,

considering similarity between citation semantics in scientific paper clustering is better

than simple co-citation counting.

2.4.6 Bibliographic Attribute Extraction

In section 1, we mentioned that some citation index systems such as CiteSeerX

and Google Scholar do indexing automatically. This means they extract citation infor-

mation without human intervention. Because of this, the accuracy of automatic citation

information extraction plays an important role in those citation index systems. In fact, a

tool for extracting citation information is useful in all the other applications on citations.

If a scientific paper is stored in a tagged format, such as XML (eXtensible Markup Lan-

guage), then citation information extraction is just a trivial issue. However, there are still a

lot of scientific papers stored in the plain text format. Someof them are obtained through

the OCR (optical character recognition) process. It needs focused research to come up

with useful tools to extract citation information such as the author’s name, paper title, and

publisher, etc., from those plain text papers.
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Takasu in [97] proposed a rule-based system - an extended Hidden Markov Model

called DVHMM to extract bibliographic attributes from OCR-processed reference strings.

Methods for both reference alignment and reference parsingwere discussed, and this

model can be trained with non-aligned pairs or aligned pairs. Accuracy of extracting

bibliographic attributes using either kind of training data reached more than 80% except

for attributes volume and number.

In [45], Day et al. presented a knowledge-based approach forcitation informa-

tion extraction. They adopted an ontological knowledge representation framework called

INFOMAP to automatically extract the reference metadata. They reported 97.8% overall

average accuracy of citation extraction for six major reference styles. However, the phase

of knowledge representation in INFOMAP is basically a manual process, and the quality

of such a representation directly affects the accuracy of their approach.

Both [57] and [58] focus on name disambiguation, that is, to solve name ambigu-

ities caused by two reasons: an author may have multiple names in different citations and

multiple authors may share the same name. Han et al. in [57] presented two supervised

learning approaches, while Han et al. in [58] discussed an unsupervised approach. All

utilize three types of citation attributes: co-author names, title of the paper, and title of

the journal. One approach in [57] uses the naive Bayes probability model (a generative

model), another uses the Support Vector Machine (SVM – a discriminative model). The

naive Bayes model achieved higher accuracy than the SVMs didwith 73.3% compared to

65.4%. The unsupervised approach displayed in [58] is K-wayspectral clustering. They

used it with a QR decomposition (a decomposition of a matrix into an orthogonal and an
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upper triangular matrix) for cluster assignment. They showed that the spectral methods

outperform K-Means for the data sets they collected. They achieved a 61.5% to 64.7%

average accuracy, and observed that the more features (co-author names, paper, and pub-

lication title words) used in author classification, the better the classification accuracy.

2.5 Ontology and Ontology Clustering

An ontology is an explicit specification of a conceptualization ([56]). In other

words, an ontology is defined as a formal representation of the knowledge by a set of

concepts within a domain and the relationships between those concepts. Ontologies could

be divided into domain ontologies and upper ontologies. A domain ontology, or domain-

specific ontology, models the specific domain. It representsthe particular meanings of

terms as they apply to that domain. Whereas an upper ontology(or foundation ontology),

is a model of the common objects that are generally applicable across a wide range of

domain ontologies.

An ontology usually consists of classes (concepts), properties (attributes), rela-

tions, and instances. Ontologies are commonly encoded in ontology languages such as

RDF (Resource Description Framework [29] ), RDF Scheme [27], OWL (Web Ontology

Language [22] ), and DAML+OIL [5].

Many ontologies have been published through the last decade, notably in biomedi-

cal domains. Here are some of the most popular ontologies (orcollections) – OBOs (Open

Biological and Biomedical Ontologies [21] ), GO, Gene Ontology [13], MeSH (Medical
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Subject Headings [18] ), FMA (Foundational Model of Anatomy) [10], ChEBI (Chem-

ical Entities of Biological Interest [2]), SNOMED CT (Systematized Nomenclature of

Medicine – Clinical Terms [32]), FOAF (Friend of a Friend [11] ), UMLS (Unified Med-

ical Language System [92]), and Dublin Core (an ontology fordocuments and publishing

[6] ).

As the domain knowledge grows dramatically, especially in the biomedical do-

main, ontologies catch more and more attention because of their obvious advantages in

knowledge discovery and management. Nevertheless, they also post a new challenge

for the community - the interoperability between ontologies. This is because ontologies

have been developed for different purposes and covering different aspects (e.g., litera-

ture indexing and retrieval, electronic patient records, and statistical reports on mortality

and billing), and in different subdomains (e.g., diseases,genomes, molecular biology,

micro-organisms, diagnoses, medical devices, procedures, and drugs). Yet, attempts to

represent the whole medical domain are usually limited in scope (GALEN) [86] or lack

a strong organizational structure, as in the Unified MedicalLanguage System (UMLS).

The main cause for these limitations arises from the fact that different research groups

rely on heterogeneous research data sources. There have been some previous efforts on

how biological resources such as Gene Ontology and GenBank [12] can be mapped to

the medical information. Particularly, knowledge mappingin biological and medical on-

tologies is essential for the future integration of diversebiomedical domains, e.g., public

health and genomic research. There is an urgent need for a mechanism to build inter-

operability between ontologies that are semantically related, but have been developed by
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different groups and for different purposes.

In order to identify meaningful relationships among related subdomains (e.g.,

identification of genes responsible for a disease, development of drugs for their treat-

ment or prediction of a pathogen’s susceptibility to a drug), it is essential to know what

ontology sources exist and what information they contain. Furthermore, we need to com-

prehensively analyze relationships between these ontologies (differences and similarities

between species, how mutations affect functioning of different components in different

organisms [69]), including the extent of overlapping information within them. Identi-

fying related information among heterogeneous ontology sources and classifying them

according to their relevance is an important challenge.

Existing methods for integration of ontologies use structural and semantic meth-

ods; however, there is still room for improvement. Most ontologies are organized around

a concept hierarchy as the backbone with additional rules, axioms, or other constraints.

Linking multiple ontologies is a difficult task because it requires a comprehensive un-

derstanding of domains to be linked. These differences occur because different ontology

designers may bring different world views to the task, conceptualizing the world at dif-

ferent levels of granularity and abstraction. Such differences are well known semantic

problems. When integrating two ontologies, the existence of synonyms and homonyms

causes problems in integration. Synonyms across ontologies that are lexically unrelated

may be missed, and lexical matches that are merely homonyms may be erroneously des-

ignated as being related. From an application perspective,identifying related ontologies

and linking or clustering them together is very important. To our knowledge, no one has
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applied the clustering technique in analyzing the relations among ontologies. Thus, it is

of interest to analyze how related ontologies overlap, and how to cluster them into an

ontology network, which will be discussed in Chapter 6.

Increasingly, we are also seeing the emergence of distributed scientific process-

ing. The Semantic Web provides an important platform for this activity of biomedical

information exchange to take place. Nevertheless, there are significant difficulties to be

resolved before seamless interoperability and interchange can occur. Existing semantic

approaches for linking are promising; however, they are computationally expensive and

impractical for large scale ontologies. Several existing solutions for integrating and in-

teroperating ontologies (using reasoners like FaCT [8] andRacer [26] ) rely mainly on

complex and complicated processes such as reasoning and logic-based approaches. In ad-

dition, having strong semantic modeling expertise across multiple sub-domains is a real

challenge. Thus, there is a need for pragmatic alternativesto characterize the relationship

between multiple biomedical ontologies.
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CHAPTER 3

OVERALL FRAMEWORK – CITONOMY

The Citonomy framework is a semantic framework that utilizes the semantic infor-

mation presented in documents to do document clustering. Incontrast to traditional doc-

ument clustering algorithms with the VSM model where all terms were treated equally,

it takes into account the semantic contexts of terms in document clustering and hence,

improves the accuracy of clustering. The definition of Citonomy follows.

Definition 3.0.1. CitonomyCitonomy is the framework of document clustering consid-

ering the semantics of documents. Given a set of documents, we first map the doc-

ument spaceD to the semantics matrix spaceSM : D = {d1, d2, ..., dn} → SM =

{(~v1, sm1), (~v2, sm2), ..., ( ~vn, smn)}, where~vi, i = 1, ..., n, is a vector in the vector space

model, smi = (Ti, Ci, Ki), Ti, Ci and Ki are the title, citation semantics, and key-

words of di. We can further mapSM to DV = { ~dv1, ~dv2, ~dvn} and then toCV =

{ ~cv1, ~cv2, ..., ~cvk}, where ~dvi, i = 1, ..., n and ~cvj, j = 1, ..., k, are the document and

cluster feature vectors, respectively. We do clustering onthe spaceSM , orDV andCV .

Among the semantic information of each document that includes the title, key-

words, citation semantics (reference clusters and their labels), and co-citation informa-

tion, the citation semantics is the most important part. Itsdefinition is given as follows:

Definition 3.0.2. Citation SemanticsThe citation semantics of a scientific documentdj

is defined as two matrixesMin andMout. Min is the matrix of terms found in titles
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and surrounding sentences of documents citingdj with each row for one citing document.

Mout is the matrix of terms found in the titles of documents cited by dj and the surrounding

sentences where they are cited, with each row storing sortedterms as the label of each

cluster of references.

However, to useMin, one has to search thoroughly in a reliable citation index

system to get all information of documents citingdj. Also, as observed in [87], about

47% papers are never cited. Especially, the chance of being cited for new papers (say,

published within six months) is almost zero. Based on these factors, it is reasonable

and pragmatic to excludeMin from citation semantics when doing document clustering.

Thus, in this dissertation, we only considerMout as the citation semantics of a scientific

document.

Figure 1: Citonomy – the Overall Framework
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There are three major phrases in Citonomy framework. They are shown in Fig-

ure 1. Phrase 1 is the SM processing, which deals the issue of extracting the semantics

of documents. Phrase 2 is the DM processing, which deals issues of document repre-

sentations and document clustering. Phrase 3 is the CM processing, which deals cluster

management. The issues evolved in Citonomy framework will be further explained in the

following sections.

3.1 Preprocessing

This is the first step for most document/text clustering algorithms. It usually in-

volves stop words removal and stemming. Stop words are wordslike “the” and “a” that

do not contribute to and even are noise to document/clustering. Stemming is the process

of reducing words to their stem, base, or root form. The stem does not need to be identical

to the morphological root of the word; it is usually sufficient that related words map to the

same stem, even if this stem is not in itself a valid root. In other words, we consider the

different forms of a word as the same in document clustering.For example, “depending”

and “depends” both would be considered and hence, be stemmedinto “depend”, which is

reasonable. We use the Porter Stemming algorithm [88] to do word stemming.

3.2 Citation Semantics Extraction

This is the major issue involved in Phrase 1 of Citonomy. We extract citation

semantics using reference clustering and labeling. Given apair of paper titles, it is rea-

sonable to conclude that they are semantically related if they have matching lexical tokens
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or phrases. We refer to these as intrinsic matches based on explicit lexical evidence. When

these paper titles are found in the context of the list of references of a journal paper, ad-

ditional semantic evidence can be used to infer relatednessbetween them. We refer to

this as extrinsic or implicit evidence. These are generallyrelated to the specific context

of each citation within the body of the manuscript. The contexts of a pair of citations

can be used to derive a metric of the distance between them. Inturn, the references can

be clustered together to sub-classify the list of references in a scientific document. Once

semantic relatedness is established, each semantic group of citations can be labeled by

finding lexical similarities either between them or similarity of contextual information.

To cluster the references, we first generated similarities between every two ref-

erences cited by a paper, defined by formula 3.1. Second, we used the Markov Chain

algorithm (MCL) [47] to do reference clustering based on these similarities. Third, we

labeled these citation clusters. The detail of each sub-step follows.

S(r1, r2) = S(t1, t2) + S(s1, s2) + B(r1, r2) (3.1)

As shown in equation 3.1, the similarityS(r1, r2) between two references are defined by

the similarities between their titlesS(t1, t2) (defined by equation 3.2) and surrounding

sentencesS(s1, s2) (defined by equation 3.2), as well as the citation locality (or bracket)

informationB(r1, r2). The surrounding sentence of a reference is the sentence in the

document body where the reference is cited.B(r1, r2) is the bracket or citation locality

information of two references. For example, if we see “[13, 21]” in a paper, then ref-

erences 13 and 21 have been explicitly considered to be the same kind of papers by the

author. So when we perform clustering of references, it is important to consider this fact.
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But they do not necessarily belong to the same cluster in the final clustering results. That

is because we cannot fully trust the locality information. First, authors may make mis-

takes by putting in wrong numbers. Second, the authors’ views about some references

may be wrong. So we consider all the following three types of evidence when measur-

ing the similarity of every pair of references: titles, surrounding sentences, and locality

information. Titles and surrounding sentences are both considered sentences but will be

compared separately, that means we will compare title to title and surrounding sentences

to surrounding sentences. It makes sense to preserve individual semantics since the ref-

erence title is given by the author of the cited paper while the surrounding sentences are

written by the author citing that reference. The similarityof two sentences st1 and st2 is

computed as follows.

S(st1, st2) =
Count(st1 ∩ st2)

Count(st1 ∪ st2)
(3.2)

In other words, the similarity between two sentences equalsthe number of com-

mon terms of these two sentences divided by the total number of unique terms in the

sentences. BothS(t1, t2) andS(s1, s2) in equation 3.1 use equation 3.2 to compute. The

value range ofS(st1, st2) will be between 0 and 1, inclusively. AndB(r1, r2) in equation

3.1 will be either 0 or 1. Therefore, the value of the similarity between two references

will be between 0 and 3, inclusively.

Once we finish computing the similarity of every two references of a document,

we input these similarities to MCL. MCL is an unsupervised clustering algorithm for

networks (also known as graphs) based on simulation of (stochastic) flow in graphs. MCL

does not need to know the number of potential clusters. It just fits our situation here since
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we do not know the number of clusters of the references included by each paper. However,

through our experiments, we found out there are about 4 to 5 clusters of references in each

paper on average.

Figure 2: An Example of Reference Clustering and Labeling

We label each cluster by the most frequent terms, namely, we use those terms
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that occur in half or more than half of the members (references) of a given cluster. We

select terms from both the reference title and surrounding sentences. In practice, one

may choose to use single words or phrases as labels. In the experiments, we first used

single words as labels, later we also used multi-word terms as labels for the purpose of

comparison. Since there could potentially be multiple terms that exceed the criterion (half

or more), the user can choose topn terms (such as five or ten terms) as labels. Figure 2

shows an example of citation clustering and semantic annotation. In this example, six

citation clusters are identified and each citation cluster is annotated with up to ten most

frequent terms.

3.3 Document Clustering and Cluster Management with Citation Semantics

Document clustering and Cluster Management are issues dealt in Phrase 2 and

3 of Citonomy. They are the ultimate purpose of this framework. And the quality of

document clustering will be used to evaluate the feasibility and significance of the overall

framework. In other words, the accuracy of the resulted clusters will be the major concern

in evaluating the Citonomy framework. Nevertheless, the runtime or complexity of the

entire process will also be discussed in Chapter 4 and Chapter 5.

We proposed two approaches (CS-VS and CS2CS) to implement document clus-

tering using citation semantics. In the first approach, CS-VS (combining Citation Seman-

tics and Vector Space measures), when calculating similarity of two documents, we use

both the similarity between vectors of two documents and thesimilarity between the ci-

tation semantics of these documents. That is, we calculate these two kinds of similarities
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separately, then combine them together through either harmonic mean or simple addi-

tion. Then we use this measure to do K-Medoids clustering. Note, we also consider the

similarity between titles and take into account the information of co-citation. CS-VS is

discussed in detail in Chapter 4.

In the second approach, CS2CS (Citation Semantics to Cluster Semantics), a 3-

level feature selection is introduced to utilize citation semantics in document clustering.

That is, we form feature vectors for single documents and clusters by selecting features for

reference clusters (level 1), single documents (level 2), and document clusters (level 3).

Then we do document clustering by finding the similarities among these feature vectors.

In both approaches, we need a small amount of documents to be training data

in order to find weights in similarity measure (in CS-VS), andinitial feature vectors (in

CS2CS). A brief comparison between CS-VS and CS2CS is shown in Table 1. The details

of them will be unfolded in the following two chapters.

Table 1: Comparison between Approaches of Citonomy: CS-VS and CS2CS
 CS-VS CS2CS 

Highlight 
Similarity between Citation 

Semantics 
3-Level Feature Selection 

Model of Documents 
VSM + Citation Semantics + Title + 

Keywords + Co-citation 

Feature Vector (formed from VSM + 

Citation Semantics + Title + 

Keywords) 

Similarity measure 
Combined VSM similarity and 

semantics similarity 
Similarity between feature vectors 

Document Clustering 
K-Medoids clustering, static, the 

number of clusters is predefined 

CS2CS linear clustering, dynamic, 

the number of  clusters changes, real 

time clustering 

Use of training set 

Use evolution strategy on training set 

to get weights in combining 

similarities 

Get initial cluster feature vectors 

from training set 

Accuracy compared to traditional K-

Medoids and K-Means clustering 
Improved more than 5% on average Improved more than 10% on average 

Runtime complexity in terms of the 

number of documents n 
O(n

2
) 

O(n) or O(nlogn) with splitting and 

merging 
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CHAPTER 4

CS-VS – COMBINING CITATION SEMANTICS AND VSM MEASURES

In this chapter, we present the first approach of using citation semantics in doc-

ument clustering, that is, CS-VS, combining Citation Semantics and Vector Space sim-

ilarity measure. In this approach, when we calculate the similarity of two documents,

we compute the similarity between their vectors in VSM (Vector Space Model) and the

similarity between their citation semantics separately, then combine these two similarities

to do document clustering. The major issues dealt in this approach are how to compute

the similarity between document semantics and how to combine the semantic similarity

with the vector space similarity to achieve higher quality of document clustering. Figure

3 shows the framework of the CS-VS approach. It is also described as follows.

(1) Do stop words removal and stemming on the entire collection of documents including

training documents.

(2) For each document in this collection, compute the similarities between every two ref-

erences using equations 3.1 and 3.2 in Section 3.2.

(3) Input these similarities obtained from step (2) into MCLto get reference clusters of

each document.

(4) Label each reference clusters by selecting frequent terms from the cluster members.

(5) Use evolution strategy to obtain weights in equation 4.2(or 4.3), and 4.5 (Section 4.2)

from training documents.
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(6) Use these weights to calculate the combined similarities of two documents consider-

ing both VSM and citation semantics.

(7) Use the combined similarities to do document clustering.

 

Document Clustering 
K-Medoids text clustering with 

combined citation semantics and VSM 

similarity measure 

Input: documents with reference 

cluster labels and VSM vectors, 

weights for computing similarities 

Output: document clusters  

 

Evolution Strategy 

Training 
Input: training documents with 

reference cluster labels and VSM 

vectors 

Output: weights for computing 

similarities  

 

Reference Clusters 

Labeling 

 
Input: reference clusters 

Output: ranked terms as labels  

 

 

Reference Clustering 
Similarity Computation 

MCL Clustering 

 

Build VSM Vectors 
Input: documents 

Output: VSM vectors 

 

 

Preprocessing 
Stop Words Removal 

Stemming 

Figure 3: CS-VS – Document Clustering with Combined Citation Semantics and VSM

Measure

Note that in this approach, we also considered the similarities between titles and

keywords of documents as well as the information of co-citation that are reflected in

equation 4.5. Preprocessing is common to all document clustering algorithms and has

been described in Section 3.1 of Chapter 3. Reference clustering and labeling has also

been discussed Chapter 3. All the other parts of CS-VS will bediscussed in detail in

the following sections and they are organized as follows. First we present the definitions
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of key concepts involved in this approach. Then we describe the document clustering

with combined similarity measure that is the foundation of this approach. After that, we

will discuss the evolution strategy used in the training process. Lastly, we do complexity

analysis of CS-VS.

4.1 Key Concepts

The significance of the CS-VS approach is the use of the citation semantic sim-

ilarity. We first give its definition followed by definitions of co-citation and K-Medoids

clustering.

Definition4.1.1. Citation semantic similarityThe Citation semantic similarity is the sim-

ilarity between the citation semantics of two documents. Regarding the CS-VS approach,

it is the similarity between reference clusters of the two documents involved.

The citation semantic similarity is obtained by comparing the labels of reference

clusters and with the consideration of the size of each reference cluster. The details of

computing citation semantic similarities are described inSection 4.2.

Definition 4.1.2. Co-citationThe co-citation of two documents is the reference that is

cited by both documents.

The number of co-citations of two documents is the number of references shared

by them.

Definition4.1.3. semantic similarityThe semantic similarity of two documents is the lin-

ear combination of the citation semantic similarity, similarity between the tiles, similarity

between keywords, and the co-citations of two documents.
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The semantic similarity is computed by equation 4.5 and willbe further explained

in the next section.

Definition4.1.4. K-MedoidsK-Medoids is the process of partitioning objects intok clus-

ters, where actual objects are picked to represent the clusters, each remaining object is

clustered with the representative object (called “medoid”) to which it is the most similar.

The assigning process is iterated to minimize the followingtotal absolute-error.

E =
k

∑

j=1

∑

p∈Cj

|p− oj | (4.1)

Wherek is the number of clusters,p is the point in space representing an object in cluster

Cj, andoj is the medoid of clusterCj .

K-Medoids is a variance of K-Means. More detailed information about both algo-

rithms can be found in Chapter 2. Instead of finding the mean ofall the objects in a cluster

to represent it, in K-Medoid clustering, we use an actual object in the cluster to represent

that cluster. Due to the citation semantic similarity beingused in this CS-VS approach,

we will use K-Medoids as the clustering algorithm for our document level clustering.

4.2 Document Clustering with Combined Similarity Measures

In CS-VS, we will combine the vector space similarity measure and the citation

semantic similarity measure in calculating the similarities between documents. Due to the

special property of citation semantics, there is no suitable way to find the “mean” of the

citation semantics of documents. Therefore, instead of using K-Means, the most popu-

lar clustering algorithm, we use K-Medoids (Definition 4.1.4) to do document clustering.

With K-Medoids clustering, we use a document to represent the medoid (or centroid) of a
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document cluster. And hence, our major issue here is how to calculate the combined sim-

ilarity between every two documents. The remaining part of this section will be dedicated

to the discussion on the similarity measure in the CS-VS approach.

Similarity Measure In CS-VS, we utilize the citation semantics in document

clustering by combining the similaritySsm(d1, d2) between semantics and the similarity

Svs(d1, d2) between vectors in VSM. In the meantime, we also consider thesimilarities

between document titles (if both have titles), keywords (ifany), and the co-citation infor-

mation. So the similarity between two documents could be computed by either using the

harmonic mean ofSsm(d1, d2) andSvs(d1, d2) (4.2) or the simple addition of them (4.3).

Sh(d1, d2) =
2W1Svs(d1, d2)W2Ssm(d1, d2)

W1Svs(d1, d2) +W2Ssm(d1, d2)
(4.2)

Ss(d1, d2) = W1Svs(d1, d2) +W2Ssm(d1, d2) (4.3)

WhereSvs(d1, d2) is the similarity between the corresponding vectors of these two doc-

uments in VSM, andSsm(d1, d2) is the similarity between the semantics of these two

documents including citation semantics, tiles, keywords,and co-citations. They in turn

can be obtained through the following formulas.

Svs(d1, d2) =
~v1 · ~v2

‖ ~v1 ‖‖ ~v2 ‖
(4.4)

Ssm(d1, d2) = W3St(d1, d2) +W4Scise(d1, d2) +W5
2Nco

Nr1 +Nr2
+W6Sk(d1, d2) (4.5)

WhereSt(d1, d2) is the similarity between the titles of these two documents,which can be

computed using equation 3.2,Scise(d1, d2) is the similarity between citation semantics of

these two documents, and it can be obtained through equations 4.6 through 4.11, 2Nco

Nr1+Nr2
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is used to quantify the co-citations between these two documents,Nco is the number of

common references the two documents cite,Nr1 andNr2 are the total number of refer-

ences ofd1 andd2, respectively, and the last partSk(d1, d2) is the similarity between

keywords provided by these two documents, which can also be calculated with equation

3.2.

Scise(d1, d2) =
1

2

M
∑

i=1

SLi(
1

Nc1
+

1

Nc2
) (4.6)

SLi = Max(
2Ncli1

Ntli1
mRi1,

2Ncli2

Ntli2
mRi2, ...,

2NcliN

NtliN

mRiN ) (4.7)

mRij =
Min(Rri, Rrj)

Max(Rri, Rrj)
(4.8)

Rrk =
Ncrk

Nr

(4.9)

M = Min(Nc1, Nc2) (4.10)

N = Max(Nc1, Nc2) (4.11)

WhereNc1 andNc2 are the number of clusters of documentd1 andd2 respectively,Rrk

in equation 4.9 is the ratio of the number of references in cluster k to the number of

total references of a document,Rri andRrj are calculated using this equation,mRij is

the meta ratio ofRri andRrj, which is used to adjust the similarity of two reference

clusters. Its maximum value will be 1. The reason for using the meta ratio instead of

the simple ratio is that the sizes of two similar reference clusters might vary greatly, yet

their relative sizes compared to the total number of references of the documents that they

belong to may not differentiate much.Nclij, j = 1, ..., N is the number of common terms

shared by the labels of clusteri (in documentd1) and clusterj (in documentd2), and
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Ntlij , j = 1, ..., N is the number of total terms in labels of clusteri (in documentd1) and

clusterj (in documentd2).

To calculateScise(d1, d2), we first find the document with fewer number of refer-

ence clusters, say,d1, that is,M = Nc1,N = Nc2, according to equations 4.10 and 4.11.

Then for each reference cluster ind1, we compare its label (which could have multiple

terms) with the label of each cluster in documentd2, to find the most similar cluster. The

maximum similarity is calculated using equation 4.7. If there is only one term allowed

for each label,SLi could only be either 0 or 1. However, we use multiple terms (such as

five or ten terms) to label each cluster that provides richer semantics. After getting the

maximum similarities for all the reference clusters in documentd1, we can compute the

similarity between the citation semantics of documentd1 andd2 using equation 4.6.

Let us use the example as shown in Figure 4 to further explain how to calculate the

semantic similarity. In this example, the total number of references of document d1 is 22,

d2 24. The number of reference clusters of d1 is 4, 3 for d2. Thus, we take each cluster

label in d2 to find the most similar one in d1. For example, the first cluster label (CL21)in

d2 contains “t5”, “t7”, and “t3”. And the cluster contains 10references. The first cluster

label (CL11) in d1 contains “t1”, “t2”, “t3”, and “t8”. So the similaritybetween these two

reference clusters would beS(CL21, CL11) =
2
7

6

22

10

24

≈ 0.187 which is shown in Figure 4.

Similarly, we can calculate the similarities betweenCL21 and the other three clusters of

d1. They are 0.392, 0.181, and 0.0, respectively. In other words,CL21 is most similar to

the second reference cluster of document d1, and the similarity is 0.392. Likewise, we

can find that the second reference cluster of d2 is most similar to the first reference cluster
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of d1 with a similarity 0.515, and the third reference cluster of d2 is the most similar to

the third one of d1 with a similarity 0.227. Therefore the citation semantics between d1

and d2 is1
2
(0.392 + 0.515 + 0.227)(1

3
+ 1

4
) ≈ 0.331.

The similarity between these two titles can be easily figuredout as 0.375. The

similarity considering co-citation is 2
22+24

≈ 0.043. Using equation 4.5, and supposing

W3 = W4 = W5 = 1, andW6 = 0 (no keyword), we get the semantic similarity between

documents d1 and d2 as0.375 + 0.331 + 0.043 = 0.749.

 

Title: t1 t2 t3 t4 t5 

Reference Clusters  Labels 

with number of references: 

t1; t2; t3; t8          6 

t2; t5                      9 

t4; t6; t7                5 

t9; t1; t10              2 

 

Title: t2 t4 t6 t7 t3 t8 

Reference Clusters  Labels 

with number of references: 

t5; t7; t3         10 

t2; t1; t4; t8    6 

t9; t11; t7        8 

 

0.187

0.392

0.181

0.0

0.227

0.515

0.375

0.043

Co-citation=1
Co-citation=1

Document d2Document d1

Figure 4: An Example of the semantic similarity of Two Documents

4.3 Evolutionary Strategy Training

We designed an automatic training model using evolution strategy ([85], [93]) to

obtain the weights of the similarities, namely,W1 andW2 in equations 4.2 and 4.3,W3,

W4, W5, andW6 in equation 4.5. Evolution strategies are used in technicaloptimiza-

tion problems when no analytical objective function is available, and no conventional
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optimization method existed. Thus, users have to rely only on their intuition or a trial-

and-error strategy.

According to [94], evolution strategies can solve a wide range of constrained and

unconstrained non-linear optimization problems and produce better results than many

conventional, highly complex, non-linear optimization techniques. However, the objec-

tive function for which the evolution strategies are applied should support strong causality.

In other words, small changes in the parameters must result in small changes in the func-

tion value. Experiments also suggest that the simplest version of evolution strategies that

uses a single parent-single offspring search works best.

In our training model, we adopt the simple version of evolution strategies. Its pro-

cedure is shown in Figure 5. It is described as follows.

(1) Assign an initial value (1.0 in our experiments) to each of these weights. Set a thresh-

old of the average F-Measure and the maximum number of generations.

(2) Use these weights to do document clustering on the training data and get the average

F-Measure of resulted clusters of all the collections in thetraining data. If it is higher

than or equal to the predefined threshold, stop. Otherwise, go to next step.

(3) Create a new set of values for these weights by adding a random variable a(0,1) of the

standard normal distribution to each weight.

W ′
i = Wi + a(0, 1)

(4) Use these new weights to do document clustering on the training data, get the average

F-Measure of the resulting clusters of all the collections in training data.

(5) Compare the F-measure associated with the offspring parameters (the new weights)
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with those associated with the parent parameters (the old weights). If the F-Measure for

the offspring is higher than that for the parents, replace the parents with the offspring,

remembering the new F-Measure as the highest so far. Otherwise, keep the parents.

