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ABSTRACT

The Internet has made it possible, in principle, for scaatto quickly find re-
search papers of interest. In practice, the overwhelmirignve of publications makes
this a time consuming task. It is, therefore, important teedtep efficient ways to identify
related publications. Clustering, a technique used in nfi@hys, is one way to facilitate
this. Ontologies can also help in addressing the problenmdiifg related entities, includ-
ing research publications. However, the development of methods of clustering has
focused mainly on the algorithm per se, with relatively lesghasis on feature selection
and similarity measures. The latter can significantly imple accuracy of clustering,
as well as the runtime of clustering. Also, to fully realite thigh resolution searches
that ontologies can make possible, an important first step fsnd automatic ways to
cluster related ontologies. The major contribution of tiiissertation is an innovative
semantic framework for document clustering, called Citagoa dynamic approach that

(1) exploits citation semantics of scientific documentg,d@als with evolving datasets



of documents, and (3) addresses the interplay betweenthigst feature selections, and
similarity measures in an integrated manner. This impr@agesiracy and runtime per-
formance over existing clustering algorithms. As the fitspsn Citonomy, we propose
a new approach to extract and build a model for citation séicenBoth subjective and
objective evaluations prove the effectiveness of this rhodextracting citation seman-
tics. For the clustering stage, the Citonomy frameworkrsffe/o approaches: (1) CS-VS:
Combining Citation Semantics and VSM (Vector Space Modedabures and (2) CS2CS:
From Citation Semantics to Cluster Semantics. CS2CS isandewt clustering algorithm
with a 3-level feature selection process. It is an improvwainoger CS-VS in several as-
pects: i) deleting the requirement of a training step, ifjaducing an advanced feature
selection mechanism, and iii) dynamic and adaptive cliusj@f new datasets. Compared
to traditional document clustering, CS-VS and CS2CS sicanifily improve the accuracy
of clustering by 5-15% (on average) in terms of the F-Meas@$2CS is a linear clus-
tering algorithm that is faster than the common documerstehing algorithms K-Means
and K-Medoids. In addition, it overcomes a major drawbackKd¥fleans/Medoids al-
gorithms in that the number of clusters can be dynamicaltgrd@ned by splitting and
merging clusters. Fuzzy clustering with this approach hss been investigated. The
related problem of ontology clustering is also addressetigdissertation. Another se-

mantics framework, InterOBO, has been designed for onyottugstering. A prototype to



demonstrate the potential use of this framework, has beezla®ed. The Open Biomed-
ical Ontologies (OBOs) are used as a case study to illugtratelustering technique used
to identify common concepts and links. Detailed experirakrdgsults on different data

sets are given to show the merits of the proposed clustelgogitims.

This abstract of 452 words is approved as to form and content.
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CHAPTER 1
INTRODUCTION

Recently, researchers in scientific communities have s#&eé the tremendous
growth of publications. Even though search engines on ttegriat provide the efficient
way for researchers to find publications of interests, therwlielming amount of infor-
mation still makes it a time-consuming task. Clusteringiraportant technique used in
many fields such as knowledge discovery and informatiomerett, can help researchers
find related information more quickly and thus, keep themated with new findings in
their fields.

Clustering is the process of grouping/dividing a set of otgénto subsets (called
clusters) so that the objects are similar to one anotheiimitie cluster and are dissimi-
lar to objects in other clusters regarding some selectadresof these objects. In other
words, an object is closer to at least one object in the samséarithan any objects in other
clusters in terms of the predefined distance or similaritgsnee. Document/Text cluster-
ing is a specific clustering technique where objects to bsteted are documents/texts.

Considering features used in document/text clusterirgdttument/text cluster-
ing algorithms can be divided into two classes — those thatvastor space and those that
use frequent terms. The vector space clustering createta ver each document where

each dimension represents a term in that document; the véle@ch dimension or the



weight of each term is usually calculated with TF-IDF (Terneduency-Inverse Docu-
ment Frequency). Then the clustering algorithms compugedibtances of two vectors
to determine clustering. The frequent terms clusteringrétigm first finds frequent term
sets using association rule mining, then uses the mutuagpvef the frequent term sets
with respect to their sets of supporting documents to deterciustering. It is intended
to solve the high dimensionality problem of vector spacsteling.

An ontology is an explicit specification of a conceptualiaatin a particular do-
main. Its importance in knowledge management, knowledgdrsinand information re-
trieval has been realized by researchers, especially ladiaal and biomedical domains,
where new discoveries and knowledge emerge at a fast paaey different ontologies
have been developed in recent years. Whereas each ontslaggful for a particular
domain or subdomain, the interoperability between thedelogies has yet to be built

up.
1.1 Problem Definition

First, in both classes of document clustering algorithmsttoeed above, all
words or terms in the document are treated equally. In otleedsy the context or se-
mantics or words are not taken into consideration in cluggereven in the case of sci-
entific documents. By doing this, the significance of somedsar terms in a scientific
document, such as references, titles, and keywords, weoead. That results in a lower
accuracy of clusters. Some surveys on document clustelgagitams have shown that

these algorithms can hardly achieve higher than 73% (orage¢regarding the accuracy



of resulted clusters.

Secondly, due to the hight dimensionality of the vectorsestar space model
which is used in most document clustering algorithms, tle@ss of clustering is usually
slow. Even though the approach of using frequent terms exitiee dimensionality, the
step of finding frequent terms is computationally costly aedce, the entire process of
this approach is not fast either.

Thirdly, the traditional document clustering algorithnesid to focus on the pro-
cess of clustering, and pay less attention to the featueetsah and similarity measure
process. However, both of them can significantly affect tiity and runtime of a clus-
tering algorithm.

To solve these problems, we propose a semantic framewoltkd daitonomy.
In this framework, we consider the semantic informationhsas citations, titles, and
keywords, in document clustering. They are like gold burregand. We assume that, if
this hidden gold is explored in designing a document cliusgealgorithm, it will produce
clusters with higher accuracy. Two approaches of Citonomsyfally discussed in this
dissertation. The first approach, CS-VS, combining citaemantics and vector space
measures, utilizes this information by calculating and bimrimg two similarities between
two documents. In CS-VS, we pay much attention to the issseufarity measure. We
also use the evolution strategy to train the system. Thediion of CS-VS is that its
runtime complexity is high. The second approach, CS2C8&tiait semantics to cluster
semantics, utilizes the semantic information by considgii in constructing document

feature vectors. In CS2CS, we use a 3-level feature setgataress with a 2-dimensional



normalization to extract significant features of documemd clusters. Not only does
CS2CS solve overcome the runtime problem, but it also preslatusters with higher
quality. In addition, domain knowledge was also utilizedtle process of document
clustering with a domain ontology.

In terms of ontologies, many domain ontologies have beerldped in recent
years. To use them effectively, we first need to know the igeiadr mapping between
them. The current ontology mapping approaches have notetdevery aspects of map-
ping. For example, to our knowledge, no one has done clagt@ver ontologies to
explore their relations. In this dissertation, we proposeraantic framework with a clus-
tering technique to find the relations between ontologidso Ao keep up with the growth
of a domain knowledge, the ontology of that domain needs todaated frequently. In
this dissertation, we demonstrated that ontology and ocument clustering algorithms
benefit each other. On one hand, we utilize ontology to impritxe document cluster-
ing results. On the other hand, the feature vectors of msullusters can help update

ontology.

1.2 Contributions of this Dissertation

The major contributions of this dissertation are as follows
1. Itis the first time that citation semantics is utilized mcdment clustering.
2. A semantic framework, Citonomy, is proposed. it includesitation semantics

extraction model and two approaches.



3. A model, CSE, Citation Semantics Extraction, for refeeenlustering and label-
ing, together with formulas for similarity measure betweeference clusters are
proposed.

4. CS-VS, combining citation semantics and vector spacéasity measure for doc-
ument clustering is designed. It offers a significant imgraent over traditional
document clustering. In CS-VS,

(a) The similarity issue between documents is thoroughpjard.
(b) A system training model utilizing an evolution stratagylesigned to find the
optimal similarity weights.

5. CS2CS, citation semantics to cluster semantics, is degitp utilize the citation
semantics by considering them in forming feature vectotsanviolves a 3-level
feature selection model with a 2-dimensional normalizaioocess.

(a) CS2CS can do realtime clustering over evolving datagetscuments.

(b) CS2CS can determine the number of clusters dynamicglbjuster splitting
and merging.

(c) CS2CSs is not limited to scientific documents. It also eufiprmed traditional
document clustering algorithms without using the semamtithe documents.

(d) CS2CS based fuzzy clustering algorithm is also propesefithe results are
promising too.

(e) Methods of using ontology in document clustering andatipd ontology with
document clustering results are proposed.

6. A semantic framework, InterOBO, is proposed for ontolog@pping and clustering



1.3 Outline of this Dissertation

The rest of this dissertation is organized as follows: Céiaptcovers the review
over the related literature. Chapter 3 presents Citonorhiciwis the overall framework
of utilizing citation semantics in document clustering.islitfollowed by discussions on
two approaches of Citonomy — CS-VS and CS2CS that are in €hdpand Chapter
5, respectively. Chapter 6 shows InterOBO that is the fraonkwf knowledge sharing
between ontologies. The detailed experimental resultssVS, CS2CS, and InterOBO
are displayed and discussed in Chapter 7. Finally, the suynamal discussion on future

work are included in Chapter 8.



CHAPTER 2
REVIEW OF LITERATURE

In this dissertation, algorithms in document clustering antology clustering are
discussed. Before unfolding these discussions, we do awewn clustering, document
clustering, feature selection, and ontologies. Since dilesomajor contributions of this
dissertation is the use of citation in clustering, we alsden® the use of citation and

existing research topics on citation.

2.1 Clustering

Clustering is the process of grouping/dividing a set of otgénto subsets (called
clusters) so that the objects are similar to one anotheimiitie cluster and are dissimilar
to objects in other clusters regarding some selected fmfrthese objects. Clustering
is a method of unsupervised classification. It is a commohrtiecie of statistical data
analysis used in many fields and applications such as biptggplogy, medicine, market
research, educational research, social network analysge segmentation, data mining,
and so on.

The process of clustering typically involves the followistgps [63]: (1) ob-
ject representation (optionally feature extraction arrds@ection), (2) definition of dis-
tance/similarity measure, (3) clustering or grouping, éfiddata abstraction or labeling

(optional).



Object representation is the step of selecting featurespoesent objects to be
clustered. Feature selection and/or feature extract®asually used in this step. Feature
selection is the process of identifying the most effectivbset of the original features
to be used in clustering. Feature extraction is the prockssing linear or non-linear
transformations on original features to generate projefetatures to be used in clustering.
Both could reduce the dimensionality of features.

Definition of distance/similarity measure is the step of miefy a proper dis-
tance/similarity measure to characterize the conceptisértte/similarity between ob-
jects. Different distance/similarity measures are usetiffarent situations. For example,
to cluster points in a two- or three-dimensional space, thaiean distance is usually
used, while in document clustering with the vector spaceehdtie cosine coefficient
similarity is commonly adopted.

Clustering or grouping is the step of assigning the objextdifferent clusters
(or subsets, or groups). It is the major step of the entirstehing process. Different
clustering algorithms usually differ at this step. In teraighe relation of objects and
resulting clusters, clustering algorithms could be categd as hard (an object belongs
to only one cluster) and fuzzy (an object belongs to multipiesters each with a de-
gree of membership). In terms of the structure of resultiogters, clustering algorithms
could be hierarchical or partitional. A hierarchical ckritg algorithm produces a nested
series of partitions based on a criterion of merging or spjtclusters with a given dis-

tance/similarity measure. A partitional algorithm paetiis the objects into groups at the



same level with a clustering criterion optimized (usuatigdlly). Other clustering algo-
rithms include Model-based such as SOM (Self-organizing NiB6]) that is based on an
artificial neural network [60] and graph-based such as [20#][47].

Data abstraction or labeling is the step to extract briefeggntations for resulted
clusters. They are compact descriptions or a summary ofeckis

Whereas clustering could be used in many fields, we will farugs use in docu-
ment management, namely, document/text clustering. Tilewimg section is thus dedi-

cated to the review on document/text clustering.

2.2 Document/Text Clustering

Document clustering is the process of grouping a set of dectsninto clusters
so that the documents within each cluster are similar to e#wdr, in other words, they
belong to the same topic or subtopic, while documents irdfit clusters belong to dif-
ferent topics or subtopics. A document clustering alganitis typically dependent on
the use of a pair-wise distance measure between the indivathcuments to be clus-
tered. The vector space model (VSM) [90] is commonly usedHerdistance measure in
document clustering. Each document is represented by arveictrequencies of terms
after removing stop words and word stemming (reducing a woiits canonical form).
In practice, the term frequency is usually the weighted desgy, e.g., TF-IDF (term
frequency-inverse document frequency). That is, in the f8dtlel, the documents in a

collection are converted into vectors in vector space:

D ={dy,ds,....,d,} = M = {v1,03,...,0,}. (2.1)



Wheren the number of documents;, j = 1, ..., n is defined as the following equation:
’U_J" = (TF — IDFLJ‘, TF — IDFQ’J‘, LTF — IDFm,J) (22)

Wherem is the number of unique terms in the set of documents to beaeckdy and

TF — IDF; ; is calculated through the following three equations:

TF — IDF,; = tf;; x idf; (2.3)
i = 3= (2.4)

. | D|
df; = log——1 2.5
s = log e ey (2:5)

Wheren, ; is the number of occurrences of the considered tgimdocument/;, and the
denominator is the sum of the number of occurrences of atiden document;. This
formulais used instead of a simple term count to preventstbisards longer documents.
|D| is the total number of documents in the corpus, gnd: ¢; € d}| is the number of
documents where the tertnappears.

The idea of combining IDF with TF is that if a term is highly dn@ent across
different documents, then it would have little discrimingtpower, and vice versa [89].

To compute the similarity between two documents, the cpmeding vector rep-
resentations are used with measures like the inner prodigc#, coefficient, or cosine
coefficient.

All the general purpose clustering algorithms can be agpieedocument/text
clustering. Some algorithms have been developed solelgdoument/text clustering.
All these algorithms can be classified into partitional,raehical, and others such as

probabilistic, graph-based, and frequent term-based.

10



Partitional clustering attempts to break the given datargett disjoint classes
such that the data objects in a class are nearer to one atiwdinehe data objects in other
classes. The most well-known and commonly used partitichetering algorithm is
K-Means([59]), as well as its variances Bisecting K-Med#d8}) and K-Medoids ([64]).

Hierarchical clustering proceeds successively by bugj@iree of clusters. There
are two types of hierarchical clustering methods: agglatner and divisive. Agglomer-
ative hierarchical clustering is a bottom-up strategy satts by placing each object in its
own cluster and then merges these atomic clusters intorlargklarger clusters, until all
of the objects are in a single cluster or until a user-defimgeron is met. Divisive hierar-
chical clustering is a top-down strategy that starts witloljlects in one cluster. It divides
the cluster into smaller and smaller pieces, until eachablipems a cluster on its own or
until certain termination conditions are satisfied. In temfthe distance/similarity mea-
sure, a hierarchical clustering could use minimum distgatgyle-link) [95], maximum
distance (complete-link) [65], mean distance, or averasfawuice.

Model-based clustering algorithms try to optimize the fitvieeen the given data
and some mathematical model under the assumption that theada generated by a
mixture of underlying probability distributions. SOM [6& one of the most popular
model-based algorithms that uses neural network methadsldetering. It represents
all points in a high-dimensional space by points in a low-ghsional (2-D or 3-D) target
space, such that the distance and proximity relationskipr@aserved as much as possible.
It assumes that there is some topology or ordering among oipgects and that the points

will eventually take on this structure in the target space.
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Graph-based clustering algorithms apply graph theoriedustering. A well-
known graph-based divisive clustering algorithm [102] &sé&d on the construction of
the minimal spanning tree (MST) of the data, and then dajetie MST edges with the
largest lengths to generate clusters. Another populaihgbaged clustering algorithm is
MCL (Markov Cluster algorithm [47]). It will be discussedtivimore details later in this
section.