(6) Go to step 3, and repeat the process until a satisfactory F-Measure is reached, or a

specified number of generations is finished.

Assign 1 to all weights in set W 
Set the threshold of F-Measure as FT 

Set the maximum number of generations as MG 

Do K-Medoids Clustering on training set 
get average F-Measure F1 

Generation G=1 

F1>=FT? 
or 

G>=MG?

Add a small independent 
random number to each weight 

Do K-Medoids Clustering on training set 
get average F-Measure F2 

G=G+1 

F2>=F1 

F1=F2 

Remember current weights 

Stop 

Yes

No

Yes

No

?

Figure 5: The Evolution Strategy Process in CS-VS

Notes: 1) At step (1), instead of assigning 1.0 to each weight, we can also use a

random number out of a certain range, say 1 to 100. However, because of the property
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of the evolution strategy and based on our observation, thiswould not change the perfor-

mance of this model.

2) At step (3), since a(0,1) is generated by a standard normaldistribution function, the

values added to these weights are independent and thus, mostlikely different, which is

intended by evolution strategies where each parent parameter mutates independently.

3) The user will provide the expected value of the F-Measure and the number of genera-

tions in order to let the training process stop in allowable time.

4) We can use this evolution strategy to obtain these weightsaltogether or separately. First,

we can use these weights to do document clustering by combining the vector space mea-

sure and the semantics measure, the training process will produce the best combination

of these weights. Secondly, we can also get the three weights(W3, W4, andW5)(W6 = 0

since there is no keyword) of semantics measure first by doingdocument clustering using

only this measure. The training process will produce the best combination of these three

weights, and then we can use the training process again to obtain the other two weights

(W1 andW2) with these three fixed. However, using these weights to testdata, our exper-

iments show that those weights obtained altogether producebetter results (as presented in

Chapter 7). This is because the weights obtained together reflect the complete information

(citation semantics and vector space) of these documents better. Table 2 shows a demo of

the changes of weights and the F-Measure in the process of evolution strategy.
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Table 2: Example of the Evolution Strategy with the Threshold of F-Measure = 85%; the

Threshold of Generations = 100.

Generation 
W1:W2 

(W3:W4:W5) 

F-Measure 

(%) 

Best W1:W2 

(W3:W4:W5) 

Best F-

Measure 

(%) 

1 1:1 (1:1:1) 81 1:1 (1:1:1) 81 

2 1.7:2 (1:2.1:0) 80.2 1:1 (1:1:1) 81 

3 2.3:3.5 (1.9:2.3:1.2) 78.7 1:1 (1:1:1) 81 

4 4:2.6 (1.6:3.1:0) 81.3 4:2.6 (1.6:3.1:0) 81.3 

5 5.6:4.9 (0.6:4.2:0) 81.5 5.6:4.9 (0.6:4.2:0) 81.5 

6 5.1:6.3(1.1:3.4:0.8) 80.7 5.6:4.9 (0.6:4.2:0) 81.5 

32 6.9:7.2 (0.5:3.3:0.6) 80.9 7.4:9.1 (0.2:3.7:0.4) 81.7 

33 8:6.1 (0.5:2.6:2.5) 82.1 8:6.1 (0.5:2.6:2.5) 82.1 

70 13.1:1.5 (0.9:7.1:0) 86.6 13.1:1.5 (0.9:7.1:0) 86.6 

 

4.4 Runtime Complexity Analysis

The runtime of this approach consists of four parts: Preprocessing, reference clus-

tering and labeling, training process, and document clustering. Since the preprocessing

(stop words removal and stemming) is common to every document clustering algorithm,

and it is linear regarding the number of documents, we do not include in this analysis.

As for reference clustering and labeling, since each document only goes through

this process once, it is also linear in terms of the number of documents. However, the

runtime is quadratic with respect to the number of references that includes the runtime

of computing the similarity of every pair of references (quadratic), the runtime of MCL

clustering with these similarities (Quadratic), and the runtime of labeling (linear). Since

the runtime of both the training process and document clustering process depends on

the algorithm used for document clustering, we discuss thisalgorithm in detail in the

following paragraphs.

Comparison studies such as [96] have shown that the bisecting and regular K-

Means algorithms perform best in text clustering regardingboth accuracy and runtime.
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However, K-Means requires the calculation of the “mean” of agroup of objects in terms

of the predefined measure. In this approach, since the semantic measure is involved, there

is no ideal way to define the mean of semantics of a group of reference clusters. There-

fore, we use the K-Medoids algorithm, a variance of K-Means,to do document clustering.

Instead of finding the “mean” of a group of objects, K-Medoidsfinds an actual object that

is the centroid of the group regarding the predefined measure. Because it uses the actual

objects, K-Medoids performs better then K-Means on data with outliers - objects with

extremely large values. These objects will distort the distribution of data by affecting the

“mean” greatly in K-Means clustering. The K-Medoids algorithm follows.

(1) Randomly choosek documents in the collectionC as the initial medoids (centroids).

(2) Assign each remaining document to the nearest cluster concerning the similarity be-

tween this document and the medoids. Calculate and record the sum of all the similarities

(SS).

(3) For each medioddm

For each non-medoid documentdnm

Swapdm anddnm, assign other documents to the new medoids and

compute the new total similaritySSnew

if (SSnew > SS)

SS = SSnew;

replacedm with d(nm)

(4) repeat (2) and (3) until no medoid changes

The complexity of this process isO(k(n−k)2t), wherek is the number of clusters,
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n is the number of documents, andt is the number of iterations. Sincek andt are usually

much smaller thann, the complexity of the K-Medoids clustering algorithm is essentially

quadratic. It is the toll of being insensitive to the noise.

In the training process, since the number of iterationsg of evolution strategy could

be explicitly preset, or controlled by setting the threshold of the objective function, in our

case, the F-Measure,g is usually much smaller than the number of documents. So the

runtime of training depends on the algorithm of document clustering. That means, it is

quadratic in terms the number of document in training set.

Considering all the steps together, the complexity of this approach isO(n2), where

n is the number of documents to be clustered.
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CHAPTER 5

CS2CS – FROM CITATION SEMANTICS TO CLUSTER SEMANTICS

In this chapter, we present another approach of Citonomy, CS2CS - Citation Se-

mantics to Cluster Semantics (Definition 5.1.6), to utilizecitation semantics in document

clustering. CS2CS is based on a 3-Level feature selection - the feature selection from

reference clusters (level 1, Definition 5.1.7), the featureselection from single documents

(level 2, Definition 5.1.8), and the feature selection from document clusters (level 3, Def-

inition 5.1.9). Through this 3-level feature selection, weform document feature vectors

(Definition 5.1.4) and cluster feature vectors (Definition 5.1.5). In the previous chapter,

we discussed the approach CS-VS. The experimental tests (presented in Chapter 7) on

CS-VS show that it significantly and consistently improved the quality of document clus-

tering. However, CS-VS does not solve the runtime problem since it uses the K-Medoids

clustering algorithm whose complexity is quadratic in respect to the number of docu-

ments. However, with these feature vectors, CS2CS can do linear document clustering

and hence, it does not have the runtime issue as CS-VS does. Figure 6 shows the frame-

work of CS2CS. Its brief description follows.

(1) Do stop words removal and stemming on the entire collection of documents including

training documents.

(2) For each document in this collection, compute the similarities between every two ref-

erences using equations 3.1 and 3.2.
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(3) Input these similarities obtained from step (2) into MCLto get reference clusters of

each document.

(4) Label each reference clusters by selecting frequent terms from the cluster members.

This is the level 1 feature selection.

(5) Using evolution strategy to obtain weights in equation 4.2(or 4.3), and 4.5 from train-

ing documents.

(6) For each single document in existing clusters, using theweights obtained from step (5)

to form the feature vector of each single document. This is the level 2 feature selection.

(7) For each existing cluster, form the feature vector of thecluster using the feature vec-

tors of all the documents inside that cluster. This is the level 3 feature selection.

(8) Linear Document clustering

(9) Check for Document Clusters Splitting and Merging

(10) For each new document, repeat steps (8) and (9).Note that the first five steps are the

same as those in CS-VS. The other steps are specific to CS2CS. By using feature vectors,

not only can CS2CS cluster documents in linear time, but it also improves the quality of

clusters significantly over traditional document clustering algorithms. Furthermore, with

CS2CS, we can obtain the label (semantics) of each cluster. Lastly, with a little sacrifice

of runtime (fromO(n) to O(nlongn)), CS2CS can dynamically decide the number of

clusters according to the contents of clusters.

The rest of this chapter is organized as follows. We first givethe definitions of the

key concepts related to CS2CS. Then we discuss the details oflevel 2 and level 3 of the

3-level feature selection. ( Level 1 is the same as the labeling of reference clusters that
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Figure 6: CS2CS – Document Clustering with 3-Level Feature Selection

was discussed in Section 3.2 of Chapter 3.) Following that, we present the algorithm of

linear document clustering. Then we discuss the cluster splitting and merging. That is

followed by discussions on selection of lengths of feature vectors, use of ontology, and
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fuzzy clustering. Lastly, we wrap up this chapter with the complexity analysis of CS2CS.

5.1 Key Concepts

CS2CS uses feature vectors to do document clustering. We define two kinds of

feature vectors – Document Feature Vector and Cluster Feature Vector. The following are

the definitions of these feature vectors and cluster semantics.

Definition5.1.1. FeatureIn the context of document clustering, a feature of a document

is a term (or token) that occurs in the document.

A term could consist of multiple words or a single word. Depending on differ-

ent requirements of situations, one can choose to use only single-word terms, or include

multi-word terms. Generally speaking, compared to single-word terms, using multi-word

terms ends up with more accurate results, but takes more runtime. This is because con-

cepts could be multi-word and single-word. Including multi-word terms allows more real

concepts to take part in the process of clustering, and hencemore precise results. On the

other hand, including multi-word terms will increase the lengths (or dimensions) of the

feature vectors (Definition 5.1.2) that leads to a longer runtime.

Definition5.1.2. Feature VectorA feature vector~v is a list of termsΓ together with their

weights.

Definition5.1.3. Length of Feature Vectorthe length (or size) of a feature vector~v is the

size ofΓ that is the set of terms the feature vector has.

Figure 7 shows an example of a feature vector. Its length is 5.

Definition5.1.4. Document Feature VectorThe feature vector~dv of a documentd, called
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 Feature Weight 

Figure 7: An Example of a Feature Vector

the Document Feature Vector, is a list of termsΓ together with their weights, andΓ ⊆ Φ,

whereΦ is the set of terms in documentd.

A document feature vector is a feature vector formed by the terms in a document.

The weight assigned to each term takes into account the locality of that term. Figure 8

shows an example of a document feature vector and its formation. In this example, we

useW1 : W2 : W3 : W4 = 1 : 1 : 1 : 1 as the weights shown in formula 5.1. The average

weight in the vector of VSM is 0.25 in this example. That isWavg = 0.25 in formula 5.1.

Taking Term1 for example, since it occurs once in the title, twice in the reference cluster

labels, and has a weight 0.5 in the vector of VSM, its weight inthe document feature

vector is 1+2+0.5/0.25=5. In the same way, the reader can figure out the other terms’

weights in the document feature vector. Section 5.2 covers the detailed description of the

process of forming document feature vectors.

Definition5.1.5. Cluster Feature VectorThe feature vector~cv of a clusterC, called the

Cluster Feature Vector, is a list of termsΨ together with their weights, andΨ =
⋃m

i=1 Γi,

wherem is the number of documents in clusterC, Γi is the set of terms of the document

feature fector of documentdi .

65



 Title: 

Term1 Term2 Term3 Term4 

Reference Cluster Labels: 

 Cluster 1: Term5 Term6 Term1 Term3 

 Cluster2: Term2 Term7 Term8 Term9 

 Cluster3: Term1 Term4 Term3 Term7 

 Vector in VSM: 

Term1   0.5 

Term2   0.3 

Term3   0.4 

Term4   0.2 

Term5   0.3 

Term6   0.1 

Term7   0.1 

Term8   0.3 

Term9   0.2 

 

 Feature  Weight 

 

 Formula 5.1 

Term1   5 

Term3   4.6 

Term2   3.2 

Term4   2.8 

Term7   2.4 

Term5   2.2 

Term8   2.2 

Term9   1.8 

Term6   1.4 

 

Figure 8: An Example of a Document Feature Vector and Its Formation

A cluster feature vector is formed by the document feature vectors. Figure 9 shows

a demonstrative example of a cluster feature vector and its formation. The terms’ weights

in the cluster feature vector are determined by counting theoccurrences of terms in the

document feature vectors. For example, Term1 occurs in all three document feature vec-

tors, so its weight in the cluster feature vector is 3. Note that this cluster feature vector is

before normalization of its weights. Section 5.3 covers thedetails on the construction of

cluster feature vectors and the process of their normalization.

Definition5.1.6. Cluster SemanticsThe cluster semantics of a clusterC is the ranked list
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Figure 9: An Example of a Cluster Feature Vector and Its Formation

of termsΞ, andΞ ⊆ Ψ, whereΨ is the set of terms of the cluster feature vector of cluster

C.

The cluster semantics is the ranked terms of the cluster feature vector or a subset

of it. Since they are used for visually labeling a cluster, wedo not need to include the

weights of the terms.

Definition 5.1.7. Level 1 Feature SelectionIt is the process of selecting termsΓr from

each reference clusterCr to be the label of each cluster, andΓr ⊆ Φr, whereΦr is the set

of terms covered byCr.

Definition5.1.8. Level 2 Feature SelectionIt is the process of selecting termsΓ from a
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documentd to form the feature vector ofd, andΓ ⊆ Φ, whereΦ is all the terms ind.

Definition5.1.9. Level 3 Feature SelectionIt is the process of selecting termsPsi from

the document feature vectors inside clusterC to form the feature vector ofC, andΨ =

⋃m

i=1 Γi, wherem is the number of documents in clusterC, andΓi is the set of terms of

the document feature vector of documentdi .

Definition 5.1.10. TF-ICF TF-ICF is the weight used in cluster feature vectors that is

calculated by the two equations 5.2 and 5.3.

TF is used to eliminate the bias towards big clusters, and ICFis used to reduce the

effect of common terms across clusters, more precisely, thecluster feature vectors.

5.2 Feature Selection for Single Documents

In this step, we select significant terms to form the feature vector of each docu-

ment. First, we need to sort all the terms of a given documentdj by considering both its

vector representation in VSM and the semantic information including title (with weight

W3), keywords (with weightW6), and citation semantics (with weightW4). In this ap-

proach, we do not take co-citation into account. It is because that co-citation is in the

context of two documents, but here we are forming the featurevector for a single docu-

ment before comparing it to any other document. Using the weights obtained from step 5

we can find the weights of all the terms of each document and hence sort them according

to their weight. Then we can select the topx terms together with their weights to form

the feature vector of that document.

To calculate the new weight of each term, we consider its TF-IDF value in the
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vector of VSM, its occurrences in title, keywords, and labels of reference clusters, together

with W1,W2,W3,W4, andW6 that are obtained from step 5, the training process (We do

not useW5 that is the weight of co-citation. The reason is in the previous paragraph.) For

example, if we have weightsW1 = 5, W2 = 1, W3 = 1,W4 = 10, W6 = 0 (there is no

keyword provided in the data set we used). Suppose we have theword “Web” that occurs

in the title once, in the reference cluster labels twice, andits TF-IDF value is 0.03. Then

its total weight would be(1∗W3+2∗W4)∗W2+0.03∗W1 = 21.15. Since these weights

were intentionally used for combining vector space and Citonomy similarity measure

(Equations 4.2 and 4.5), which is the measure used in CS-VS, they only provide a rough

estimation of the weights that we use in computing new weights of the terms in a single

document. In other words, we need to do some adjustments. In particular, the TF-IDF

values are usually small with a large number of documents. For example, in the data set

we used with about 700 documents, the average of the TF-IDF values is 0.0019. So the

actual formula we used to calculate the total weight of each word (term) is as follows:

Wttl = (O1 ∗W3 +O2 ∗W4) ∗W2 +WTF−IDF ∗W1/Wavg (5.1)

WhereO1 andO2 are occurrences of a term in the title and labels of referenceclusters,

respectively,WTF−IDF is the TF-IDF value of that term, andWavg is the average of all

terms’ TF-IDF values of the data set.

Besides the computation of weights of terms in forming feature vectors of single

documents, there is another issue worth discussion. That is, the choice of the length of

the feature vector of a single document. In other words, how many top terms shall we use

to form the feature vector to best represent a document, to have the best result document
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clustering? We will discuss this in Section 5.6.

5.3 Feature Selection for Document Clusters

Once we find the feature vectors of all the single documents ofa cluster, we can

use them to form the feature vector of the cluster. That is, weuse all the terms from

these feature vectors of all the single documents to form thefeature vector of the cluster

they belong to. The weight of each term in the cluster featurevector is its occurrence in

all the document feature vectors in the cluster. Note here weignore the terms’ weights

in document feature vectors. If these weights used, it wouldbe as same as finding the

mean of these document feature vectors. The reason of ignoring them is that, they are

used to rank the terms within a document. While these weightsare useful in comparing

the significance between terms within a single document, they are not comparable across

documents and therefore, the cluster feature vector would misrepresent the cluster if they

were used. For example, suppose clusterC has 100 documents, and TermX only occurs in

one of the document feature vectors with a weight 20; TermY occurs in all 100 document

feature vectors each with a weight 0.15. If we use their totalweights in the cluster feature

vector, TermX would have more weight than TermY. However, even TermX is a very

significant term in the document to which it belongs, it is notas significant as TermY

in respect to this cluster. In other words, it is not as usefulas TermY in differentiating

clusterC from other clusters. Therefore, occurrence counting is more reasonable then

the weights’ sum when forming cluster feature vectors from document feature vectors.

However, to best represent each cluster, we need to considerall the cluster feature vectors
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together and normalize them. We use a 2-dimensional (withineach cluster and across

clusters) normalization procedure to do this.

First, to avoid bias towards the big cluster, we need to change the weight of each

term from a simple occurrence to a term frequency (count/cluster size). We also need to

normalize the weight of each term across all the clusters to reduce the effects of common

(terms) words across the clusters. We use ICF (inverse cluster frequency) that is shown

in equation 5.3, to achieve this goal. So altogether, we use TF-ICF instead of TF-IDF, to

normalize the weights of terms in the feature vectors of clusters, while TF-IDF has been

used in finding the vector representation of each single document in the VSM model.

Lastly, we want to normalize each feature vector to a unit vector using the Eu-

clidean norm (that is, its length is 1 regarding Euclidean norm), to make similarities be-

tween feature vectors easy to compute.

Altogether, the weight of each term in the cluster feature vectors will be calculated

using the following three formulas 5.2 (within a cluster), 5.3 (across clusters), and 5.4

(within a cluster), whereWij is the final weight of termj in the feature vector of cluster

i, Wocc is the number of occurrences of termj in the feature vectors of all the single

documents within clusteri, Si is the total number of documents in clusteri, k is the

number of clusters, andx is the length of the feature vector of clusteri. Figure 10 shows

an example of three cluster feature vectors before and afterTF-ICF normalization.

Wij1 =
Wocc

Si

(5.2)

Wij2 =
Wij1

∑k

m=1Wmj1

(5.3)
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Wij =
Wij2

√

∑x

l=1W
2
il2

(5.4)

We do not use a logarithm to calculate ICF as commonly used in calculating IDF. Even
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Figure 10: An Example of TF-ICF Normalization of Cluster Feature Vectors

though a term word occurs in all the feature vectors of these clusters, we do not ignore

it completely as IDF does (log1 = 0). The argument for using IDF in building vectors
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of documents is that if a term occurs in every document, then it will not contribute in

clustering these documents. But in our situation, even though a term occurs in all the

feature vectors of clusters, it may have different weights in these feature vectors, it will

still be useful when calculating the similarity between every two feature vectors of these

clusters. If this term is also in the feature vector of the newdocument, it will contribute to

the similarity between the feature vector of a new document and the feature vector of one

of these clusters. Therefore, it helps the document clustering and updating. Otherwise,

if we remove this term from all the feature vectors, we will lose some information and

hence, cause poor clustering results. This is really the most important step in finding

best features of a cluster. In our experimental results (Subsection 7.3.7), we can see this

normalization has great advantage over IDF like normalization.

The feature vector of each cluster is similar to the vector ofthe center of each

cluster, but not the same thing, since we get this feature vector not by calculating the

mean of all the vectors in the cluster, but rather by extracting significant words (terms)

from every document in the cluster. To understand the feature vector of a cluster, one

can imagine there is a container holding all the documents ofthat cluster, and the feature

vector of that cluster is the label written on that containerindicating what kind of material

it stores.

5.4 Linear Document Clustering

The algorithm of this part is as follows.
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(1) For the new document

(2) do level 2 feature selection to get the document feature vector

(3) For each cluster

(4) Compute the similarity between the document feature vector of the new

(5) document and the cluster feature vector

(6) Assign this document to the cluster to which it is most similar regarding their

(7) feature vectors

(7) Update the feature vector(s) of the cluster(s) to which the new document was

(8) just added with level 3 feature selection.

For each new document, we use the procedure described in Section 5.2 to obtain

its feature vector. Then we normalize it to a unit vector using the Euclidean norm as

shown in equation 5.4. Comparing the similarities between this feature vector and those

of thek clusters, we can decide which cluster the document belongs to. In the case of

fuzzy clustering, a degree of belonging could also be obtained at the same time when

computing similarities. Also, if the similarity between the new one and each existing one

is too low, say, lower than a predefined threshold, or lower than the minimum similarity

between all existing feature vectors, it may form a new cluster by itself. We use Cosine

coefficient as the similarity between the two vectors~vi and~vj that are computed according

to the formula 4.4. However, since the involved vectors are all unit vectors, the bottom

part of the fraction will always be 1 and hence, could be ignored. That is, we can use the

following simplified formula to calculate the similarity between these two feature vectors,
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where~vi · ~vj is the inner product of~vi and~vj .

Similarity(~vi, ~vj) = ~vi · ~vj (5.5)

Once the new document is added to one cluster (or more than onein the case of fuzzy

clustering), we need to update the feature vector of the cluster(s) to which the new docu-

ment was just added. This could be done after inserting each new document, or a certain

number of documents, depending on different applications or situations. Our experiments

show there is no considerable difference regarding the overall runtime. By looking at

the terms in the feature vector(s) of newly added document(s), we can easily update the

feature vector of the cluster(s). For each cluster, we keep track of both the normalized

cluster feature vector and the one before being normalized (we call it a raw cluster feature

vector). For those terms that exist in the raw feature vector, we increase each of their

weights by 1; for those terms not found in the raw feature vector, we add them to the raw

feature vector with weight 1. Then we use formulas 5.2, 5.3, and 5.4 to normalize all the

raw cluster feature vectors into unit feature vectors.

Figures 11 and 12 show a demonstrative example of the clusterfeature vectors

before and after adding a new document and the similarities between them. Since they

are all unit feature vectors, the similarities between themare calculated with formula 5.5.

Note the new document was added to the cluster represented bythe cluster feature vector

at the top.
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Figure 11: An Example of CS2CS Clustering – Before Adding a New Document
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Figure 12: An Example of CS2CS Clustering – After Adding a NewDocument

5.5 Document Clusters Splitting and Merging

The algorithm of this part is as follows.

(1) Compute the similaritySic between the current cluster feature vector and the

(2) initial feature vector

(3) if equation 5.6 satisfied
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(4) Split the cluster into two by comparing the feature vector of each

(5) document to the current and initial feature vectors of the cluster

(6) for each of the other unchanged clusters

(7) compute the similarityScc between it and the newly formed cluster(s)

(8) using their feature vectors

(9) if equation 5.9 or 5.10 satisfied

(10) Merge these two clusters and form the new feature vectorusing

(11) the level 3 feature selection

After updating the cluster feature vector(s)of the cluster(s) where the new docu-

ment(s) have been added, we will compare the current featurevector(s) with the initial

feature vectors, as well as the feature vectors of other clusters. Through these compar-

isons, we decide whether to split or merge clusters. The usercan choose when to check

for splitting and merging. In default, we do this check whenever the number of documents

doubles.

Splitting If the feature vector (~v2) of the newly updated cluster is so different from

its original one (~v1), that is, the similarity between their feature vectors is close to 0, or

less than a predefined threshold, it will be the candidate to be split. But we also take

into account the sizes (numbers of terms) of these two feature vectors and the sizes of

the current and original clusters. We will split a cluster ifthe the inequality formula 5.6

holds, wherecs1 andcs2 are the size of the original and current clusters, respectively. In

other words, if the similarity between the current and original feature vector becomes too

small, or the size of the feature vector increases a lot, we may split the cluster into two.
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However, both could be the result that too many new documentswere just added to this

cluster, which could be normal change. In that case, we may not split the cluster. Figure

13 shows a demonstrative example of splitting. Inside the clusters, “dx*”, “dy*”, and

“dz*” mean the documents of category “x”, “y”, and “z”, respectively.

Similarity(~v1, ~v2) ·
cs2
cs1

Size(~v2)
Size(~v1)

< split− threshold (5.6)

We use the initial feature vector as the feature vector (~v1) of one of the newly formed

clusters by splitting, the current feature vector~v2 as the other one. Then we assign each

member document inside the big cluster to either cluster depending on the similarities

between its feature vector and these two cluster feature vectors. Moreover, we may also

want to look at the documents in other clusters to see if they belong to these two new

clusters. In other words, for each documentd in any other clusterc, we compute the

similarity between the feature vector ofd and the feature vector of clusterc, the similarity

between the feature vector ofd and ~v1, and the similarity between the feature vector ofd

and~v2, to see whetherd should stay inc or go to one of the newly formed clusters.

If we do not change the other clusters, that is, if we only split a cluster when

inequality 5.6 is satisfied without looking at other clusters to further update newly formed

clusters, then we have the following theorem regarding the quality of the clusters after

splitting.

Theorem 5.5.1.If the splitting of clusterc separates the documents of two categoriesA

andB (A is the category represented by the label of clusterc before splitting) into clusters

cA and cB (correctly labeled), and the number of documents ofA in c was less than or

equal to that ofB, the average precision ofcA andcB is higher than that of clusterc.
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Figure 13: An Example of Cluster Splitting

Proof Suppose the number of documents ofA, B, and other categories in cluster

c aren, m, andl, respectively. From the assumption of this theorem, we known < m.

Also, suppose the numbers of documents of other categories in cA andcB are l1 and l2

after splitting (sol = l1 + l2), the precisions ofc, cA, andcB will be n
n+m+l

, n
n+l1

, and

m
m+l2

, respectively. Our task is to show the following inequality.

n

n +m+ l
< (

n

n+ l1
+

m

m+ l2
)/2 (5.7)
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After multiplying both sides by(n +m+ l)(n + l1)(m+ l2) and some cancelations, we

get the following inequality.

n2l2 + nl1l2 < 2nm2 +m2l1 + nl22 +ml21 + nml1 + 3nml2 +ml1l2 (5.8)

If l1 < l2, thenLHS ≤ m2l2 + ml1l2 < RHS. If l2 ≤ l1, thenLHS ≤ m2l1 +

ml21 < RHS. In other words, as long asn ≤ m, inequality 5.8 always holds and hence,

we complete the proof.� Note that neither the relation betweenl andn nor the relation

betweenl andm affects our conclusion.

Based on this theorem, we can easily conclude that the average precision of all

the clusters will also increase after splitting if we do not change the other clusters. From

our experiments we notice that, even though a splitting doesnot separate the documents

of two categories neatly, in other words, they may still mix alittle in resulting clusters,

the precision regardlessly increases due to the significantdecrement of the denominator

in one of the precisions.

Merging If two clusters (ci andcj) are getting closer, we will merge them. For the

newly updated cluster, we get the similarities between its current feature vector (~vi2) and

the feature vector (~vj2) of any of the other clusters. We also get the similarities between

its initial feature vector~vi1 and the initial feature vector~vj1 of any of the other clusters.

Even if the ratio is less than 1 (decreasing), but it is slowerthan the ratio of the total

size increasing, we may also consider merging them. That is,we will check the two

inequalities 5.9 and 5.10. Wheremerge− threshold andr are two constants that could
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be set by the user.

Similarity( ~vi2, ~vj2)

Similarity( ~vi1, ~vj1)
> merge− threshold (5.9)

Similarity( ~vi2, ~vj2)

Similarity( ~vi1, ~vj1)
> r · Size(ci) + Size(cj)

InitialSize(ci) + InitialSize(cj)
(5.10)

Figure 14 shows a demonstrative example of merging. Inside the clusters, “dx*”, “dy*”,and

“dz*” mean the documents of category “x”, “y”, and “z”, respectively. The new feature
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Figure 14: An Example of Cluster Merging

vector will be the mean of the two old feature vectors, and thenew feature vector will be
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normalized with equation 5.4, since the mean of the two unit vectors is not necessarily a

unit vector with respect to the Euclidean norm. After merging, we may also check each

document in other clusters to see if they should go to the new cluster or stay in its current

cluster. The average recall of the resulting clusters usually increases. And we have the

following theorem regarding this aspect.

Theorem 5.5.2. If either of the following two conditions are met, the new cluster c re-

sulted from merging two clusterscA and cB correctly labeled by categoriesA and B,

respectively, will have a recall which is higher than or equal to the average recall ofcA

andcB, consideringA andB as the same category after merging.

(1)All the documents of categoriesA andB are in the two clusterscA andcB.

(2)m > n & m1

m2
> n1

n2
, or m < n & m1

m2
< n1

n2
. Wherem is the total number of

documents of categoryA. m1 is the number of documents of categoryA in clustercA,

that is, the number of correctly clustered documents ofA. m2 is the number of documents

of categoryA in the other clusters, that is, the number of incorrectly clustered documents

ofA. n is the total number of documents of categoryB. n1 is the number of documents of

categoryB in clustercB, that is, the number of correctly clustered documents ofB. And

n2 is the number of documents of categoryB in the other clusters, that is, the number of

incorrectly clustered documents ofB.

Proof First, if all the documents ofA andB are in clusterscA andcB, after merg-

ing, the recall of the new clusterc will be 1. If all m documents ofA are incA and all

n documents ofB are incB, the average recall ofcA andcB is also 1. In any other situ-

ations, the average recall ofcA andcB will be less than 1, and thus proving the theorem
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with condition (1).

To prove the theorem with condition (2), first let us suppose that none of them2

documents ofA is in clustercB, and none of then2 documents ofB is in clustercA. With

this assumption, we need to prove the following inequality.

(
m1

m
+

n1

n
)/2 <=

m1 + n1

m+ n
(5.11)

By multiplying both sides withmn(m+n) and doing some operations of cancelation, we

end up with the following inequality.

n1m2m+ n2m1n <= n2m1m+ n1m2n (5.12)

It can be changed to the following inequality.

n1

n2
(m− n) <=

m1

m2
(m− n) (5.13)

If condition (2) met, It is not hard to tell that the inequality 5.13 holds, and hence the

inequality 5.11 holds.�

This proof is under the assumption that allm2 A documents andn2 B documents

are in clusters other thancA andcB. Obviously, if some ofm2 and/or some ofn2 fall in

cB and/orcA, respectively, inequality 5.11 still holds. This is because the numerator of

the right side of 5.11 will increase, therefore, it still holds. The left and right hand sides

of these inequalities will be equal ifm = n.

It is easy to understand this theorem with condition (1). To help understand it with

condition (2), let us look at the following example. Supposem = 200 andn = 100,

sincem > n, if we havem1

m2

> n1

n2

, the recall will increase. Letm1 = 150, m2 = 50,
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n1 = 50, andn2 = 50, then the average recall of the original two clusters will bera =

(150
200

+ 50
100

)/2 = 0.625, and the recall of the new cluster will bern = 50+150
200+100

≈ 0.667.

However, if m1

m2
< n1

n2
, say,n1 = 80 andn2 = 20, thenra = (150

200
+ 80

100
)/2 = 0.775,and

rn = 80+150
200+100

≈ 0.767.

Note that the condition (2) is the lower bound in guaranteeing that the recall will

increase. Sometimes, even if it is not satisfied, the recall may still increase. As in the

above example, ifn1 = 80, n2 = 20, m1 = 150, andm2 = 50, even thoughm1

m2

< n1

n2

, if

some ofm2 documents fall intocB, or some ofn2 documents fall intocA (which is very

likely given documents of these two categories are similar), say, totally 10 ofm2 and/or

n2 documents fall intocB and/orcA, then we would havern = 80+150+10
200+100

= 0.8, which is

higher thanra = 0.775.

In the case of fuzzy clustering, there is another option to decide whether to merge

or not. That is, if they have many documents in common, we willmerge them into one

cluster.

From the above discussions on splitting and merging we can see that, even though

our linear clustering algorithm CS2CS uses a fixed number of clusters (training data) as

the starting point, it is unlike the K-Means clustering algorithm where the number of

clusters are preset. By splitting and merging, it can automatically determine the number

of clusters that better reflects the reality of the scientificcommunity, where it is normal

that new fields stand out and old fields merge, which results inthe new distribution of

scientific documents. Therefore, our algorithm is more suitable for realtime document

clustering and trend discovering.
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5.6 Selection of the Lengths of Feature Vectors

At level 1 feature selection, we choose the top 10 terms to form the feature vector

of each reference cluster. Through subjective evaluation (manually checking the signifi-

cance of the labels)and objective evaluation (comparing the accuracy of resulting clusters

using different number of top terms) during our experimental test for our paper [99], this

number is a good cutoff regarding the citation semantics.

At level 3 feature selection, the length of the feature vector of each cluster is

determined by the length of the feature vector of each document belonging to it and the

total number of documents in that cluster. So, the only issueleft here is how to determine

the length of the feature vector of each document, which is atthe level 2 feature selection.

A single document could be one in an existing cluster, or the new document to be added

to a cluster. In dealing with the length of the feature vectorof a single document, we must

be aware of the two different situations. This is because we use the feature vectors of

single documents to form the feature vector of the cluster they belong to, whereas we use

the feature vector of the new document to compare with the feature vectors of existing

clusters to decide where to put it. The objective criteria inboth situations is which length

of the feature vector of a document can lead to the best quality of document clustering.

When forming feature vectors of different clusters, we wanteach feature vector

to be different from all others. We want the distance betweenevery two cluster feature

vectors to be as big as possible. Suppose a matrixM is formed with these feature vectors
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in its columns, we want at least the following criteria to be satisfied.

Rank(M) = k (5.14)

Wherek is the number of existing clusters. That is, no cluster feature vector would be a

linear combination of others. However, our situation here is different from latent semantic

analysis [48], where SVD (singular value decomposition [50]) is used toreduce the rank

of the term-document matrix, in order to reveal the hidden similarity among documents

and hence, to improve the recall in information retrieval. We do not want to reduce the

rank of the matrixM . Instead, we want to keep its rank. We have the following theorem

about the rank of this matrix.

Theorem 5.6.1.If the number of unique terms in each cluster is bigger than the number

of clusters, the lengths of the feature vectors that can satisfy equation 5.14 are not unique.

Proof It can be shown by counterexamples. Let us suppose the numberof clusters

is k. First, since each cluster has more thank unique terms, for each cluster we can find

a different term to form its feature vector. Then, the feature vectors will certainly satisfy

the equation 5.14. If the theorem is false, we cannot find another length that satisfies

equation 5.14. However, if we just add one term that is different from all the existing

terms to one of these feature vectors, the resulted feature vectors still satisfy the equation

5.14 and therefore, we complete the proof of this theorem.�

Since the number of unique terms of cluster feature vectors are more than the num-

ber of clusters in most cases, there are so many different lengths that can satisfy equation

5.14. The lengths of cluster feature vectors are usually nota problem regarding this equa-

tion. Rather, our major concern is to reduce the length of each feature vector to eliminate
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noise and to shorten runtime. In the meantime, we do not want to lose useful informa-

tion. For example, if we have three clusters and the three feature vectors are “social: 1”,

“database:1”, and “network:1”, then the length of each feature vector is one. Even though

the rank ofM will be 3, we may lose useful information that in turn may result in a low

accuracy of clustering. Suppose the feature vector of a new document is “social:0.5, net-

work: 0.5 “ with two words. For fuzzy clustering, the new document will go to clusters

1 and 3. Otherwise, it may only go to cluster 3. But if using twowords for the feature

vectors of these three clusters, they may be “social:1, network: 1”, “database:1, web 0.6”,

“network:1, wireless: 0.8”, certainly, the new document should belong to cluster 1. (No-

tice that the weights of the words in this example will be normalized before comparison.)

Therefore, we need to find the cutoff point of the length of thefeature vectors of the exist-

ing documents. The principle rules of these cutoffs are thatwe want equation 5.14 to be

satisfied (that is easy to achieve), and in the meantime we want to maximize the accuracy

of resulted clustering.

While the length of the feature vector of an existing document has to be set heuris-

tically with the requirement of equation 5.14 met, the length of the feature vector of a new

document could be found automatically by searching for the following ratioR within a

range of lengths[Ll, Lr].

R = Max{Rj , j = Ll, ..., Lr} (5.15)

Rj = Max{ Si
∑k

i=1 Si

, i = 1, ..., k} (5.16)

Wherek is the number of existing clusters,Si is the similarity between the feature vec-

tor of an existing clusteri and the feature vector with lengthj of a new document. This
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means, we would use the length of the feature vector of a new document that makes it

most similar to one of these feature vectors of clusters. In the case of fuzzy clustering,

the numerator of 5.16 would be the topx of the similarities of a given lengthj. Even

though the program needs to search a range of lengths, the time used is ignorable given

the numberk of the feature vectors of clusters is usually small. Furthermore, we designed

two algorithms to speed up this search process: ExponentialIncrement Search and Linear

Increment Search. Instead of checking each length in the range [Ll, Lr], we only sample

some of them to find the right length in less time. Our experimental results show the dif-

ferences between using these two sampling search algorithms and the brute force search

(check each length within the range[Ll, Lr]) are ignorable (as shown in Chapter experi-

mentalResults). And the Exponential Increment Search requires the least amount of time.

It is shown below.

(1)Rmax=0;

(2) Increment=1;

(3) For(j = Ll; j ≤ Lr; j = j + increment){

(4) ComputeRj using 5.16 with the current length;

(5) If(Rj > Rmax){

(6) Rmax = Rj;

(7) Increment = 1;

(8) Record the cluster that makes thisRj;

(9) }

(10) Else
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(11) Increment = Increment*2;

(12)}

For the Linear Increment Search algorithm, we only need to replace “Increment =

Increment*2” with “Increment = Increment+1”.

Note that for each new document, we actually form two featurevectors. First,

we form a feature vector to compare with the feature vectors of the existing clusters to

decide where to put the new document. Second, we form anotherone to update the feature

vector(s) of the cluster(s) to which this new document is added. They could be the same or

different depending on the length set for the existing documents and that obtained for the

new document. However, we could also use the same feature vector of the new document

to update the cluster feature vector(s). Our experimental results showed the difference of

the clusterings by using the fixed length of existing documents or the same length of the

new document was ignorable (Table 35 in Subsection 7.3.7).

5.7 Use of Ontology

A domain ontology maintains the vocabulary of that domain. In other words,

terms stored in an ontology are considered the most significant terms by the domain ex-

perts. We intuitively assume that if the domain ontology is utilized during the process

of feature selection, namely, in adjusting the weights of terms of each feature vector, we

would be able to get feature vectors which can better represent the documents in that

particular domain. In our experiments, we used MeSH (Medical Subject Headings [18]),

a popular ontology in the biomedical domain, in the process of forming feature vectors
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of these biomedical documents. We increase the weights of terms found in MeSH. As

expected, the results of using MeSH are better than that without MeSH (Table 15 in Sub-

section 7.3.3).

5.8 Fuzzy Clustering

In contrast to the hard clustering where a document can only belong to one cluster,

the fuzzy clustering allows a document to belong to multipleclusters associated with

a degree of belonging. In situations where fuzzy clustering(one object belonging to

multiple clusters) is needed, our CS2CS clustering algorithm can be easily adapted. The

algorithm (which is similar to that discussed in Section 5.4) is as follows.

(1) For the new document

(2) do level 2 feature selection to get the document feature vector

(3) For each cluster

(4) Compute the similarity between the document feature vector of the new

(5) document and the cluster feature vector

(6) For each cluster

(7) Compute the degree of membership of the new document to this cluster

(8) Assign this document with memberships to the top x clusters to which it is

(9) most similar regarding their feature vectors

(10) Update the feature vector(s) of the cluster(s) to whichthe new document was

(11) just added with level 3 feature selection.

Instead of putting the new document to the cluster whose feature vector is most
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similar to the feature vector of the new document, we can put it to multiple clusters with

parameter representing the degree of belonging or membership. The degree of member-

ship of documentd with respect to clusterC out of thek clusters is calculated with the

following equation.

Ddc =
Sdc

∑k

j=1 Sdj

(5.17)

WhereSdj is the similarity between documentd and clusterj after the ratioR in equa-

tion 5.15 is determined. There are two ways to decide how manyand which clusters a

document should belong to. First, the user can set how many clusters a document can

belong to, say3, then documentd will be put to the three clusters whose similarities with

documentd are in the top3 among all thek similarities. Secondly, the user can choose

to use a threshold of degree of membership, sayDmin, if Ddc > Dmin, documentd will

be put to clusterC. Of course, the user can also choose to set the threshold of similar-

ity, but it would require more insight knowledge than setting the threshold of degree of

membership.

When updating the cluster feature vector, instead of addingnew occurrences to the

raw cluster feature vector as discussed in Section 5.4, we add the degree of membership

of each term found in the document feature vector of the new document to the raw cluster

feature vector, then normalize all the raw cluster feature vector with formulas 5.2, 5.3,

and 5.4.

Figures 15 and 16 show a demonstrative example of the clusterfeature vectors be-

fore and after adding a new document and the similarities between them. Since they are
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all unit feature vectors, the similarities between them arecalculated with formula 5.5. De-

grees of memberships are obtained through formula 5.17. It is the case of simplest fuzzy

clustering, that is, a document is assigned to one cluster with the degree of membership.

Note the new document was added to the cluster represented bythe cluster feature vector

at the top in Figure 15.
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Figure 15: An Example of CS2CS Fuzzy Clustering – Before Adding a New Document
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Figure 16: An Example of CS2CS Fuzzy Clustering – After Adding a New Document

5.9 Complexity Analysis

Suppose the training step is used, the overall runtime complexity of CS2CS will

be the following:

O(k(m− k)2t+ cm+ kn) = O(ktm2 + kn) (5.18)
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Wherem is the number of documents in the training set,k is the number of clusters,n is

the number of the new documents to be clustered isn, andt is the number of iterations

in the K-Medoids clustering that is used in the training process to find weights. The

complexity of the K-Medoids isO(k(m − k)2t). To find citation semantics (to cluster

references and label them), we only need to look at each document once and hence, the

runtime for this part isO(cm). For the linear clustering stage the time needed isO(kn)

because for each new document we only need to compare its feature vector with the k

feature vectors of existing clusters.

Even though we use a training set withm ≈ n/4 in the following experiments, in

practice, the training set will be far less than the set of newdocuments. That is, we could

havem ≪ √
n. For example, ifm=100,n could be more than 100,000, or even more than

1 million. The quality of clustering will not decrease due tothe increased number of new

documents. This is because once we get the initial feature vectors of clusters, they evolve

as new documents are added in to better reflect the new contents. The overall runtime

of the CS2CS approach isO(n + m) givenm ≪ √
n. In other words, it is linear with

respect to the total number of documents. Since complexity of K-Medoids algorithm is

quadratic (O(kt(n − k)2)) in terms of the number documentsn, CS2CS is much faster

than K-Medoids. It is even faster than K-Means, even though K-Means is also a linear

algorithm. This is because its complexity is actuallyO(ktn), wheret is the number of

iterations used. Its coefficient is bigger than that of CS2CS. Our experiments (Table 12 in

Subsection 7.3.1)verify this analysis. Even though k-Means may be faster than CS2CS if

a bigger training set is used in CS2CS, its accuracy is usually far less than CS2CS.
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If we carry out splitting and merging during linear clustering in cases where the

categories of new documents are unknown, we need to addk2n2 to equation 5.18. That is

the worst case when we check for splitting and merging after adding each new document.

This is because that, after adding a new document, we need to look at the newly updated

cluster to see whether we need to split it, and compare its feature vector with other clus-

ters’ to see whether we need to merge them. Once we merge two ofthem, we may choose

to compare the newly merged again with others to see if we needto merge more. This

process takes timek2x, wherex is the number of documents involved in splitting and/or

merging. So the run time of addingn new documents will end up withk2n2 in the worst

case if we choose to check for splitting and merging after adding each new document.

However, this worst case could be avoided by using a different strategy on when to check

for splitting/merging. As a matter of fact, it does not make much sense to check for split-

ting/merging after adding each new document since the feature vector of one document

usually will not affect the feature vector of the cluster toomuch. That is given, we may

check for splitting/merging after adding a significant amount of documents, say after the

original set is doubled. In this case, we will addk2nlogn to equation 5.18. Clearly, the

total complexity would beO(nlogn) which is close to linear time regarding the number

of documents being added.

Not only does CS2CS run fast, it also uses less memory compared to the other

algorithms. Since it uses cluster feature vectors and the document feature vector of the

new document to do incremental clustering, it only needs thek cluster feature vectors and

the document featrure vector to be in memory and hence, its space complexity is only
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Table 3: Complexities of Document Clustering Algorithms

Algorithm Runtime Space

K-Medoids O(kt(n− k)2) O(n)

K-Means O(ktn) O(n)

CS2CS O(n) O(k)

CS2CS with Splitting&Merging O(nlogn) O(k), O(n)

n - number of documents,k - number of clusters,t - number of iterations

O(k). Only when carrying out splitting or merging, the space complexity is O(n). Table

3 summarizes the comparison of complexities (runtime and space) of these document

clustering algorithms we just discussed.
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CHAPTER 6

INTEROBO: A FRAMEWORK FOR KNOWLEDGE SHARING IN BIOMEDICAL

DOMAIN

In the previous chapter, taking MeSH as an example, we have shown ontologies

are useful in document clustering in particular, and hence in knowledge discovery in gen-

eral. In this chapter we are going to analyze the overlappingrelationships among ontolo-

gies, and provide an interoperability framework for sharing biomedical knowledge across

OBO communities. Our ontology modeling methods are comprised of modeling the rela-

tions, computing overlapping of the ontologies, clustering ontologies, building ontology

networks, and querying and inferencing in the ontology network.

To provide integrated access to data annotated with different ontologies, an impor-

tant requirement is to relate these ontologies. This is commonly done by cross referencing

concepts from these ontologies. Although using a referenceontology to map multiple on-

tologies is very promising, having an ideal reference ontology is not easy, and it is often

hard to find concepts from the reference ontology for mappingbetween ontologies. In our

model, we identify common characteristics of ontologies indiverse biomedical ontology

domain (OBO) and cluster them using these features. We also focus on the analysis of

semantic relationships that commonly appear in these ontology domains. Our approach

differs from and complements the related approaches described later. Specifically, we use

pragmatic approaches to characterize and cluster ontologies, without relying on reference

or upper ontologies.

99



In this study (Part of it has been published in [46]), we have evaluated our ap-

proach by performing experiments using the OBO dataset to analyze diverse biomedical

ontologies. Given the large number of the biomedical ontologies, we focus on the analysis

of semantic overlapping relationships inherent in the ontologies. In particular, we mea-

sure the similarity between ontologies by considering synonym-based connectivity pat-

terns and analysis of shared concepts and relations across different ontologies. We cluster

the ontologies using the developed similarity measures andshow quantitative evaluations

of the utility of the proposed models.

6.1 Domain Overlapping Model

We propose a domain overlapping model, called the InterOBO (Figure 17) that

describes the characteristics and patterns of knowledge sharing between ontologies. We

first present some basic definitions that are integral to understanding the domain sharing

model.

A Concept-level relation (CR) is a binary relation CR between a conceptc1 and

a conceptc2. It expresses any kind of relationship between a conceptc1 and a concept

c2. The concepts c1 and c2 may be either from the same ontology orfrom different

ontologies. In our study, relationships are defined by the empirical analysis of ontology

data. Apart from being similar, concepts may share other aspects, e.g., sharing the same

parents, children or siblings. This forces us to think not only in terms of concepts per se,

but in terms of edges and other structural aspects of the concepts.

An Ontology-level relation (OR) expresses any kind of relationship between an
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Figure 17: InterOBO Framework

ontologyo1 and another ontologyo2. In this chapter, we introduce two types of OR re-

lations. Firstly, OR can be defined as a unified view of relationships between different

ontologies. This means that the CR level relationships for different ontologies are accu-

mulated at the OR level and defined as a new “sharing” relationship. Secondly, OR can

be defined by synonym relationships in the CR level. We refer to this as “synonym-based

transitivity” because some transitivity can be defined evenbetween ontologies.

Our ontology modeling methods are comprised of the following steps: 1) synonym

based transitive equivalence, 2) connecting pattern recognition for inter ontology mapping
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3) clustering the ontologies based on the overlapping patterns and 4) finally querying

and inferencing over the clusters. These procedures are in turn subdivided into specific

elementary steps.

The sharing relationship among ontologies is based on the degree of sharing be-

tween ontologies. For the sharing relationships, we define the following two specialized

relations: a) synonym based transitivity and b) connectingpattern based on overlapping

relations. The latter can be measured in terms of concept overlapping and structural (edge)

overlapping. The degree of sharing between ontologies is used in the step of clustering

ontologies. It is determined by the following two aspects: a) sharing concepts and b)

sharing edges or paths. Finally, the clustered ontologies are further structured as an on-

tology network. This network facilitates to integrate dataover the ontology network and

discover a path of reasoning from specific capability through the network. There are also

feedback channels among clustering component, sharing computing component, ontol-

ogy query/inferencing component. Note that the inferencing using this ontology patterns

and clustering is beyond the scope of this dissertation.

6.2 The Open Biological and Biomedical Ontology (OBO) Domain

The Open Biomedical Ontologies are well-structured controlled vocabularies for

shared use across different biological and medical domains. The OBO represents community-

based efforts to support a range of ontologies designed for biomedical domains. Some of

them are generic and apply across all organisms while othersare more restricted to spe-

cific domains.
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For this study, we have analyzed all the concepts of the 40 OBOs (version June

12, 2006). As shown in Table 4, the total number of the concepts is 13,456. After fil-

tering duplications, we obtained 122,390 unique concepts.The maximum, average, and

minimum concept counts per ontology have been computed. Ontology counts for each

concept have been computed as well. These data have been extracted from the OBO text

and OWL files, and stored into a local database. More detailedinformation about these

Table 4: The OBO Ontologies
Ontology Features Number 

Number of Ontologies 40 

Total Concept# 134567 

Unique Concept# 122390 

Concept# per Ontology Maximum 39 

Minimum 1 

Average 1.6 

Ontology# per Concept Maximum 9 

Minimum 2 

Average 2.4 

 

40 ontologies are show in Table 5. The following analysis (concepts, synonym, node and

edge) has been performed by considering a single type of relation such as IS-A xor Part-of

for the sake of simplicity. For instance, GO has both IS-A andPart-of relationships, but

we have mainly considered the commoner IS-A relation.

6.3 Ontology Mapping Methods

6.3.1 Synonym Based Transitive Equivalence

In order to provide sharing relations among multiple ontologies, we need to pro-

vide an advanced ontology mapping schema. A frequent phenomenon across domains is

the presence of homonyms and synonyms. In the ontology mapping process, a concept
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Table 5: OBOs in Detail
ID Ontology Name Conc. Syn. Node Edge Type 

O1 Adult_mouse_anatomy 2703 0 2971 2820 IS-A 

O2 Arabidopsis_development 108 53 108 108 IS-A 

O3 Attribute_and_value 1228 0 1260 1248 IS-A 

O4 Brenda 2218 1179 2515 2353 IS-A 

O5 Cell 761 0 964 964 IS-A 

O6 Chebi 12734 23451 14666 14666 IS-A 

O7 Dictyostelium_discoideum_anatomy 38 13 73 58 IS-A 

O8 Disease 19136 0 19389 19383 IS-A 

O9 Emap 13731 0 13731 13731 Part-of 

O10 Event 2665 234 3499 3020 IS-A 

O11 Evidence_code 130 6 163 140 IS-A 

O12 Fly_anatomy 6130 0 13649 7273 IS-A 

O13 Flybase_vocab 660 65 664 664 IS-A 

O14 Fungal_anatomy 65 15 82 76 IS-A 

O15 GO 20733 17181 27574 27560 IS-A 

O16 Human_dev_anat_abstract  2314 0 2339 2324 Part-of 

O17 Human_dev_anat_staged 8340 0 8362 8339 Part-of 

O18 Image 259 30 259 259 IS-A 

O19 Loggerhead_nesting 308 2 322 317 IS-A 

O20 Mammalian_phenotype 4186 3010 6130 4630 IS-A 

O21 Mao 164 45 164 164 IS-A 

O22 Medaka_anatomy_development 4358 0 4404 4245 Part-of 

O23 MeSH 15337 33297 19525 19525 IS-A 

O24 Molecule_role 7255 23588 7641 7393 IS-A 

O25 Mosquito_anatomy 1804 3501 2290 2057 Part-of 

O26 Mouse_pathology 459 0 459 459 IS-A 

O27 Pathway 486 62 554 554 IS-A 

O28 Plant_environment 489 308 518 506 IS-A 

O29 Plant_trait 761 44 949 865 IS-A 

O30 Plasmodium_life_cycle 47 0 98 64 IS-A 

O31 Po_anatomy 763 218 785 785 IS-A 

O32 Po_temporal 274 996 274 274 IS-A 

O33 Psi_mi 194 165 223 212 IS-A 

O34 Rex 546 140 1099 671 IS-A 

O35 Sequence  1034 251 1171 1094 IS-A 

O36 Temporal_gramene 235 168 235 235 IS-A 

O37 Worm_development 69 0 69 69 IS-A 

O38 Zea_mays_anatomy 179 30 181 141 Part-of 

O39 Zebrafish_anatomy 1558 0 2184 1553 Part-of 

O40 Fly_development 120 0 124 124 IS-A 
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in an OBO ontology can be associated with another concept in another OBO ontology if

both concepts have a synonym relation. The synonym relationis reflexive, transitive, and

symmetric. We propose three types of the synonym relation that can be identified in the

ontology to ontology mapping of a concept.

There are many different meanings for the same word. For instance, “PGA” stands

for “Polyglandular Autoimmune Syndrome” and the “Professional Golfers’ Association.”

Synonyms are used to relate to each other. For instance, somerefer to “stomach acid”

with “Betaine HCl,” others use “Hydrochloric Acid”. Resolving these semantic problems

present across multiple ontologies is a difficult task because it requires a comprehensive

understanding of ontologies to be linked and implications of the mapping. These differ-

ences occur because different ontology designers may bringdifferent world views to the

task, conceptualizing the world at different levels of granularity and abstraction. Such

differences are commonly considered semantic problems.

To handle these semantic problems, we have identified three kinds of synonym

relationships between ontologies. An ontologyO1 can be related to another ontology

O2 through synonyms of concepts. A conceptX in O1 can be synonymously related

to another conceptY from O2 if 1) Y is included as a synonym ofX in O1 or 2) if

X is specified as a synonym ofY in O2. The confidence in the semantic equivalence

of X andY is strengthened if they are mutually defined as synonyms of each other in

their ontologies. Another scenario that is indicative of semantic equivalence is whenX

andY are linked through having a common synonym. Note that the case of exact matches

between X and Y is trivial and not a case of synonym-based transitive equivalence. Figure
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18 shows these relations, also formally defined below.
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Figure 18: Synonym Relations Between Ontologies

Let Ci ∈ Oi andCj ∈ Oj, whereOi andOj are ontologies, andSi ∈ S ′

andSj ∈ S”, whereS ′ andS” be a set of synonyms ofCi andCj, respectively. The

following three cases might be considered for synonym basedtransitivity across different

ontologies. The symbol≈ is used to represent a synonym relation between concepts.

Case 1If Si is a synonym ofCi (i.e.,Si ≈ Ci) or Sj is a synonym ofCj (i.e.,

Sj ≈ Cj) and eitherCi = Sj or Cj = Si, but Ci 6= Cj, thenCi ≈ Cj can be

transitively retrieved from eitherCi = Sj ≈ Cj or Cj = Si ≈ Ci. As an example,

Medicine is a concept in MeSH and Drug is a concept in CheBi andMedicine is defined

as a synonym of Drug in CheBi. Therefore, Medicine in MeSH is synonymously related
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to Drug in CheBi.

Case 2Si is a synonym ofCi (i.e., Si ≈ Ci) andSj is a synonym ofCj (i.e.,

Sj ≈ Cj) andCi = Sj andCj = Si, butCi 6= Cj, thenCi ≈ Cj can be transitively

retrieved fromCi = Sj ≈ Cj andCj = Si ≈ Ci. As an example, Polysome is a

concept and Polyribosome is its synonym in GO while Polyribosome is a concept and

Polysome is it synonym in MeSH. Therefore, Polysome in GO is synonymously related

to Polyribosome in MeSH.

Case 3If Si is a synonym ofCi (i.e., Si ≈ Ci) andSj is a synonym ofCj

(i.e.,Sj ≈ Cj) andSi = Sj, butCi 6= Cj thenCi ≈ Cj can be transitively retrieved

from Ci ≈ Si = Sj ≈ Cj. As an example, Heterozygote is a concept and Carrier is its

synonym in MeSH and Transporter is a concept and Carrier is its synonym in Molecule

role. Therefore, Heterozygote is synonymously related to Transporter.

6.3.2 Ontology Connecting Patterns

We are interested in relating distributed ontologies that share a common domain.

In order to relate multiple ontologies, we use the notion of frequently recurring patterns

in overlapping ontologies. The idea of patterns has been widely used in building soft-

ware system. The motivation behind characterizing a pattern is to fully utilize known

solutions for commonly recurring problems in a specific context. The focus of research

on patterns has so far been mainly on ontology modeling and knowledge reuse such as

ontology construction and management. Here we are introducing an initial method for

exploiting ontology connecting patterns with the aim of further expanding ontology space
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for query and inferencing. Two kinds of connecting patternsare discussed: quantitative

connections and semantic connections. The first type of pattern is defined based on the

quantity of overlapping while the latter is based on the connecting position of concepts in

these ontologies.

Quantitatively connecting patterns The overall connectivity patterns between

two ontologies can be identified from analyzing the extent towhich concepts from one

ontology are mapped to the other. Formally, the connectivity can be defined in terms of

linguistic overlapping (concepts and synonyms) and structural overlapping aspects (links

and paths). An ontology O can be defined as a set of constituentconcepts, relations and

properties, namely< O >. We now define the size of the concept set, (i.e.,cs(O) = ‖ <

CO > ‖, where< CO > is the set of concepts in the ontology O) and the size of the

link set, (i.e.,ls(O) = ‖ < LO > ‖, where< LO > is the set of the link type (such as

IS-A or Part-of) of the ontology hierarchy). We consider twotypes of the relationships:

direct and indirect. The direct relationship defines a parent and child relationship of the

given concepts in the hierarchy. The indirect relationshipdefines a predecessor/successor

relationship of given concepts (path) in the hierarchy. Thedegree of concept overlap

cp(O1, O2) and the degree of link overlaplp(O1, O2) is computed by the formulas below:

cp1(O1, O2) =
cs(O1) ∩ cs(O2)

cs(O1) ∪ cs(O2)− cs(O1) ∩ cs(O2)
label(conceptOverlap1) (6.1)

cp2(O1, O2) =
cs(O1) ∩ cs(O2)

cs(O1)
· cs(O1) ∩ cs(O2)

cs(O2)
label(conceptOverlap2) (6.2)

lp1(O1, O2) =
ls(O1) ∩ ls(O2)

ls(O1) ∪ ls(O2)− ls(O1) ∩ ls(O2)
label(linkOverlap1) (6.3)

lp2(O1, O2) =
ls(O1) ∩ ls(O2)

ls(O1)
· ls(O1) ∩ ls(O2)

ls(O2)
label(linkOverlap2) (6.4)
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The relationship between ontologiesO1 andO2 can be as follows:

• O1 is a subset ofO2, i.e.O1 ⊆ O2, orO2 is a subset ofO1, i.e.O1 ⊇ O2.