Whereas there are many document/text clustering algosidwailable, we only
have interests in some of them in the context of this dissentaSome surveys and com-
parison studies such as [96] and [101] over document/testeting algorithms suggest
that K-Means and Bisecting K-Means algorithms performdyetian other clustering al-
gorithms in document/text clustering. Therefore, in thissdrtation, we compare the
performance of our algorithms to that of K-Means and Bise®fl&ns. In addition, our
CS-VS approach (4) is based on K-Medoids, a variance of Kidedustering algorithm.
In the following subsections, we are going to review thegerihms and works that are

closely related to our work.

2.2.1 K-Means Clustering Algorithm

The K-Means clustering algorithm partitions a set of olgento & clusters f is
provided) so that the resulted intra-cluster similaritiigh but the inter-cluster similarity
is low. It starts by randomly selectingobjects as the initial means. Each of the other
remaining objects is then assigned to one of theseeans of cluster to which it is the

most similar. The means of clusters are updated after altbpre assigned. The process
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iterates until the criterion function converges. Typigathe following criterion is used:

k
E:ZZ lo — my|? (2.6)

i=1 0eC;
WhereF is the sum of the square error for all objects in the dataisestthe number of
clusters is the representation of a given object, angdis the mean of cluster’;. The
complete algorithm follows:
(1) Choose k objects as initial cluster means (or centers)
(2) Repeat
(3) assign each remaining object to the cluster to which thjed is the most
similar based on the mean of the cluster
4) update the cluster means, i.e., calculate the mean \altlee objects in
each cluster
(5) until there is no change in any cluster
The runtime complexity of this algorithm @ (nkt), wheren is the number of
objects,k is the number of clusters, ards the number of iterations. Normally, << n
andt << n. The method often terminates at a local optimum. It is seesib noise data
since a small number of such data can substantially infludreenean value and hence
affect the quality of resulted clusters. The following aitfum, K-Medoids clustering

algorithm, can be used to replace the K-Means to reduce tisitisgty to noise.

2.2.2 K-Medoids Clustering Algorithm

The K-Medoids clustering algorithm is a variance of the Kavle algorithm. In-

stead of finding the mean value of the objects in a cluster ageaence point, it uses an
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actual object as the center (called medoid) of each cluBberremaining objects are then
assigned to these clusters represented by these medoats drasheir similarities with
the medoids. The process terminates as the following imite@onverges:
k
E:ZZ lo — my|? (2.7)
i=1 0eC;

WhereF is the sum of the square error for all objects in the dataisestthe number of
clustersyp is the representation of a given object, angdis the medoid of clustef’;. The
complete algorithm follows:

(1) Choose k objects as initial cluster medoids (or centers)

(2) Repeat

(3) assign each remaining object to the cluster with the estamedoid

(4) for each medoid m

(5) for each non-medoid object o

(6) Swap m and o and compute the total cost of the configuration
(7) Select the configuration with the lowest cost

(8) until there is no change in any cluster
The runtime complexity of this algorithm @&(k(n — k)*t), wheren is the number
of objects,k is the number of clusters, arnds the number of iterations. Obviously, it is
not as scalable as the K-Means algorithm. However, the Kdwstalgorithm is desirable
when the mean of a cluster cannot be defined, such as wheroge&attributes (or

features) are involved, or the insensitivity to noise is gameoncern.
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2.2.3 Bisecting K-Means Clustering Algorithm

The bisecting K-Means is a simple version of K-Means al@aonit It starts with
a single cluster of all the objects and continually splitstzo§en) cluster using K-Means

with & = 2, until the desired number d@fis reached. The complete algorithm follows:

(1) Repeat
(2) Pick a cluster to split
(3) Split the chosen cluster into two using K-Means

(4) until the k clusters are produced
Steinbach et al. in [96] state that there is not a big diffeegmetween the possible
methods for selecting a cluster to split and choosing thgekrremaining cluster to split.
Step 2 involves using K-Means clustering algorithm whidteisewed in Subsection 2.2.1

. The runtime complexity of this algorithm in terms of the rugn of objects: is O(n).

224 MCL

The MCL (Markov Cluster algorithm [47]) is a graph-basedstiing algorithm.
It is based on the graph clustering paradigm that if therenateral clusters in a graph,
then they have the following propertys random walk in the graph that visits a dense
cluster will likely not leave the cluster until many of itytiees have been visitedlhe
idea of MCL is to simulate flow within a graph, to promote flow avl the current is
strong, and to demote flow where the current is weak. If clastee present in the graph,
then the current across borders between different clusinsither away, thus revealing

the clusters in the graph. The complete MCL algorithm is #evs:
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(1) Given an adjacency matrix M representing a weighted gralpng with{e; } 32,
and {r;}32,

(2) LetTy = M’

(3) Repeat

(4) Top = (Tog—1)"

(5) Tory1 = Vry (T%)

(6) k=k+1

(7) until Ty, is a (near-)idempotent matrix that contains the clusters

Wheree; € N ande; > 1,1 = 1,2,..., 7, € Randr; > 0,7 = 1,2,...; M’

is a column-normalized M, that is, the element at the th row andg — th column,

M, = ZM—J"Vj,q ~, is called the inflation operator with power coefficientt is defined as

(Mg,)
(v (M))pg = > (M)

The runtime of MCL isO(n*) wheren is the number of nodes of the graph.
However, the matrice3; are generally very sparse, or at least the vast majority @f th
entries are near zero. Pruning in MCL involves setting rzeao- matrix entries to zero,
and can allow sparse matrix operations to improve the spitbe @algorithm vastly. One
advantage of MCL is that it does not need the user to providentimber of clusters
that fits the situations of the references clustering andlogy clustering that will be
discussed later in this dissertation. And in both situajahe numbers of nodes are

ignorably small, therefore, runtime is not an issue at all.
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2.2.5 Other Related Document Clustering Approaches

In [70], Larsen and Aone described a document clusteringrikgn that is similar
to K-Means. However, they did extra work on seed selectiele¢sion of initial means),
center adjustment by adding a damping parameter for theageeunction in finding
the cluster mean, and cluster refinement by splitting eacsted to two then joining the
closest pairs. But the authors did not compare their resutksother approaches such as
traditional K-Means. Nevertheless, in this paper, the @agtimentioned using part of a
vector in VSM model to represent a document. They used a édagth of 25 and did
experiments on other lengths as well, with a conclusionttm@ionger the vectors they
used, the higher the quality of the clustering will be. It iedent from the conclusion
in Chapter 5 of this dissertation. We point out that at a aegaint, the quality will turn
worse when the vectors get longer.

In [91], Saracoglu et al. presented an algorithm for simdi@acuments search (or
document retrieval). The steps it used are similar to our@Slihear clustering discussed
in Chapter 5. That is, it first does clustering over the emgstiocuments, then finds the
means of each cluster to represent that cluster. When ahdogument is presented, it
will be compared to the mean of each cluster to find the cl(stand hence the “candidate
documents,” the simlarities between the input documentthedcandidate documents”
are then calculated to order the candidates before beingest to the user. However, we
have a more delicate approach in selecting features tosepira cluster, and it is shown
to be better than simply using means of clusters.

In [101], not only did Yoo and Hu do a comprehensive study amtctuded that
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K-Means and Bisecting K-Means perform better than othesrétlygms in document clus-
tering, but they also used MeSH ([18]) in their experimenis found that it does improve
the clustering quality for biomedical documents. Howetleey used MeSH to find se-
manticly similar terms and replace them by a MeSH descrifgion. In our approach,
not only do we use MeSH to find similar terms, but we also ireeghe weights of those

terms which leads to better results.

2.3 Feature Selection

The major problem with VSM [90] is the high dimensionality wéctors that
makes the algorithms based on VSM computationally expendfeature selection can
be used to reduce the dimensionality. Feature selectiopiecess that selects a subset
of original features. Strictly speaking, feature seletti® involved in every clustering
algorithm. This is because to cluster a given set of objects,needs to decide on which
feature(s) of those objects the clustering is going to belagoted. The selected features
are usually a subset of all the features of each object intiqures

In the context of document/text clustering, stop words reahds the first step
of feature selection which discards those common words ascla” and “the”. Then
IDF ([90]) could remove other common words across the dataf S&~-IDF is used.
Furthermore, one can use a subset of a vector in VSM to ragr@asdocument. For
example, Larsen and Aone in [70] choose the top terms in @vbaked on their weights
computed from TF-IDF. The length of the vectors is set héigally. This subset could

also be obtained using other models or strategies inste®&bf. For example, Beil et
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al. in [35] proposed a text clustering method using frequenhs. The problem is the
setting of the threshold of term frequency. If it is too bigamy small clusters will be
overlooked, thus resulting in low clustering quality; iisttoo small, frequent terms will
lose their meaning.

Some other popular methods used for feature selection icdheext of docu-
ment/text clustering are document frequency and termgtingt00], entropy-based rank-
ing method [44], and term contribution [72]. Document fregay is the number of doc-
uments in which a term occurs in a data set. It could be coresildes a simple version of
TF-IDF. The term strength is computed based on the conditipmobability that a tern
occurs in document; given it occurs in document;, that isP(t € d;|t € d;),d;,d; €
D N sim(d;,d;) > B, wheref is the threshold of similarities between documents. To
calculate term strength of each term, one needs to find th&asiyof each pair of doc-
uments and hence, the runtime complexity of this procedseiD (n?), wheren is the
number of documents to be clustered.

The entropy-based ranking method ranks terms by the entexpyctions when
they are removed. The entropy is defined as follows.

E(t) ==Y (Sij x log(Si;) + (1 = Sij) x log(1 = (S;4))) (2.8)

i=1 j=1

Where S;; is the similarity between documents and d;, and it is defined as;;, =

e~ oxdisti wheredist,; is the distance between the documentandd; after termt is

__In(0.5)
|dist]|

removed, andv = , Where|dist| is the average distance among the documents
after termt is removed. Its runtime complexity is alé®(n?), wheren is the number of

documents.
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The term contribution methods ranks the terms accordinleiv tontributions to
the similarities between documents. Itis defined by thigéquT'C(t) = >, ;.. f(t, di) %
f(t,d;), wheref(t,d;) is the TF-IDF weight of termt in document/;. The runtime com-
plexity of this feature selection process is al3(n?), wheren is the number of docu-

ments.
2.4 Use of Citation

Citations have been playing an important role in literaturging, and more par-
ticularly, in scientific research and publications. As B&Cronin [1] put it, “Metaphori-
cally speaking, citations are frozen footprints in the ksgape of scholarly achievement;
footprints which bear witness to the passage of ideas.”. [&yktematic use of citations
can be traced back as early as 1873, when the Frank Shepherpa@yp [9] began its
legal service by publishing its citators - lists of all theltzarities citing a particular case,
statute, or other legal authority. However, in the contéxdatentific literature, there had
not been formal research on citations until the 1950s.

Starting with Eugene Garfield’s [7] Citation Indexes for Swe [51] in 1955,
research on citations began to draw more and more attermidreffort from scientific
communities. Two other scientists who have made significantributions to this area
are Henk Moed [15] and Blaise Cronin [1]. Whereas Garfield dase breakthrough
work on citation index such as the paper mentioned aboven@impact factor [53] and
[52], and funding Institute for Scientific Information (ISboth Moed and Cronin have

done outstanding research on bibliometric measuremefit-{{f79], [41] — [43]).

20



With the foundation on citation research laid by these tlyeats, researchers
around the globe have been able to explore other aspectsamd citations, such as using
citations to build citation networks, to do document clusig, as well as more research
on citation indexing, ranking journals or papers usingtigtes. In this section, we present
a comprehensive review on research topics and applicdtonsing on different aspects

of citation and discussing future possible topics on @tai

2.4.1 Citation indexes/networks

A citation index is an ordered list of cited articles, eackthva list of citing articles.
The citing article is identified as a source, and the citetlaras a reference ([61]). A
citation index allows users to easily establish which |atecuments cite which earlier
documents. One can use citation indexes to build a citagbmork. For example, starting
from the newest citation index, we can build a citation netnoy tracing back to the
oldest papers along citations. A citation index can be thoafas a two-layer or shallow
citation network, while a citation network can be consideas a multi-layer citation
index.

Inspired by Shepherd’s Citations ([9][31]), Garfield prepd a bibliographic sys-
tem for science literature in [51]. Its intention was to usatation index to offer “a new
approach to subject control of the literature.” Besidesdtiegantages of a citation index,
such as evaluating the significance of a particular work, thedcoding of citation en-
tries, preparation/realization of the citation index walgo discussed in this paper. With

this idea, Garfield founded the Institute for Scientific imf@tion in 1960, that maintains
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citation databases covering thousands of academic jaynmaluding a continuation of
its longtime print-based indexing service the Sciencetmalndex (SCI), as well as
the Social Sciences Citation Index (SSCI), and the Arts anth&hities Citation Index
(AHCI). ISl was acquired by Thomson Scientific & Healthcard D92, and then became
Thomson Scientific ([33]) that now provides the online acaiteservice - Web of Sci-
ence ([34]). According to their website, Web of Science eswver 10,000 of the highest
impact journals worldwide, including Open Access jourrsaldd over 110,000 conference
proceedings in areas of the sciences, social sciencesaad$fiumanities, with coverage
available back to 1900.

More citation index systems have been developed and readiliable since SCI.
Another popular commercial general-purpose citationxrslestem is Scopus ([30]) that
is published by Elsevier. Itis available only online anditamy combines subject search-
ing with citation browsing and tracking in the sciences,alogciences, arts, and human-
ities. According to their website, Scopus indexes 16,500stifrom more than 4,000
international publishers. It has 100% coverage of Medlithestand its coverage is over
99% complete as of 1996 on the issue level. It also indexdsaais back to 1823.

Besides these two commercial citation index systems, we \aét to discuss
some notable free-accessible ones- CiteSeerX [4], PublZéll (Google Scholar [14],
and RePEc (Research Papers in Economics [28]) .

The CiteSeerX system provides citations and the functisetoch for scientific
literature, primarily in the fields of computer and inforneat science. It is the next gen-

eration of CiteSeer ([3]) with new architecture and data et®tb better meet the needs
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of the research community. CiteSeer was developed in 198%&EC Research Insti-
tute, Princeton, New Jersey, by Steve Lawrence, Lee GihekKart Bollacker. It was the
first digital library and search engine to provide automaiéation indexing and citation
linking using the autonomous citation indexing method [71h] the papeCiteSeer: An
Automatic Citation Indexing Syste®b], Giles et al. claim that CiteSeer autonomously
locates, parses, and indexes articles found on the Worlce Widb. It thus has some
significant advantages to traditional commercial citaiimtexes (TCCIs). First, it can
index articles as soon as they are available on the web (gsalothe hosting web servers
allow crawling) so that researchers can keep up to date inrélevant fields. Secondly,
it requires no manual effort during indexing. Thirdly, itche used to make a more in-
formed estimation of the impact of a given article by makimg¢ontext of citations easily
and quickly browsable as well as countable. Neverthelbégy, &lso identified a couple
of disadvantages compared to TCCIs. First, it does not cinesignificant journals as
TCCls do. However, this disadvantage can be gradually omeecas more journals be-
come available online and agreements with publishers &xititeir journals are reached.
The second disadvantage is that CiteSeer cannot distinguisfields as accurately as
TCCils since it retrieves this information automaticallgtead of manually. This could
be improved by accumulating more articles and updatingralgos. We will have more
detailed information on this in Subsection 2.4.6.