• O1 partially overlapsO2, i.e. ∃x, y, (x ∈ O1 ∧ x ∈ O2) ∧ (y ∈ O1 ∧ y /∈ O2)

• O1 is disjoint fromO2, i.e.O1 ∪ O2 = φ

An ontology mapping fromO1 = (cs1, ls1) to O2 = (cs2, ls2) is defined as follows:

There is a subset ontology mapping fromO1 = (cs1, ls1) to O2 = (cs2, ls2) if there

existscs1 ⊆ cs2 andls1 ⊆ ls2. There is a partial overlapping fromO1 = (cs1, ls1) to

O2 = (cs2, ls2) if there exists∃a, b, (a ∈ cs1 ∧ a ∈ cs2) ∧ (b ∈ cs1 ∧ b /∈ cs2) and

∃c, d, (c ∈ ls1 ∧ c ∈ ls2) ∧ (d ∈ ls1 ∧ d /∈ ls2)

Semantically Connecting PatternsThis connecting pattern focuses on repre-

senting inter-ontology relationships that might exist between multiple ontologies. For

instance, an ontology can be a more specific ontology of another ontology (upper ontol-

ogy). In this case, there is a super/subclass relationship between these two ontologies. Or

there might be a sibling relationship between ontologies. Assume that the ontologyOi

and a conceptx are given. In the following formulae,level(x@Oi) means the level of

the conceptx at the ontologyOi anddepth(Oi) means the depth of ontologyOi. The

Concept Connection Position (CCP) is computed as follows:

CCP (x,Oi) =
level(x@Oi)

depth(Oi)
(6.5)

The Ontology Connection Position (OCP) is computed based onthe relative position of

the concept in two ontologies, indicating the positions of the concept from these two

ontology perspectives. Assuming that two ontologiesOi andOj and a conceptx are

given, OCP is computed as follows:
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OCP (x,Oi, Oj) =
CCP (x,Oi)

CCP (x,Oj)
(6.6)

There might be multiple connection patterns in multiple ontologies. Thus, it is

necessary to accumulate the connecting patterns and normalize them into an accumulated

connection score using a simple weight average formula which summarizes all weighted

OCPs. The weight for each pattern can be defined by a domain expert based on the

significance of the concept or simply as a uniform weight. TheAccumulated Ontology

Connection (AOC) score can be computed as follows:

AOC(Oi,Oj) =
∑

i

OCPi ·Wi (6.7)

The connection pattern is a frequently recurring pattern observed during the ontology

overlapping analysis used to connect an ontology to another. This pattern is mainly based

on the location of the concept overlapping between ontologies.

1)OntologyO1 is quantitatively connected to OntologyO2. Let us assume that

a concept in ontologyO1 is connected to a concept in another ontologyO2 andcount

means the number of the common conceptsx. In this case, we map the class inO1 to

the class inO2, with the mapping being either equivalent or synonymously equivalent.

Given a thresholdµ: O1 is quantitatively connected to O2 if∃x, (x ∈ O1 ∧ x ∈ O2) ∧

(count(x@O1) > µ) ∧ (count(c@O2) > µ)

2)OntologyO1 is semantically connected to ontologyO2. This means that the

concepts inO1 can be semantically connected to the concepts inO2. In this case, a

conceptx is located at a low level in ontologyO1 while the same conceptx is located at
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a high level in ontologyO2. Note that the synonym patterns described in the synonym-

based transitive equivalence section have been incorporated into this semantic connection

pattern. For instance, Table 42 in Chapter 7 shows the synonym pattern Cell death .

Necrosis. Furthermore, if the number of connecting patterns between O1 and O2 is higher

than a certain threshold defined by a domain expert, then the ontology O1 is a specialised

ontology of the ontology O2. Then we can say the subconcepts of x in O2 are semantically

related to the superconcepts of x in O1.

O1 is semantically connected to O2 if∃x, (x ∈ O1∧x ∈ O2)∧(OCP (x,O1, O2) >

α ∨OCP (x,O2, O1) > α)

Based on these pairwise similarity measures for concept andedge overlapping re-

lationships, we have developed a simple ontology model for clustering overlap in multiple

ontologies. This is discussed in the following section Ontology Clustering. These con-

necting patterns can be essentially used for automaticallyconnecting ontologies and ex-

panding the query space of ontologies, and to retrieve information from available knowl-

edge sources within the ontology space.

6.4 Ontology Clustering

We posit that ontology clustering is a required step for efficient ontology mapping

involving the alignment and merging of ontologies. Here we clarify our approach to on-

tology mapping within the above theoretical framework. An ontology mapping consists

of a collection of several relationships between multiple ontologies. Given that ontolo-

gies are more closely related to some ontologies than others, ontology mapping can be
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clarified through ontology clustering the task of classifying a collection of ontologies

into clusters. The guiding principle is to minimize interclass similarity and maximize in-

traclass similarity, based on the notion of semantic distance. To discover the correlation

between ontologies, we used the MCL [47]. We compute and analyze correlation based

on the common concepts between different ontologies.

The steps to compute the degree of overlap between ontologies and do clustering

are as follows:

• For every pair of the OBO ontologies, determine the set of concepts in common.

• Calculate the overall similarity for each pair of ontologies using the following for-

mulas and store the values into respective summary matrices:

– probability-based similarity (Approach I)PS = (A ∩ B/A) · (A ∩B/B)

– area-based similarity(Approach II)AS = A ∩ B/(A ∪B − A ∩ B)

In the above formulas,(A ∩ B) refers to the number of concepts (or, sepa-

rately, edges) common to both ontologies, while(A ∪ B) represents the total

number of unique concepts (or, separately, edges) present in either of the two

ontologies under consideration.

• For each of the two 40 by 40 upper-triangle matrices, clusterthe ontologies using

the MCL algorithm to obtain the respective clustering.
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CHAPTER 7

EXPERIMENTAL RESULTS AND DISCUSSION

In this chapter, we present the experimental results for reference clustering (or

citation clustering – we use these two terms interchangeably in this dissertation), CS-VS

– document clustering using combined vector space and citation semantics measures, and

CS2CS – document clustering with a 3-level feature selection. We also analyze the results

and discuss their significance.

7.1 Experiments on Reference Clustering

We downloaded all 42 papers from the Search track of recent World Wide Web

conference websites: www.www2007.org, www.www2006.org,www.www2005.org, ww

w.www2003.org, and www.www2002.org (Website for WWW 2004 was inaccessible).

Based on the nature of contextual information used, we attempted six different approaches

– keyword matching, locality clustering, and four MCL clustering approaches, to classi-

fying or clustering the citations for each of the 42 papers separately.

7.1.1 Approach 1: Keyword Matching

In this approach, we use each specified keyword in the paper asa class or cluster

label. We try to map each reference title and its surroundingsentence to each keyword. If

such a mapping exists, we put this reference into the clusterlabeled by this keyword.

The surrounding sentence refers to part of the sentence close to a reference number

113



in the paper, either before or after the number. For example,in “The threshold algorithm

works as follows [12],” the words “The threshold algorithm works as follows” are taken

as the surrounding sentence of reference 12. In “Jones et al.[10] examine substitutions

that searchers make to their queries,” “examine substitutions that searchers make to their

queries” is treated as the surrounding sentence for reference 10.

7.1.2 Approach 2: Locality Clustering

In this approach, we use the explicit grouping (we call it bracket information or

citation locality) provided in the body of the paper to cluster the references. That is, if

two references are mentioned together in a paper, they will belong to one cluster. For

example, if we see “[13, 21]”, then reference 13 and 21 in thatpaper, are taken as being

in the same cluster.

7.1.3 Approaches 3-6: MCL (Markov Cluster Algorithm) Clustering

In these approaches, we calculate the similarity between every two referencesr1

andr2 as follows.

S(r1, r2) = S1(+S2)(+S3)(+S4). (7.1)

WhereS1 is the similarity between references titles,S2 is the similarity between the sur-

rounding sentences,S3 is the similarity between the combination of titles and surrounding

sentences, andS4 = 1 if the two references are mentioned together in the paper such as

“[2, 10]”. Otherwise,S4 = 0. S1, S2, andS3 are calculated by formula 3.2.

In approach 3, we use onlyS1 as the similarity of two references; in approach

4, we useS1 + S2; in approach 5, we useS1 + S2 + S3; andS1 + S2 + S3 + S4 are
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used in approach 6. These approaches are referred to as MCL-0, MCL-1, MCL-2, MCL-

3 respectively. After calculating the similarities, we usethem as the inputs to MCL to

cluster these references.

7.1.4 Labeling

Our strategy for labeling the reference clusters is as follows. There are basically

two steps. For each cluster, we first compare it to the clusters obtained by approach 1. If

half or more than half the number of the references fall into any of those keyword labeled

clusters, we use that keyword as the label. Otherwise, we need step two. In this step, we

first find the frequency (occurrence) of the term. If a term occurs in half or more than

half the number of the members of a reference cluster, and it occurs at least twice, then

we use it as one of the labels for this cluster. Here we requirea term occurs at least twice

to be considered because there might be only two references in a cluster, then every term

will occur in at least half of the cluster members. It does notmake sense if we use all

the terms to be the labels of the cluster. This requirement will avoid such meaningless

labeling. In the case of multi-word terms used for labeling,if a term is part of another

term, and they have same occurrences, we just keep the longerone. After getting all the

labels for a cluster, we then sort the labels according to their scores. The score of term X

is calculated as follow:

Score(X) = Occurrence(X) ∗Number of words(X) (7.2)

In this way, we favor longer phrase over shorter ones. For example, suppose a cluster

has five references. If “web” occurs in all these references,and “semantic web” occurs in
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three of them, according to our equation 7.2, the score of “web” will be 5, and the score

of “semantic web” will be 6. Therefore, we rank “semantic web” higher than “web” in

the list of labels. In other words, we consider “semantic web” as a more appropriate label

than “web” for this particular cluster.

7.1.5 Experimental Results

Through evaluating the results of these approaches, approach 6 (MCL-3) turned

out to be the best. We will show the comparisons in next subsection. First we want to

summarize the results of using approach 6 (MCL-3).

The number of clusters of references for each paper ranged from 1-10, with an

average value of 4.5, and standard deviation of 2.0. We also analyzed the keywords for

the papers. The number of keywords in a paper ranged from 0 to 7, with an average value

of 3.7, and a standard deviation of 1.7. The following numbers are for all the citations in

all papers taken together.

1. Total number of clusters: 190

2. Total number of labeled clusters: 169

3. Total number of clusters labeled by keyword: 34

4. Number of unique labels: 608

5. Number of unique keywords: 128

This demonstrates that as much as 88.9% of the clusters couldbe automatically

labeled by approach 6. This contrasts with only 17.9% of the clusters that could be labeled

by keywords based on explicit matches. More than 4-fold new terms could be generated
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to describe the citation clusters compared to the number of keywords in the citing paper.

7.1.6 Evaluation

In this subsection, we address the relative performance of the different approaches

used for semantic classification of the references. Ideally, the perfect clustering for each

set of references needs to be created manually. Once the ground truth is established, the

difference between this and a given clustering may be measured by using a combination

of information theoretic measures such as average entropy of the clusters and mutual

information. However, this method of evaluation is not scalable. Givenn references and

up tok clusters, there arekn/k! possible clusterings for every value ofk. Further, this has

to be repeated for each ofN papers. For a typical paper with 30 references and 4 clusters,

this represents430/4! > 1016 possible clusterings. We therefore adopted the following

two alternative approaches: one is automatic and the other manual.

Automated evaluation The rationale is as follows. We considered the second

clustering approach, that specified implicitly by the author(s) in citing multiple references

together, as being the basis of the ideal clustering. In essence, an ideal clustering should

have a 1:1 correspondence with that specified by the author(s), or should have fewer

clusters with the constraint that some or all of the clustersare derived by fusion of the

author-specified groupings. In other words, a clustering isconsidered ideal if it does not

split the groups of references specified by the author(s). Another way of stating this is that

grouped citations within the body of the document representeither the ideal clustering per

se or a sub-clustering of the ideal clustering. Thus, the performance of a given clustering
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technique depends on its ability to merge bracket clusters without shuffling them. Based

on the above rationale, we evaluated each MCL clustering by calculating the distance of

each clustering from the corresponding Locality clustering. The distance D is defined in

the following equation.

D =

n
∑

i=1

di (7.3)

Wheren is the number of clusters in Locality clustering of a given document, anddi

(i = 1, , n) is the corresponding weighted average entropy calculatedas follows:

di = −(Mi/Nr)

k
∑

j=1

(mj/Mi)log(mj/Mi) (7.4)

WhereNr is the total number of references in the document,Mi is the number of refer-

ences in theith cluster of the locality clustering,mj(j = 1, , k) are the split fragments of

theith cluster which are scattered in a MCL clustering. The smallerthe total distanceD,

the better the corresponding MCL clustering is. Based on thecalculation ofdi we know

that if theith cluster is not broken, thendi = 0. Otherwise,di > 0. For example, suppose

the ith cluster of the locality clustering is “1, 2, 3” (which means these three references

are mentioned together somewhere in the paper). For each MCLclustering, we check to

see if this locality cluster was broken or not. For a given MCLclustering, if the locality

cluster is broken into [(1) (2, 3)], and the total number of references is 20, then we have

di = −(3/20)[(1/3)log2(1/3) + (2/3)log2(2/3)] = 0.1377 . As locality clustering is

author-defined, we assume it has 100% precision for this evaluation purpose. However,

several of the clusters may be potentially fused with each other on the account of be-

ing semantically homogeneous. Thus, an ideal clustering might consist of a hierarchical

clustering of the locality clusters. Figure 19 shows a plot of the distance from locality
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Figure 19: Distances from Different Approaches with MCL to Locality Clustering

clustering versus the number of clusters for each of the fourMCL clustering approaches.

As expected, the distance from locality clustering progressively decreases as we take more

contextual information into account. Figure 20 shows that MCL-3 has the lowest distance

on average. MCL-0 is the worst in being furthest away from thelocality clustering, with

a large variance as well. One limitation of the distance metric presented here is that it can

essentially result in a distance for any hierarchical clustering of the locality clusters, as

long as none of the original clusters are split. In the extreme case, a single giant cluster

consisting of all the references would have a distance of zero from the locality clustering.

To account for this, we also performed manual validation as described in the next section.
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Figure 20: Average Distances from Different Approaches with MCL to Locality Cluster-

ing

Manual evaluation In addition to computing distances based on locality cluster-

ing for each MCL clustering, we also manually checked all theclusters to calculate a

purity score for each clustering of each paper. The purity score P is calculated as follows.

P =

n
∑

i=1

pi (7.5)

Wheren is the number of clusters in an MCL clustering of one paper, and pi is computed

according to the following equation.

pi = (Mi/N)(mi/Mi) = mi/N (7.6)

N is the number of references in a paper,Mi is the number of references in theith

cluster, andmi is the number of references that are considered acceptable for inclusion

in the cluster. The higher the score P, the better the corresponding MCL clustering is.
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In contrast to the distance metric used in the automatic evaluation above that is bounded

only on one side, P is bounded between the values of 0 and 1. Thehighest score is 1, and

a low score indicates a highly heterogeneous cluster. Figure 21 shows the distribution of

purity scores for different clustering approaches. Mcl-3 clustering shows the best purity.

However, MCL-0 shows similar purity to MCL-1 and MCL-2. Figure 22 shows how the

number of clusters is reduced by the other approaches relative to locality clustering. Here

too, MCL-3 exhibits high values of purity, while successfully condensing the citations

into a smaller number of clusters.
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Figure 21: Purities of Different Approaches with MCL
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Figure 22: Average Purities of Different Approaches with MCL

7.1.7 Summary

We have presented and evaluated an automated approaches of reference cluster-

ing. Through our automatic and manual evaluations, approach 6 (MCL-3) brings us the

best result. Besides being used in document clustering which is fully discussed in this

dissertation, it can also be used as a summarization technique for scientific documents,

for the identification of new terms used in a domain, or simplyas a new way to order the

citations in a publication.

7.2 Results from CS-VS

We downloaded articles in the biomedical domain from PubMedCentral [25]. We

chose twelve categories corresponding to topical journalsas our original clusters as shown
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in Table 6. We evaluated our results based on these original categories.

Table 6: The Document Categories

Category  
Number of 

Documents 

Behav Brain Funct  129 

BMC Blood Disord 29 

BMC Cardiovasc Disord 175 

BMC Endocr Disord 38 

BMC Neurol 161 

BMC Oral Health 73 

BMC Plant Biol 201 

Cough 31 

AIDS Res Ther 70 

BMC Biochem 173 

BMC Cancer 123 

BMC Infect Dis 96 

 

From these articles, we generated multiple document sets astraining data by the

random selection (Table 7). They are used to obtain appropriate weights for formulas 4.2

(or 4.3) and 4.5, namely,W1, W2, W3, W4, W5. Note that there is no keyword provided in

these articles and we setW6 = 0. The document sets involved in each combination were

used as the ground truth for evaluating our clustering results. The documents in Table 7

are only from the first eight categories of Table 6. The remaining four categories were held

back to serve as noise to test the robustness of our approach.There are two testing sets

– one only has documents from the same eight categories, the other has documents from

all twelve original categories. To find these weights, we applied an evolution strategy to

our training process. The results of using the evolution strategy will be discussed in next

subsection.

To evaluate the quality of the clustering result of this approach, we use F-Measure

[89], also known as F-Score, or the harmonic mean of the precision and recall, to calculate
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Table 7: The Training Data
ID Document Categories  Number of 

Documents 

1 BMC Blood Disord,  BMC Cardiovasc 

Disord 
40 

2 Behav Brain Funct, BMC Blood Disord 40 

3 BMC Blood Disord,  BMC Neurol,  

Cough 
58 

4 Behav Brain Funct,  BMC Blood 

Disord, BMC Oral Health 
60 

5 BMC Neurol, BMC Oral Health 234 

6 BMC Blood Disord,  BMC Neurol,  

BMC Oral Health, Cough 
78 

7 Behav Brain Funct,  BMC Blood 

Disord, BMC Neurol,  BMC Oral 

Health, Cough 

98 

8 Behav Brain Funct,  BMC Blood 

Disord, BMC Endocr Disord,  BMC 

Oral Health, BMC Plant Biol, Cough 
119 

9 Behav Brain Func t,  BMC Blood 

Disord, BMC Cardiovasc Disord,  BMC 

Endocr Disord,  BMC Oral Health,  

BMC Plant Biol, Cough 

139 

10 Behav Brain Funct,  BMC Blood 

Disord, BMC Cardiovasc Disord,  BMC 

Endocr Disord,  BMC Neurol,  BMC 

Oral Health, BMC Plant Biol, Cough, 

158 

 

the accuracy of the resulted clusters. It is defined as follows.

F =
2P · R
P +R

(7.7)

WhereP andR are precision and recall which are defined in the following equations,

respectively.

P = Ncr/Ntr (7.8)

R = Ncr/Nct (7.9)

WhereNcr is the number of documents which are correctly returned, or they are put into

the cluster they belong to (based on the original categorieswe downloaded);Ntr is the

total number of documents in a cluster;Nct is the the total number of correct documents a

cluster is expected to have. That is, when evaluating the result of the clustering algorithm
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over some documents which belong to some categories, we use equations 7.7 through 7.9,

to calculate the precision, recall, and f-measure for each resulted cluster. Then we com-

pute the average values which are considered as the accuracyor quality of the clustering

over that set of documents.
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Left: Use of vector space 

measure only. F Measure: 

82.6% 

Right: Combination of 

vector space and semantics 

measures. F Measure: 

95.8% 

Figure 23: A Sample Result of Document Clustering with CS-VS

As an example, Figure 23 shows the results of both clusteringwith vector space

measure only and clustering with combined vector space and semantics measures. On the
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left hand side, for the resulted two clusters, for the cluster with medoid “BMC Cardiovasc

Disord-6- -1413555”, the precisionP = 28/34 ≈ 0.824, the recallR = 28/30 ≈ 0.933,

and the F-Measure isF = (2 ∗ 0.824 ∗ 0.933)/(0.824 + 0.933) ≈ 0.875. Similarly, we

can get these three values for the cluster with medoid “BMC Blood Disord-4--385232”

as0.875, 0.7, and0.778, respectively. Therefore, the (average) F-Measure of the result of

the clustering using vector space measure only over these data set will be82.6%. In the

same way, we can get the (average) F-Measure of the result (onthe right hand side) of

the clustering using combined vector space and semantics measures over these data set as

95.8%.

7.2.1 Results of Using Evolution Strategy

To find the weights used in equations 4.2 (or 4.3) and 4.5, namely, W1, W2, W3,

W4,W5, we applied the evolution strategy in our training process.The detailed discussion

of the evolution strategy is in Section 4.3 of Chapter 4. To apply the evolution strategy,

we need to have data sets ready. We first used papers of eight categories to construct

ten collections as our training data. Then we used papers from the same eight categories

to constructed ten collections as our test data 1. Lastly, weused papers from all twelve

categories to construct ten collections as test data 2.

We used two different ways to find these weights through the evolution strategy.

1. We tried to find all the five weights simultaneously, by doing clustering on training

data sets combining vector space and semantics measures. Table 8 shows the results of

this approach. 2. We find these weights through two stages. That means, we findW3,
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W4, andW5 first, by doing document clustering on training data sets using the semantic

similarity (equation 4.5) only, then we do document clustering by combining vector space

and semantics measure to find weightsW1, W2. Table 9 shows the results of using this

approach. The last two rows of both tables are the average andstandard deviation.

Table 8: Results of Evolution Strategy - Get All Weights Simultaneously
# G W3 W4 W5 W1 W2 train test1 test2 

56 2.898 2.414 1.726 4.777 0.152 0.863 0.809 0.767 

71 0.915 1.036 0.000 13.146 1.459 0.866 0.800 0.794 

68 0.436 0.900 0.338 2.452 0.129 0.851 0.762 0.782 

19 0.747 3.983 0.000 5.418 0.888 0.852 0.772 0.793 

95 0.994 4.841 2.454 10.575 1.142 0.866 0.790 0.814 

60 0.351 1.184 0.444 3.683 1.269 0.862 0.803 0.806 

8 0.716 2.449 1.446 2.989 0.208 0.857 0.780 0.837 

6 0.112 0.692 0.206 2.726 2.407 0.864 0.788 0.828 

17 0.805 1.373 0.000 1.661 0.487 0.851 0.765 0.797 

21 1.371 3.957 0.009 3.156 0.040 0.861 0.757 0.762 

42.1 0.935 2.283 0.662 5.058 0.818 0.859 0.782 0.798 

31.4 0.776 1.502 0.886 3.795 0.764 0.006 0.018 0.024 

 

Table 9: Results of Evolution Strategy - Get Weights Separately
# G1 #G2 W3 W4 W5 W1 W2 train1 train2 test1 test2 

10 39 0.203 3.205 0.000 4.540 0.574 0.629 0.861 0.787 0.781 

5 54 0.534 5.006 0.782 4.707 0.396 0.605 0.857 0.797 0.792 

4 100 0.000 0.776 0.705 3.153 0.000 0.604 0.758 0.719 0.739 

8 14 0.658 3.072 0.194 6.326 1.162 0.621 0.855 0.782 0.794 

24 4 0.692 2.497 0.086 1.706 0.443 0.602 0.855 0.779 0.790 

3 11 0.859 4.509 1.798 2.051 0.113 0.618 0.859 0.780 0.834 

11 27 0.939 9.636 3.526 8.697 0.446 0.613 0.859 0.781 0.824 

3 19 0.875 4.168 2.330 6.436 0.316 0.616 0.859 0.779 0.812 

13 7 0.901 4.507 4.979 3.016 0.383 0.600 0.868 0.747 0.780 

14 100 0.000 0.430 0.406 1.770 0.000 0.604 0.758 0.719 0.739 

9.5 37.5 0.566 3.781 1.481 4.240 0.383 0.611 0.839 0.767 0.789 

6.5 36.3 0.370 2.576 1.676 2.341 0.337 0.009 0.043 0.028 0.031 

 

In both approaches, once we get promising values for these five weights, we use

these weights to do clustering on two test sets. Results are also shown in both tables. In
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using evolution strategy, we set 100 as the threshold of the number of generations, 85%

of the average F-Measure as the stop criteria of document clustering by combining vector

space and semantics measure in both approaches, and 60% as the stop criteria of the first

stage in the second approach. That means, in both approaches, the training process will

stop when either the number of generations reaches 100, or the average F-Measure of

clustering reaches 85%. For the second approach, the first stage will stop when either the

number of generations reaches 100, or the average F-Measureof clustering reaches 60%.

In each approach, we obtained ten combinations of these five weights. Overall,

compared with F-Measure 71.9% and 73.9%, when doing clustering on these two test sets

using vector space only, these twenty combinations found through both approaches can

improve F-Measure by 5% on both test sets. These performances are consistent, which

is evidenced through standard deviations of all the F-Measures (maximum is 0.031 on

test data sets). However, there are some differences between these two approaches. First,

all ten combinations in the first approach resulted in more than 85% (75.9% when using

vector space measure only) on training data within 100 generations, whereas two combi-

nations in the second approach did not reach 85% when evolution process stopped after

competing 100 generations. Secondly, the first approach resulted in 78.2% and 79.8% of

average F-Measure on the two test sets respectively. These numbers are a little higher

than 76.7% and 78.9% obtained through the second approach. Thirdly, the average num-

ber of generations was 42.1 in first approach which was less than 47 (9.5+37.5) in the

second approach. From these comparisons we may conclude that the first approach is a

little better than the second one. However, looking at the second table carefully we found
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something interesting.

We noticed, in the second approach, two evolution strategy processes did not

reach expected F-Measure 85% on training data. Interestingly, in both combinations,

the weightsW3 andW2 are 0’s. This means, when finding the first three weights using

semantics measure only,W3 was assigned 0 and the F-Measure still reached 60% within

100 generations (4 and 14 respectively). But, when findingW1 andW2, with W2 also

occasionally being assigned 0, the F-Measure never reached85% within 100 generations.

This may suggest that even though title is not significant in clustering papers (the average

F-Measure is 29.9% when doing clustering using title only),it is important. To avoid this

situation we can mandateW3 to be bigger than 0 when finding these three weights. If we

remove these two exceptions from Table 2, we will get an average F-Measure of 77.9%

and 80.1% which are almost the same as that in the first approach with a lower average

number of generations 31.5 (9.6+21.9).

In conclusion, both approaches are consistent and comparable in finding weights.

And weights found in both approaches can indeed improve F-Measure of clustering.

The reader may have noticed that in all the combinations of these weights, we

always haveW1 > W2. That means the evolutions strategy assigned more weight to

vector space measure than to semantics measure. There are two possible reasons behind

this. First, is that the vector space vectors which use the entire documents, include more

complete information than semantics extracted from titles, references, and co-citation,

which are part of the document. This can be seen through Table10. It shows the F-

Measures of the results of clustering using single measuresover the training data. The
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Table 10: F-Measures of Clustering Using Single Measures

vector space 75.9%

semantics 63.8%

titles 29.9%

co-citations 35.8%

citation semantics 59.3%

F-Measure of using vector space measure only is 75.9%, in contrast to 63.8% of using

semantics measure only. Another reason is thatW5 has been assigned a value about 5

in most cases, which implies a higher value for the semanticsmeasure compared to the

vector space measure which is normally low with TF-IDF. Therefore, assigning more

weight to vector space measure compensates for this difference and hence balances these

two measures, which leads to the higher quality of clustering.

7.2.2 Combining Vector Space and Semantics Measure

In this approach, we actually have two ways to combine vectorspace and se-

mantics measure as shown in equations 4.2 and 4.3. The formerone is the harmonic

mean of these two measure (as in F-Measure which is the harmonic mean of precision

and recall), the latter is the simple addition of them. Sincethe former combination bal-

ances these two measures, we expect a better result by using it. Our experimental results

conformed this hypothesis. Figure 24 shows some of the comparisons, where “F-H”, “P-

H”, “R-H” are the F-Measure, precision, and recall, respectively, of using the harmonic

mean of vector space and semantic measures, the other three are for simple addition of

these two measures. On the x-axis, the labels are the combinations of the five weights

130



“W1 : W2 : W3 : W4 : W5” used in equations 4.2 and 4.3. Overall, the results of using

harmonic mean is slightly better than using simple additionwith about a 2% edge consid-

ering F-Measure. So, if not specified, in our experiments we used equation 4.2 to combine

these two measures.

Figure 24: Comparison of Results Using Harmonic Mean and Simple Addition

7.2.3 Results of Using CS-VS on Physics Documents

To test the consistency of the performance of our approach applied to different do-

mains, we downloaded some physics papers from Nature Physics Portal [20]. We selected

nine sub-topics from the available collections. Their names along with abbreviations are

as follows: Astrophysics (AP), Atomic and molecular physics (AMP), Biological physics

(BP), Chemical physics (CP), Condensed-matter physics (CMP), Materials physics (MP),
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Nanotechnology physics (NP), Optical physics (OP), and Quantum physics (QP).

From each category, we downloaded around 50 of the most recent papers. Out of

these papers, we created training data set, test data set 1, and test data set 2. We used

papers from the first seven categories as training data and test data set 1. Then, we added

papers from the other two categories (Optical and Quantum physics) as noise to create test

data set 2. Training data and test set 1 each consisted of six collections with a number (k)

of categoriesk=2, 3, 4, 5, 6, and 7 respectively. Test data set 2 consists of eight collections

with k=2, 3, 4, 5, 6, 7, 8, and 9, respectively. More detailed information of these three

data sets and F-Measures of clustering results are shown in Table 11 and Figure 25.

Table 11: Results of Clustering on Physics Documents
Data sets Categories Total Number 

of Documents 

F-Measure of 

VS only (%) 

F-Measure of VS 

+Semantics (%) 

Training  AP, AMP 57 72.2 79.2 

AP, AMP, MP 75 43.6 74.7 

AP, AMP, CP, MP 104 47.3 49.3 

AP, AMP, CP, CMP, MP 133 33.1 34.4 

AP, AMP, CP, CMP, MP, NP 130 37.6 34.5 

AP, AMP, BP, CP, CMP, MP, NP 128 40.7 36.5 

Average -> 45.7 51.4 

Test 1 AP, AMP 48 36.8 62.5 

AP, AMP, MP 53 75.5 77.4 

AP, AMP, MP, NP 73 45.3 53.4 

AP, AMP, CMP, MP, NP 91 39.6 41.0 

AP, AMP, BP, CMP, MP, NP 86 40.8 35.5 

AP, AMP, BP, CP, CMP, MP, NP 145 29.4 28.7 

Average F-Measure 44.6 49.8 

Test 2 OP, QP 45 34.3 51.5 

AP, AMP, QP 73 47.2 48.2 

AP, AMP, MP, QP 63 51.5 53.2 

AP, AMP, MP, NP, QP 86 41.8 49.4 

AP, AMP, CMP, MP, NP, QP 97 40.5 42.5 

AP, AMP, BP, CMP, MP, NP, QP 89 45.1 39.5 

AP, AMP, CP, CMP, MP, NP, OP, QP 117 31.3 37.8 

AP, AMP, BP, CP, CMP, MP, NP, OP, 

QP 
192 27.9 35.1 

Average -> 40.0 44.7 

 

Using Evolutionary Strategy, we obtained a weight combination of “W1 : W2(W3 : W4 :

W5) = 12.419 : 1.094(5.580 : 7.296 : 3.778)” (There is no keyword information in
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Figure 25: Average F-Measures of Clustering on Physics Documents

this physics collection either), which improved the accuracy of clustering by 5.7% (from

45.7% to 51.4%)over the training data in terms of F-Measure.Worth mentioning, is that

F-Measures of clustering using title only, citation semantics only, and co-citation only,

are 22.7%, 40.7%, and 21.9%, respectively. They were all lower than clustering over

the biomedical documents which are shown in Table 10. However, there is one thing in

common, the result of using citation semantics is the best among these three semantic

elements.

Using these weights we did clustering on test sets, we also got 5.2% (from 44.6%

to 49.8%) improvement compared to that of using vector spacemeasure only on test set

1, and 4.7% improvement on test set 2. These overall results were not as good as the

results as we got from biomedical data sets where in many cases the improvements are

over 10%. Nevertheless, the performance of our approach is consistent. In most cases, it

is much better than using vector space only to do clustering.
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Comparing these results and closely examining references in the documents of

both domains, we can tell that the quality or clarity of references in physics data sets is

not as good as that of Biomedical data sets. Also, granularity of categories in Physics data

sets varies more than that in Biomedical data sets. For example, atomic and molecular

physics is closer to chemical physics than to astrophysics.These two reasons may make

the citation semantics less significant than that in Biomedical data sets.

As a byproduct, the test on physics documents shines the light on another potential

use of our approach - to reveal or measure the quality of references in a collection of

documents. That is, on the one hand, the semantics measure can help improve the quality

of document clustering. On the other hand, the magnitude of the improvement of our

approach reveals the quality of the references used in the document collection.

7.3 Results from CS2CS

7.3.1 Comparing CS2CS with Other Approaches

In the experiments of this approach, we used the documents from the same eight

biomedical categories as used in the training set of CS-VS. We also used other categories

to test out splitting and merging algorithms. We first did experiments using different

document clustering algorithms to compare their performance. Table 12 and Figure 26

show the detailed results of using K-Means clustering (K-Means), Bisecting K-Means

clsutering (Bisecting K-Means) K-Medoids clustering withvector space similarity mea-

sure (K-Medoids(VS)), K-Medoids clustering with combinedvector space and semantics

measure (CS-VS), linear clustering using feature selection only from vector space vectors
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(FV (VS)), and CS2CS model based linear clustering using the3-level feature selection

(CS2CS), to cluster 567 of these 725 documents that are from those eight classes men-

tioned previously. For the last two clustering algorithms,the other 158 documents that

also belong to these eight classes were used as training data. In this section, if not spec-

ified, all the values of the F-Measures, precisions, and recalls are the average values of

at least five runs on the data collection with the same size butdifferent documents. The

Table 12: Comparison of Results of Different Clustering Algorithms
Algorithm 

F-Measure 

(%) 

Precision 

(%) 

Recall 

(%) 
FV_Length1 FV_Length2 

Runtime 

(Seconds) 

K-Means 40.1 44 39.3 N/A N/A 301 

Bisecting K-Means 42.4 45.1 41.7 N/A N/A 325 

K-Medoids(VS) 50.7 50.2 54 N/A N/A 668 

CS-VS 55.9 56.3 55.1 N/A N/A 1219 

FV(VS) 59.3 66.4 64.6 10~100 10~100 239 

CS2CS 61.9 61.7 72 10~100 10~100 254 

 

Figure 26: Comparison of Results of Different Clustering Algorithms
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original weights “W1 : W2(W3 : W4 : W5)” are “10 : 1(1 : 5 : 1)” that were obtained

through the evolution strategy during the training process. These weights are for similar-

ity measure when doing K-Medoids clustering with combined vector space and semantics

measures. In doing CS2CS clustering, we do not need these twosimilarity measures.

However, as shown in equation 5.1,these weights (except for“W6”) are used to calculate

the weight of each term of a feature vector. Since we adjustedthe weights of terms in

the vector space by dividing the average TF-IDF weight (smaller than 1), we change the

weight for vector spaceW1 to 1 accordingly.

FV Length1 is the length of the feature vector of each single document within an

existing cluster. In other words, it is the number of top terms used to form the feature

vector of a single document. These feature vectors are used to form the feature vector

of the cluster they belong to. FVLength2 is the length of the feature vector of a new

document. This feature vector is used to compare with the feature vectors of existing

clusters to decide where the new document goes. Once the new document is put into a

cluster, the feature vector with FVLength1 (not FVLength2) of this new document will

be used to update the feature vector of that cluster. A reasonable estimation of both length

are in the range of 10 and 100. If the length is less than 10, we lose too much useful

information; if it is bigger than 100, more noise will be included. In either case, the

resulting clustering had a lower quality. The last two rows of Table 12 show the average

F-Measure, precision, and recall of approaches FV (VS) and CS2CS with the lengths in

this range.

Runtime is the time used to cluster these 567 documents that belonged to eight
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classes. It did not include the runtime used in the training process in the cases of CS2CS

and CS-VS. The training process could be skipped if we set theweights (e.g. “1:1:1:5:1”

in this case) heuristically. Or, even if we need the trainingprocess, we could use a small

training data set (which results in a fixed small training time) without affecting much of

the clustering quality, since the feature vectors of clusters evolve as they grow. Therefore

the training time is ignorable, should there be a large number of new documents to be

clustered.

In this table, we can see CS2CS is better than any others regarding both accuracy

and runtime. FV (VS) uses a similar procedure as CS2CS, but only uses vector space

vectors to form feature vectors for documents. For FV (VS), the average F-Measure is

59.3%, whereas it is 64.8% in the case of CS2CS. It clearly demonstrates the importance

of considering semantic elements in clustering. Another noteworthy point is that the result

of FV (VS) is better than that of any other algorithms except for CS2CS. This shows

that our strategy of forming feature vectors and normalizing feature vectors effectively

retrieved important information and excluded noise in the same time.

7.3.2 Results of Automatically Finding FVLength2

As discussed in Section 5.6, instead of setting FVLength2 explicitly, we can

search for the best value in real time. Table 13, Figure 27, and Figure 28 show the re-

sults of CS2CS using different strategies to search for the length of new documents: brute

force search, and two sampling search algorithms, namely, linear increment search and
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exponential increment search. The two graphs show the comparison of the average F-

Measure, precision, recall, and runtime, respectively. FVLength1 is the length of the

Table 13: Results of CS2CS with Automatic Finding the Lengths of Document Feature

Vectors
FV_Length1 Brute Force Search Linear Increment Search Exponential Increment Search 

F-Measure 

(%) 

Runtime 

(Seconds) 

F-Measure 

(%) 

Runtime 

(Seconds) 

F-Measure 

(%) 

Runtime 

(Seconds) 

10 52.6 440 51.9 257 51.3 233 

20 63.4 619 63.3 308 65.4 261 

50 66.0 1099 68.6 400 66.5 332 

70 67.0 1360 66.2 468 66.7 374 

100 73.1 1748 72.8 559 71.1 437 

Average -> 64.4 1053 64.5 398 64.2 327 

 

Figure 27: Results of CS2CS with Automatic Finding the Lengths of Document Feature

Vectors

feature vector of any existing document used to form the feature vector of the cluster it

belong to. From this table, one can tell that the difference among the F-Measures of us-

ing these strategies is trivial. But the Brute Force Search takes much longer time than

the other two do. Considering the tradeoff between the F-Measure and the runtime, the

exponential increment search is the best one. The followingare two examples of which
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Figure 28: Runtime of CS2CS with Automatic the Lengths of Document Feature Vectors

lengths have been checked between 10 and 100 by using Linear Increment Sampling and

Exponential Sampling. In both examples, a fewer number of lengths has been checked

Table 14: Examples of Lengths Checked by These Two Sampling Search

Exponential Increment Search Linear Increment Search

10, 11,13, 17, 25, 41, 73 10, 11,13, 16, 20, 25, 31, 38, 46, 55, 65, 76, 88

10, 11, 12, 14, 18,19, 20, 22, 26, 34, 50, 82 10, 11, 12, 14, 17,21, 22, 24, 27, 31, 36, 42, 49, 57, 66, 76, 87, 99

using exponential increment search. Also in the first example, they both found the same

best length as 13; while in the second one, the best lengths they found are a little differ-

ent (19 vs. 21). On average, exponential increment search will check a fewer number of

lengths than linear increment search (8 vs. 14.5).

From the results and analysis above we can see, even though a range of lengths of

the feature vector of a new document still need to be set heuristically, the range could be

very large. This is because using exponential increment sampling we can quickly find a

best length within even a very large range. While the runtimeis still comparable with that

139



of using a length manually set, and the F-Measures are consistently higher.

7.3.3 Forming Feature Vector with the Aid of MeSH

To take advantage of MeSH ([18]), we adjusted weights of the terms found in

MeSH terms. That is, we increase the weights of terms found inMeSH since MeSH

terms are considered as important terms in Biomedical areas. In each feature vector, if a

word is found in any MeSH term, we adjust its weight by doubling it. Table 15 shows

the results of using MeSH compared to results of not using MeSH. Both use exponential

increment search to find the best length of the feature vectorof a new document.

Table 15: Results of CS2CS with MeSH and without MeSH

FV_Length1 

Without MeSH With MeSH 

F-Measure 

(%) 

Precision 

(%) 

Recall 

(%) 

F-Measure 

(%) 

Precision 

(%) 

Recall 

(%) 

10 51.3 51.8 64.8 51.3 50.8 62.2 

20 65.4 64.1 74.6 62.4 61.7 73.1 

50 66.5 65.1 80.3 72.7 70.0 80.0 

70 66.7 65.7 80.8 72.9 69.5 82.7 

100 71.1 68.1 82.3 79.5 77.4 83.6 

150 73.4 72.7 80.9 77.0 77.1 81.7 

Average -> 65.7 64.5 77.3 69.3 67.8 77.2 

 

While the recalls of these two results are almost the same, the F-Measure and

precision did increase by using MeSH. This is because MeSH terms are relevant or sig-

nificant terms in biomedical domain, by assigning more weights to these terms in cluster-

ing biomedical documents, we expected to get clusters with higher precisions and hence

higher F-Measures even though the recalls may remain the same. From this table, we also

see that with FVLength1=100, we have the highest increment of F-Measures (71.1 vs.

79.5). That means, when we using 100 as the length of the feature vector of existing doc-

uments to form the feature vector of the clusters they belongto, we get the best tradeoff
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between keeping enough useful information and eliminatingnoise.

We also investigated the case of multi-word terms with partially or exactly match-

ing MeSH terms. Table 16 is the example of using terms with up to five words. As

expected,CS2CS clustering with multi-word terms with partial match takes much longer

time than exact match. Since with exact match, we can use a hash table to store MeSH

terms, and the search will just take a constant time. But for partial match, we need look

at every MeSH term to find the best match, in other words, we need to find the highest

percentage of match. For the exact match, we double the weighs of matched terms. For

partial match, we multiply the weight of a term by1+p, wherep is the highest percentage

of the match between the term and some MeSH term. Surprisingly, the average F-Measure

of the partial match is almost the same as that of exact match even with the high cost of

runtime. This is because, by increasing weights of terms with partial match to MeSH

terms, we somehow give more weights to some noise terms. However, the average differ-

ence between their precisions and recalls are not surprising. With exact MeSH match, we

get a little higher precision, while with partial match, we have a little higher recall. An-

other observation on this table is that, it seems the F-Measure steadily increase with the

FV Length1 except “20”. Actually, as we mentioned before, withFV Lenght1 increase,

more noise terms will be included in the feature vector of each cluster. So the F-Measure

will go down at certain point. We did try length “200”, and got71.9%, 69.4%, and 82.5%

for F-Measure, precision, and recall, respectively. Table17 shows an example of the

words of a feature vector with length 20. It is the document feature vector of document

“Assessment of the role of transcript for GATA-4 as a marker of unfavorable outcome in
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Table 16: Results of CS2CS Using Multi-word Terms Partiallyor Exactly Matching

MeSH

FV_Length1 

Partial  Match Exact Match 

F-Measure 

(%) 

Precision 

(%) 

Recall 

(%) 

F-Measure 

(%) 

Precision 

(%) 

Recall 

(%) 

10 66.5 64.6 77.9 65.7 66.6 72.2 

20 62.8 61.8 75.7 67.3 66.2 76.2 

50 69.2 67.2 81.1 71.3 69.3 81.7 

70 70.8 69.2 82.8 70.7 68.9 80.9 

100 74.7 71.6 85.2 73 71.7 81.3 

150 77.3 75 85.8 73.7 72.3 82.9 

Average -> 70.2 68.2 81.4 70.3 69.2 79.2 

 

Table 17: Words of a Document Feature Vector Mapped to MeSH Terms
Word MeSH ID MeSH Term 

carcinoma A11.251.860.590 Embryonal Carcinoma Stem Cells 

marker D12.644.360.543 01factory Marker Protein 

fate   

db   

trigger C05.651.869.870.800.800 Trigger Finger Disorder 

tumor A11.251.210.190 Cell Line, Tumor 

cell A03.556.124.369.320 Goblet Cells 

transgene B01.050.050.680.136.500 Mice, Transgenic 

mutat E05.393.760.700.300 DNA Mutational Analysis 

optic A08.800.800.120.680 Optic Nerve 

rt   

promote G02.111.570.080.689.675 Promoter Regions, Genetic 

malignant C02.256.466.606 Malignant Catarrh 

conserve D27.505.696.242 Bone Density Conservation Agents 

pediatric H02.163.700 Pediatric Dentistry 

transcript D08.811.913.050.134.440 p300-CBP Transcription Factors 

predict E01.370.378.530.775 Ovulation Prediction 

leydig A05.360.444.849.513 Leydig Cells 

bromide D01.139.300.050 Bromides 

mice B01.050.050.157.040.500 Mice, Congenic 

 

human adrenocortical neoplasms Barbosa Angela”, which belongs to the category “BMC

Endocr Disord” (“BMC Endocrine Disorders”). They have beensorted according to their

weights. And their weights have been adjusted considering MeSH. We can see, among

these 20 words, 17 were found in some MeSH terms.
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Table 18: Words of a Cluster Feature Vector Mapped to MeSH Terms
Label Weight MeSH ID MeSH Term Root MeSH Term 

reinhardtii 0.0638 B01.040.080.925.344.650 
Chlamydomonas 

reinhardtii 
Eukaryota 

polyp 0.0638 C04.557.470.035.215 Adenomatous Polyps Neoplasms 

polyphosphate 0.0638 D01.248.497.158.730.650 Polyphosphates Inorganic Chemicals 

saito 0.0638 
   

ecppxc 0.0638 
   

pbp 0.0638 
   

exopolyphosphatas

e 
0.0638 

   

ssp 0.0631 
   

membership 0.0631 N04.452.122 
Committee 

Membership 

Health Services 

Administration 

mtic 0.0631 
   

mediterranean 0.0631 C16.320.382.625 
Familial 

Mediterranean Fever 

Congenital, Hereditary, 

and Neonatal Diseases 

and Abnormalities 

hereafter 0.0631 
   

arabia 0.0623 Z01.252.245.500.750 Saudi Arabia Geographic Locations 

xerostomia 0.0623 C07.465.815.929 Xerostomia 
Stomatognathic 

Diseases 

dryness 0.0623 
   

farsi 0.0623 
   

bardow 0.0623 
   

vdp 0.0615 
   

debt 0.0615 
   

longterm 0.0615 
   

vocation 0.0615 E02.831.782 
Rehabilitation, 

Vocational 
Therapeutics 

opportune 0.0615 I01.409.137.500.996 

United States Office 

of Economic 

Opportunity 

Social Sciences 

gallagher 0.0615 
   

aapd 0.0607 
   

smokeless 0.0607 
B01.650.388.100.905.900.87

4 
Tobacco, Smokeless Eukaryota 

gansky 0.0607 
   

cate 0.0599 
   

fluorapatite 0.0599 
   

inhomogenity 0.0599 
   

gaengler 0.0599 
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Table 19: Words of a Cluster Feature Vector Mapped to MeSH Terms (MeSH Considered

in Forming Document Feature Vectors)
Label Weight MeSH ID MeSH Term Root MeSH Term 

polyphosphate 0.0786 D01.248.497.158.730.650 Polyphosphates 
Inorganic 

Chemicals 

orthophosphate 0.0786 D08.811.913.696.645.700 
Pyruvate, Orthophosphate 

Dikinase 

Enzymes and 

Coenzymes 

ecppxc 0.0786 
   

polyp 0.0786 C04.557.470.035.215 Adenomatous Polyps Neoplasms 

arabia 0.0776 Z01.252.245.500.750 Saudi Arabia 
Geographic 

Locations 

xerostomia 0.0776 C07.465.815.929 Xerostomia 
Stomatognathic 

Diseases 

dryness 0.0776 
   

vocation 0.0765 E02.831.782 Rehabilitation, Vocational Therapeutics 

gallagher 0.0765 
   

vdp 0.0765 
   

smokeless 0.0754 
B01.650.388.100.905.900.8

74 
Tobacco, Smokeless Eukaryota 

porosity 0.0744 G01.374.710 Porosity 
Physical 

Phenomena 

fluorapatite 0.0744 
   

inhabit 0.0733 
   

employee 0.0733 N01.824.417.510.300 
Employee Retirement Income 

Security Act 

Population 

Characteristics 

nicola 0.0733 
   

farmer 0.0733 C08.381.483.125.365 Farmer's Lung 
Respiratory Tract 

Diseases 

clermont 0.0733 
   

workforce 0.0726 
   

career 0.0726 F02.463.785.373.346.400 Career Choice 

Psychological 

Phenomena and 

Processes 

obliterated 0.0722 
   

traumatol 0.0722 
   

periapical 0.0722 A14.549.167.646.700 Periapical Tissue 
Stomatognathic 

System 

jacobsen 0.0722 C15.378.140.855.440 
Jacobsen Distal 11q Deletion 

Syndrome 

Hemic and 

Lymphatic 

Diseases 

metamorphosis 0.0722 G07.700.320.500.550 Metamorphosis, Biological 
Physiological 

Phenomena 

andreasen 0.0722 
   

calcified 0.0722 C04.182.089.530.690.605 Odontogenic Cyst, Calcifying Neoplasms 

sequela 0.0722 
   

discoloured 0.0722 
   

subluxation 0.0722 C11.510.598 Lens Subluxation Eye Diseases 

 

Tables 18 and 19 show the top 30 terms (single words) of the twocluster feature
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vectors of cluster “BMC Oral Health”. If a term match a word ina MeSH term, it is

followed by the corresponding MeSH id and MeSH term, as well as the root term, that is

the root category the MeSH term belongs to. Table 18 is the result without considering

MeSH when forming document feature vectors. Table 19 is the result considering MeSH

when forming document feature vectors. In particular, the weight of that term is doubled

if it matches a word of a MeSH term. These are the cases that thelength of the feature

vector of each document is 100, high level weights are 1:1 (1:1:1). Even though you are

not an expert in biomedical domain, you can find the positive effect by using MeSH. More

MeSH terms were brought up to the top 30 (16 versus 10). Of course, there are still many

terms which are not mapped to MeSH terms. This is because that, even though they are

not MeSH terms (yet), they are important to this particular cluster (or category) based

on the data from this collection. As an interesting example,using MeSH, the feature

selection process brought “smokeless” (part of MeSH term “Tobacco, Smokeless”, with

ID “B01.650.388.100.905.900.874”) from the25th position to the11st position in the

cluster feature vector.

Another point we want to mention here is, as we pointed out before, on one hand,

using ontologies can help improve document clustering; on the other hand, document

clustering can help update ontologies in the sense that it can find new significant terms

in a domain or particular categories (subdomains). For example, the terms “dryness” and

“ecppxc”(Escherichia coli exopolyphosphatase, a protein) are in both tables. But neither

is a MeSh term. However, based on our results, they could be added to MeSH, especially

if the category “Oral Health” is included in MeSH in the future.
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Table 20 shows the number of documents of each cluster in our experiments and

the actual length of each cluster feature vector with and without considering MeSH in

forming document feature vectors. The top 30 terms of the other cluster feature vectors

and their mapping to MeSH terms are listed in the appendix of this dissertation.

Table 20: Lengths of Cluster Feature Vectors

Cluster Name 

Number of Documents in 

Cluster 
Length of Cluster Feature Vector 

With MeSH Without MeSH With MeSH Without MeSH 

Behav Brain Funct     

BMC Blood Disord 57 65 2175 2710 

BMC Cardiovasc Disord 108 96 2585 2935 

BMC Endocr Disord 55 47 2151 2247 

BMC Neurol 95 100 2592 3085 

BMC Oral Health 74 80 2220 2723 

BMC Plant Biol 175 174 3267 4030 

Cough 35 39 1542 1815 

 

7.3.4 High-level Weights

As mentioned in Subsection 7.3.1, the high-level weights (weights for different

parts of a document) were set to “W1 : W2(W3 : W4 : W5) = 1 : 1(1 : 5 : 1)” based

on the training process used in CS-VS. In this subsection, wewant to show that we still

can get good results without this training process. In otherwords, we just use the data

set in training process as starting set, and use uniform weights (let them be 1:1 (1:1:1))

to get initial feature vectors for the starting clusters. Ifthe result is comparable with that

using the weights obtained from training process, we can eliminate the training process.

Table 21 shows the results using different weights. In this experiment, we used single-

word terms, and the weights of terms matched exactly with MeSH terms were doubled.

FV Length1 is the length of the feature vector of each document that is used to form the

feature vector of the cluster it belongs to.
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From this table we can see, the average F-Measure of using 1:1(1:1:1) is even a

little better than using 1:1 (1:5:1) which is obtained through training process. Of course

it does not mean that the less we assign the weight to citationsemantics, the higher the

F-measure will be. We have shown at the beginning of this section that without citation

semantics, the F-Measure is usually lower than using citation semantics. Furthermore,

from this table, we can see, that the highest F-Measure 76.2%happens when weights are

1:1 (1:5:1). However, the results of using these two different weight sets are comparable.

Also we notice that the F-Measure is not so sensitive to FVLength1 when using 1:1

(1:1:1). That is a merit we want since FVLength1 has to be set heuristically.

Table 21: Results of Using Different Weights
 1:1 (1:1:1) 1:1 (1:5:1) 

FV-Length1 F-Measure 

(%) 

Precision 

(%) 

Recall 

(%) 

F-Measure 

(%) 

Precision 

(%) 

Recall 

(%) 

10 68.9 67.3 78.1 63 62.6 75.7 

20 66.6 65.4 75.9 68.2 65.7 80.7 

50 71.2 69.8 81.3 69.7 67.9 82.8 

70 71.5 70.3 83.1 70.8 69.7 82.8 

100 71.7 69.7 82.1 76.2 73.7 84.9 

150 71.8 69.2 80.9 71.6 69.3 81.6 

Average -> 70.3 68.6 80.2 69.9 68.1 81.3 

Deviation -> 2.1 1.9 2.7 4.3 3.7 3.1 

 

7.3.5 Confusion Matrix and Fuzzy Clustering

We have shown the average F-Measures of the clustering with different param-

eters. Now we want to look at each cluster in detail to see whatwas going on there.

Table 22 is the confusion matrix (or matching matrix) of the resulting eight clusters us-

ing weights 1:1 (1:1:1), FVLength1=100, with MeSH. From this table we can see, six

out of these eight clusters had high precisions (higher than70%). There are two reasons

why the other two clusters had low precisions. First, there were only a small number of
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documents in the original two categories (18 for “BMC EndocrDisord” and 9 for “BMC

Blood Disord”). Therefore, the feature vectors of these twoclusters extracted from these

documents could not precisely reflect the semantics of thesetwo categories as feature

vectors of other clusters did, in other words, the boundaries defined by these two feature

vectors were not as clear as others and hence, some documentsfrom other categories

were “trapped” into these two clusters, which led to low precisions. Another reason is

that they are also semantically close to other categories, which causes the misplacement

of documents from other categories. For example, “BMC Endocr Disord” is close to

“BMC Cardiovasc Disord”, hence nine documents from “BMC Cardiovasc Disord” were

put into “BMC Endocr Disord”. Obviously, “BMC Blood Disord”is also close to “BMC

Cardiovasc Disord”, so eight documents from “BMC Cardiovasc Disord” were put into

cluster “BMC Blood Disord”.

Table 22: The Confusion Matrix of a Sample Clustering
 Actual number of documents of each category 

Precision 

(%) 

N
u

m
b

er
 o

f 
d

o
cu

m
en

ts
  

in
  
ea

ch
  
r
es

u
lt

ed
 c

lu
st

er
 

 

BMC 

Endocr 

Disord 

(18) 

BMC 

Neurol 

(141) 

BMC 

Cardiovasc 

Disord 

(84) 

BMC 

Blood 

Disord 

(9) 

BMC 

Oral 

Health 

(53) 

BMC 

Plant 

Biol 

(161) 

Behav 

Brain 

Funct 

(90) 

Cough 

(11) 

69.7 

(avg) 

BMC 

Endocr 

Disord 

16 15 9 0 0 3 3 0 34.8 

BMC 

Neurol 
0 66 6 1 0 0 1 0 89.2 

BMC 

Cardiovasc 

Disord 

0 23 59 0 0 0 1 0 71 

BMC Blood 

Disord 
1 16 8 6 1 0 0 0 18.8 

BMC Oral 

Health 
1 2 0 1 50 0 1 0 90.9 

BMC Plant 

Biol 
0 1 1 0 2 156 0 0 97.5 

Behav 

Brain Funct 
0 14 1 1 0 2 84 0 82.4 

Cough 0 4 0 0 0 0 0 11 73.3 

 82.1(avg) 88.9 46.8 70.2 66.7 94.3 96.9 93.3 100 
<-Recall 

(%) 
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To see relations between clusters, we computed the similarities of every two clus-

ters as shown in Tables 23 and 24. An important observation onthese two tables is that

the similarities become smaller as the boundaries of clusters become clearer as new doc-

uments being added in.

Table 23: Similarities Between Clusters of the Starting Set

 

BMC 

Endocr 

Disord 

BMC 

Neurol 

BMC 

Cardiovasc 

Disord 

BMC 

Blood 

Disord 

BMC 

Oral 

Health 

BMC 

Plant 

Biol 

Behav 

Brain 

Funct Cough 

BMC Endocr 

Disord(20) 
1.0000 0.0437 0.0666 0.0583 0.0425 0.0307 0.0370 0.0327 

BMC Neurol(19) 0.0437 1.0000 0.0624 0.0508 0.0526 0.0269 0.0593 0.0437 

BMC Cardiovasc 

Disord(20) 
0.0666 0.0624 1.0000 0.0341 0.0436 0.0305 0.0339 0.0412 

BMC Blood 

Disord(20) 
0.0583 0.0508 0.0341 1.0000 0.0340 0.0489 0.0362 0.0275 

BMC Oral 

Health(20) 
0.0425 0.0526 0.0436 0.0340 1.0000 0.0270 0.0359 0.0405 

BMC Plant 

Biol(20) 
0.0307 0.0269 0.0305 0.0489 0.0270 1.0000 0.0316 0.0234 

Behav Brain 

Funct(20) 
0.0370 0.0593 0.0339 0.0362 0.0359 0.0316 1.0000 0.0335 

Cough(19) 0.0327 0.0437 0.0412 0.0275 0.0405 0.0234 0.0335 1.0000 

 

Table 24: Similarities Between Clusters After Adding New Documents

 

BMC 

Endocr 

Disord 

BMC 

Neurol 

BMC 

Cardiovasc 

Disord 

BMC 

Blood 

Disord 

BMC Oral 

Health 

BMC 

Plant 

Biol 

Behav 

Brain 

Funct Cough 

BMC Endocr 

Disord(66) 
1.0000 0.0396 0.0328 0.0363 0.0282 0.0219 0.0304 0.0231 

BMC Neurol(93) 0.0396 1.0000 0.0460 0.0365 0.0312 0.0131 0.0386 0.0283 

BMC Cardiovasc 

Disord(103) 
0.0328 0.0460 1.0000 0.0343 0.0343 0.0149 0.0282 0.0304 

BMC Blood 

Disord(52) 
0.0363 0.0365 0.0343 1.0000 0.0278 0.0225 0.0218 0.0258 

BMC Oral 

Health(75) 
0.0282 0.0312 0.0343 0.0278 1.0000 0.0173 0.0295 0.0356 

BMC Plant 

Biol(180) 
0.0219 0.0131 0.0149 0.0225 0.0173 1.0000 0.0187 0.0123 

Behav Brain 

Funct(122) 
0.0304 0.0386 0.0282 0.0218 0.0295 0.0187 1.0000 0.0257 

Cough(34) 0.0231 0.0283 0.0304 0.0258 0.0356 0.0123 0.0257 1.0000 

 

From these two tables one can easily tell that some clusters are close to each other

while some are far away from others. This situation reflects the reality. In any domain, no
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experts can set document categories that are evenly dividedor distributed. As the number

of documents grows, some categories will be close to (even overlap) each other while

fall away from others. That is, in most situation, multi-membership of a document is

more reasonable. However, for convenience, in many situations, each document is put in

one category. Especially in the cases of conference and journal papers, where there are

clearly defined tracks or areas, and each paper is usually accepted into one of these tracks

or areas. Nevertheless, it is worth looking at this fuzzy clustering issue in our context of

linear clustering with feature vectors. The following are two examples of memberships in

the process of CS2CS linear clustering.