The MEDLINE (Medical Literature Analysis and Retrieval $m) database con-

tains more than 18 million records of citations and abstracated by the U.S. National
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Library of Medicine (NLM) from approximately 5,000 seledtpublications [17], cover-
ing biomedicine and health from 1950 to the present. A disire feature of MEDLINE
is that the records are indexed with NLM'’s controlled vodaby the Medical Subject
Headings (MeSH [18]) for information retrieval. The 2009sien of MeSH contains
a total of 25,186 subject headings, also known as descsipfdescriptors are arranged
in both an alphabetic and a hierarchical structure. Moshe$¢ are accompanied by a
short description or definition, links to related descnipt@nd a list of synonyms or very
similar terms (known as entry terms). Because of these gyndists, MeSH can also be
viewed as a thesaurus.
PubMed is a free search engine to access the MEDLINE databaseldition,
PubMed also contains ([19])
1. In-process citations that provide a record for an artod®re it is indexed with
MeSH and added to MEDLINE or converted to an out-of-scopiista
2. Citations that precede the date that a journal was sdléateV/EDLINE indexing
(when supplied electronically by the publisher)
3. Some OLDMEDLINE citations that have not yet been updatihkl @urrent vocab-
ulary and converted to MEDLINE status
4. Citations to articles that are out-of-scope (e.g., dogeplate tectonics or astro-
physics) from certain MEDLINE journals, primarily geneslience and general
chemistry journals, for which the life sciences articles mdexed with MeSH for
MEDLINE

5. Some life science journals that submit full text to PubMedtral and may not yet
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have been recommended for inclusion in MEDLINE althougly tieve undergone
a review by NLM, and some physics journals that were part absopype PubMed
in the early to mid-1990’s
6. Citations to author manuscripts of articles publishetby-funded researchers
Google Scholar is a free web search engine that indexes thext of schol-
arly literature across an array of publishing formats arstigiines. Released in beta
in November 2004, the Google Scholar index includes mostigetewed online jour-
nals of the world’s largest scholarly publishers. Accogdin [82], it has the following
advantages:

1. It provides international coverage of journals and satipkesources.

2. There is no bias due to subjective selection of journals.

3. Besides journal papers, it also indexes preprints, teahreports, theses, disserta-
tions, and conference proceedings. It contains links tduth&ext in approximately
half of the results.

Disadvantages include

1. Language bias - it does not index complex script languageb as Japanese and
Chinese.

2. Some results are not scholarly material such as libramgtand student handbooks.

3. It does not offer a publisher list, a journal list, or anyed about the time-span or
the disciplinary distribution of records [62].

RePEc - Research Papers in Economics, started in 1997, labarative effort
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of hundreds of volunteers in 57 countries to enhance thewliggtion of research in eco-
nomics. RePEc is an online open library [68] that is open @mtibution (third parties
can add to it), and for implementation (many user serviceg beacreated). Conven-
tional libraries (including most digital libraries) areoskd in both directions. Using its
IDEAS database, RePEc provides links to 752,000 full tetitlas for 2009. Among
them, 638,000 are freely downloadable. It uses CiteSeearitigns in the process of
identification and parsing of references.

A couple of significant differences among these four citatralex systems are 1)
MEDLINE is manually indexed, while indexing in the otherekris done automatically.
2) CiteSeerX and Google Scholar show the number of citatadrsach article in the
search results, along with the link to the list of citing elgs. This enables users to
quickly evaluate the popularity of the cited article andcé&dhose citing articles. The
other two do not have this feature.

Almost as early as citation index was proposed, citationvagt began draw-
ing researchers’ attentions. Actually, in [51] about éttatindex, Garfield mentioned its
potential use in historical research, and thus implied th&ling of a citation network.
However, the citation network had not been systematicallgied until 1964 when the
book The Use of Citation Data in Writing the History of Scierjbd] was published. In
this book, Garfield et al. discussed their findings in whethtion data, in particular,
citation network, could help identify key events in the bistof science. With the history
of DNA as an example to apply their models on, they concludhed, tven though the

citation network cannot replace human memory and evaluatiovriting the history of
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science, it can definitely “reveal historical dependenaibgh can be easily overlooked
by the historian” and help to identify “key events, their @hology, their interrelation-
ships, and their relative importance” in writing the histof science.

The citation network can also be used to find other usefulachearistics of sci-
entific researches. The concept “research front” was ailyinntroduced in [84] and
refers to the body of articles that scientists actively aitea given field, which Price
believes, distinguishes the scientific literature from swentific literature, and thus en-
abling science to accumulate much faster than nonsciena= &so observed an inter-
esting phenomenon-“‘immediacy factor.” There seems to lendeincy for scientists to
cite the most recently published articles; hence, pape&sansidered obsolete after a
decade.

Almost all the online citation index systems, such as Ciee&ad Google Scholar,
have a hidden network of their indexed articles that candozett forward in terms of the
time line of their publication date by following their “Cideoy” or “Citation” feature links.
Nevertheless, the citation network building and visuaioraare still research topics to be
fully explored. CiteSpace [38] is one of the most populaultsof such research. CiteS-
pace is a Java application for analyzing and visualizingticih networks. Its primary
goal is to facilitate the detecting and analysis of emergiagds in a knowledge domain.
It also can be used to identify the nature of a research frpfitdt extracting terms from
titles, abstracts, descriptors, and identifiers of citingckes in a dataset and finding the
sharp growth rate of their frequencies. The intellectuakbdefined as cited articles [83],

can also be determined along with the research front. CaesSpould potentially be used
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by a wide range of users to explore the dynamics of a spedmatgrms of a time-variant
mapping from a research front to its intellectual base, dkagehelp find other interest-
ing aspects of a research community. [40] and [39] presemtapyplications of detailed

citation analysis by the aid of CiteSpace.

2.4.2 Bibliometric Measurement

Intuitively, the number of citations is a good measure forkiag papers. The
more a paper has been cited, the better it is, or at least weagatine more popular it is.
The same argument can be used for a journal or a conferenae]lass the performance
of a research group or institute. So, not surprisingly, tieisearch topic on citations
came up almost as early as the citation index didNé&w Factors in the Evaluation of
Scientific Literature through Citation Indexir{§3], Garfield pointed out that using an
absolute number of citations to a journal to determine ifgartance is not much more
sophisticated than using the quantity of articles it putgdts Rather, using the ratio of
number of citations to the number of articles it has publist®uld get a more meaningful
measure of the importance of a journal. In revisiting thigi¢cdn [52], he ranked 100
journals with the highest impact using this measure overyear, seven-year, and 15-
year periods. As expected, top journals retain their premimankings over these three
different periods. However, significant changes did happesome journals. Journals
in slow-moving fields moved up when measured in the long-tenoch all letters journals
moved downward in the long term. Also, a few highly cited ‘&ibn Classics” made

some journals improve in the long term ranking.
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The Journal Citation Reports [16], a by-product of the SoéeRitation Index
(now a division of Thomson Scientific), annually publishtgistical information on the
citation data of journals indexed. It shows the relatiopsigtween citing and cited jour-
nals, and helps in measuring journals’ influence. Howeweameron in [37] studied,
there are serious methodological issues in the applicaficiiation analysis to scholarly
evaluations. To such a problem, a universal citation datbgight be a solution. A uni-
versal citation database would value all forms of publmagiequally and thus, allowing
the impact of works to be judged without measurement bias.

Compared to journal ranking, ranking papers in a given figictibations count
seems much more reasonable. It could be the most impor@samevhy the “cited by”
or “citation” feature provided by Google Scholar or CiteSéare so welcomed by the
scientific communities. However, as Redner in [87] pointat the citation distribution
provides a much more complete measure of popularity thatotaenumber of citations.
Redner also observed that the number of papers with x it (), has a large-x
power law decayV (z) ~ x~%, with o = 3.

Moed and Cronin both did research on measuring academiorpahce of in-
dividuals or groups [42][43][74][75][76][77][78][79]. Balizing citation analysis plays
an important role in such bibliometric measurement, boslo alcknowledged its limita-
tion, therefore suggesting it should be used with otherrmédion such as “qualitative
knowledge about the scholars” and their “subdiscipling8]] or “to complement other

information, both quantitative and qualitative” [42].
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2.4.3 Citation Function Analysis

In [80] on the in-depth study of the quality of citations, Mecsik and Muruge-
san examined each reference made by a paper from the fof@asipects: a) conceptual
or operational (the reference is a concept or theory, or moadr physical technique
used in the referring paper), b) organic or perfunctory (gference is truly needed in
understanding the referring paper or is it mainly an ackedgément), c) evolutionary
or juxtapositional (the referring paper is built on the fdations provided by the refer-
ence or an alternative to it), and d) confirmative or negafi¢the reference is correct
or not claimed by the referencing paper). In their studyy fleeind that one-third of the
references are redundant. There are slightly more coralepgtierences than operational
ones, 60% of the references are evolutionary, 40% juxtéipoal, two-fifths of them are
perfunctory, and one-seventh of them are negational.

In [67], Kostoff categorized references into the followisigbjective functions. a)
Bookmark - for the efficiency of presentation, awarenes®lated work; b) Intellectual
heritage linkage - a link to intellectual heritage foundatshowing historical context of
unique contribution; c¢) Tracking research impacts - to aoc® research sponsors; d)
Self-serving purpose. Kostoff introduced two conceptspl@ning self-serving purpose
- the “Citation club,” where each member cites the other membegularly, and the
“Pied piper effect,” where citation clubs could exclude gmtitive concepts that threaten
existing mainline infrastructures.

Interestingly, both papers were motivated by investigathe validity of the ci-

tation counting as a measurement of scholarly work. Bothemaponcluded that there
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are limitations of such a measurement due to different fanstof the references served
in the referring papers and authors’ biases. The MacRoleft8] concluded likewise.
In addition, they also discussed two different philosophiegarding scientific papers -
the traditional scientific view that is behind citation cting. This view affirms that the
scientific paper is value free and that nature writes papetdjuman beings. Hence, sci-
entific papers are objective and rational. Another view @aa@onstructivism. This view
maintains that science was found to be “subjective, cortifigsocial, and historical”.
While a scientific paper presents a story, “the citations@méan array, but not the only

array possible.”

2.4.4 Analysis of Relations Between Papers

Using a citation index, one can build citation networks (terature networks).
A citation network, in turn, can help historical researclsaence, or other research in a
given scientific field. However, it would be more useful if wanmbtain more information
between a citing paper and cited papers. For example, if wérathe relations between
a citing paper and cited papers, or the function of a cite@pap discussed in Subsection
2.4.3, we can label the citation network and hence, reseesetould be able to get richer
information from such a citation network.

Teufel et al. in [98] redefined the citation functions intaf@op level classes with
a total of twelve different categories. Then with a supeargisnachine learning frame-
work, they automatically classified a citation into one ofgsh twelve categories using

both shallow and linguistically-inspired features. Theiperimental results reached 57%
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on average in F-Measure.

In [81], a neologism (citances) was first introduced to mdandentence(s) sur-
rounding the citation within a document. Nakov et al. praggbthe use of citances as
a tool for semantic interpretation of a bioscience text. ylbelieve that citances in bio-
science text usually state known biological facts discesgtén the cited papers. More-
over, the citances describe these facts in a more conciséwthg citing papers than in
the original papers. Thus, the citances could be a potgntialuable resource in mining
bioscience literature. They addressed three issues faepsong citances: determining

text span, identifying the different topics, and normalgor paraphrasing citances.

2.4.5 Scientific Document Clustering

Both [36] and [99] (our previous work) presented the use @iticns in scientific
literature clustering. The former used citation graph iinfation to discover a set of
words that are most informative in terms of identifying tita relationships, and then
emphasized those words in a text-based clustering staggtove the quality of topical
clustering.

However, the later used a different aspect of citationsatiolh semantics in lit-
erature clustering. A two-level model was introduced. Ti&t fevel is to cluster and
label references of each scientific paper of a given cobtladib get citation semantics.
The second level is to combine the vector space similaritgsuee and the “Citonomy”
similarity measure that includes similarities betweedesitkeywords, citation semantics,

and co-citation, to do paper level clustering. Promisirsyles reported that at least a 5%
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average improvement was achieved in the F-Measure.

Some other works also considered citations in text classifins. For example,
[103] used co-citation information together with abstyéitie, or abstract plus title to do
text classification. CiteSeerX also utilized co-citatioformation in their citation index
system. However, none of them considered citation graplti#tation semantics — labeled
clusters of references. Tong et al. in [99] argued that Eipethe same field most likely
would cite the same kinds of previous work, but not necelystoe same work. Hence,
considering similarity between citation semantics in stfec paper clustering is better

than simple co-citation counting.

2.4.6 Bibliographic Attribute Extraction

In section 1, we mentioned that some citation index systarok as CiteSeerX
and Google Scholar do indexing automatically. This meang #xtract citation infor-
mation without human intervention. Because of this, theuesxy of automatic citation
information extraction plays an important role in thosatitn index systems. In fact, a
tool for extracting citation information is useful in allgtother applications on citations.
If a scientific paper is stored in a tagged format, such as X&Xténsible Markup Lan-
guage), then citation information extraction is just aiiissue. However, there are stilla
lot of scientific papers stored in the plain text format. Sahiem are obtained through
the OCR (optical character recognition) process. It needsded research to come up
with useful tools to extract citation information such as #uthor’'s name, paper title, and

publisher, etc., from those plain text papers.
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Takasu in [97] proposed a rule-based system - an extendetkrildarkov Model
called DVHMM to extract bibliographic attributes from OGiRecessed reference strings.
Methods for both reference alignment and reference pansegrg discussed, and this
model can be trained with non-aligned pairs or aligned pakscuracy of extracting
bibliographic attributes using either kind of training @atached more than 80% except
for attributes volume and number.

In [45], Day et al. presented a knowledge-based approactittaion informa-
tion extraction. They adopted an ontological knowledgeesentation framework called
INFOMAP to automatically extract the reference metadateeylreported 97.8% overall
average accuracy of citation extraction for six major refiee styles. However, the phase
of knowledge representation in INFOMAP is basically a mapuacess, and the quality
of such a representation directly affects the accuracyedf Hpproach.

Both [57] and [58] focus on name disambiguation, that isgleesname ambigu-
ities caused by two reasons: an author may have multiple :iantkfferent citations and
multiple authors may share the same name. Han et al. in [€8epted two supervised
learning approaches, while Han et al. in [58] discussed aupervised approach. All
utilize three types of citation attributes: co-author napntéle of the paper, and title of
the journal. One approach in [57] uses the naive Bayes pilitigabodel (a generative
model), another uses the Support Vector Machine (SVM — aidigtative model). The
naive Bayes model achieved higher accuracy than the SVMwithd73.3% compared to
65.4%. The unsupervised approach displayed in [58] is K-sggctral clustering. They

used it with a QR decomposition (a decomposition of a matri@ an orthogonal and an
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upper triangular matrix) for cluster assignment. They skdwhat the spectral methods
outperform K-Means for the data sets they collected. Théyeaed a 61.5% to 64.7%
average accuracy, and observed that the more featuresifftoramames, paper, and pub-

lication title words) used in author classification, thetbethe classification accuracy.

2.5 Ontology and Ontology Clustering

An ontology is an explicit specification of a conceptuaiizat([56]). In other
words, an ontology is defined as a formal representation ektitowledge by a set of
concepts within a domain and the relationships betweeretbascepts. Ontologies could
be divided into domain ontologies and upper ontologies. fdio ontology, or domain-
specific ontology, models the specific domain. It represdrgsarticular meanings of
terms as they apply to that domain. Whereas an upper ont@odygundation ontology),
is a model of the common objects that are generally appkcabtoss a wide range of
domain ontologies.

An ontology usually consists of classes (concepts), ptgse(attributes), rela-
tions, and instances. Ontologies are commonly encodedtolayy languages such as
RDF (Resource Description Framework [29] ), RDF Scheme, [@YYL (Web Ontology
Language [22] ), and DAML+OIL [5].

Many ontologies have been published through the last deoatkbly in biomedi-
cal domains. Here are some of the most popular ontologies(l@ctions) — OBOs (Open

Biological and Biomedical Ontologies [21] ), GO, Gene Oaty [13], MeSH (Medical
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Subject Headings [18] ), FMA (Foundational Model of Anatgrfi0], ChEBI (Chem-
ical Entities of Biological Interest [2]), SNOMED CT (Systatized Nomenclature of
Medicine — Clinical Terms [32]), FOAF (Friend of a Friend [)1UMLS (Unified Med-
ical Language System [92]), and Dublin Core (an ontologydfmeuments and publishing
[6]).

As the domain knowledge grows dramatically, especiallyhi bhiomedical do-
main, ontologies catch more and more attention becausesofdhvious advantages in
knowledge discovery and management. Nevertheless, tiseypaist a new challenge
for the community - the interoperability between ontolagi&his is because ontologies
have been developed for different purposes and coverirfigréift aspects (e.qg., litera-
ture indexing and retrieval, electronic patient recorasl statistical reports on mortality
and billing), and in different subdomains (e.g., diseagesiomes, molecular biology,
micro-organisms, diagnoses, medical devices, procedaresdrugs). Yet, attempts to
represent the whole medical domain are usually limited opsq GALEN) [86] or lack
a strong organizational structure, as in the Unified Medigadguage System (UMLS).
The main cause for these limitations arises from the fadtdiferent research groups
rely on heterogeneous research data sources. There havedree previous efforts on
how biological resources such as Gene Ontology and GenBE&tjkchn be mapped to
the medical information. Particularly, knowledge mappimgiological and medical on-
tologies is essential for the future integration of divasganedical domains, e.g., public
health and genomic research. There is an urgent need for hamem to build inter-

operability between ontologies that are semanticallyteelabut have been developed by
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different groups and for different purposes.

In order to identify meaningful relationships among relasibdomains (e.g.,
identification of genes responsible for a disease, devedopraf drugs for their treat-
ment or prediction of a pathogen’s susceptibility to a dyutgy essential to know what
ontology sources exist and what information they containttfermore, we need to com-
prehensively analyze relationships between these onedddifferences and similarities
between species, how mutations affect functioning of teffié components in different
organisms [69]), including the extent of overlapping imf@tion within them. Identi-
fying related information among heterogeneous ontologys and classifying them
according to their relevance is an important challenge.

Existing methods for integration of ontologies use strraitand semantic meth-
ods; however, there is still room for improvement. Most ¢dogees are organized around
a concept hierarchy as the backbone with additional rubdsnes, or other constraints.
Linking multiple ontologies is a difficult task because ijpires a comprehensive un-
derstanding of domains to be linked. These differencesrdoecause different ontology
designers may bring different world views to the task, cptaalizing the world at dif-
ferent levels of granularity and abstraction. Such diffiees are well known semantic
problems. When integrating two ontologies, the existerfcgyponyms and homonyms
causes problems in integration. Synonyms across ontaldlgé are lexically unrelated
may be missed, and lexical matches that are merely homonyaydmerroneously des-
ignated as being related. From an application perspedtieatifying related ontologies

and linking or clustering them together is very importardg.olir knowledge, no one has
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applied the clustering technique in analyzing the relatiamong ontologies. Thus, it is
of interest to analyze how related ontologies overlap, and to cluster them into an
ontology network, which will be discussed in Chapter 6.

Increasingly, we are also seeing the emergence of distdbsitientific process-
ing. The Semantic Web provides an important platform fos tgtivity of biomedical
information exchange to take place. Nevertheless, thersignificant difficulties to be
resolved before seamless interoperability and interobaag occur. Existing semantic
approaches for linking are promising; however, they aremaationally expensive and
impractical for large scale ontologies. Several existiolyitsons for integrating and in-
teroperating ontologies (using reasoners like FaCT [8] Rader [26] ) rely mainly on
complex and complicated processes such as reasoning acdbbsed approaches. In ad-
dition, having strong semantic modeling expertise acroskipte sub-domains is a real
challenge. Thus, there is a need for pragmatic alternativelsaracterize the relationship

between multiple biomedical ontologies.
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CHAPTER 3
OVERALL FRAMEWORK — CITONOMY

The Citonomy framework is a semantic framework that utditee semantic infor-
mation presented in documents to do document clusteringonitrast to traditional doc-
ument clustering algorithms with the VSM model where alhtsrwere treated equally,
it takes into account the semantic contexts of terms in decurolustering and hence,
improves the accuracy of clustering. The definition of Caiay follows.

Definition 3.0.1 CitonomyCitonomy is the framework of document clustering consid-
ering the semantics of documents. Given a set of documemdjrst map the doc-
ument spaceé) to the semantics matrix spaceVl: D = {dy,ds,...,d,} — SM =
{(v1, smq), (03, smy3), ..., (U, sm,)}, Wherev;, i = 1, ..., n, is a vector in the vector space
model, sm; = (T;,C;, K;), T;, C; and K; are the title, citation semantics, and key-
words ofd;. We can further magp' M to DV = {dﬂl,dﬂg,dﬂn} and then toC'V =
{cty, cVs, ..., UL}, wheredv;,i = 1,...,n and cvj,j = 1,..,k, are the document and
cluster feature vectors, respectively. We do clusterintherspaces M, or DV andC'V .

Among the semantic information of each document that ireduithe title, key-
words, citation semantics (reference clusters and thbel$d, and co-citation informa-
tion, the citation semantics is the most important partdéfnition is given as follows:
Definition 3.0.2 Citation Semantic3he citation semantics of a scientific document

is defined as two matrixed/in and M,,;. M,, is the matrix of terms found in titles
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and surrounding sentences of documents cifingith each row for one citing document.
M, is the matrix of terms found in the titles of documents citgd pand the surrounding
sentences where they are cited, with each row storing stetets as the label of each
cluster of references.

However, to usel/;,, one has to search thoroughly in a reliable citation index
system to get all information of documents citidg Also, as observed in [87], about
47% papers are never cited. Especially, the chance of béed for new papers (say,
published within six months) is almost zero. Based on thas#ofs, it is reasonable
and pragmatic to exclud&/;, from citation semantics when doing document clustering.
Thus, in this dissertation, we only considé#k,,; as the citation semantics of a scientific

document.
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Figure 1: Citonomy — the Overall Framework
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There are three major phrases in Citonomy framework. Theyshown in Fig-
ure 1. Phrase 1 is the SM processing, which deals the issudrateng the semantics
of documents. Phrase 2 is the DM processing, which dealgessstidocument repre-
sentations and document clustering. Phrase 3 is the CM gsimge which deals cluster
management. The issues evolved in Citonomy framework wifusther explained in the

following sections.

3.1 Preprocessing

This is the first step for most document/text clustering athms. It usually in-
volves stop words removal and stemming. Stop words are wikelsthe” and “a” that
do not contribute to and even are noise to document/clagte8temming is the process
of reducing words to their stem, base, or root form. The steescdhot need to be identical
to the morphological root of the word; it is usually suffici¢imat related words map to the
same stem, even if this stem is not in itself a valid root. meotwords, we consider the
different forms of a word as the same in document clusteifiog.example, “depending”
and “depends” both would be considered and hence, be stemtoédepend”, which is

reasonable. We use the Porter Stemming algorithm [88] toatd stemming.

3.2 Citation Semantics Extraction

This is the major issue involved in Phrase 1 of Citonomy. Weaex citation
semantics using reference clustering and labeling. Giveairaof paper titles, it is rea-

sonable to conclude that they are semantically relate@jf tilmve matching lexical tokens
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or phrases. We refer to these as intrinsic matches basegbaoidexical evidence. When
these paper titles are found in the context of the list ofreafees of a journal paper, ad-
ditional semantic evidence can be used to infer relatedoetsgeen them. We refer to
this as extrinsic or implicit evidence. These are genernalgted to the specific context
of each citation within the body of the manuscript. The crtgef a pair of citations
can be used to derive a metric of the distance between thetarrinthe references can
be clustered together to sub-classify the list of referemca scientific document. Once
semantic relatedness is established, each semantic gfaigatmns can be labeled by
finding lexical similarities either between them or simifaof contextual information.

To cluster the references, we first generated similaritetsvéen every two ref-
erences cited by a paper, defined by formula 3.1. Second, & the Markov Chain
algorithm (MCL) [47] to do reference clustering based orsthsimilarities. Third, we

labeled these citation clusters. The detail of each sybfstows.
S(rl,r2) = S(t1,2) + S(s1, s2) + B(r1,72) (3.1)

As shown in equation 3.1, the similarig(r1, r2) between two references are defined by
the similarities between their titleS(¢1,¢2) (defined by equation 3.2) and surrounding
sentence$(s1, s2) (defined by equation 3.2), as well as the citation localitylj@cket)
informationB(r1,72). The surrounding sentence of a reference is the sentente in t
document body where the reference is citBdr1, r2) is the bracket or citation locality
information of two references. For example, if we see “[1B]’2n a paper, then ref-
erences 13 and 21 have been explicitly considered to be the kimd of papers by the

author. So when we perform clustering of references, it gartant to consider this fact.
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But they do not necessarily belong to the same cluster intla¢ dlustering results. That

is because we cannot fully trust the locality informationtst authors may make mis-

takes by putting in wrong numbers. Second, the authors’ viglaout some references
may be wrong. So we consider all the following three typesvidence when measur-

ing the similarity of every pair of references: titles, sumding sentences, and locality
information. Titles and surrounding sentences are botlsidened sentences but will be
compared separately, that means we will compare titleloditd surrounding sentences
to surrounding sentences. It makes sense to preservedodhgemantics since the ref-
erence title is given by the author of the cited paper whigegtirrounding sentences are
written by the author citing that reference. The similagfytwo sentences stl and st2 is
computed as follows.

Count(stl N st2)

Sstl, 5t2) = Count(stl U st2) (3-2)

In other words, the similarity between two sentences eghalsiumber of com-
mon terms of these two sentences divided by the total numibenique terms in the
sentences. Bot§(¢1, t2) andS(s1, s2) in equation 3.1 use equation 3.2 to compute. The
value range 08(st1, st2) will be between 0 and 1, inclusively. Ariglr1, 72) in equation
3.1 will be either 0 or 1. Therefore, the value of the similabetween two references
will be between 0 and 3, inclusively.

Once we finish computing the similarity of every two referemof a document,
we input these similarities to MCL. MCL is an unsupervisedstéring algorithm for
networks (also known as graphs) based on simulation oft{agicc) flow in graphs. MCL

does not need to know the number of potential clusters. tifiigour situation here since
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we do not know the number of clusters of the references irclixy each paper. However,
through our experiments, we found out there are about 4 tosiens of references in each

paper on average.
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Figure 2: An Example of Reference Clustering and Labeling

We label each cluster by the most frequent terms, namely, seethose terms
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that occur in half or more than half of the members (referenoé a given cluster. We
select terms from both the reference title and surroundergesices. In practice, one
may choose to use single words or phrases as labels. In teeimegnts, we first used
single words as labels, later we also used multi-word tersnialaels for the purpose of
comparison. Since there could potentially be multiple ttinat exceed the criterion (half
or more), the user can choose toperms (such as five or ten terms) as labels. Figure 2
shows an example of citation clustering and semantic atinotaln this example, six
citation clusters are identified and each citation clugennotated with up to ten most

frequent terms.

3.3 Document Clustering and Cluster Management with Citaton Semantics

Document clustering and Cluster Management are issues iddahrase 2 and
3 of Citonomy. They are the ultimate purpose of this framéwofnd the quality of
document clustering will be used to evaluate the feasjalitd significance of the overall
framework. In other words, the accuracy of the resultedtehrsswill be the major concern
in evaluating the Citonomy framework. Nevertheless, theinube or complexity of the
entire process will also be discussed in Chapter 4 and Chapte

We proposed two approaches (CS-VS and CS2CS) to implemeatrdnt clus-
tering using citation semantics. In the first approach, GGbmbining Citation Seman-
tics and Vector Space measures), when calculating sityilafitwo documents, we use
both the similarity between vectors of two documents andsthelarity between the ci-

tation semantics of these documents. That is, we calculagetiwo kinds of similarities
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separately, then combine them together through either drdioymean or simple addi-
tion. Then we use this measure to do K-Medoids clusteringeNee also consider the
similarity between titles and take into account the infatioraof co-citation. CS-VS is
discussed in detail in Chapter 4.

In the second approach, CS2CS (Citation Semantics to Cl8stmantics), a 3-
level feature selection is introduced to utilize citati@mentics in document clustering.
Thatis, we form feature vectors for single documents anstets by selecting features for
reference clusters (level 1), single documents (level i), document clusters (level 3).
Then we do document clustering by finding the similaritie®amthese feature vectors.

In both approaches, we need a small amount of documents taipengy data
in order to find weights in similarity measure (in CS-VS), anitial feature vectors (in
CS2CS). A brief comparison between CS-VS and CS2CS is shoWathle 1. The details

of them will be unfolded in the following two chapters.

Table 1: Comparison between Approaches of Citonomy: CS\BGE2CS

CS-vS

CS2CS

Highlight

Similarity between Citation
Semantics

3-Level Feature Selection

Model of Documents

VSM + Citation Semantics + Title +
Keywords + Co-citation

Feature Vector (formed from VSM +
Citation Semantics + Title +
Keywords)

Similarity measure

Combined VSM similarity and
semantics similarity

Similarity between feature vectors

Document Clustering

K-Medoids clustering, static, the
number of clusters is predefined

CS2CS linear clustering, dynamic,
the number of clusters changes, real
time clustering

Use of training set

Use evolution strategy on training set
to get weights in combining
similarities

Get initial cluster feature vectors
from training set

Accuracy compared to traditional K-

Medoids and K-Means clustering

Improved more than 5% on average

Improved more than 10% on average

Runtime complexity in terms of the
number of documents 7

o)

O(n) or O(nlogn) with splitting and
merging
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CHAPTER 4
CS-VS — COMBINING CITATION SEMANTICS AND VSM MEASURES

In this chapter, we present the first approach of using ontagemantics in doc-
ument clustering, that is, CS-VS, combining Citation Setiecarand Vector Space sim-
ilarity measure. In this approach, when we calculate thelaiity of two documents,
we compute the similarity between their vectors in VSM (\de@@pace Model) and the
similarity between their citation semantics separatélgntcombine these two similarities
to do document clustering. The major issues dealt in thisaggh are how to compute
the similarity between document semantics and how to coenthie semantic similarity
with the vector space similarity to achieve higher qualitglocument clustering. Figure
3 shows the framework of the CS-VS approach. It is also desdras follows.

(1) Do stop words removal and stemming on the entire cotbeati§ documents including
training documents.

(2) For each document in this collection, compute the sintiés between every two ref-
erences using equations 3.1 and 3.2 in Section 3.2.

(3) Input these similarities obtained from step (2) into MtolLget reference clusters of
each document.

(4) Label each reference clusters by selecting frequentsdrom the cluster members.
(5) Use evolution strategy to obtain weights in equatior{@r.2.3), and 4.5 (Section 4.2)

from training documents.
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(6) Use these weights to calculate the combined similaribietwo documents consider-

ing both VSM and citation semantics.