Example 1 Document Behav Brain Funct-2--1483829 (It belongs to category

Behav Brain Funct in the original data set) is to be put into the eight existing clusters.

With Exponential Increment Search (discussed in Chapter 5 Section 5.6), we found the

best length of its feature vector is 15. The terms in its feature vector are “melatonin;

diseas; brain; oxid; cell; patient; antioxid; sleep; alzheim; protein; neuron; effect; acid;

amyloid; radic”. The similarities between this feature vector and the feature vectors of

eight clusters (calculated with equation 5.5) and the degrees of memberships (calculated

with equation 5.17) are shown in Table 25. From this table, wecan see that this doc-

ument is most similar to cluster “BMC Neurol” with similarity 0.0176. In the case of

hard clustering, it will be put into this cluster. However, it is also similar to others such

as “BMC Blood Disord” (with similarity “0.0138”) and “BMC Endocr Disord” (with

similarity “0.0135”). In the case of fuzzy clustering, if the user set the threshold of de-

gree of membership to be 10%, then this document would be put into “BMC Neurol”,
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“BMC Blood Disord”, “BMC Endocr Disord”, and “BMC Cardiovasc Disord”, and “Be-

hav Brain Funct”, together with their degrees of memberships. Note, according to its

original category “Behav Brain”, this document would bemisplacedinto “BMC Neurol”

in the case of hard clustering.

Table 25: The Memberships of A Document of Category Behav Brain Funct
 BMC 

Endocr 

Disord 

BMC 

Neurol 

BMC 

Cardiovasc 

Disord 

BMC 

Blood 

Disord 

BMC 

Oral 

Health 

BMC 

Plant 

Biol 

Behav 

Brain 

Funct Cough 

Similarity 0.0135 0.0176 0.0108 0.0138 0.0039 0.0059 0.0088 0.0066 

Degree(%) of  

Membership 
16.7 21.7 13.4 17.1 4.8 7.2 10.9 8.2 

 

Example 2 Document Cough-3--2174508 (It belongs to category Behav Brain

Funct in the original data set) is to be put into the eight existing clusters. With Exponential

Increment Search (Chapter 5 Section 5.6), we found the best length of its feature vector is

10. The terms in its feature vector are “capsaicin; reflex; cough; oral; chemesthesi; tast;

test; capsiat; induc; differ”. The similarities between this feature vector and the feature

vectors of eight clusters (calculated with equation 5.5) and the degrees of memberships

(calculated with equation 5.17) are shown in Table 26. This document is most similar to

cluster “Cough” which is its original category. In the case of hard clustering, it will be

correctly put into the cluster where its original category specify. However, in the case

of fuzzy clustering, it also belongs to cluster “BMC Oral Health” should the user set the

threshold of degree of membership to 10%. Of course, it stillhas the highest degree of

membership in the cluster “Cough”.

Table 27 shows the comparison between CS2CS hard clusteringand fuzzy clus-

tering (with the simplest case where a document is assigned to one cluster with the degree
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Table 26: The Memberships of A Document of Category Cough
 BMC 

Endocr 

Disord 

BMC 

Neurol 

BMC 

Cardiovasc 

Disord 

BMC 

Blood 

Disord 

BMC 

Oral 

Health 

BMC 

Plant 

Biol 

Behav 

Brain 

Funct Cough 

Similarity 0.0024 0.0048 0.0012 0.0014 0.0081 0.0008 0.0028 0.0561 

Degree(%) of  

Membership 
3.1 6.1 1.5 1.8 10.4 1.0 3.6 72.4 

 

of membership). In this example, we used weights=1:1 (1:1:1), single-word terms, and

considering MeSH. From this example we can see, the results are comparable. And we

got a higher average F-Measure, precision, and recall with fuzzy clustering. Also, if we

give partial credits of thesemisplaceddocuments in calculating precisions, we get even

higher precisions which are recorded in the column “Count Membership”. However, we

will not apply the same adjustment in computing recall. Otherwise, the recalls would be

more than 1 in some cases. Keep in mind this is just an example used to demonstrate the

idea that our CS2CS algorithm can easily do fuzzy clusteringwithout much change. The

difference between their results would be data dependent. That is, on one collection, the

hard clustering does better, on another, the fuzzy clustering may do better.

Table 27: Comparison Between CS2CS Hard Clustering and Fuzzy Clustering
 CS2CS Hard Clustering CS2CS Fuzzy Clustering 

FV-Length1 F-Measure 

(%) 

Precision 

(%) 

Recall 

(%) 

F-Measure 

(%) 

Precision (%) Rec-

all 

(%) 
W/O 

Membership 

Count 

Membership 

10 68.9 67.3 78.1 70.5 68.7 80.9 77.9 

20 66.6 65.4 75.9 72.6 70.8 81.2 81.1 

50 71.2 69.8 81.3 71.8 69.3 79.2 82.1 

70 71.5 70.3 83.1 73.8 72.1 80.8 83.1 

100 71.7 69.7 82.1 74.6 72.6 80.8 82.8 

150 71.8 69.2 80.9 74.2 71.9 80.3 81.4 

Average -> 70.3 68.6 80.2 72.9 70.9 80.5 81.4 

Deviation -> 2.1 1.9 2.7 1.6 1.6 0.7 1.9 
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Table 28: Confusion Matrix of Clusters Before Splitting

 Actual number of documents of each category 
Precision 

(%) 

N
u

m
b

er
 o

f 
d

o
cu

m
en

ts
  

in
  

ea
ch

  
re

su
lt

ed
 c

lu
st

er
 

 

BMC 

Endocr 

Disord 

(18) 

BMC 

Neurol 

(141) 

BMC 

Cardiovasc 

Disord 

(84) 

BMC 

Blood 

Disord

(9) 

BMC 

Oral 

Health 

(53) 

BMC 

Plant 

Biol 

(161) 

Behav 

Brain 

Funct 

(90) 

Cough 

 

(11) 

BMC 

Cancer 

(  

63.4 

(avg) 

BMC 

Endocr 

Disord 

12 3 6 0 0 5 2 0 12 30 

BMC 

Neurol 
0 79 7 1 0 1 2 0 2 85.9 

BMC 

Cardiovasc 

Disord 

1 24 56 0 0 0 0 0 1 68.3 

BMC Blood 

Disord 
1 6 3 6 2 0 0 0 24 14.3 

BMC Oral 

Health 
1 4 0 1 50 0 1 0 2 84.7 

BMC Plant 

Biol 
3 11 9 0 1 152 1 0 34 72 

Behav 

Brain Funct 
0 10 3 1 0 3 84 0 0 83.2 

Cough 0 4 0 0 0 0 0 11 1 68.8 

 79.8(avg) 66.7 56 66.7 66.7 94.3 94.4 93.3 100 n/a 
<-Recall 

(%) 

 

7.3.6 Cluster Splitting and Merging

Splitting To test our strategy of splitting discussed in Section 5.5 ofChapter 5,

we included 76 documents of another category “BMC Cancer” into the new document

set (it has nine categories now) to be added into the startingset where there are eight

categories as before. Tables 28 and 29 show the confusion matrices before and after

cluster splitting. In this test we used weights=1:1 (1:1:1), FV Length1=100, single-word

terms, and considering MeSH.

From Table 28 we can see, that around 1/3 (24 out of 76) of the new documents

of category “BMC Cancer” go to cluster “BMC Blood Disord” which is understandable

since these two categories are semantically close to each other. However, in the case of
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hard clustering, this makes the precision of the cluster “BMC Blood Disord” very low

(14.3%). This problem could be solved by the splitting procedure we proposed. Table

Table 29: Confusion Matrix of Clusters After Splitting

 Actual number of documents of each category 
Precision 

(%) 

N
u

m
b

er
 o

f 
d

o
cu

m
en

ts
  

in
  

ea
ch

  
re

su
lt

ed
 c

lu
st

er
 

 

BMC 

Endocr 

Disord 

(18) 

BMC 

Neurol 

(141) 

BMC 

Cardiovasc 

Disord 

(84) 

BMC 

Blood 

Disord

(9) 

BMC 

Oral 

Health 

(53) 

BMC 

Plant 

Biol 

(161) 

Behav 

Brain 

Funct 

(90) 

Cough 

 

(11) 

BMC 

Cancer 

(  

66.8 

(avg) 

BMC 

Endocr 

Disord 

12 3 6 0 0 5 2 0 12 30 

BMC 

Neurol 
0 79 7 1 0 1 2 0 2 85.9 

BMC 

Cardiovasc 

Disord 

1 24 56 0 0 0 0 0 1 68.3 

BMC Blood 

Disord 
0 0 0 3 0 0 0 0 3 50 

BMC Oral 

Health 
1 4 0 1 50 0 1 0 2 84.7 

BMC Plant 

Biol 
3 11 9 0 1 152 1 0 34 72 

Behav 

Brain Funct 
0 10 3 1 0 3 84 0 0 83.2 

Cough 0 4 0 0 0 0 0 11 1 68.8 

BMC 

Cancer 
1 6 3 3 2 0 0 0 21 58.3 

 70.3 (avg) 66.7 56 66.7 33.3 94.3 94.4 93.3 100 27.6 
<-Recall 

(%) 

 

29 shows the result of this splitting. It results in a new cluster “BMC Cancer”. 21 out of

24 of themisplaceddocuments of “BMC Cancer” in cluster “BMC Blood Disord” have

been successfully moved into this new cluster. Moveover, the precisions of both newly

formed clusters by splitting are higher than that of cluster“BMC Blood Disord” before

being split. This in turn makes the average precision of all the clusters higher than before

splitting. Even though we have a little lower recall (actually the recall almost stays the

same if we consider the recall for “BMC Cancer” as zero beforesplitting since we did

not have a cluster of “BMC Cancer” at all), the most importantthing is that, through this
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splitting, we obtained more clearly defined clusters instead of the old ambiguous cluster.

Merging Based on the result of splitting shown in Table 29, we continually add 46 more

Table 30: Confusion Matrix of Clusters Before Merging

 Actual number of documents of each category 
Precision 

(%) 

N
u

m
b

er
 o

f 
d

o
cu

m
en

ts
  

in
  

ea
ch

  
re

su
lt

ed
 c

lu
st

er
 

 

BMC 

Endocr 

Disord 

(18) 

BMC 

Neurol 

(141) 

BMC 

Cardiovasc 

Disord 

(84) 

BMC 

Blood 

Disord

(9) 

BMC 

Oral 

Health 

(53) 

BMC 

Plant 

Biol 

(161) 

Behav 

Brain 

Funct 

(90) 

Cough 

 

(11) 

BMC 

Cancer 

(122) 

66.1 

(avg) 

BMC 

Endocr 

Disord 

12 3 6 0 0 5 2 0 26 22.2 

BMC 

Neurol 
0 79 7 1 0 1 2 0 2 85.9 

BMC 

Cardiovasc 

Disord 

1 24 56 0 0 0 0 0 1 68.3 

BMC Blood 

Disord 
0 0 0 3 0 0 0 0 5 37.5 

BMC Oral 

Health 
1 4 0 1 50 0 1 0 2 84.7 

BMC Plant 

Biol 
3 11 9 0 1 152 1 0 35 71.7 

Behav 

Brain Funct 
0 10 3 1 0 3 84 0 0 83.2 

Cough 0 4 0 0 0 0 0 11 2 64.7 

BMC 

Cancer 
1 6 3 3 2 0 0 0 49 76.7 

 71.7 (avg) 66.7 56 66.7 33.3 94.3 94.4 93.3 100 40.2 
<-Recall 

(%) 

 

documents from category “BMC Cancer”, the confusion matrixof the new result is shown

in Table 30. In this new result, 14 out of these 46 documents were added to cluster “BMC

Endocr Disord”, that made the precision of this cluster verylow (30%). However, since

so many documents (26) are from “BMC Cancer”, this makes the similarity of this two

clusters getting closer to the extent that we consider merging them. Table 31 shows the

confusion matrix after merging with the category of “BMC Endocr Disord” present. Table

32 shows the confusion matrix with category of “BMC Endocr Disord” absorbed into

category “BMC Cancer”. In other words, it is the result if we consider these two category
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as the same one. Obviously, this will cause both the precision and the recall to increase.

Of course, if more documents of “BMC Endocr Disord” are addedto this cluster later on,

it may be split into two clusters again and thus cluster “BMC Endocr Disord” will be back

on.

From Table 31 we see that there also are many (35) “BMC Cancer”documents in

cluster “BMC Plant Biol”. However, since this cluster is bigger than the cluster “BMC

Endocr Disord” (177 versus 54 documents), the similarity between “BMC Plant Biol” and

“BMC Cancer” is still under the threshold of merging. Therefore, we do not merge them

at this point.

Table 31: Confusion Matrix of Clusters After Merging with Both Categories Remaining

 Actual number of documents of each category 
Precision 

(%) 

N
u

m
b

er
 o

f 
d

o
cu

m
en

ts
  

in
  

ea
ch

  
r
es

u
lt

ed
 c

lu
st

er
 

 

BMC 

Endocr 

Disord 

(18) 

BMC 

Neurol 

(141) 

BMC 

Cardiovasc 

Disord 

(84) 

BMC 

Blood 

Disord

(9) 

BMC 

Oral 

Health 

(53) 

BMC 

Plant 

Biol 

(161) 

Behav 

Brain 

Funct 

(90) 

Cough 

 

(11) 

BMC 

Cancer 

(122) 

70 

(avg) 

BMC 

Neurol 
0 79 7 1 0 1 2 0 2 85.9 

BMC 

Cardiovasc 

Disord 

1 24 56 0 0 0 0 0 1 68.3 

BMC Blood 

Disord 
0 0 0 3 0 0 0 0 5 37.5 

BMC Oral 

Health 
1 4 0 1 50 0 1 0 2 84.7 

BMC Plant 

Biol 
3 11 9 0 1 152 1 0 35 71.7 

Behav 

Brain Funct 
0 10 3 1 0 3 84 0 0 83.2 

Cough 0 4 0 0 0 0 0 11 2 64.7 

BMC 

Cancer 
13 9 9 3 2 5 2 0 75 63.6 

 71.7 (avg) n/a 56 66.7 33.3 94.3 94.4 93.3 100 40.2 
<-Recall 

(%) 

 

156



Table 32: Confusion Matrix of Clusters After Merging with One Category Remaining
 Actual number of documents of each category 

Precision 

(%) 

N
u

m
b

er
 o

f 
d

o
cu

m
en

ts
  

in
  

ea
ch

  
re

su
lt

ed
 c

lu
st

er
 

 

BMC 

Neurol 

(141) 

BMC 

Cardiovasc 

Disord 

(84) 

BMC 

Blood 

Disord

(9) 

BMC 

Oral 

Health 

(53) 

BMC 

Plant 

Biol 

(161) 

Behav 

Brain 

Funct 

(90) 

Cough 

 

(11) 

BMC 

Cancer 

(140) 

71.3 

(avg) 

BMC 

Neurol 
79 7 1 0 1 2 0 2 85.9 

BMC 

Cardiovasc 

Disord 

24 56 0 0 0 0 0 2 68.3 

BMC Blood 

Disord 
0 0 3 0 0 0 0 5 37.5 

BMC Oral 

Health 
4 0 1 50 0 1 0 3 84.7 

BMC Plant 

Biol 
11 9 0 1 152 1 0 38 71.7 

Behav 

Brain Funct 
10 3 1 0 3 84 0 0 83.2 

Cough 4 0 0 0 0 0 11 2 64.7 

BMC 

Cancer 
9 9 3 2 5 2 0 88 74.6 

 75.1 (avg) 56 66.7 33.3 94.3 94.4 93.3 100 62.9 
<-Recall 

(%) 

 

7.3.7 ICF Versus IDF

As we explained in Section 5.3 of Chapter 5, we used ICF as shown in equation 5.3

to normalize the feature vectors across clusters. To demonstrate its importance in finding

feature vectors of clusters and hence in our CS2CS linear clustering, here we compare the

result of using equation 5.3 to that using IDF like normalization as shown in the following

equation.

Wij1 = Wij2log
k

|{c : tj ∈ c}| (7.10)

WhereWij1 andWij2 are the weights of termtj in the feature vector of clusteri after

and before this adjustment, respectively.k is the number of clusters. Table 33 shows the

sharp comparison of the result using equation 5.3 and the result using 7.10. The result of

using ICF is much better than using IDF like adjustment. Justas we analyzed in Chapter
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5 Section 5.3, this is because some terms that occur in all thedocuments of a cluster were

eliminated because of the use of logarithm and thus some useful information were lost.

In addition, In Chapter 5 Section 5.3 we argued why we choose occurrence count-

ing over weight sum in forming the cluster feature vectors. Here we also shows the result

of using ICF with weight sum in Table 34. Even though the result of ICF with weight

sum was better than using IDF like approach, it was still not as good as using ICF with

occurrence counting. These results further confirm our analysis on the formation and

normalization of cluster feature vectors.

Lastly, regarding the lengths of document feature vectors which are used to form

cluster feature vectors, we show the comparison between theresults of fixed lengths of

document feature vectors and varied lengths of document feature vectors used to form

cluster feature vectors. The varied lengths are that of new documents which are deter-

mined by Exponential Increment Search, as discussed in Section 5.6 of Chapter 5. For

the cluster feature vectors of the starting set, we use fixed lengths of document feature

vectors in both cases. Table 35 shows this comparison. From this table, we can see that

the average F-Measure of these two are almost the same (70.3%vs. 70.7%).

Figure 29 summarizes these comparisons by showing the related F-Measure, pre-

cision, and recall. In all these three tests we used weights=1:1 (1:1:1), single-word terms,

and considering MeSH.
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Table 33: Comparison of Using ICF and IDF Like Weight Adjustments
 ICF Weight Adjustment IDF like Weight Adjustment 

FV-Length1 F-Measure 

(%) 

Precision 

(%) 

Recall 

(%) 

F-Measure 

(%) 

Precision 

(%) 

Recall 

(%) 

10 68.9 67.3 78.1 52.8 53.1 63.3 

20 66.6 65.4 75.9 51.4 50.7 61.8 

50 71.2 69.8 81.3 52.3 51.2 64.5 

70 71.5 70.3 83.1 47.9 47.3 60.9 

100 71.7 69.7 82.1 45.9 44.7 59 

150 71.8 69.2 80.9 42 42.2 53.9 

Average -> 70.3 68.6 80.2 48.7 48.2 60.6 

Deviation -> 2.1 1.9 2.7 4.3 4.2 3.8 

 

Table 34: Comparison of ICF with Occurrence Counting and ICFwith Weight Sum
 ICF with Occurrence Counting ICF with Weights Sum 

FV-Length1 F-Measure 

(%) 

Precision 

(%) 

Recall 

(%) 

F-Measure 

(%) 

Precision 

(%) 

Recall 

(%) 

10 68.9 67.3 78.1 63.9 63.4 71.7 

20 66.6 65.4 75.9 64.1 63.2 76.1 

50 71.2 69.8 81.3 51.7 47.5 69.4 

70 71.5 70.3 83.1 46.6 43.9 58 

100 71.7 69.7 82.1 52.8 53.2 62 

150 71.8 69.2 80.9 56.2 55 63.5 

Average -> 70.3 68.6 80.2 55.9 54.4 66.8 

Deviation -> 2.1 1.9 2.7 7.0 8.0 6.8 

 

Table 35: Comparison of Using Fixed and Varied Lengths of Document Feature Vectors
 ICF with fixed length of document 

feature vector 

ICF with fixed length of document 

feature vector only for starting set 

FV-Length1 F-Measure 

(%) 

Precision 

(%) 

Recall 

(%) 

F-Measure 

(%) 

Precision 

(%) 

Recall 

(%) 

10 68.9 67.3 78.1 70 68.2 78.2 

20 66.6 65.4 75.9 69.3 68 78.5 

50 71.2 69.8 81.3 67.7 67 79.1 

70 71.5 70.3 83.1 69.7 68 80.6 

100 71.7 69.7 82.1 72.9 71.7 79 

150 71.8 69.2 80.9 74.3 72.2 80.8 

Average -> 70.3 68.6 80.2 70.7 69.2 79.4 

Deviation -> 2.1 1.9 2.7 2.5 2.2 1.1 

 

7.3.8 Results of Using CS2CS on Physics Documents

Just as we did for CS-VS which is discussed in Subsection 7.2.3, we also tested

CS2CS on physics collection downloaded from Nature PhysicsPortal [20], to test the

consistency of the performance of CS2CS in different domains. We put the nine sub-

topics or categories and their abbreviations here again: Astrophysics (AP), Atomic and
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Figure 29: Results of Using Different Weight NormalizationApproaches of Terms in

Cluster Feature Vectors

molecular physics (AMP), Biological physics (BP), Chemical physics (CP), Condensed-

matter physics (CMP), Materials physics (MP), Nanotechnology (NP), Optical physics

(OP), and Quantum physics (QP). We divided this collection with 411 papers into two

sets. Set 1 contains 90/80 documents with 10 from each category. Set 2 contains the other

documents. CS2CS uses Set 1 as starting set, and add documents in Set 2 to Set 1 one

by one, the results are for clustering Set 2. The other algorithms do clustering on Set 2

only. Table 36 shows the results of using different clustering algorithms on the physics

set 2. Even though the overall F-Measure are all low using these algorithms, CS2CS is

still much better than other algorithms.

To investigate the reason of why the results are much lower than that over biomed-

ical documents, we computed the similarities between clusters using their cluster feature

vectors. The results are shown in Table 37. Comparing these similarities to those between
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Table 36: Results of Using Different Algorithms on Physics Documents
Categories -> AP, AMP, BP, CP, CMP, MP, NP, OP, QP AP, BP, CP, CMP, MP, NP, OP, QP 

Algorithm 
F-Measure 

(%) 

Precision 

(%) 

Recall 

(%) 

F-Measure 

(%) 

Precision 

(%) 

Recall 

(%) 

K-Means 17 16 21.4 17.7 17.8 20.8 

Bisecting K-Means 16.3 16.1 22.3 19.1 18.7 23.6 

CS-VS 28.4 29.2 41.2 28.7 29.4 44 

CS2CS 33 34.3 35.1 41.1 42.3 43.6 

 

biomedical documents (Tables 23 and 24), it is easy to tell that the similarities between

physics document clusters are much higher than that betweenbiomedical document clus-

ters. This means, the boundary of categories of this physicscollection is not as clear as

that in the biomedical collection. We also notice that the similarities between the cluster

AMP are higher than other similarities. Our hypothesis was that if we remove this cate-

gory, we would get better result. The right half of Table 36 proves our assumption. The

results are better than that with all nine categories which are show on the left half of the

same table.

Table 37: Similarities Between Physics Document Clusters

 
MP AMP CMP AP QP OP CP BP NP 

MP(35) 1.0000 0.0504 0.0478 0.0308 0.0353 0.0479 0.0454 0.0568 0.0686 

AMP(65) 0.0504 1.0000 0.0783 0.0359 0.0513 0.0760 0.0395 0.0470 0.0496 

CMP(74) 0.0478 0.0783 1.0000 0.0326 0.0504 0.0388 0.0369 0.0340 0.0643 

AP(41) 0.0308 0.0359 0.0326 1.0000 0.0267 0.0481 0.0395 0.0291 0.0285 

QP(69) 0.0353 0.0513 0.0504 0.0267 1.0000 0.0450 0.0286 0.0401 0.0359 

OP(43) 0.0479 0.0760 0.0388 0.0481 0.0450 1.0000 0.0345 0.0407 0.0462 

CP(25) 0.0454 0.0395 0.0369 0.0395 0.0286 0.0345 1.0000 0.0439 0.0453 

BP(28) 0.0568 0.0470 0.0340 0.0291 0.0401 0.0407 0.0439 1.0000 0.0462 

NP(31) 0.0686 0.0496 0.0643 0.0285 0.0359 0.0462 0.0453 0.0462 1.0000 
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7.4 Results from InterOBO

7.4.1 Synonym Based Transitive Equivalence

After analyzing the synonym relations between OBO ontologies, we found 6123

instances of Case 1, 78 instances for Case 2 and 66818 instances for Case 3, that are

described in Subsection 6.3.1. Tables 38, 39, and 40 show representative examples of the

cases. In these tables,C1 andC2 stand for the related concepts whileS1 andS2 are the

synonyms of conceptsC1 in OntologyOi andC2 in OntologyOj respectively.

Table 38: Synonym Transitivity Case 1
Oi Oj Instance Example 

O23 O6 236 C1=S2=medicine C2=drug  

O23 O24 114 C1=S2=neuroleukin C2=g6pi_human  

O22 O16;O17 105 C1=stage 29, midbrain hindbrain boundary (mhb) 

C2=S1=isthmus 

O12 O25 102 C1=S2=episternum C2=proepisternum 

O15 O24 98 C1=sodium-translocating f-type atpase activity  

C2=S1=atp synthase 

O6 O23 50  C1=dihydrogen C2=S1=hydrogen 

O15 O23 62 C1=phototransduction C2=S1=phototransduction, 

visible light, light adaptation 

O15 O10 55  C1=S2=protein kinase c activation  

C2=pkc activation signaling  

O22 O16;O17;O23 53 C1=stage 22, forebrain C2=S1=prosencephalon 

O15 O23 39 C1=actin filament C2=S1=microfilament 

 

Table 39: Synonym Transitivity Case 2
Oi Oj Instance Example 

O6 O23 16 C1=S2=l-serine C2=S1=serine 

O23 O6 13 C1=S2=azacitidine C2=S1=5-azacytidine 

O31 O4 5 C1=S2=nucellus C2=S1=megasporangium 

O15 O24 4 C1=S2=pre-replicative complex C2=S1=pre-rc 
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Table 40: Synonym Transitivity Case 3
Oi Oj Instance Examples 

O6 O23 1044 C1=dioxygen(.1+) C2=peroxide S1=S2=O2 

O6 O24 375 C1=azo group C2=notc2_mouse S1=S2=N2 

O15 O24 300 C1=ha1 clathrin adaptor C2=jun_human S1=S2=AP1 

O23 O24 184 C1=heterozygote C2=transporter S1=S2=carrier 

O24 O6;O23 64 C1=deca_drome C2=hydroxide S1=S2=HO 

O25 O12 55 C1=gonostylus C2=unguis S1=S2=claw 

O22 O1;O4;O16; 

O17;O39 

53 C1=stage 20, hindbrain C2=hindbrain 

S1=S2=rhombencephalon 

O22 O16;O17; 

O39 

53 C1=stage 28, hindbrain C2=hindbrain 

S1=S2=rhombencephalon 

O24 O23 42 C1=ifna1_human C2=interferon S1=S2=IFN 

O32 O36 39 C1=cotyledon emergence  

C2=1.01-seedling emergence  

S1=S2=maize growth stage-1.1 

 

7.4.2 Ontology Connection Patterns

Table 41 shows some of quantitatively connecting patterns captured from mul-

tiple ontologies. In this example, the strongest connecting patterns are between Hu-

mandev anatabstract and Humandev anatstaged, and between Poanatomy and Zeamaysanatomy.

The three ontologies that contain the strongest quantitatively connecting patterns are Hu-

mandev anatabtract, Humandev anatstaged and Brenda.