(7) Use the combined similarities to do document clustering

Document Clustering
K-Medoids text clustering with
combined citation semantics and VSM
similarity measure

Input: documents with reference
cluster labels and VSM vectors,
weights for computing similarities
Output: document clusters

e

~

Reference Clusters
Labeling

Input: reference clusters
Output: ranked terms as labels

Evolution Strategy
Training

Input: training documents with
reference cluster labels and VSM
vectors

Output: weights for computing

-

similarities

A

I

|

Reference Clustering

Similarity Computation

Build VSM Vectors

Input: documents

MCL Clustering Output: VSM vectors

4

Preprocessing
Stop Words Removal
Stemming

Figure 3: CS-VS — Document Clustering with Combined Citat8emantics and VSM
Measure

Note that in this approach, we also considered the siméariietween titles and
keywords of documents as well as the information of co-citathat are reflected in
equation 4.5. Preprocessing is common to all documentesingt algorithms and has
been described in Section 3.1 of Chapter 3. Reference dlugtend labeling has also
been discussed Chapter 3. All the other parts of CS-VS willliseussed in detail in

the following sections and they are organized as followsstive present the definitions
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of key concepts involved in this approach. Then we deschieedocument clustering
with combined similarity measure that is the foundationho$ approach. After that, we
will discuss the evolution strategy used in the trainingoess. Lastly, we do complexity

analysis of CS-VS.

4.1 Key Concepts

The significance of the CS-VS approach is the use of the @itatémantic sim-
ilarity. We first give its definition followed by definitionsf @o-citation and K-Medoids
clustering.

Definition4.1.1 Citation semantic similarityrhe Citation semantic similarity is the sim-
ilarity between the citation semantics of two documentgydRéing the CS-VS approach,
it is the similarity between reference clusters of the twoudoents involved.

The citation semantic similarity is obtained by comparihg labels of reference
clusters and with the consideration of the size of each eafsr cluster. The details of
computing citation semantic similarities are describe8eation 4.2.

Definition 4.1.2 Co-citationThe co-citation of two documents is the reference that is
cited by both documents.

The number of co-citations of two documents is the numbeefsrences shared
by them.

Definition4.1.3 semantic similarityfhe semantic similarity of two documents is the lin-
ear combination of the citation semantic similarity, semitly between the tiles, similarity

between keywords, and the co-citations of two documents.
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The semantic similarity is computed by equation 4.5 andbélfurther explained
in the next section.
Definition4.1.4 K-MedoidsK-Medoids is the process of partitioning objects itolus-
ters, where actual objects are picked to represent theecfystach remaining object is
clustered with the representative object (called “medadid’which it is the most similar.
The assigning process is iterated to minimize the followotgl absolute-error.

k
E=)_ > Ip—oj (4.1)

j=1 peC;

Wherek is the number of clusterg,is the point in space representing an object in cluster
C;, ando;, is the medoid of clustet’;.

K-Medoids is a variance of K-Means. More detailed inforrmatabout both algo-
rithms can be found in Chapter 2. Instead of finding the meatl tfie objects in a cluster
to represent it, in K-Medoid clustering, we use an actuatéctin the cluster to represent
that cluster. Due to the citation semantic similarity beirsgd in this CS-VS approach,

we will use K-Medoids as the clustering algorithm for our dioent level clustering.
4.2 Document Clustering with Combined Similarity Measures

In CS-VS, we will combine the vector space similarity measand the citation
semantic similarity measure in calculating the similastbetween documents. Due to the
special property of citation semantics, there is no sugtaldy to find the “mean” of the
citation semantics of documents. Therefore, instead ofgusiMeans, the most popu-
lar clustering algorithm, we use K-Medoids (Definition 4)1to do document clustering.

With K-Medoids clustering, we use a document to representtbdoid (or centroid) of a
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document cluster. And hence, our major issue here is howl¢alede the combined sim-
ilarity between every two documents. The remaining parhisfsection will be dedicated
to the discussion on the similarity measure in the CS-VS aquir.

Similarity Measure In CS-VS, we utilize the citation semantics in document
clustering by combining the similarit$,,,,(d1, d2) between semantics and the similarity
S,s(d1, d2) between vectors in VSM. In the meantime, we also considesith@arities
between document titles (if both have titles), keywordsiiy), and the co-citation infor-
mation. So the similarity between two documents could bepded by either using the

harmonic mean 08,,,(d1, d2) andS,,(d1, d2) (4.2) or the simple addition of them (4.3).

2WiS,u(dL, d2)WaS,(d1, d2)
Sl d2) = 355 a1, d2) + WsSon(dl, d2) (4-2)

S,(d1, d2) = W1Sys(dl, d2) + WsSy(d1, d2) (4.3)

WhereS,;(d1, d2) is the similarity between the corresponding vectors ofétes doc-
uments in VSM, and,,,(d1, d2) is the similarity between the semantics of these two
documents including citation semantics, tiles, keywoeds] co-citations. They in turn

can be obtained through the following formulas.

Sus(d1, d2) = LRI IS (4.4)

R

2Nco
Sen(dl, d2) = W3S,(d1, d2) + W,S.ise(d1, d2) + ng + WSk (d1,d2) (4.5)
rl r2

WhereS;(d1, d2) is the similarity between the titles of these two documenitsch can be
computed using equation 3.3,,.(d1, d2) is the similarity between citation semantics of

these two documents, and it can be obtained through eqsatiérthrough 4.11],%213{6;;,7_2
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is used to quantify the co-citations between these two decisnV.,, is the number of
common references the two documents cite, and V,, are the total number of refer-
ences ofd1 andd2, respectively, and the last pe8t(d1,d2) is the similarity between

keywords provided by these two documents, which can alsalelated with equation

3.2,
1
Seise(dl, d2) ZSLZ 02) (4.6)
S = Max(%iZZil mR;, %m&?, %mRW) (4.7)
- it
R = S (4.9)
M = Min(Nu, Nop) (4.10)
N = Maz(N., No) (4.11)

WhereV,; and N, are the number of clusters of documehtandd2 respectively,R,

in equation 4.9 is the ratio of the number of references isteluk to the number of
total references of a documemRt,; and iz,; are calculated using this equationR;; is
the meta ratio ofR,; and R,;, which is used to adjust the similarity of two reference
clusters. Its maximum value will be 1. The reason for usirg rreta ratio instead of
the simple ratio is that the sizes of two similar refereneesters might vary greatly, yet
their relative sizes compared to the total number of refeerof the documents that they
belong to may not differentiate much,;;,j = 1, ..., N is the number of common terms

shared by the labels of clustéin documentd1) and clusterj (in documenti2), and
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Nyij, 7 =1, ..., N is the number of total terms in labels of clust€in document/1) and
clusterj (in documenti2).

To calculateS, ;.. (d1, d2), we first find the document with fewer number of refer-
ence clusters, say|, that is,M = N.;,N = N, according to equations 4.10 and 4.11.
Then for each reference clusterdt, we compare its label (which could have multiple
terms) with the label of each cluster in documé®tto find the most similar cluster. The
maximum similarity is calculated using equation 4.7. Ifrénés only one term allowed
for each labelS;; could only be either 0 or 1. However, we use multiple termslisas
five or ten terms) to label each cluster that provides ricleenantics. After getting the
maximum similarities for all the reference clusters in doemtd1, we can compute the
similarity between the citation semantics of documénandd2 using equation 4.6.

Let us use the example as shown in Figure 4 to further exptaintb calculate the
semantic similarity. In this example, the total number dérences of document dl is 22,
d2 24. The number of reference clusters of d1 is 4, 3 for d2.sTiwe take each cluster
label in d2 to find the most similar one in d1. For example, trs Gluster label ' Ls;)in
d2 contains “t5”, “t7”, and “t3”. And the cluster contains i€ferences. The first cluster

label (C'L1;) in d1 contains “t1”, “t2”, “t3”, and “t8”. So the similaritypetween these two

1=l

reference clusters would B C' Ly, C'Ly;) = ~ 0.187 which is shown in Figure 4.

2
10

2
73

=

Similarly, we can calculate the similarities betwe€n,; and the other three clusters of
d1. They are 0.392, 0.181, and 0.0, respectively. In othedsy6'L,; is most similar to
the second reference cluster of document d1, and the sityiiar0.392. Likewise, we

can find that the second reference cluster of d2 is most simithe first reference cluster
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of d1 with a similarity 0.515, and the third reference clusted?2 is the most similar to
the third one of d1 with a similarity 0.227. Therefore theatiin semantics between d1
and d2 is3(0.392 + 0.515 + 0.227)(5 + 1) ~ 0.331.

The similarity between these two titles can be easily figuwetas 0.375. The
similarity considering co-citation igﬁﬁ ~ 0.043. Using equation 4.5, and supposing
Wy =W, = W5 =1, andWy = 0 (no keyword), we get the semantic similarity between

documents d1 and d2 8375 + 0.331 + 0.043 = 0.749.

Document d2

Document d1

Title: t1t2t3t4t5 Title: t2 t4t6 t7 t3t8

Reference Clusters Labels
with number of references:

Reference Clusters Labels

with number of references:

t1; t2; t3; t8 [ EEEEEEER EEE I . t5; t7; t3 10

t2; t5 9 t2;t1;t4;18 6

t4; t6; t7 5 t9; t11;t7 8

t9; t1; t10

Figure 4: An Example of the semantic similarity of Two Docuntse

4.3 Evolutionary Strategy Training

We designed an automatic training model using evoluticatesgyy ([85], [93]) to
obtain the weights of the similarities, namely; andWW; in equations 4.2 and 4.3V,
Wy, W5, andWs in equation 4.5. Evolution strategies are used in techripéimiza-

tion problems when no analytical objective function is &flie, and no conventional
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optimization method existed. Thus, users have to rely onlyheir intuition or a trial-
and-error strategy.

According to [94], evolution strategies can solve a widegeanof constrained and
unconstrained non-linear optimization problems and pcedbetter results than many
conventional, highly complex, non-linear optimizatiochaiques. However, the objec-
tive function for which the evolution strategies are apphbbould support strong causality.
In other words, small changes in the parameters must ressithall changes in the func-
tion value. Experiments also suggest that the simplestorecs evolution strategies that
uses a single parent-single offspring search works best.

In our training model, we adopt the simple version of evolntstrategies. Its pro-
cedure is shown in Figure 5. It is described as follows.

(1) Assign an initial value (1.0 in our experiments) to eatthese weights. Set a thresh-
old of the average F-Measure and the maximum number of geoesa

(2) Use these weights to do document clustering on the trgidata and get the average
F-Measure of resulted clusters of all the collections in tteéning data. If it is higher
than or equal to the predefined threshold, stop. Otherwisg¢ogext step.

(3) Create a new set of values for these weights by addingdomanvariable a(0,1) of the
standard normal distribution to each weight.

W!=W,;+a(0,1)

(4) Use these new weights to do document clustering on thertgedata, get the average
F-Measure of the resulting clusters of all the collectiongraining data.

(5) Compare the F-measure associated with the offspringupaters (the new weights)

55



with those associated with the parent parameters (the oight®). If the F-Measure for
the offspring is higher than that for the parents, replace parents with the offspring,
remembering the new F-Measure as the highest so far. Otherkeep the parents.

(6) Go to step 3, and repeat the process until a satisfactedasure is reached, or a

specified number of generations is finished.

Assign 1toal weightsin set W
Set the threshold of F-Measure as FT
Set the maximum number of generationsasMG

A4

Do K-Medoids Clustering on training set
get average F-Measure F1
Generation G=1

Yes

No

v

Add asmall independent
random number to each weight

l

Do K-Medoids Clustering on training set
get average F-Measure F2
G=G+1

No

Yes

F1=F2
Remember current weights

Com>———

Figure 5: The Evolution Strategy Process in CS-VS

Notes: 1) At step (1), instead of assigning 1.0 to each weigatcan also use a

random number out of a certain range, say 1 to 100. Howeveguse of the property
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of the evolution strategy and based on our observationybigd not change the perfor-
mance of this model.

2) At step (3), since a(0,1) is generated by a standard nadistlbution function, the
values added to these weights are independent and thus|ikebgdifferent, which is
intended by evolution strategies where each parent paesmettates independently.

3) The user will provide the expected value of the F-Measunrethe number of genera-
tions in order to let the training process stop in allowalrtest

4) We can use this evolution strategy to obtain these wedajtdgether or separately. First,
we can use these weights to do document clustering by contpihe vector space mea-
sure and the semantics measure, the training process willipe the best combination
of these weights. Secondly, we can also get the three weightsiV,, andWs)(Ws = 0
since there is no keyword) of semantics measure first by dimegment clustering using
only this measure. The training process will produce thé¢ t@sbination of these three
weights, and then we can use the training process again &andbe other two weights
(W7 andW,) with these three fixed. However, using these weights tadi&st, our exper-
iments show that those weights obtained altogether prooleiter results (as presented in
Chapter 7). This is because the weights obtained togetthectrthe complete information
(citation semantics and vector space) of these documeties.bEable 2 shows a demo of

the changes of weights and the F-Measure in the process lottievostrategy.
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Table 2: Example of the Evolution Strategy with the ThredhaflF-Measure = 85%; the
Threshold of Generations = 100.

Generation W1:W2 F-Measure Best W1:W2 l\l:::Z:;e
(W3:W4:W5) (%) (W3:W4:W5) (%)
1 1:1 (1:1:1) 81 1:1 (1:1:1) 81
2 1.7:2 (1:2.1:0) 80.2 1:1 (1:1:1) 81
3 2.3:3.5(1.9:2.3:1.2) 78.7 1:1 (1:1:1) 81
4 4:2.6 (1.6:3.1:0) 81.3 4:2.6 (1.6:3.1:0) 81.3
5 5.6:4.9 (0.6:4.2:0) 81.5 5.6:4.9 (0.6:4.2:0) 81.5
6 5.1:6.3(1.1:3.4:0.8) 80.7 5.6:4.9 (0.6:4.2:0) 81.5
32 6.9:7.2 (0.5:3.3:0.6) 80.9 7.4:9.1 (0.2:3.7:0.4) 81.7
33 8:6.1 (0.5:2.6:2.5) 82.1 8:6.1 (0.5:2.6:2.5) 82.1
70 13.1:1.5 (0.9:7.1:0) 86.6 13.1:1.5 (0.9:7.1:0) 86.6

4.4 Runtime Complexity Analysis

The runtime of this approach consists of four parts: Preggsing, reference clus-
tering and labeling, training process, and document alingfe Since the preprocessing
(stop words removal and stemming) is common to every doctiolestering algorithm,
and it is linear regarding the number of documents, we donubide in this analysis.

As for reference clustering and labeling, since each doatim@y goes through
this process once, it is also linear in terms of the numberoclichents. However, the
runtime is quadratic with respect to the number of refersribat includes the runtime
of computing the similarity of every pair of references (drgic), the runtime of MCL
clustering with these similarities (Quadratic), and thitime of labeling (linear). Since
the runtime of both the training process and document cinstgrocess depends on
the algorithm used for document clustering, we discussalgerithm in detail in the
following paragraphs.

Comparison studies such as [96] have shown that the bigeatid regular K-

Means algorithms perform best in text clustering regardiath accuracy and runtime.

58



However, K-Means requires the calculation of the “mean” gfaup of objects in terms
of the predefined measure. In this approach, since the semagasure is involved, there
is no ideal way to define the mean of semantics of a group ofeeée clusters. There-
fore, we use the K-Medoids algorithm, a variance of K-Meamsgp document clustering.
Instead of finding the “mean” of a group of objects, K-Meddidsls an actual object that
is the centroid of the group regarding the predefined mea8eeause it uses the actual
objects, K-Medoids performs better then K-Means on data wiitliers - objects with
extremely large values. These objects will distort theritigtion of data by affecting the
“mean” greatly in K-Means clustering. The K-Medoids algionn follows.
(1) Randomly choosedocuments in the collectidd as the initial medoids (centroids).
(2) Assign each remaining document to the nearest clustereroing the similarity be-
tween this document and the medoids. Calculate and recersitim of all the similarities
(SS).
(3) For each mediod,,
For each non-medoid documety,,,

Swapd,,, andd,,,,,, assign other documents to the new medoids and

compute the new total similarity.S,,..,

if (SSpew > SS)

SS = SSnew;
replaced,,, with dinm)

(4) repeat (2) and (3) until no medoid changes

The complexity of this process@3(k(n—k)*t), wherek is the number of clusters,
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n is the number of documents, ahs the number of iterations. Sinéeandt are usually
much smaller than, the complexity of the K-Medoids clustering algorithm isestially
quadratic. It is the toll of being insensitive to the noise.

In the training process, since the number of iteratiposevolution strategy could
be explicitly preset, or controlled by setting the threshafl the objective function, in our
case, the F-Measurg,is usually much smaller than the number of documents. So the
runtime of training depends on the algorithm of documensteling. That means, it is
quadratic in terms the number of document in training set.

Considering all the steps together, the complexity of thigraach i) (n?), where

n 1S the number of documents to be clustered.

60



CHAPTER 5
CS2CS — FROM CITATION SEMANTICS TO CLUSTER SEMANTICS

In this chapter, we present another approach of CitonomgGSS- Citation Se-
mantics to Cluster Semantics (Definition 5.1.6), to utik#ation semantics in document
clustering. CS2CS is based on a 3-Level feature selectibe fdature selection from
reference clusters (level 1, Definition 5.1.7), the feasgkection from single documents
(level 2, Definition 5.1.8), and the feature selection fromeument clusters (level 3, Def-
inition 5.1.9). Through this 3-level feature selection, fwem document feature vectors
(Definition 5.1.4) and cluster feature vectors (Definitiaf.5). In the previous chapter,
we discussed the approach CS-VS. The experimental tegtsefmed in Chapter 7) on
CS-VS show that it significantly and consistently improvee guality of document clus-
tering. However, CS-VS does not solve the runtime probleroesit uses the K-Medoids
clustering algorithm whose complexity is quadratic in exgtpto the number of docu-
ments. However, with these feature vectors, CS2CS can darlidocument clustering
and hence, it does not have the runtime issue as CS-VS dapsef shows the frame-
work of CS2CS. Its brief description follows.

(1) Do stop words removal and stemming on the entire cotbeati§ documents including
training documents.
(2) For each document in this collection, compute the sintiés between every two ref-

erences using equations 3.1 and 3.2.
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(3) Input these similarities obtained from step (2) into MtolLget reference clusters of
each document.
(4) Label each reference clusters by selecting frequemigefrom the cluster members.
This is the level 1 feature selection.
(5) Using evolution strategy to obtain weights in equatia(dr 4.3), and 4.5 from train-
ing documents.
(6) For each single document in existing clusters, usingitbigihts obtained from step (5)
to form the feature vector of each single document. Thisadabel 2 feature selection.
(7) For each existing cluster, form the feature vector of¢hester using the feature vec-
tors of all the documents inside that cluster. This is thell@/feature selection.
(8) Linear Document clustering
(9) Check for Document Clusters Splitting and Merging
(10) For each new document, repeat steps (8) and\®je that the first five steps are the
same as those in CS-VS. The other steps are specific to CS3QSirg) feature vectors,
not only can CS2CS cluster documents in linear time, busih ahproves the quality of
clusters significantly over traditional document clustgralgorithms. Furthermore, with
CS2CS, we can obtain the label (semantics) of each clusastiy,.with a little sacrifice
of runtime (fromO(n) to O(nlongn)), CS2CS can dynamically decide the number of
clusters according to the contents of clusters.

The rest of this chapter is organized as follows. We first tfieedefinitions of the
key concepts related to CS2CS. Then we discuss the detddsedf2 and level 3 of the

3-level feature selection. ( Level 1 is the same as the lapelf reference clusters that
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Level 3 Feature
Selection

Document Clusters Labeling
Input: document feature vectors
Output: cluster feature vector

A

Linear Clustering
Splitting & Merging

Input: document feature vector,
cluster feature vectors

Level 2 Feature Output: new clusters
Selection i

Single Document Labeling
Input: labels of reference clusters,

VSM vector, document title
Output: document feature vector

A

Level 1 Feature
Selection

Reference Clusters Labeling
Input: reference clusters
Output: ranked terms as labels

Reference Clustering
Similarity Computation
MCL Clustering

Preprocessing
Stop Words Removal
Stemming

Figure 6: CS2CS — Document Clustering with 3-Level Feat@wle&ion

was discussed in Section 3.2 of Chapter 3.) Following thatpresent the algorithm of
linear document clustering. Then we discuss the clustétisgland merging. That is

followed by discussions on selection of lengths of featwreters, use of ontology, and
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fuzzy clustering. Lastly, we wrap up this chapter with thenpbexity analysis of CS2CS.
5.1 Key Concepts

CS2CS uses feature vectors to do document clustering. Weed®ip kinds of
feature vectors — Document Feature Vector and Cluster Feeslactor. The following are
the definitions of these feature vectors and cluster segsanti
Definition5.1.1 Featureln the context of document clustering, a feature of a documen
is a term (or token) that occurs in the document.

A term could consist of multiple words or a single word. Deglieg on differ-
ent requirements of situations, one can choose to use ardjesword terms, or include
multi-word terms. Generally speaking, compared to sinvgbed terms, using multi-word
terms ends up with more accurate results, but takes morgnmeinihis is because con-
cepts could be multi-word and single-word. Including mwbrd terms allows more real
concepts to take part in the process of clustering, and heice precise results. On the
other hand, including multi-word terms will increase thadéhs (or dimensions) of the
feature vectors (Definition 5.1.2) that leads to a longetinue.

Definition5.1.2 Feature VectoA feature vector is a list of termd” together with their
weights.

Definition5.1.3 Length of Feature Vectdhe length (or size) of a feature vectors the
size ofI that is the set of terms the feature vector has.

Figure 7 shows an example of a feature vector. Its length is 5.

Definition5.1.4 Document Feature Vectdihe feature vectafv of a document, called
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Feature Weight

Terml 0.5
Term2 04
Term3 0.3
Term4 0.2
Term5 0.1

Figure 7: An Example of a Feature Vector

the Document Feature Vector, is a list of terthtogether with their weights, and C &,
where® is the set of terms in documedat

A document feature vector is a feature vector formed by tiragen a document.
The weight assigned to each term takes into account theitypoélthat term. Figure 8
shows an example of a document feature vector and its fasmatn this example, we
useWy : Wy : W3 : Wy =1:1:1:1 as the weights shown in formula 5.1. The average
weight in the vector of VSM is 0.25 in this example. Thatli§,, = 0.25 in formula 5.1.
Taking Term1 for example, since it occurs once in the titkece in the reference cluster
labels, and has a weight 0.5 in the vector of VSM, its weighthie document feature
vector is 1+2+0.5/0.25=5. In the same way, the reader camefigut the other terms’
weights in the document feature vector. Section 5.2 coverslétailed description of the
process of forming document feature vectors.
Definition5.1.5 Cluster Feature Vectofhe feature vectoft of a clusterC’, called the
Cluster Feature Vector, is a list of ternistogether with their weights, anél = |J* | T';,
wherem is the number of documents in clustérI'; is the set of terms of the document

feature fector of document .
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Title:

Term] Term2 Term3 Term4 \

Reference Cluster Labels:

Feature Weight

Terml 5
Term3 4.6
Term2 3.2

Cluster2: Term2 Term?7 Term8 Term9 Termd 2.8
Term7 2.4
Cluster3: Terml Term4 Term3 Term7 Term5 2.2
Term8 2.2

Term9 1.8
Term6 1.4

Cluster 1: Term5 Term6 Term1 Term3 Formula 5.1

Vector in VSM:

Terml 0.5
Term2 0.3
Term3 0.4 _/
Term4 0.2
Term5 0.3
Term6 0.1
Term7 0.1
Term8 0.3
Term9 0.2

Figure 8: An Example of a Document Feature Vector and Its Btion

A cluster feature vector is formed by the document featuctors. Figure 9 shows
a demonstrative example of a cluster feature vector andrtsdtion. The terms’ weights
in the cluster feature vector are determined by countingptizairrences of terms in the
document feature vectors. For example, Term1 occurs im@etdocument feature vec-
tors, so its weight in the cluster feature vector is 3. Not this cluster feature vector is
before normalization of its weights. Section 5.3 coversdétils on the construction of
cluster feature vectors and the process of their normadizat

Definition5.1.6 Cluster SemanticEhe cluster semantics of a clustérs the ranked list
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Document feature vectors

Term1 0.5

Term2 04

Term3 03 \ Cluster feature vector

Term4 0.2

Term5 0.1 Temi 3
Term2 2

Term1 0.4 Counting Term [ Torm3 2

Term2 0.35 Occurgence TermB 5

Term6 0.2 Term? 2

Term7 0.15 Temd 1

Term8 0.1 Tamb 1
Term8 1

Term1 0.7 Tem9 1

Term3 0.3

Term5 0.25

Term7 0.2 /

Term9 0.1

Figure 9: An Example of a Cluster Feature Vector and Its Ftiona

of termsz=, and= C W, whereV is the set of terms of the cluster feature vector of cluster
C.

The cluster semantics is the ranked terms of the clusteurieaector or a subset
of it. Since they are used for visually labeling a cluster, deenot need to include the
weights of the terms.

Definition5.1.7. Level 1 Feature Selectiolh is the process of selecting ternh's from
each reference clustét. to be the label of each cluster, ahid C ®,., where®, is the set
of terms covered by,.

Definition5.1.8 Level 2 Feature Selectidihis the process of selecting termsfrom a
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document! to form the feature vector of, andl” C ¢, where® is all the terms ind.
Definition5.1.9 Level 3 Feature Selectidhis the process of selecting ternisi from
the document feature vectors inside clugteto form the feature vector af', andV¥ =
U;~, I';, wherem is the number of documents in clustér andr’; is the set of terms of
the document feature vector of documeént
Definition 5.1.10 TF-ICF TF-ICF is the weight used in cluster feature vectors that is
calculated by the two equations 5.2 and 5.3.

TF is used to eliminate the bias towards big clusters, andd@Bed to reduce the

effect of common terms across clusters, more preciselyltister feature vectors.
5.2 Feature Selection for Single Documents

In this step, we select significant terms to form the featwetar of each docu-
ment. First, we need to sort all the terms of a given docundghy considering both its
vector representation in VSM and the semantic informatmmtuiding title (with weight
W3), keywords (with weightl), and citation semantics (with weighity). In this ap-
proach, we do not take co-citation into account. It is beeahst co-citation is in the
context of two documents, but here we are forming the feataector for a single docu-
ment before comparing it to any other document. Using th@ktsiobtained from step 5
we can find the weights of all the terms of each document andengort them according
to their weight. Then we can select the toperms together with their weights to form
the feature vector of that document.

To calculate the new weight of each term, we consider its DF-Value in the
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vector of VSM, its occurrences in title, keywords, and |alaflreference clusters, together
with W, W,, W3, Wy, andWs that are obtained from step 5, the training process (We do
not usells that is the weight of co-citation. The reason is in the presiparagraph.) For
example, if we have weightd’; = 5, W, = 1, W3 = 1,W,; = 10, Ws = 0 (there is no
keyword provided in the data set we used). Suppose we havedttte'\Web” that occurs
in the title once, in the reference cluster labels twice, i@ F-IDF value is 0.03. Then
its total weight would bé1 « W5+ 2« W,) « W5+ 0.03« W, = 21.15. Since these weights
were intentionally used for combining vector space and r@itoy similarity measure
(Equations 4.2 and 4.5), which is the measure used in CShé$,dnly provide a rough
estimation of the weights that we use in computing new weiglithe terms in a single
document. In other words, we need to do some adjustmentsarticgar, the TF-IDF
values are usually small with a large number of documents ekample, in the data set
we used with about 700 documents, the average of the TF-Iiesyas 0.0019. So the

actual formula we used to calculate the total weight of eastdwterm) is as follows:
thl = (01 *W3+02*W4) *W2+WTF—IDF*W1/W(1UQ (51)

WhereO, andO, are occurrences of a term in the title and labels of referehcsters,
respectivelyWrp_;pr is the TF-IDF value of that term, and,,, is the average of all
terms’ TF-IDF values of the data set.

Besides the computation of weights of terms in forming feamtectors of single
documents, there is another issue worth discussion. Thttaschoice of the length of
the feature vector of a single document. In other words, hamynop terms shall we use

to form the feature vector to best represent a documentvie the best result document
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clustering? We will discuss this in Section 5.6.

5.3 Feature Selection for Document Clusters

Once we find the feature vectors of all the single documengsabfister, we can
use them to form the feature vector of the cluster. That isuse all the terms from
these feature vectors of all the single documents to fornigatire vector of the cluster
they belong to. The weight of each term in the cluster feareror is its occurrence in
all the document feature vectors in the cluster. Note heréggwere the terms’ weights
in document feature vectors. If these weights used, it wbelcs same as finding the
mean of these document feature vectors. The reason of igntrem is that, they are
used to rank the terms within a document. While these weigtgsiseful in comparing
the significance between terms within a single documeny, dhe not comparable across
documents and therefore, the cluster feature vector woidtepresent the cluster if they
were used. For example, suppose clustéias 100 documents, and TermX only occurs in
one of the document feature vectors with a weight 20; Termducxin all 100 document
feature vectors each with a weight 0.15. If we use their wwaghts in the cluster feature
vector, TermX would have more weight than TermY. Howevegre¥ermX is a very
significant term in the document to which it belongs, it is astsignificant as TermY
in respect to this cluster. In other words, it is not as usafulfermY in differentiating
clusterC from other clusters. Therefore, occurrence counting isemeasonable then
the weights’ sum when forming cluster feature vectors framuwmhent feature vectors.

However, to best represent each cluster, we need to coradidiee cluster feature vectors
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together and normalize them. We use a 2-dimensional (wehith cluster and across
clusters) normalization procedure to do this.

First, to avoid bias towards the big cluster, we need to cbdhg weight of each
term from a simple occurrence to a term frequency (courdfehsize). We also need to
normalize the weight of each term across all the clusteredage the effects of common
(terms) words across the clusters. We use ICF (inverseetlireiquency) that is shown
in equation 5.3, to achieve this goal. So altogether, we &SECF instead of TF-IDF, to
normalize the weights of terms in the feature vectors oftehss while TF-IDF has been
used in finding the vector representation of each singleect in the VSM model.

Lastly, we want to normalize each feature vector to a unitoregsing the Eu-
clidean norm (that is, its length is 1 regarding Euclideamm)pto make similarities be-
tween feature vectors easy to compute.

Altogether, the weight of each term in the cluster featuites will be calculated
using the following three formulas 5.2 (within a cluster)3 %across clusters), and 5.4
(within a cluster), wheréV;; is the final weight of terny in the feature vector of cluster
i, Weee is the number of occurrences of teririn the feature vectors of all the single
documents within clustet, S; is the total number of documents in clusterk is the
number of clusters, andis the length of the feature vector of clusiteFigure 10 shows

an example of three cluster feature vectors before and BRe¢CF normalization.