Table 41: Quantitative Connection Patterns
Ontology 1 Ontology 2 Cp1 Cp2 

Human_dev_anat_abstract Human_dev_anat_staged 0.051816801 0.103584007 

Po_anatomy Zea_mays_anatomy 0.034859457 0.079037801 

Adult_mouse_anatomy Brenda 0.017509850 0.070480748 

Flybase_vocab Plant_environment 0.016062465 0.066852368 

Brenda Po_anatomy 0.006391173 0.036148766 

Human_dev_anat_abstract Zebrafish_anatomy 0.004833003 0.035294118 

Brenda Cell 0.004047477 0.028422877 

Brenda Human_dev_anat_abstract 0.004040174 0.032816773 

Brenda Zebrafish_anatomy 0.003760804 0.031130530 

Adult_mouse_anatomy Zebrafish_anatomy 0.003140380 0.027737578 

Adult_mouse_anatomy Human_dev_anat_staged 0.002772477 0.023163161 

Mao Psi_mi 0.002011567 0.022857143 

Brenda Human_dev_anat_staged 0.001136602 0.013924902 
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Table 42: Semantic Connection Patterns
ID Ontology 1 Ontology 2 

Overlapped 

Concepts 
Patterns Score Std 

P1 Mesh 
Fly 

Development 
Drosophila [0.9, 0.2] 4.5 0 

P2 
Loggerhed 

Nesting 
Event Event [0.4, 0.1] 4.0 0 

P3 Mao 
Go Daily 

Termdb 

Cellular component [1.0, 0.2] 

3.08 7.66 
Molecular function [1.0, 0.2] 

Biological process [1.0, 0.1] 

Phosphorylation [1.0, 0.8] 

P4 
Attribute and 

Value 
Rex 

Coordination [1.0, 0.9] 
3.06 2.75 

Process [1.0, 0.2] 

P5 MeSH 
Plasmodium 

Life Cycle 

Parasite [1.0, 0.2] 

2.00 3.46 
Sporozoite [1.0, 1.0] 

Zygote [1.0, 1.0] 

Oocyst [1.0, 1.0] 

P6 Psi Mi Sequence 
Sequence variant  

Mutation 
[1.0, 0.5] 2.00 0 

P7 Sequence 
Molecule 

Role 

Gap [1.0, 0.8] 
1.82 1.62 

Protein [1.0, 0.3] 

P8 
Go Daily 

Termdb 
Cell 

Xanthophore [1.0, 1.0] 
1.82 8.22 

Cell [1.0, 0.1] 

P9 Event 
Mammalian 

Phenotype 

Cell death  

Necrosis 
[0.9, 0.9] 

1.81 1.86 
Tumorigenesis [1.0, 0.3] 

Diarrhea [1.0, 0.9] 

P10 
Flybase 

Vocab 
Rex 

Reduction [1.0, 0.5] 
1.71 0.4 

Detachment [1.0, 0.7] 

 

Table 42 shows some semantic connection patterns identifiedamong these OBO

ontologies. The pattern contains some connection pattern instances as [level value in

Ontology 1,level value in Ontology 2]. For example [0.9, 0.2] means that the CCP inO1

is 0.9 and CCP inO2 is 0.2. This pattern implies that the concept appears close to the leaf

node inO1 while it appears close to the root node inO2. By definition, it is a connecting

pattern betweenO1 andO2. Figure 30 shows the plot of the semantic pattern distribution

of the 10 patterns listed in Table 42.
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Figure 30: Semantic Connection Patterns

7.4.3 Ontology Clustering

Following the method described in 6.4, we clustered the 40 OBO ontologies us-

ing MCL. As shown in Table 43, the clustering experiments resulted in seven clusters

for each of the two formulas, when degree of concept overlap was chosen to be the met-

ric of similarity. Both approach I (probability-based) andapproach II (area-based), are

largely consistent in clustering the OBO ontologies into seven clusters; a few differences

are observed. The following ontologies fall into differentclusters depending on choice

of approach: Dictyostelium Discoideum Anatomy (O7), Fungal Anatomy (O14), Fly De-

velopment (O40), Rex (O34) and Plasmodiumlife Cycle (O30). Three of the ontologies

Emap (O9), Evidencecode (O11), and Image (O18) were found to be singletons, i.e., in

clusters by themselves.

As shown Table in 44, more substantial differences between the two approaches

I and III were observed where the area-based similarity was based on common edges
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(parentchild term pair) in III. While the Concept-based metric resulted in seven clusters,

the edge-based one resulted in six clusters. They showed different results. Specifically, the

edge-based clustering showed different results for the following ontologies: Arabidopsis

Development (O2), Attribute and Value (O3), DictyosteliumDiscoideum Anatomy (O7),

Disease Ontology (O8), Loggerhead Nesting (O19), MosquitoAnatomy (O25), Pathway

(O27), Plant Trait (O29), Plasmodium Life Cycle (O30), Po Temporal (O32), Psi Mi

(O33), Temporal Gramene (O36), Worm Development (O37), ZeaMays Anatomy (O38)

and Fly Development (O40). The clustering graphs shown in Figures 31-33 are generated

using the Pajek [23] that is the program for the large networkanalysis.
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Table 43: Ontology Clustering Based on Shared Concepts
ID Ontology clustering using Approach I Ontology clustering using Approach II 

CC1 Adult_mouse_anatomy (O1),  

Brenda (O4),  

Chebi (O6), 

Dictyostelium_discoideum_anatomy 

(O7),  
Fly_anatomy (O12),   

Fungal_anatomy (O14), 
Human_dev_anat_abstract (O16),  

Human_dev_anat_staged (O17), 

Medaka_anatomy_development (O22),  

Mesh (O23),  

Molecule_role (O24),  

Mosquito_anatomy (O25), 

Plasmodium_life_cycle (O30), 
Zebrafish_anatomy (O39),  

Fly_development (O40)  

Adult_mouse_anatomy (O1),  

Brenda (O4),  

Chebi (O6),  

Fly_anatomy (O12),  

Human_dev_anat_abstract (O16), 

Human_dev_anat_staged (O17), 

Medaka_anatomy_development (O22),  

Mesh (O23),  

Molecule_role (O24), 

Mosquito_anatomy (O25),  

Zebrafish_anatomy (O39) 

 

CC2 Attribute_and_value (O3),  

Flybase_vocab (O13),  

Loggerhead_nesting (O19), 

Plant_environment (O28),  

Plant_trait (O29) 

Attribute_and_value (O3),  

Flybase_vocab (O13),  

Loggerhead_nesting (O19), 

Plant_environment (O28),  

Plant_trait (O29),  

Rex (O34) 

CC3 Cell (O5), 

Po_anatomy (O31), 

Worm_development (O37),  

Zea_mays_anatomy (O38) 

Cell (O5),  

Dictyostelium_discoideum_anatomy 

(O7), 

Fungal_anatomy (O14),  

Go_anatomy (O31), 

Worm_development (O37),  

Zea_mays_anatomy (O38),    

Fly_development (O40) 

CC4 Event (O10),  

Go (O15),  

Pathway (O27), 

Rex (O34) 

Event (O10),  

Go (O15),  

Pathway (O27) 

CC5 Mao (O21),  

Psi_mi (O33), 

Sequence (O35) 

Mao (O21),  

Psi_mi (O33), 

Sequence (O35) 

CC6 Disease_ontology (O8),  

Mammalian_phenotype (O20),  

Mouse_pathology (O26) 

Disease_ontology (O8),  

Mammalian_phenotype (O20),  

Mouse_pathology (O26) 

CC7 Arabidopsis_development (O2),  

Po_temporal (O32),  

Temporal_gramene (O36) 

Arabidopsis_development (O2),  

Plasmodium_life_cycle (O30),  

Po_temporal (O32),  

Temporal_gramene (O36) 

Singletons Emap (O9), Evidence_code (O11), Image 

(O18) 

Emap (O9), Evidence_code (O11), 

Image (O18) 
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Table 44: Comparison of Ontology Clustering Based on SharedConcepts and Links
ID Approach I Approah III 

CC1 Adult_mouse_anatomy (O1),  

Brenda (O4),  

Chebi (O6), 

Dictyostelium_discoideum_anatomy 

(O7),  
Fly_anatomy (O12),   

Fungal_anatomy (O14), 

Human_dev_anat_abstract (O16),  

Human_dev_anat_staged (O17), 

Medaka_anatomy_development (O22),  

Mesh (O23),  

Molecule_role (O24),  

Mosquito_anatomy (O25), 

Plasmodium_life_cycle (O30), 
Zebrafish_anatomy (O39),  

Fly_development (O40)  

RC1 Adult_mouse_anatomy (O1),  

Brenda (O4),  

Chebi (O6),  

Fly_anatomy (O12),   

Fungal_anatomy (O14),  

Human_dev_anat_abstract (O16), 

Human_dev_anat_staged (O17), 

Medaka_anatomy_development 

(O22),  

Mesh (O23),  

Molecule_role (O24),  

Zebrafish_anatomy (O39) 

CC2 Attribute_and_value (O3),  

Flybase_vocab (O13),  

Loggerhead_nesting (O19), 

Plant_environment (O28),  

Plant_trait (O29) 

 Flybase_vocab (O13), 

Plant_environment (O28) 

CC3 Cell (O5), 

Po_anatomy (O31), 

Worm_development (O37),  

Zea_mays_anatomy (O38) 

RC3 Cell (O5),  

Po_anatomy (O31) 

CC4 Event (O10),  

Go (O15),  

Pathway (O27), 

Rex (O34) 

RC4 Event (O10), 

Go (O15),  

Rex (O34) 

CC5 Mao (O21),  

Psi_mi (O33), 

Sequence (O35) 

RC5 Mao (O21), 

Sequence (O35) 

 

CC6 Disease_ontology (O8),  

Mammalian_phenotype (O20),  

Mouse_pathology (O26) 

RC6 Mammalian_phenotype (O20), 

Mouse_pathology (O26) 

CC7 Arabidopsis_development (O2),  

Po_temporal (O32),  

Temporal_gramene (O36) 

Other Arabidopsis_development (O2), 

Attribute_and_value (O3), 

Dictyostelium_discoideum_anatom

y (O7), Disease_ontology (O8),  

Emap(O9), Evidence_code(O11), 

Image (O18), Loggerhead_nesting 

(O19), Mosquito_anatomy (O25),  

Pathway (O27), Plant_trait (O29), 

Plasmodium_life_cycle (O30), 

Po_temporal (O32), Psi_mi (O33), 

Temporal_gramene (O36), 

Worm_development (O37), 

Zea_mays_anatomy (O38), 

Fly_development (O40) 

Other Emap (O9), Evidence_code (O11), 

Image (O18) 
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Figure 31: Ontology Clustering Result of Approach I
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Figure 32: Ontology Clustering Result of Approach II
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Figure 33: Ontology Clustering Result of Approach III

7.4.4 InterOBO Prototype Development

We have implemented a prototype of InterOBO to establish proof of concept for

the proposed model for analyzing and clustering ontologies. The InterOBO prototype has

been implemented using Java, Java 2 Platform Standard Edition (J2SE platform) 5.0 and

SuSe Linux on an AMD Opteron dual CPU machine with 2.4 GHz CPU,4 Gb mem-

ory, and a 120 Gb hard disk. The backend database is MySQL version 5.0. InterOBO

maintains a representation of the OBO ontologies. In order to browse and search the

OBO ontology analysis and clustering information, InterOBO provides query interfaces
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(shown in Figure 34):

• Query on a specific concept: for a given concept, this provides the description of

the concept, synonyms, information on ontologies that contain the concept.

• Query on the overlapping relationships between ontologies: for a given set of on-

tologies, try to find overlapping relationships such as shared concepts, shared links,

shared properties.

• Query on the shared concepts and links through the overlapped ontologies: for a

given ontology, try to find any links to other ontologies and concepts or properties

involved in the connections.
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Figure 34: InterOBO Query Interfaces
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CHAPTER 8

SUMMARY AND FUTURE WORK

8.1 Citonomy

8.1.1 Summary

In this dissertation, a framework, called Citonomy, was presented to utilize the

semantic information, especially the citation semantics in scientific documents, to im-

prove the quality of document clustering. The CSE (CitationSemantics Extraction) model

which involves reference clustering and labeling was explained. Two approaches – CS-

VS ( combining Citation Semantics and Vector Space measure)and CS2CS (from Citation

Semantics to Cluster Semantics) were discussed and evaluated. Our experimental results

showed that both could improve the quality of document clustering over traditional docu-

ment clustering algorithms such as K-Means and K-Medoids. Furthermore, CS2CS as a

linear (or nearly linear with splitting and merging) clustering algorithm, is also faster than

many traditional document clustering algorithms. A brief comparison between CS-VS

and CS2CS is shown in Chapter 3. For convenience, we copy thattable here again (Table

45).

In CS-VS, when calculating similarity of two documents, we use both the similar-

ity between vectors of two documents and the similarity between the citation semantics

of these documents. That is, we calculate these two kinds of similarity separately, then

combine them together through either harmonic mean or simple addition. Then use this
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Table 45: Comparison Between Approaches of Citonomy: CS-VSand CS2CS
 CS-VS CS2CS 

Highlight 
Similarity between Citation 

Semantics 
3-Level Feature Selection 

Model of Documents 
VSM + Citation Semantics + Title + 

Keywords + Co-citation 

Feature Vector (formed from VSM + 

Citation Semantics + Title + 

Keywords) 

Similarity measure 
Combined VSM similarity and 

semantics similarity 
Similarity between feature vectors 

Document Clustering 
K-Medoids clustering, static, the 

number of clusters is predefined 

CS2CS linear clustering, dynamic, 

the number of  clusters changes, real 

time clustering 

Use of training set 

Use evolution strategy on training set 

to get weights in combining 

similarities 

Get initial cluster feature vectors 

from training set 

Accuracy compared to traditional K-

Medoids and K-Means clustering 
Improved more than 5% on average Improved more than 10% on average 

Runtime complexity in terms of the 

number of documents n 
O(n

2
) 

O(n) or O(nlogn) with splitting and 

merging 

 

measure to do K-Medoids clustering. Note, we also consider the similarity between titles

and take into account the information of co-citation. Because of the process of comput-

ing the extra similarities, especially the similarity between citation semantics, CS-VS is a

little slower than K-Medoids without using these similarities, but they have same runtime

complexity in terms of the number of documents.

In CS2CS, a 3-level feature selection with a 2-dimensional normalization is intro-

duced to utilize citation semantics in document clustering. That is, we form feature vec-

tors for single documents and clusters by selecting features for reference clusters (level

1), single documents (level 2), and document clusters (level 3). Then we do document

clustering by finding the similarities between document feature vectors and cluster fea-

ture vectors. Since the runtime of CS2CS clustering is linear in terms of the number of

documents, it is much faster than K-Medoids clustering. If we do splitting and merg-

ing in CS2CS clustering whenever the total number of documents is doubled, its runtime

complexity would beO(nlogn) which is still faster than CS-VS. And with splitting and
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merging, CS2CS can determine the number of clusters dynamically, do realtime cluster-

ing over evolving dataset of documents. Moreover, since the3-level feature selection

process effectively selects important terms and removes noise, the quality of the resulted

clusters is much higher than that resulted from traditionaldocument clustering algorithms

and CS-VS. It even performed better than the traditional algorithms without using the

semantics information of documents. In other words, CS2CS is not limited to scientific

documents.

We also investigated the use of ontologies in document clustering and CS2CS

based fuzzy clustering. The experimental results on both proposed solutions were also

promising.

8.1.2 Future Work

Citonomy is used to explore the idea that by correctly utilizing the hidden informa-

tion in documents, one can improve the quality of document clustering. Our experiments

on scientific documents verified our assumption and approaches. The same idea could

also be applied to online documents where not only the titles, references, and keywords

could be utilized, but the hyper-links that serve for the similar purpose as references, could

also be utilized as well. For example, in wikipedia (www.wikipedia.org), the users can

create articles and save them to predefined categories. However, choosing the category is

subjective and mistake is unavoidable. If CS2CS could be used to find the best matches

for the users, the system could prompt the users to choose more appropriate categories.
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Similarly, the idea of CS2CS can also be used in scientific document search en-

gines. One can form a feature vector from the user query sentence, and compare it to the

feature vectors of existing categories. Since it avoids searching for all the documents, the

response to query would be faster.

We discussed fuzzy clustering in this dissertation and presented the algorithm us-

ing similar process of CS2CS. We also showed some experimental results. However,

more work need to do to fully investigate the advantages and overall performance of us-

ing CS2CS to do fuzzy clustering. A hard part of research on fuzzy clustering is the

evaluation. It is hard to find collections which have be fuzzy-clustered and hence, it is

difficult to (automatically) evaluate the quality of the results of the fuzzy clustering.

8.2 InterOBO Summary and Future Work

Ideally, one would like to relate all ontologies in a domain of discourse to a cen-

tral reference ontology. The latter refers to an upper levelontology that would serve as a

semantic anchor for all ontologies in a domain. However, even if there was general agree-

ment on what would constitute a central reference ontology (”ontology of ontologies”),

the cost and constraint of relating current and future ontologies to a reference ontology

renders such an approach impractical. The pragmatic alternative is to maintain pairwise

mappings between ontologies. While this may lack the semantic clarity of having an

overarching upper level ontology, it is a feasible approach. Sub-domain-specific ontolo-

gies may be developed by different teams of domain experts inparallel. As the workload

177



is distributed, this keeps the task of creating ontologies on pace with the growth of knowl-

edge. The disadvantage is that, in principle, the mapping ofa new ontology (or new

concepts) tom existing ontologies requiresm comparisons. However, the actual work

of maintenance can be reduced if the new ontology is added to apre-existing network of

ontologies. Higher the degree of redundancy or overlap among existing ontologies, the

lower the amount of work required to incorporate the new ontology.

The main motivation in creating a mapping between various ontologies is to fa-

cilitate searches of annotated data. Given a query for a dataitem (sequence, structure or

some other biological item), the retrieved dataDi might be explicitly annotated with a

termTi from ontologyOi. However, if there exists a mapping from termTi to termTj

in ontologyOj, then someDj annotated with termTj may also be relevant to the query.

Similarly, searches for ontology termTi can be extended to all synonymousTj and the as-

sociated annotated data retrieved. This would facilitate virtual integration of search space

without the need to create a centralized data warehouse of the entire set of annotated data.

The clustering of ontologies can be useful as a guide to the extent to which a given search

should be broadened. A cluster boundary can serve as a pragmatic search space delimiter

for maximizing recall with minimal loss of precision. Givena search that maps explicitly

to an ontology within a cluster, it makes intuitive sense to extend it to other ontologies

within the same cluster. In terms of parallel implementations, exhaustive searches could

be implemented by maintaining separate indices for each cluster on physically distinct

nodes. This would prevent duplication of searches and also allow the maintenance of

efficient indices of minimal size.
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We have presented a scheme for extrapolating concept and edge level synonym

matches to mapping at the level of ontologies, and applied MCL to the OBO ontologies

to obtain ontology clusters. The future work would be to apply this framework to other

domains where there are multiple ontologies available and to transform the InterOBO

prototype into a real world application.

179



APPENDIX

Table A.1: Words of the Cluster Feature Vector of Cluster Blood Mapped to MeSH Terms
Label Weight MeSH ID  MeSH Term Root MeSH Term 

leaflet 0.0590 

   scri 0.0590 

   ffh 0.0590 

   rot 0.0590 C22.394 Foot Rot Animal Diseases 

atrosepti

cum 0.0590 

   reca 0.0590 

   stably 0.0590 

   gyra 0.0590 

   bestkeep

er 0.0590 

   topa 0.0590 

   housekee

ping 0.0590 N02.278.354.422.412 Housekeeping, Hospital 

Health Care Facilities, 

Manpower, and Services 

toth 0.0590 

   tsx 0.0590 

   pectobac

terium 0.0590 B03.440.450.425.585 Pectobacterium Bacteria 

glna 0.0590 

   nsv 0.0581 

   

melo 0.0581 

B01.650.388.100.300.1

88.444 Cucumis melo Eukaryota 

mnsv 0.0581 

   

eif 0.0581 

D08.811.913.696.620.6

82.700.300 eIF-2 Kinase Enzymes and Coenzymes 

aranda 0.0581 

   melon 0.0581 

   moriones 0.0581 

   cvyv 0.0581 

   zeyheri 0.0581 

   cucurbit 0.0581 

   nieto 0.0581 

   ecotiling 0.0581 

   atfkbp 0.0572 

   frb 0.0572 

   scfkbp 0.0572 

    

180



Table A.2: Words of the Cluster Feature Vector of Cluster Blood Mapped to MeSH Terms

(MeSH Considered in Forming Document Feature Vectors)
Label Weight MeSH ID MeSH Term 

Root MeSH 

Term 

suramin 0.0710 D02.455.426.559.847.638.555.750 Suramin 
Organic 

Chemicals 

tdc 0.0710 
   

roseus 0.0710 
   

phosphotyrosine 0.0710 D12.125.072.050.875.750 Phosphotyrosine 

Amino Acids, 

Peptides, and 

Proteins 

catharanthine 0.0710 
   

egta 0.0710 
   

mbpk 0.0710 
   

cdpk 0.0710 
   

atfkbp 0.0698 
   

raptor 0.0698 B01.050.150.900.248.815 Raptors Eukaryota 

frb 0.0698 
   

polysome 0.0698 
   

scfkbp 0.0698 
   

ternary 0.0698 D12.776.260.665.600 Ternary Complex Factors 

Amino Acids, 

Peptides, and 

Proteins 

attor 0.0698 
   

fkbp 0.0698 
   

cyclodextrin 0.0685 D04.345.103 Cyclodextrins 
Polycyclic 

Compounds 

taxane 0.0685 
   

guanidine 0.0685 D02.078.370 Guanidines 
Organic 

Chemicals 

hypergravity 0.0685 G01.595.060.535.369.300 Hypergravity 
Physical 

Phenomena 

taxol 0.0685 
   

gravity 0.0685 E07.440 Gravity Suits 
Equipment 

and Supplies 

urea 0.0685 C10.228.140.163.100.937 
Urea Cycle Disorders, 

Inborn 

Nervous 

System 

Diseases 

baccatin 0.0685 
   

guanidino 0.0685 
   

durzan 0.0685 
   

ventimiglia 0.0685 
   

citrulline 0.0685 D12.125.095.226 Citrulline 

Amino Acids, 

Peptides, and 

Proteins 

busulfan 0.0673 D02.033.455.125.125 Busulfan 
Organic 

Chemicals 

aplasia 0.0673 C15.378.071.750 Red-Cell Aplasia, Pure 

Hemic and 

Lymphatic 

Diseases 
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Table A.3: Words of the Cluster Feature Vector of Cluster BrainFunc Mapped to MeSH

Terms
Label Weight MeSH ID MeSH Term Root MeSH Term 

panl 0.0520 
   

cnlt 0.0520 
   

agronomic 0.0520 
   

issrb 0.0520 
   

murri 0.0520 
   

trotter 0.0520 
   

pilosa 0.0520 
   

masl 0.0520 
   

kaye 0.0520 
   

tefera 0.0520 
   

crush 0.0520 C21.866.797.240 Crush Syndrome 

Disorders of 

Environmental 

Origin 

rufipogon 0.0520 
   

dzbs 0.0520 
   

dzls 0.0520 
   

ril 0.0520 
   

ethiopia 0.0520 Z01.058.290.120.310 Ethiopia 
Geographic 

Locations 

rpr 0.0520 
   

pswt 0.0520 
   

issr 0.0520 
   

issra 0.0520 
   

lodg 0.0520 
   

dia 0.0520 
   

eragrostis 0.0520 B01.650.388.100.822.355 Eragrostis Eukaryota 

agro 0.0520 
   

ninter 0.0520 
   

rehearse 0.0511 
   

ietswaart 0.0511 
   

meinzer 0.0507 
   

konstanz 0.0507 
   

neologism 0.0507 
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Table A.4: Words of the Cluster Feature Vector of of Cluster BrainFunc Mapped to MeSH

Terms (MeSH Considered in Forming Document Feature Vectors)
Label Weight MeSH ID MeSH Term Root MeSH Term 

cnlt 0.0620 
   

pswt 0.0620 
   

lodg 0.0620 
   

murri 0.0620 
   

pedl 0.0620 
   

ril 0.0620 
   

pilosa 0.0620 
   

ethiopia 0.0620 Z01.058.290.120.310 Ethiopia Geographic Locations 

eragrostis 0.0620 B01.650.388.100.822.355 Eragrostis Eukaryota 

agro 0.0620 
   

crush 0.0620 C21.866.797.240 Crush Syndrome 
Disorders of 

Environmental Origin 

pwt 0.0620 
   

rpr 0.0620 
   

issra 0.0620 
   

issrb 0.0620 
   

agronomic 0.0620 
   

fss 0.0606 
   

daphn 0.0606 B01.650.388.100.932.500 Daphne Eukaryota 

rao 0.0606 
   

vas 0.0606 
   

mfi 0.0606 
   

analogue 0.0606 
   

neologism 0.0601 
   

precentral 0.0601 
   

paraphasia 0.0601 
   

intergenerational 0.0591 F01.829.263.370.110 Intergenerational Relations 
Behavior and 

Behavior Mechanisms 

kindred 0.0591 
   

spinocerebellar 0.0591 A08.612.220.725 Spinocerebellar Tracts Nervous System 

farrer 0.0591 
   

poorkaj 0.0591 
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Table A.5: Words of the Cluster Feature Vector of Cluster Cardiovasc Mapped to MeSH

Terms
Label Weight MeSH ID MeSH Term 

Root MeSH 

Term 

unguided 0.0655 
   

yepes 0.0648 
   

neuroserpin 0.0648 
   

som 0.0648 
   

precondition 0.0641 E02.592 
Ischemic 

Preconditioning 
Therapeutics 

hyperglycemia 0.0641 C18.452.394.952 Hyperglycemia 

Nutritional and 

Metabolic 

Diseases 

fagan 0.0641 
   

mcao 0.0641 
   

ergul 0.0641 
   

tortuosity 0.0641 
   

grosset 0.0634 
   

pdq 0.0634 
   

pulsatile 0.0634 G01.595.560.620 Pulsatile Flow 
Physical 

Phenomena 

antiparkinson 0.0634 D27.505.954.427.090.050 Antiparkinson Agents 

Chemical 

Actions and 

Uses 

mannac 0.0627 
   

sialylated 0.0627 
   

acetylmannosamine 0.0627 
   

ncam 0.0627 
   

hibm 0.0627 
   

acetylglucosamine 0.0627 
D03.383.742.686.850.600.677.1

20 

Uridine Diphosphate 

N-Acetylglucosamine 

Heterocyclic 

Compounds 

Quadriceps 0.0627 A02.633.567.850 Quadriceps Muscle 
Musculoskeleta

l System 

epimerase 0.0627 D08.811.399.894 
Racemases and 

Epimerases 

Enzymes and 

Coenzymes 

sialic 0.0627 C10.228.140.163.100.435.810 
Sialic Acid Storage 

Disease 

Nervous 

System 

Diseases 

gne 0.0627 
   

dystroglycan 0.0627 D12.776.210.500.410.500 Dystroglycans 

Amino Acids, 

Peptides, and 

Proteins 

oman 0.0620 Z01.252.245.500.600 Oman 
Geographic 

Locations 

omani 0.0620 
   

pandian 0.0620 
   

shafaee 0.0620 
   

sultan 0.0620 
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Table A.6: Words of the Cluster Feature Vector of Cluster Cardiovasc Mapped to MeSH

Terms (MeSH Considered in Forming Document Feature Vectors)
Label Weight MeSH ID MeSH Term 

Root MeSH 

Term 

leap 0.0746 
   

ltp 0.0746 
   

neuroserpin 0.0732 
   

capsule 0.0725 A02.835.583.443 Joint Capsule 
Musculoskeleta

l System 

doctor 0.0718 
   

ssmc 0.0718 
   

cbt 0.0718 
   

apt 0.0718 
   

ergul 0.0711 
   

tortuosity 0.0711 
   

mcao 0.0711 
   

precondition 0.0711 E02.592 
Ischemic 

Preconditioning 
Therapeutics 

dysarthria 0.0711 C10.597.606.150.500.800.150.200 Dysarthria 

Nervous 

System 

Diseases 

pdq 0.0704 
   

pulsatile 0.0704 G01.595.560.620 Pulsatile Flow 
Physical 

Phenomena 

grosset 0.0704 
   

pill 0.0704 
   

antiparkinson 0.0704 D27.505.954.427.090.050 Antiparkinson Agents 

Chemical 

Actions and 

Uses 

beyond 0.0697 
   

bogoslovsky 0.0697 
   

salvage 0.0697 E02.186.800 Salvage Therapy Therapeutics 

penumbra 0.0697 
   

oman 0.0690 Z01.252.245.500.600 Oman 
Geographic 

Locations 

omani 0.0690 
   

sultan 0.0690 
   

warn 0.0690 F01.145.209.259.800.200 Duty to Warn 

Behavior and 

Behavior 

Mechanisms 

margarita 0.0684 
   

nedices 0.0684 
   

pop 0.0684 
   

pamplona 0.0684 
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Table A.7: Words of the Cluster Feature Vector of Cluster Cough Mapped to MeSH Terms
Label Weight MeSH ID  MeSH Term Root MeSH Term 

pungency 0.0677 
   

gustatory 0.0677 C10.177.825 Sweating, Gustatory 
Nervous System 

Diseases 

chemesthesis 0.0677 
   

pepper 0.0677 J02.500.250.725.500 Black Pepper Food and Beverages 

tohoku 0.0677 
   

yazawa 0.0677 
   

capsinoid 0.0677 
   

geriat 0.0677 
   

capsiate 0.0677 
   

pungent 0.0677 
   

codeine 0.0660 D03.132.577.249.547.547.149 Codeine 
Heterocyclic 

Compounds 

takahama 0.0660 
   

citric 0.0660 D02.241.081.901.434.249 Citric Acid Organic Chemicals 

kamei 0.0660 
   

narcotic 0.0660 D27.505.696.277.600 Narcotics 
Chemical Actions 

and Uses 

tractus 0.0660 
   

opiate 0.0660 D03.132.577 Opiate Alkaloids 
Heterocyclic 

Compounds 

cholinergic 0.0660 A08.663.542.234 Cholinergic Fibers Nervous System 

snore 0.0643 C23.888.852.779.850 Snoring 

Pathological 

Conditions, Signs 

and Symptoms 

apnoea 0.0643 
   

surinder 0.0643 
   

strachan 0.0625 
   

indoor 0.0625 N06.850.460.100.080 Air Pollution, Indoor 
Environment and 

Public Health 

kloft 0.0625 
   

charit 0.0625 
   

groneberg 0.0625 
   

dinh 0.0625 
   

fischer 0.0625 
   

audience 0.0608 
   

broadcast 0.0608 
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Table A.8: Words of the Cluster Feature Vector of Cluster Cough Mapped to MeSH Terms