Wocc
Wi = =5 (5.2)
I/VZ.,
Wijg == 2 Jl (53)
Zm:l ijl



Wijo
A% > i Wi

We do not use a logarithm to calculate ICF as commonly usedloulating IDF. Even

Wi = (5.4)

Cluster size=3 Cluster size=5 Cluster size=10
Terml 3 Term5 5 Terml 8
Term2 2 Term4 3 Term7 6
Term3 2 Term3 3 Term2 5
Term5 2 Terml 2 Term3 5
Term7 2 Term2 2 Term9 4
Termd 1 Term9 1 Terml0 4
Term6 1 Terml0 1 Term5 3
Term8 1 Termll 1 Terml4 3
Term9 1 Terml2 1 Term8 2

Term13 1 Termll 2
Terml5 1
Terml6 1

\ )

TF-ICF Normalization

Terml  0.45 Term5  0.51 Terml  0.36
Term2  0.43 Term4  0.63 Term7  0.47
Term3  0.38 Term3  0.34 Term2  0.32
Term5  0.34 Terml  0.18 Term3  0.28
Term7  0.53 Term2  0.25 Term9  0.43
Term4  0.34 Term9  0.22 Term10 0.67
Term6 1 Terml10 0.33 Term5  0.15
Term8  0.63 Termll 0.5 Terml4 1
Term9  0.35 Term12 1 Term8  0.38
Terml3 1 Termll 0.5
Terml5 1
Terml6 1

Figure 10: An Example of TF-ICF Normalization of Cluster kega Vectors

though a term word occurs in all the feature vectors of thés&tars, we do not ignore

it completely as IDF doeddgl = 0). The argument for using IDF in building vectors
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of documents is that if a term occurs in every document, thevill not contribute in
clustering these documents. But in our situation, evenghauterm occurs in all the
feature vectors of clusters, it may have different weightthese feature vectors, it will
still be useful when calculating the similarity betweenmgvsvo feature vectors of these
clusters. If this term is also in the feature vector of the "ewument, it will contribute to
the similarity between the feature vector of a new documedtthe feature vector of one
of these clusters. Therefore, it helps the document cliastemd updating. Otherwise,
if we remove this term from all the feature vectors, we wikéosome information and
hence, cause poor clustering results. This is really thet ingsortant step in finding
best features of a cluster. In our experimental resultsg&ctibn 7.3.7), we can see this
normalization has great advantage over IDF like normabnat

The feature vector of each cluster is similar to the vectothef center of each
cluster, but not the same thing, since we get this featuréovewmt by calculating the
mean of all the vectors in the cluster, but rather by extnacsignificant words (terms)
from every document in the cluster. To understand the featactor of a cluster, one
can imagine there is a container holding all the documentisatfcluster, and the feature
vector of that cluster is the label written on that containdicating what kind of material

it stores.

5.4 Linear Document Clustering

The algorithm of this part is as follows.
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(1) For the new document

(2) do level 2 feature selection to get the document feateciov

(3) For each cluster

(4) Compute the similarity between the document featurowet the new
(5) document and the cluster feature vector

(6) Assign this document to the cluster to which it is mostlarregarding their
(7) feature vectors

(7) Update the feature vector(s) of the cluster(s) to whighriew document was
(8) just added with level 3 feature selection.

For each new document, we use the procedure described oS82 to obtain
its feature vector. Then we normalize it to a unit vector gdime Euclidean norm as
shown in equation 5.4. Comparing the similarities betwégesn feature vector and those
of the k clusters, we can decide which cluster the document belangkitthe case of
fuzzy clustering, a degree of belonging could also be obthit the same time when
computing similarities. Also, if the similarity betweerethew one and each existing one
is too low, say, lower than a predefined threshold, or lowantthe minimum similarity
between all existing feature vectors, it may form a new eluby itself. We use Cosine
coefficient as the similarity between the two vectgrandv; that are computed according
to the formula 4.4. However, since the involved vectors #rarat vectors, the bottom
part of the fraction will always be 1 and hence, could be igdoiThat is, we can use the

following simplified formula to calculate the similarity tveeen these two feature vectors,
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wherewv; - v; is the inner product of; andv;.

Similarity(v;, ;) = 0; - U; (5.5)

Once the new document is added to one cluster (or more thamdhe case of fuzzy
clustering), we need to update the feature vector of theeanl{sy to which the new docu-
ment was just added. This could be done after inserting eastdocument, or a certain
number of documents, depending on different applicatiosstoations. Our experiments
show there is no considerable difference regarding theativemtime. By looking at
the terms in the feature vector(s) of newly added documgemntgs can easily update the
feature vector of the cluster(s). For each cluster, we kesgk tof both the normalized
cluster feature vector and the one before being normalizedtéll it a raw cluster feature
vector). For those terms that exist in the raw feature veeterincrease each of their
weights by 1; for those terms not found in the raw featureaegte add them to the raw
feature vector with weight 1. Then we use formulas 5.2, 58,24 to normalize all the
raw cluster feature vectors into unit feature vectors.

Figures 11 and 12 show a demonstrative example of the clies&ure vectors
before and after adding a new document and the similarieésden them. Since they
are all unit feature vectors, the similarities between tlaeencalculated with formula 5.5.
Note the new document was added to the cluster representbe biuster feature vector

at the top.
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Document feature vector

wW_n
Cluster feature vector Terml 0.54
W_r w.n Term3 0.50
Terml 3 0.28 Term2 0.35
Term2 2 0.27 s=0.8 Term4 0.30
Term3 2 0.24 Term7 0.26
Term5 2 0.21 Term5 0.24
Term7 2 0.33 Term8 0.24
Term4 1 0.21 Term9 0.20
Term6 1 0.63 Term6/ 0.15
Term8 1 0.39
Term9 1 0.22\
5=0.33 =037
Cluster fgature vector luster feature vector
WTWn w_r w._n
Term> 5 0.28 s=0.24 .}2:2; i g;; s: similarity
Term4 3 0.35 : w_r: weight before normalized
Term3 3 0.19 Term2 5 0.15 w_n: weight after normalized
Terml 2 0.1 Term3 5 0.13
Term9 4 0.20
Term2 2 0.14
Term10 4 0.31
Termd 1012 Term5 3 0.07
Term10 10.18 Term14 3 0.47
Term1l 10.28 Term8 2 0.18
Term12 10.56 Term1l 2 0.23
Term13 10.56 Term15 1 0.47
Term16 1 0.47

Figure 11: An Example of CS2CS Clustering — Before Adding avllmcument
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Cluster feature vector

W w.n
Terml 4 0.26
Term2 3 0.26
Term3 3 0.24
Term5 3 0.21
Term7 3 0.32
Term4 2 0.26
Term6 2 0.58
Term8 2 0.42
Term9 2 0.26
s=0.30
Cluster fghture vector luster feature vector
WTWn wW_r w_n
Term5 g0.£8 Terml 8 0.17
Term4 3 0.31 0 Term7 6 0.21 i;_sifn\:};r;zbeforenonnalized
Term3 3 0.18 Term2 5 0.14 w_n: weight after normalized
Terml 2 0.10 Term3 5 0.13
Term2 2 0.14 Term9 4 0.17
Term9 1 0.10 Term10 4 0.32
Term10 10.19 Term> 3 0.07
Term14 3 0.48
Term1l 10.28
Term8 2 0.14

Term12 10.56
Term13 10.56

Termll 2 0.24
Term15 1 0.48
Term16 1 0.48

Figure 12: An Example of CS2CS Clustering — After Adding a N2acument

5.5 Document Clusters Splitting and Merging

The algorithm of this part is as follows.

(1) Compute the similarity;. between the current cluster feature vector and the
(2) initial feature vector
(3) if equation 5.6 satisfied
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4) Split the cluster into two by comparing the feature veofaeach

(5) document to the current and initial feature vectors & thuster

(6) for each of the other unchanged clusters

(7) compute the similarityg.. between it and the newly formed cluster(s)
(8) using their feature vectors

(9) if equation 5.9 or 5.10 satisfied

(10) Merge these two clusters and form the new feature vesiog
(12) the level 3 feature selection

After updating the cluster feature vector(s)of the clusbewhere the new docu-
ment(s) have been added, we will compare the current featat®r(s) with the initial
feature vectors, as well as the feature vectors of othetestuis Through these compar-
isons, we decide whether to split or merge clusters. Theaasechoose when to check
for splitting and merging. In default, we do this check whesréhe number of documents
doubles.

Splitting If the feature vector;) of the newly updated cluster is so different from
its original one (7), that is, the similarity between their feature vectorslase to 0, or
less than a predefined threshold, it will be the candidateetgfit. But we also take
into account the sizes (numbers of terms) of these two featectors and the sizes of
the current and original clusters. We will split a clustethié the inequality formula 5.6
holds, where:s; andcs, are the size of the original and current clusters, respagtivn
other words, if the similarity between the current and ordfeature vector becomes too

small, or the size of the feature vector increases a lot, wespht the cluster into two.
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However, both could be the result that too many new documeeais just added to this
cluster, which could be normal change. In that case, we magpi the cluster. Figure

13 shows a demonstrative example of splitting. Inside thstels, “dx*”, “dy*”, and

“dz*” mean the documents of category “x”, “y”, and “z”, resg@ely.

cs2
Similarity(vy, v3) - #(1@) < split — threshold (5.6)
Size(vi)

We use the initial feature vector as the feature vector ¢f one of the newly formed
clusters by splitting, the current feature vecitdras the other one. Then we assign each
member document inside the big cluster to either clusteeni@pg on the similarities
between its feature vector and these two cluster featut®rgedvioreover, we may also
want to look at the documents in other clusters to see if thedgny to these two new
clusters. In other words, for each documeénn any other cluster, we compute the
similarity between the feature vector@éand the feature vector of clusterthe similarity
between the feature vector éfandv;, and the similarity between the feature vectoriof
andus;, to see whethef should stay irc or go to one of the newly formed clusters.

If we do not change the other clusters, that is, if we onlytsplcluster when
inequality 5.6 is satisfied without looking at other cluster further update newly formed
clusters, then we have the following theorem regarding tnedity of the clusters after
splitting.

Theorem 5.5.1.1f the splitting of cluster separates the documents of two categorles
and B (A is the category represented by the label of clusteefore splitting) into clusters
¢4 andcp (correctly labeled), and the number of documentsiah ¢ was less than or

equal to that ofB3, the average precision ef, andcg is higher than that of cluster.
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Cluster Feature Vector

Terml 0.17
Cluster X Term3 0.22
dx1, dx2, dx3, dx4, Term2 0.15
dx5, dx6, dx7,dx8, Term4 0.13
dy1, dy2, dy3, dy4, Term7 0.20
dy5, dy6, dy7, dys, Term5 0.31
dy9, dz1, dz2, dz3, Term8 0.07
dz4 Term10 0.47
Terml1l 0.18
Term12 0.23
Term13 0.47
Term14 0.47
Splitting
Cluster Feature Vector Cluster Feature Vector
Terml 0.54 Terml 0.17
Cluster X Term3 0.50 Cluster Y Term3 0.22
dx1, dx2, dx3, Term2 0.35 Term2 0.15
Term4 0.30 dy1, dy2, Term4 0.13
dx4, dx5, dx6,
dx7, dx8, dz1, Term7 0.26 dy3, dy4, dys, Term7 0.20
Term5 0.24 dy6, dy7, dys, Term5 0.31
2 Term8 0.24 dy9, dz3, dz4 Term8 0.07
Term9 0.20 Term10 0.47
Term6 0.15 Termll 0.18
Term12 0.23
Term13 0.47
Term14 0.47

Figure 13: An Example of Cluster Splitting

Proof Suppose the number of documentsff3, and other categories in cluster
c aren, m, andl, respectively. From the assumption of this theorem, we know m.
Also, suppose the numbers of documents of other categories andcy arel; andli,

after splitting (sol = I, + ), the precisions of, c4, andcp will be ——, ol and

L respectively. Our task is to show the following inequality

m-+ly !

n n m
< +
n+m-+1 n+ly m+ls

)/2 (5.7)
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After multiplying both sides byn + m + [)(n + [;)(m + l) and some cancelations, we

get the following inequality.
n’ly + nlyly < 2nm? + m?l + nl2 + mi? + nmly + 3nmly +mlyly,  (5.8)

If I, < Iy, thenLHS < m?ly + mlily, < RHS. If I, < i, thenLHS < m?l; +
ml? < RHS. In other words, as long as < m, inequality 5.8 always holds and hence,
we complete the prodfl Note that neither the relation betweeandn nor the relation
between andm affects our conclusion.

Based on this theorem, we can easily conclude that the agnagision of all
the clusters will also increase after splitting if we do nbbarge the other clusters. From
our experiments we notice that, even though a splitting de¢separate the documents
of two categories neatly, in other words, they may still milttde in resulting clusters,
the precision regardlessly increases due to the signifaeerement of the denominator
in one of the precisions.

Merging If two clusters ¢; andc;) are getting closer, we will merge them. For the
newly updated cluster, we get the similarities betweenutsent feature vectonf,) and
the feature vectonf,) of any of the other clusters. We also get the similaritieisveen
its initial feature vectow;; and the initial feature vectar;; of any of the other clusters.
Even if the ratio is less than 1 (decreasing), but it is slothan the ratio of the total
size increasing, we may also consider merging them. Thatveswill check the two

inequalities 5.9 and 5.10. Wherneerge — threshold andr are two constants that could
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be set by the user.

Similarity (v, vj2)

— thresh 5.9
Similarity(v, v7) > merge — threshold (5.9)
Similarity(viz, vjs) Size(c;) + Size(c;) (5.10)

Similarity (v, vjh) " Initial Size(c;) + Initial Size(c;)
Figure 14 shows a demonstrative example of merging. InBelelusters, “dx*”, “dy*”,and

“dz*” mean the documents of category “x”, “y”, and “z”, resg&vely. The new feature

Cluster Feature Vector Cluster Feature Vector

Cluster X Terml 0.54 Cluster Y Term5 0.28
Term3 0.50 Term4 035

dx1, dx2, dx3, Term2 0.35 dyl, dy2, dy3, Term3 0.19
dxd, dx5, dx6, Termé4 0.30 dy4, dx9, dx10, Terml 0.1
dx7, dx8, dz1, Term7 0.26 dx11, dx12, Term2 0.14
dz2 Term5 0.24 dx13, dx14, dz3 Term9 0.12

Term8 0.24 Term10 0.18

Term9 0.20 Term1l 0.28

Term6 0.15 Term12 0.56

Term13 0.56

Merging

Cluster Feature Vector

Cluster X Terml 0.29
Term3 0.31
dx1, dx2, dx3, dx4, Term2 0.22
dx5, dx6, dx7,dx8, Term4 0.30
dx9, dx10, dx11, Term7 0.12
dx12,dx13, dx14, Term5 0.23
dyl, dy2, dy3, dy4, Term8 0.11
dz1, dz2, dz3 Term9 0.14
Term6 0.07
Term10 0.08
Term11 0.25
Term12 0.50
Term13 0.50

Figure 14: An Example of Cluster Merging

vector will be the mean of the two old feature vectors, andnehe feature vector will be
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normalized with equation 5.4, since the mean of the two ugitars is not necessarily a
unit vector with respect to the Euclidean norm. After meggiwe may also check each
document in other clusters to see if they should go to the master or stay in its current
cluster. The average recall of the resulting clusters suradreases. And we have the
following theorem regarding this aspect.

Theorem 5.5.2.1f either of the following two conditions are met, the newstdu ¢ re-
sulted from merging two clusters, and cg correctly labeled by categoried and B,
respectively, will have a recall which is higher than or efiteathe average recall of 4
andcg, consideringA and B as the same category after merging.

(2)All the documents of categoriglsand B are in the two clusters, andcg.