(MeSH Considered in Forming Document Feature Vectors)
Label Weight MeSH ID MeSH Term Root MeSH Term 

pepper 0.0734 J02.500.250.725.500 Black Pepper Food and Beverages 

tohoku 0.0734 
   

chemesthesi

s 
0.0734 

   

capsiate 0.0734 
   

gustatory 0.0734 C10.177.825 Sweating, Gustatory 
Nervous System 

Diseases 

capsinoid 0.0734 
   

pungent 0.0734 
   

cholinergic 0.0713 A08.663.542.234 Cholinergic Fibers Nervous System 

takahama 0.0713 
   

citric 0.0713 D02.241.081.901.434.249 Citric Acid Organic Chemicals 

codeine 0.0713 D03.132.577.249.547.547.149 Codeine 
Heterocyclic 

Compounds 

narcotic 0.0713 D27.505.696.277.600 Narcotics 
Chemical Actions and 

Uses 

opiate 0.0713 D03.132.577 Opiate Alkaloids 
Heterocyclic 

Compounds 

snore 0.0692 C23.888.852.779.850 Snoring 

Pathological 

Conditions, Signs and 

Symptoms 

apnoea 0.0692 
   

lethargy 0.0692 C10.597.606.441 Lethargy 
Nervous System 

Diseases 

ther 0.0671 
   

indoor 0.0671 N06.850.460.100.080 Air Pollution, Indoor 
Environment and 

Public Health 

pulm 0.0671 
   

strachan 0.0671 
   

groneberg 0.0671 
   

pupt 0.0671 
   

cook 0.0671 J01.494.300 
Cooking and Eating 

Utensils 

Technology, Industry, 

and Agriculture 

radio 0.0650 D01.496.448.496.665 
Serum Albumin, Radio-

Iodinated 
Inorganic Chemicals 

broadcast 0.0650 
   

manometry 0.0629 E05.559 Manometry 
Investigative 

Techniques 

huisman 0.0608 
   

antitussive 0.0605 D27.505.954.427.153 Antitussive Agents 
Chemical Actions and 

Uses 

beraprost 0.0587 
   

mite 0.0587 B01.050.500.131.166.132.419 Mites Eukaryota 
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Table A.9: Words of the Cluster Feature Vector of Cluster EndocrDisord Mapped to

MeSH Terms
Label Weight MeSH ID MeSH Term 

Root MeSH 

Term 

horstman 0.0640 
   

fvii 0.0640 
   

miami 0.0640 
   

minagar 0.0640 
   

acl 0.0640 
   

phosphatidylserine 0.0640 D10.570.755.375.760.400.971 Phosphatidylserines Lipids 

apla 0.0640 
   

jimenez 0.0640 
   

gpi 0.0640 
   

cardiolipin 0.0640 
D10.570.755.375.760.400.885.18

5 
Cardiolipins Lipids 

ahn 0.0640 
   

bidot 0.0640 
   

wmw 0.0626 
   

horiuchi 0.0626 
   

rage 0.0626 F01.470.093.640 Rage 

Behavior and 

Behavior 

Mechanisms 

carboxymethyl 0.0626 
   

optima 0.0626 
   

camcog 0.0626 
   

epicentre 0.0612 
   

immunopositive 0.0612 
   

gfap 0.0612 
   

timp 0.0612 
   

oval 0.0612 A07.541.459.500 Foramen Ovale 
Cardiovascular 

System 

jnnp 0.0599 
   

chabardes 0.0599 
   

vesper 0.0599 
   

subthalamic 0.0599 A08.186.211.730.317.800.800 Subthalamic Nucleus 
Nervous 

System 

pollak 0.0599 
   

pallidal 0.0599 
   

stereotact 0.0599 
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Table A.10: Words of the Cluster Feature Vector of Cluster EndocrDisord Mapped to

MeSH Terms (MeSH Considered in Forming Document Feature Vectors)
Label Weight MeSH ID MeSH Term 

Root MeSH 

Term 

hexose 0.0740 D08.811.913.696.445.850 

UDPglucose-Hexose-1-

Phosphate 

Uridylyltransferase 

Enzymes and 

Coenzymes 

radiolabel 0.0740 
   

moiety 0.0740 
   

path 0.0740 
   

apoplasm 0.0740 
   

sugarcane 0.0740 
   

recover 0.0740 
   

sorghum 0.0740 B01.650.388.100.822.894 Sorghum Eukaryota 

japonicum 0.0727 
B01.050.500.500.736.715.770.680.5

70 
Schistosoma japonicum Eukaryota 

meliloti 0.0727 B03.440.400.425.700.887.500 Sinorhizobium meliloti Bacteria 

indol 0.0727 D03.132.436 Indole Alkaloids 
Heterocyclic 

Compounds 

vulgaris 0.0727 B01.040.080.469.400 Chlorella vulgaris Eukaryota 

overproduce 0.0727 
   

rhizobia 0.0727 
   

rhizobium 0.0727 B03.440.400.425.700.800 Rhizobium Bacteria 

indeterminat

e 
0.0727 

   

pin 0.0727 E06.292 Dental Pins Dentistry 

iaamtms 0.0727 
   

operon 0.0727 G05.360.340.024.686 Operon 
Genetic 

Phenomena 

rhp 0.0713 
   

arid 0.0713 
   

nine 0.0713 
   

g_iv 0.0713 
   

isf 0.0713 
   

baydar 0.0713 
   

esselink 0.0713 
   

g_i 0.0713 
   

damascena 0.0713 B01.650.388.100.838.518.500 Nigella damascena Eukaryota 

vosman 0.0713 
   

damask 0.0713 
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Table A.11: Words of the Cluster Feature Vector of Cluster Neurol Mapped to MeSH

Terms
Label Weight MeSH ID MeSH Term Root MeSH Term 

ambul 0.0561 E02.831.335 Early Ambulation Therapeutics 

leap 0.0561 
   

ltp 0.0561 
   

overground 0.0561 
   

homocarnosine 0.0556 
   

carnosine 0.0556 D12.644.400.100 Carnosine 

Amino Acids, 

Peptides, and 

Proteins 

balion 0.0556 
   

carnosinase 0.0556 
   

tatsch 0.0550 
   

pirker 0.0550 
   

oertel 0.0550 
   

ibzm 0.0550 
   

normalcy 0.0550 
   

radiotracer 0.0550 
   

booij 0.0550 
   

lokkegaard 0.0550 
   

schwarz 0.0550 
   

asenbaum 0.0550 
   

tracer 0.0550 D01.496.749.731 Radioactive Tracers 
Inorganic 

Chemicals 

hed 0.0544 
   

migraineurs 0.0544 
   

tth 0.0544 
   

westgaard 0.0544 
   

uir 0.0544 
   

leistad 0.0544 
   

treadmill 0.0541 
   

immuno 0.0539 
   

sudanese 0.0539 
   

kuwaiti 0.0539 
   

whoqol 0.0539 
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Table A.12: Words of the Cluster Feature Vector of Cluster Neurol Mapped to MeSH

Terms (MeSH Considered in Forming Document Feature Vectors)
Label Weight MeSH ID MeSH Term Root MeSH Term 

carnosine 0.0672 D12.644.400.100 Carnosine 

Amino Acids, 

Peptides, and 

Proteins 

carnosinase 0.0672 
   

pirker 0.0665 
   

schwarz 0.0665 
   

nucl 0.0665 
   

ibzm 0.0665 
   

radiotracer 0.0665 
   

tracer 0.0665 D01.496.749.731 Radioactive Tracers 
Inorganic 

Chemicals 

migraineurs 0.0658 
   

tth 0.0658 
   

westgaard 0.0658 
   

kuwaiti 0.0651 
   

whoqol 0.0651 
   

facet 0.0651 
   

bref 0.0651 
   

spiritual 0.0651 E02.190.901 Spiritual Therapies Therapeutics 

cit 0.0650 
   

vlaar 0.0650 
   

worsen 0.0644 
   

meaningful 0.0644 
   

cholinesterase 0.0644 D08.811.277.352.100.170 Cholinesterases 
Enzymes and 

Coenzymes 

cibic 0.0644 
   

donepezil 0.0644 
   

smell 0.0636 F02.830.816.643 Smell 

Psychological 

Phenomena and 

Processes 

becker 0.0636 
   

maastricht 0.0636 
   

weber 0.0636 C04.557.645.375.850 Sturge-Weber Syndrome Neoplasms 

azm 0.0636 
   

overground 0.0629 
   

hars 0.0629 
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Table A.13: Words of the Cluster Feature Vector of Cluster Plant Mapped to MeSH Terms
Label Weight MeSH ID MeSH Term 

Root MeSH 

Term 

iridaceae 0.0401 B01.650.388.100.549 Iridaceae Eukaryota 

agostino 0.0401 
   

sacl 0.0401 
   

camara 0.0401 
   

crocus 0.0401 B01.650.388.100.549.500 Crocus Eukaryota 

glucosyltransferase 0.0401 D08.811.913.400.450.460 Glucosyltransferases 
Enzymes and 

Coenzymes 

saffron 0.0401 
   

spice 0.0401 J02.500.250.725 Spices 
Food and 

Beverages 

crocetin 0.0401 
   

panax 0.0398 B01.650.388.100.087.500 Panax Eukaryota 

subgenus 0.0398 
   

constraint 0.0398 
   

nonphotosynthetic 0.0398 
   

ipomoea 0.0398 B01.650.388.100.238.500 Ipomoea Eukaryota 

convolvulaceae 0.0398 B01.650.388.100.238 Convolvulaceae Eukaryota 

obtusiflora 0.0398 
   

pseudogene 0.0398 G05.360.340.024.340.700 Pseudogenes 
Genetic 

Phenomena 

ndh 0.0398 
   

exaltata 0.0398 
   

memelink 0.0396 
   

egta 0.0396 
   

catharanthine 0.0396 
   

mbpk 0.0396 
   

cdpk 0.0396 
   

tdc 0.0396 
   

suramin 0.0396 
D02.455.426.559.847.638.555.75

0 
Suramin 

Organic 

Chemicals 

hple 0.0394 
   

hplf 0.0394 
   

nile 0.0394 B04.820.250.350.300.950 West Nile virus Viruses 

aldehyde 0.0394 D02.047 Aldehydes 
Organic 

Chemicals 
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Table A.14: Words of the Cluster Feature Vector of Cluster Plant Mapped to MeSH Terms

(MeSH Considered in Forming Document Feature Vectors)
Label Weight MeSH ID MeSH Term 

Root MeSH 

Term 

spice 0.0469 J02.500.250.725 Spices 
Food and 

Beverages 

saffron 0.0469 
   

iridaceae 0.0469 B01.650.388.100.549 Iridaceae Eukaryota 

sacl 0.0469 
   

crocus 0.0469 B01.650.388.100.549.500 Crocus Eukaryota 

glucosyltransfera

se 
0.0469 D08.811.913.400.450.460 Glucosyltransferases 

Enzymes and 

Coenzymes 

sativus 0.0469 
B01.650.388.100.300.188.

666 
Cucumis sativus Eukaryota 

obtusiflora 0.0466 
   

autotroph 0.0466 G02.111.087.070 Autotrophic Processes 
Chemical 

Phenomena 

nonphotosyntheti

c 
0.0466 

   

constraint 0.0466 
   

ipomoea 0.0466 B01.650.388.100.238.500 Ipomoea Eukaryota 

convolvulaceae 0.0466 B01.650.388.100.238 Convolvulaceae Eukaryota 

panax 0.0466 B01.650.388.100.087.500 Panax Eukaryota 

ndh 0.0466 
   

exaltata 0.0466 
   

hpl 0.0464 
   

localise 0.0464 
   

rfp 0.0464 
   

hple 0.0464 
   

hplf 0.0464 
   

nile 0.0464 B04.820.250.350.300.950 West Nile virus Viruses 

detergent 0.0464 D27.720.877.265 Detergents 
Chemical Actions 

and Uses 

hydroperoxide 0.0464 
   

aldehyde 0.0464 D02.047 Aldehydes 
Organic 

Chemicals 

micelle 0.0464 D05.374 Micelles 
Macromolecular 

Substances 

rpp 0.0461 
   

tir 0.0461 
   

mpss 0.0461 
   

poptrarf 0.0458 
   

 

193



REFERENCE LIST

[1] Blaise Cronin’s home page.http://www.slis.indiana.edu/faculty/

cronin/ . Accessed on May 10, 2010.

[2] Chemical Entities of Biological Interest.http://www.ebi.ac.uk/chebi/ .

Accessed on May 10, 2010.

[3] CiteSeer.http://citeseer.ist.psu.edu/ . Accessed on May 10, 2010.

[4] CiteSeerX. http://citeseerx.ist.psu.edu/ . Accessed on May 10,

2010.

[5] DAML+OIL. http://www.daml.org/2001/03/daml+oil-index . Ac-

cessed on September 15, 2010.

[6] Dublin Core.http://dublincore.org/ . Accessed on September 15, 2010.

[7] Eugene Garfield’s home page.http://www.garfield.library.upenn.

edu/ . Accessed on May 10, 2010.

[8] FaCT (Fast Classification of Terminologies) System.http://www.cs.man.

ac.uk/ ˜ horrocks/FaCT/ . Accessed on May 10, 2010.

[9] Facts of Shepherd’s Citations. http://www.usps.com/judicial/

1974deci/1-88.htm . Accessed on May 10, 2010.

[10] Foundational Model of Anatomy. http://sig.biostr.washington.

edu/projects/fm/AboutFM.html . Accessed on May 10, 2010.

[11] Friend of a Friend.http://ebiquity.umbc.edu/resource/html/id/

82/ . Accessed on September 15, 2010.

[12] GenBank. http://www.ncbi.nlm.nih.gov/genbank/ . Accessed on

May 10, 2010.

[13] The Gene Ontology.http://www.geneontology.org/ . Accessed on May

10, 2010.

194



[14] Google Scholar.http://scholar.google.com/ . Accessed on May 10,

2010.

[15] Henk Moed’s home page.http://www.cwts.nl/hm/ . Accessed on May 10,

2010.

[16] Journal Citation Reports. http://www.thomsonreuters.com/

products_services/scientific/Journal_Citation_Repor ts .

Accessed on May 10, 2010.

[17] Journals currently indexed in MEDLINE.http://www.nlm.nih.gov/tsd/

serials/lji.html . Accessed on May 10, 2010.

[18] Medical Subject Headings.http://www.nlm.nih.gov/mesh/ . Accessed

on May 10, 2010.

[19] MEDLINE vs. PubMed. http://www.nlm.nih.gov/pubs/

factsheets/dif_med_pub.html . Accessed on May 10, 2010.

[20] Nature Physics Portal.http://www.nature.com/physics/archive/

index.html . Accessed on May 10, 2010.

[21] The Open Biological and Biomedical Ontologies. http://www.

obofoundry.org/ . Accessed on May 10, 2010.

[22] OWL Web Ontology Language.http://www.w3.org/TR/owl-guide/ .

Accessed on September 15, 2010.

[23] Pajek. http://vlado.fmf.uni-lj.si/pub/networks/pajek/ . Ac-

cessed on May 10, 2010.

[24] PubMed.http://www.ncbi.nlm.nih.gov/pubmed/ . Accessed on May

10, 2010.

[25] PubMed Central.http://www.pubmedcentral.nih.gov/about/ftp.

html . Accessed on May 10, 2010.

[26] Racer (Renamed Abox and Concept Expression Reasoner).http://www.sts.

tu-harburg.de/ ˜ r.f.moeller/racer/ . Accessed on May 10, 2010.

195



[27] RDF Schema. http://www.w3.org/TR/rdf-schema/ . Accessed on

September 15, 2010.

[28] Research Papers in Economics.http://repec.org/ . Accessed on May 10,

2010.

[29] Resource Description Framework. http://www.w3.org/TR/

PR-rdf-syntax/ . Accessed on September 15, 2010.

[30] Scopus.http://www.info.scopus.com/ . Accessed on May 10, 2010.

[31] Shepherd’s Citations Service Information.http://law.lexisnexis.com/

shepards . Accessed on May 10, 2010.

[32] SNOMED CT(Systematized Nomenclature of Medicine-Clinical Terms).http:

//www.ihtsdo.org/snomed-ct/ . Accessed on May 10, 2010.

[33] Thomas Scientific. http://www.thomsonreuters.com/business_

units/scientific/ . Accessed on May 10, 2010.

[34] Web of Science. http://thomsonreuters.com/products_

services/scientific/Web_of_Science . Accessed on May 10,

2010.

[35] Beil, F., Ester, M., and Xu, X. Frequent term-based textclustering. InProceedings

of theeighthACM SIGKDD internationalconferenceonKnowledgediscoveryand

datamining (2002).

[36] Bolelli, L., Ertekin, S., and Giles, C.Knowledge Discovery in Databases: PKDD

2006. Springer, 2006, ch. Clustering Scientific Literature Using Sparse Citation

Graph Analysis.

[37] Cameron, R. A Universal Citation Database as a Catalystfor Reform in Scholarly

Communication.First Monday 2,4 (1997), 1396.

[38] Chen, C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient

Patterns in Scientific Literature.Journalof theAmericanSocietyfor Information

ScienceandTechnology 5,7 (2006), 359–377.

196



[39] Chen, C., Song, I., Yuan, X., and Zhang, J. The Thematic and Ci-

tation Landscape of Data and Knowledge Engineering (1985-2007).

Data & Knowledge Engineering67 (2008), 234–259.

[40] Chen, C., Song, I., and Zhu, W. Trends in conceptual modeling: Citation

analysis of the ER conference papers (1979-2005). InProceedingsof the

11thInternationalConferenceon theInternationalSocietyfor Scientometricsand

Informatrics (2007), pp. 189–200.

[41] Cronin, B. The Need for a Theory of Citing.Journal of Documentation37 (1981),

16–24.

[42] Cronin, B., and K., O. Citation-based Auditing of Academic Performance.Journal

of theAmericanSocietyfor InformationScience 45,2 (1994), 61–72.

[43] Cronin, B., and Snyder, H. Comparative Citation Rankings of Authors in Mono-

graphic and Journal Literature: A Study of Sociology.Journalof Documentation

53,3 (1997), 263–273.

[44] Dash, M., Choi, K., Scheuermann, P., and Liu, H. FeatureSelection for Clustering

- A Filter Solution. In SecondIEEE InternationalConferenceon DataMining

(ICDM’02) (2002).

[45] Day, M., Tsai, T., Sung, C., Lee, C., Wu, S., Ong, C., and Hsu, W. A Knowledge-

based Approach to Citation Extraction. InInformationReuseand Integration,

2005IEEEInternationalConferenceon (2005), pp. 189–200.

[46] Dinakarpandian, D., Tong, T., and Lee, Y. A pragmatic approach to mapping the

open biomedical ontologies.InternationalJournalof BioinformaticsResearchand

Applications 3,3 (2007), 341–365.

[47] Dongen, S. Graph Clustering by flow simulation.http://www.micans.org/

mcl/ , 2000. Dissertation.

[48] Dumais, S. T., Furnas, G. W., Landauer, T. K., Deerwester, S., and Harshman,

R. Using latent semantic analysis to improve access to textual information. In

197



Proceedingsof the SIGCHI conferenceon Humanfactors in computingsystems

(1988).

[49] Forgy, E. Cluster Analysis of Multivariate Data: Efficiency versus Interpretability

of Classification.Biometrics21 (1965), 768–780.

[50] Forsythe, G. E., Malcolm, M. A., and B., M. C.Computer methods for mathe-

matical computation. Prentice Hall, 1977, ch. Least squares and the singular value

decomposition.

[51] Garfield, E. Citation Indexes for Science.Science,New Series 122,3159 (1955),

108–111.

[52] Garfield, E. Long-Term Vs. Short-Term Journal Impact: Does It Matter? The

Physiologist 41,3 (1998), 113–115.

[53] Garfield, E., and Sher, I. New Factors in the Evaluation of Scientific Literature

Through Citation Indexing.AmericanDocumentation 14,3 (2007), 195–201.

[54] Garfield, E., Sher, I., and Torpie, R.TheUseof CitationDatain Writing theHistory

of Science. Institute for Scientific Information, 1964.

[55] Giles, C., Bollacker, K., and Lawrence, S. CiteSeer: Anautomatic citation in-

dexing system. InDigital Libraries98 - TheThird ACM Conferenceon Digital

Libraries (1998), pp. 89–98.

[56] Gruber, T. R. Toward Principles for the Design of Ontologies Used for Knowledge

Sharing. InternationalJournalof Human-ComputerStudies 43,4-5 (1995), 907–

928.

[57] Han, H., Giles, C., Zha, H., Li, C., and Tsioutsiouliklis, K. Two Supervised Learn-

ing Approach for Name Disambiguation in Author Citations. In Proceedingsof

the2004joint conferenceondigital libraries (2004).

[58] Han, H., Zha, H., and Giles, C. Name Disambiguation in Author Citations using a

K-Way Spectral Clustering Method. InProceedingsof the2005joint conference

ondigital libraries (2005).

198



[59] Hartigan, J. A.ClusteringAlgorithms. Wiley, 1975.

[60] Hertz, J., Krogh, A., and Palmer, R.Introduction to the Theory of Neurol

Computation. Addison-Wesley Longman, 1991.

[61] J., M. An Examination of Citation Index.Aslib Proceedings 17,6 (1965), 184–196.

[62] Jacso, P. As we may search - Comparison of major featuresof the Web of Sci-

ence, Scopus, and Google Scholar citation-based and citation-enhanced databases.

CurrentScience 89,9 (2005).

[63] Jain, A. K., and Dubes, R. C.Algorithmsfor ClusteringData. Prentice-Hall, Inc.,

1988.

[64] Kaufman, L., and Rousseeuw, P. J.Finding Groupsin Data.An Introductionto

ClusterAnalysis. John Wiley & Sons, 1990.

[65] King, B. Step-wise Clustering Procedure.Journalof the AmericanStatistical

Association 62,317 (1967), 86–101.

[66] Kohonen, T.Self-OrganizationandAssociativeMemory. Springer-Verlag, 1989.

[67] Kostoff, R. The Use and Misuse of Citation Analysis in Research Evaluation.

Scientometrics 43,1 (1998), 27–43.

[68] Krichel, T. Working towards an Open Library for Economics: The RePEc project.

http://openlib.org/home/krichel/myers.html , 2000.

[69] Lambrix, P. Towards a semantic web for bioinformatics using ontology-based an-

notation. In 14th IEEE Workshopson EnablingTechnologies:Infrastructurefor

CollaborativeEnterprise (2005), pp. 3–7.

[70] Larsen, B., and Aone, C. Fast and effective text mining using linear-time document

clustering. In Conferenceon KnowledgeDiscoveryandDataMining (1999).

[71] Lawrence, S., Giles, C., and Bollacker, K. Digital libraries and autonomous citation

indexing.IEEEComputer 32,6 (1999), 67–71.

[72] Liu, T., Liu, S., Chen, Z., and Ma, W. An Evaluation on Feature Selection for Text

Clustering. InProceedingsof theTwentiethInternationalConferenceonMachine

199



Learing(ICML-2003) (2003).

[73] MacRoberts, M., and MacRoberts, B. Problems of Citation Analysis.

Scientometrics 36,3 (1996), 435–444.

[74] Moed, H. Bibliometric Measurement of Research Performance and Price’s Theory

of Differences among the Sciences.Scientometrics 15,5-6 (1989), 473–483.

[75] Moed, H. Bibliometric Indicators Reflect Publication and Management Strategies.

Scientometrics 47,2 (2000), 323–326.

[76] Moed, H., Burger, W., Frankford, J., and Van Raan, A. TheApplication of Biblio-

metrics Indicators: Important Field and Time Dependent Factors to Be Considered.

Scientometrics 8,3-4 (1985), 177–203.

[77] Moed, H., Burger, W., Frankford, J., and Van Raan, A. TheUse of Bibliometrics

Data for the Measurement of University Research Performance. ResearchPolicy

14,3 (1985), 131–149.

[78] Moed, H., Luwel, M., and Nederhof, A. Towards Research Performance in the

Humanities.Library Trends 50,3 (2002), 498–520.

[79] Moed, H., Van Leeuwen, T., and Reeduk, J. Towards Appropriate Indicators of

Journal Impact.Scientometrics 46,3 (1999), 575–589.

[80] Moravcsik, M., and Murugesan, P. Some Results on the Function and Quality of

Citations. Social study of science5 (1975), 88–91.

[81] Nakov, P., Schwarts, A., and Hearst, M. Citances: Citation Sentences for Semantic

Analysis of Bioscience Text. InProceedingsof theSIGIR’04workshoponSearch

andDiscoveryin Bioinformatics (2004).

[82] Noruzi, A. Google Scholar: The New Generation of Citation Indexes. Libri 55

(1975), 170–180.

[83] Person, O. The Intellectual Base and Research Front of JASIS 1986-1990.Journal

of theAmericanSocietyfor InformationScienceandtechnology 45,1 (1994), 31–

38.

200



[84] Price, D. Networks of Scientific Papers.Science 149,3683 (1965), 510–515.

[85] Rechenberg, I. Cybernetic solution path of an experimental problem. In Royal

Aircraft Establishment (1965).

[86] Rector, A., Bechhofer, S., Goble, C., Horrocks, I., Nowlan, W., and Solomon,

W. The GRAIL concept modelling language for medical terminology.

Artificial Intelligence in Medicine9 (1997), 139–171.

[87] Redner, S. How Popular Is Your Paper? An Empirical Studyof the Citation Distri-

bution. TheEuropeanPhysicalJournalB 4,2 (1998), 131–134.

[88] Rijsbergen, C., Robertson, S., and Porter, M. New models in probabilistic informa-

tion retrieval.http://opensigle.inist.fr/handle/10068/550946 ,

1980. Research and Development Department, British Library: London.

[89] Rijsbergen, C. J. V.InformationRetrieval. ButterWorths, London, 1979.

[90] Salton, G., Wong, A., and Yang, C. A vector space model for automatic indexing.

Communicationsof theACM 18,11 (1975), 613–620.

[91] Saracoglu, R., Tutuncu, K., and Allahverdi, N. A Fuzzy Clustering Ap-

proach for Finding Similar Documents Using a Novel Similarity Meansure.

Expert Systems with Applications33 (2007), 600–605.

[92] Schuyler, P. L., Hole, W. T., Tuttle, M. S., and Sherertz, D. D. The UMLS Metathe-

saurus: Representing different views of biomedical concepts.Bull MedLibr Assoc,

81,2 (1993), 217–222.

[93] Schwefel, H. P.Numericaloptimizationof computermodels. John Wiley & Sons,

1981.

[94] Schwefel, H. P. Evolution and optimumseeking: The Sixth Generation. John

Wiley & Sons, 1995.

[95] Sneath, P., and Sokal, R.NumericalTaxonomy: the PrinciplesandPracticeof

NumericalClassification. Freeman, 1973.

[96] Steinbach, M., Karypis, G., and Kumar, V. A comparison of document clustering

201



techniques. InKDD WorkshoponTextMining (2000).

[97] Takasu, A. Bibliographic Attribute Extraction from Erroneous References Based

on a Statistical Model. InProceedingsof the 2003 joint conferenceon digital

libraries (2003).

[98] Teufel, S., Siddharthan, A., and Tidhar, D. Automatic Classification of Citation

Function. InProceedingsof the2006ConferenceonEmpiricalMethodsin Natural

LanguageProceeding (2006), pp. 103–110.

[99] Tong, T., Dinakarpandian, D., and Lee, Y. Literature clustering using citation se-

mantics. In 42ndHawaii InternationalConferenceon SystemSciences (2009).

[100] Yang, Y. Noise reduction in a statistical approach to text categorization. In

Proceedingsof the18thannualinternationalACM SIGIR conferenceon Research

anddevelopmentin informationretrieval (1995), pp. 256–263.

[101] Yoo, I., and Hu, X. A Comprehensive Comparison Study ofDocument Clus-

tering for a Biomedical Digital Library MEDLINE. In Proceedingsof the 6th

ACM/IEEE-CSJointConferenceonDigital Libraries (2006), pp. 220–229.

[102] Zahn, C. T. Graph-theoretical methods for detecting and describing gestalt clusters.

IEEETransactionon Computers C-20,1 (1971), 68–86.

[103] Zhang, B., Chen, Y., Fan, W., Fox, E. A., Goncalves, M.,Cristo, M., and Calado,

P. Intelligent Fusion of Structural and Citation-Based evidence for Text Classifica-

tion. In Proceedingsof the28thannualinternationalACM SIGIR conferenceon

Researchanddevelopmentin informationretrieval (2005).

202



VITA

Tuanjie Tong graduated in April 1996 with a Master’s degree in Automatic Control

from Beijing Institute of Technology, Beijing, China.

He then joined Beijing Advanced System Inc., a joint ventureof IBM and Ts-

ingHua University. After working there for two years as a software engineer, he became

the manager of the software department of Beijing Goldkey Inc. which was established

by Goldkey Taiwan Inc. He worked there for another two years before attending Western

Illinois University (WIU).

From WIU he received two Master’s degrees in Mathematics andComputer Sci-

ence. Tired of pursing Master’s degrees, in June 2005, he finally joined the Interdis-

ciplinary Ph.D. program at the University of Missouri–Kansas City (UMKC) with Com-

puter Informatics and Computer Networking as his Coordinating discipline and Co-discipline,

respectively. During his Ph.D. study, he has been honored with the School of Graduate

Studies Dissertation Research Fellowship (2009-2010), the Chancellor’s Doctoral Fel-

lowship (2007-2009),the School of Computing and Engineering Dean’s Doctoral Fellow-

ship (2007), the School of Graduate Studies Dean’s DoctoralFellowship (2006), and the

School of Computing and Engineering Outstanding Student Award (2007 and 2009).

Upon completion of his degree requirements, he plans on taking an position in ei-

ther industry or academia where he can apply what he learned to real-world problems and

continue to do research in related areas. His major researchinterests are knowledge man-

agement and discovery, particularly in document clustering and ontology management.

He is a student member of the honor societies Phi Kappa Phi andUpsilon Pi Ep-

silon, Institute of Electrical and Electronic Engineers (IEEE), and Association for Com-

puting Machinery (ACM).

203