@2m >né& > o orm < n & < Wherem is the total number of
documents of categord. m, is the number of documents of categotyn clustercy,,
that is, the number of correctly clustered documentd.of, is the number of documents
of categoryA in the other clusters, that is, the number of incorrectlystéwed documents
of A. n is the total number of documents of categdryn, is the number of documents of
categoryB in clustercg, that is, the number of correctly clustered documents oAnd
ns is the number of documents of categ@tyn the other clusters, that is, the number of
incorrectly clustered documents Bf

Proof First, if all the documents ofi and B are in clusters, andcg, after merg-
ing, the recall of the new clusterwill be 1. If all m documents ofd are inc, and all
n documents of3 are incg, the average recall ofy andcp is also 1. In any other situ-

ations, the average recall of andcg will be less than 1, and thus proving the theorem
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with condition (1).
To prove the theorem with condition (2), first let us suppdee hone of then,
documents ofd is in clustercz, and none of the, documents of3 is in clusterc4. With

this assumption, we need to prove the following inequality.

m n mi+n
(o )2<=—
m n m-+n

(5.11)

By multiplying both sides withnn(m + n) and doing some operations of cancelation, we

end up with the following inequality.
N1MaM + Nomin <= NoMim + nimeon (5.12)

It can be changed to the following inequality.

ﬂ(m—n) <= ﬂ(m—n) (5.13)

na me

If condition (2) met, It is not hard to tell that the inequglB.13 holds, and hence the
inequality 5.11 hold§l

This proof is under the assumption thatral A documents and, B documents
are in clusters other thary andcg. Obviously, if some ofn, and/or some ofi, fall in
cp and/orc,, respectively, inequality 5.11 still holds. This is becatise numerator of
the right side of 5.11 will increase, therefore, it still el The left and right hand sides
of these inequalities will be equalif = n.

It is easy to understand this theorem with condition (1). &plunderstand it with
condition (2), let us look at the following example. Suppase= 200 andn = 100,

sincem > n, if we have% > "—; the recall will increase. Let:; = 150, my = 50,

n
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n, = 50, andny, = 50, then the average recall of the original two clusters will-he=

(300 + 155)/2 = 0.625, and the recall of the new cluster will bg = J5-5% ~ 0.667.

However, if 2 < 21, say,n, = 80 andn, = 20, thenr, = (557 + 155)/2 = 0.775,and

Tn = 2%001115000 ~ 0.767.

Note that the condition (2) is the lower bound in guarantgéirat the recall will
increase. Sometimes, even if it is not satisfied, the recaljl siill increase. As in the
above example, i, = 80, noy = 20, m; = 150, andmsy = 50, even thouan”’;—; < Z—; if
some ofm, documents fall inta:g, or some o, documents fall inta, (which is very
likely given documents of these two categories are simikay, totally 10 ofn, and/or
n, documents fall inte;z and/orc,, then we would have, = 551500 — 0.8, which is
higher than-, = 0.775.

In the case of fuzzy clustering, there is another option toddewhether to merge
or not. That is, if they have many documents in common, we mékge them into one
cluster.

From the above discussions on splitting and merging we cathse, even though
our linear clustering algorithm CS2CS uses a fixed numbelusters (training data) as
the starting point, it is unlike the K-Means clustering algjon where the number of
clusters are preset. By splitting and merging, it can autmaldy determine the number
of clusters that better reflects the reality of the sciendémmunity, where it is normal
that new fields stand out and old fields merge, which resultiennew distribution of

scientific documents. Therefore, our algorithm is moreatlé for realtime document

clustering and trend discovering.
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5.6 Selection of the Lengths of Feature Vectors

At level 1 feature selection, we choose the top 10 terms to the feature vector
of each reference cluster. Through subjective evaluatitan(ally checking the signifi-
cance of the labels)and objective evaluation (comparia@tturacy of resulting clusters
using different number of top terms) during our experimetast for our paper [99], this
number is a good cutoff regarding the citation semantics.

At level 3 feature selection, the length of the feature vecfoeach cluster is
determined by the length of the feature vector of each doatiimelonging to it and the
total number of documents in that cluster. So, the only issfidere is how to determine
the length of the feature vector of each document, whichtiseglevel 2 feature selection.
A single document could be one in an existing cluster, or #e document to be added
to a cluster. In dealing with the length of the feature veofa single document, we must
be aware of the two different situations. This is because seethe feature vectors of
single documents to form the feature vector of the clustey belong to, whereas we use
the feature vector of the new document to compare with theifeavectors of existing
clusters to decide where to put it. The objective criteribath situations is which length
of the feature vector of a document can lead to the best gudldocument clustering.

When forming feature vectors of different clusters, we waath feature vector
to be different from all others. We want the distance betwaaary two cluster feature

vectors to be as big as possible. Suppose a mafriz formed with these feature vectors
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in its columns, we want at least the following criteria to latisfied.
Rank(M) =k (5.14)

Wherek is the number of existing clusters. That is, no cluster fieatnector would be a
linear combination of others. However, our situation hemdifferent from latent semantic
analysis [48], where SVD (singular value decompositior])[#used toreduce the rank
of the term-document matrix, in order to reveal the hiddemlarity among documents
and hence, to improve the recall in information retrievale W not want to reduce the
rank of the matrix)/. Instead, we want to keep its rank. We have the following rtéen
about the rank of this matrix.
Theorem 5.6.1.1f the number of unique terms in each cluster is bigger thantbmber
of clusters, the lengths of the feature vectors that casfatiquation 5.14 are not unique.

Proof It can be shown by counterexamples. Let us suppose the nwhtlesters
is k. First, since each cluster has more thamnique terms, for each cluster we can find
a different term to form its feature vector. Then, the featugctors will certainly satisfy
the equation 5.14. If the theorem is false, we cannot findrerdength that satisfies
equation 5.14. However, if we just add one term that is défiérfrom all the existing
terms to one of these feature vectors, the resulted feattens still satisfy the equation
5.14 and therefore, we complete the proof of this thedrém.

Since the number of unique terms of cluster feature vectersiare than the num-
ber of clusters in most cases, there are so many differegthsrthat can satisfy equation
5.14. The lengths of cluster feature vectors are usuallampobblem regarding this equa-

tion. Rather, our major concern is to reduce the length af éaature vector to eliminate

87



noise and to shorten runtime. In the meantime, we do not vealuse useful informa-
tion. For example, if we have three clusters and the threefeaectors are “social: 17,
“database:1”, and “network:1”, then the length of eachueatector is one. Even though
the rank of M will be 3, we may lose useful information that in turn may fégsua low
accuracy of clustering. Suppose the feature vector of a m@wrdent is “social:0.5, net-
work: 0.5 “ with two words. For fuzzy clustering, the new daeent will go to clusters
1 and 3. Otherwise, it may only go to cluster 3. But if using twords for the feature
vectors of these three clusters, they may be “social:1,ortwl”, “database:1, web 0.6”,
“network:1, wireless: 0.8”, certainly, the new documenb@la belong to cluster 1. (No-
tice that the weights of the words in this example will be nalized before comparison.)
Therefore, we need to find the cutoff point of the length offdegure vectors of the exist-
ing documents. The principle rules of these cutoffs arewmsatvant equation 5.14 to be
satisfied (that is easy to achieve), and in the meantime wetowanaximize the accuracy
of resulted clustering.

While the length of the feature vector of an existing docunhes to be set heuris-
tically with the requirement of equation 5.14 met, the léngjtthe feature vector of a new
document could be found automatically by searching for tiewing ratio R within a

range of lengthsZ;, L,].

R= Maz{R;,j= L, ..., L} (5.15)
R; = Max{ Sy k} (5.16)
; s g = b :

Wherek is the number of existing clusters; is the similarity between the feature vec-

tor of an existing clustei and the feature vector with lengghof a new document. This
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means, we would use the length of the feature vector of a newnrdent that makes it
most similar to one of these feature vectors of clustershéncase of fuzzy clustering,
the numerator of 5.16 would be the tepof the similarities of a given lengtl. Even
though the program needs to search a range of lengths, teeused is ignorable given
the numbetk of the feature vectors of clusters is usually small. Furtiae, we designed
two algorithms to speed up this search process: Exponémti@@ment Search and Linear
Increment Search. Instead of checking each length in thgeridn, L,|, we only sample
some of them to find the right length in less time. Our expenitaleresults show the dif-
ferences between using these two sampling search algaréinohthe brute force search
(check each length within the raride, L,|) are ignorable (as shown in Chapter experi-
mentalResults). And the Exponential Increment Searchimegjthe least amount of time.
It is shown below.

(1) Rimaz=0;

(2) Increment=1,;

(3)For(j = L;;j < L,;j = j +increment){

(4) ComputeR; using 5.16 with the current length;
(5) If(R; > Rpnaz){

(6) Riaw = R,

(7) Increment = 1;

(8) Record the cluster that makes ttfis;

9) }

(10) Else
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(11) Increment = Increment*2;
(12)}

For the Linear Increment Search algorithm, we only needptace “Increment =
Increment*2” with “Increment = Increment+1",

Note that for each new document, we actually form two feat@etors. First,
we form a feature vector to compare with the feature vectbtheexisting clusters to
decide where to put the new document. Second, we form anatiedo update the feature
vector(s) of the cluster(s) to which this new document issaldd hey could be the same or
different depending on the length set for the existing doent:iand that obtained for the
new document. However, we could also use the same featui@r wéthe new document
to update the cluster feature vector(s). Our experimeagallts showed the difference of
the clusterings by using the fixed length of existing docutmen the same length of the

new document was ignorable (Table 35 in Subsection 7.3.7).

5.7 Use of Ontology

A domain ontology maintains the vocabulary of that domain. other words,
terms stored in an ontology are considered the most signifteams by the domain ex-
perts. We intuitively assume that if the domain ontologytiiaed during the process
of feature selection, namely, in adjusting the weights ohteof each feature vector, we
would be able to get feature vectors which can better repteabe documents in that
particular domain. In our experiments, we used MeSH (Méd@cdject Headings [18]),

a popular ontology in the biomedical domain, in the procddemning feature vectors
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of these biomedical documents. We increase the weightsmistéound in MeSH. As
expected, the results of using MeSH are better than thabwitileSH (Table 15 in Sub-

section 7.3.3).

5.8 Fuzzy Clustering

In contrast to the hard clustering where a document can aibnlg to one cluster,
the fuzzy clustering allows a document to belong to multiglesters associated with
a degree of belonging. In situations where fuzzy clustefome object belonging to
multiple clusters) is needed, our CS2CS clustering algoritan be easily adapted. The

algorithm (which is similar to that discussed in Section) %s4as follows.

(1) For the new document

(2) do level 2 feature selection to get the document feateceov

(3) For each cluster

(4) Compute the similarity between the document featurowet the new
(5) document and the cluster feature vector

(6) For each cluster

(7) Compute the degree of membership of the new documens wukter
(8) Assign this document with memberships to the top x ckigiavhich it is

(9) most similar regarding their feature vectors

(20) Update the feature vector(s) of the cluster(s) to wihehnew document was
(12) just added with level 3 feature selection.

Instead of putting the new document to the cluster whoseifeatector is most
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similar to the feature vector of the new document, we cantgotmultiple clusters with
parameter representing the degree of belonging or memperBhe degree of member-
ship of document! with respect to clustef’ out of thek clusters is calculated with the

following equation.
Sdc

—= ki
Zj:l Sd]
WhereSy; is the similarity between documedtand cluster; after the ratioR in equa-

Dye (5.17)

tion 5.15 is determined. There are two ways to decide how naaaywhich clusters a
document should belong to. First, the user can set how marsyets a document can
belong to, say, then document will be put to the three clusters whose similarities with
documentd are in the toB among all thet similarities. Secondly, the user can choose
to use a threshold of degree of membership, Bay,, if Dy. > D,,..,, document will

be put to clustel”. Of course, the user can also choose to set the thresholdhdssi

ity, but it would require more insight knowledge than sejtthe threshold of degree of
membership.

When updating the cluster feature vector, instead of adugwgoccurrences to the
raw cluster feature vector as discussed in Section 5.4, @eleddegree of membership
of each term found in the document feature vector of the nesmmhent to the raw cluster
feature vector, then normalize all the raw cluster featwetar with formulas 5.2, 5.3,
and 5.4.

Figures 15 and 16 show a demonstrative example of the cligstierre vectors be-

fore and after adding a new document and the similaritiesdx them. Since they are
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all unit feature vectors, the similarities between themcateulated with formula 5.5. De-
grees of memberships are obtained through formula 5.13 thie case of simplest fuzzy
clustering, that is, a document is assigned to one clustértive degree of membership.
Note the new document was added to the cluster representbe lbjuster feature vector

at the top in Figure 15.
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Document feature vector

W n
Cluster feature vector Terml 0.54
W wn Term3 0.50
Terml 3 0.28 Term2 0.35
Term2 2 0.27 0.8, m=51% Term4 0.30
Term3 2 0.24 Term7 0.26
Term5 2 0.21 Term5 0.24
Term7 2 0.33 Term8 0.24
Term4 1 0.21 Term9 0.20
Term6 1 0.63 Term6/ 0.15
Term8 1 0.39 =041, m=26%
Term9 1 0.22\

§=0.33 =0.37, m=23%

Cluster fgature vector luster feature vector

w_I w.n

W.Ir w.n
Term5 5 0.28 024 Terml 8 0.17 s: similarity
s=0. :
Term4 3 0.35 Term?7 6 0.22 m: degree of membership
Term3 3 0.19 Term2 5 0.15 w_r: weight before normalized
. Term3 5 0.13 w_n: weight after normalized

Terml 2 0.1

Term9 4 0.20
Term2 2 0.14
= s 1owL Term10 4 0.31
erm : Term5 3 0.07
Term10 10.18 Term14 3 0.47
Term1l 10.28 Term8 2 0.18
Term12 10.56 Termll 2 0.23
Term13 10.56 Term15 1 0.47

Terml6 1 0.47

Figure 15: An Example of CS2CS Fuzzy Clustering — Before Addi New Document

94



Cluster feature vector

W w.n
Terml 3.51 0.26
Term2 2.51 0.26
Term3 2.51 0.23
Term5 2.51 0.20
Term7 2.51 0.32
Term4 1.51 0.24
Term6 1.51 0.63
Term8 1.51 0.41
Term9 1.51 0.24

s=0.32
Cluster fghture vector luster feature vector
W.Ir w_n W_I w_n
Term5 ;0.59 Terml 8 0.18
Term4 3 0.34 0 Term7 6 0.23 i;_sifn\:};r;zbeforenonnalized
Term3 3 0.19 Term2 5 0.15 w_n: weight after normalized
Terml 2 0.11 Term3 5 0.14
Term2 2 0.14 TermS9 4 0.19
Term9 1 0.11 Term10 4 0.31
Term10 10.18 Term> 3 0.07
Termil 1028 Term14 3 0.47
Term8 2 0.16
Term12 10.55 Terml1l 2 0.23
Terml3 10.55 Term15 1 0.47
Terml16 1 0.47

Figure 16: An Example of CS2CS Fuzzy Clustering — After AddinNew Document

5.9 Complexity Analysis

Suppose the training step is used, the overall runtime cexitplof CS2CS will

be the following:

O(k(m — k)* + cm + kn) = O(ktm?* + kn) (5.18)
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Wherem is the number of documents in the training geis the number of clusters, is
the number of the new documents to be clustered sndt is the number of iterations
in the K-Medoids clustering that is used in the training @sxto find weights. The
complexity of the K-Medoids i) (k(m — k)t). To find citation semantics (to cluster
references and label them), we only need to look at each detuomce and hence, the
runtime for this part isD(cm). For the linear clustering stage the time neede@ (i&n)
because for each new document we only need to compare itsdeatctor with the k
feature vectors of existing clusters.

Even though we use a training set with~ n/4 in the following experiments, in
practice, the training set will be far less than the set of deauments. That is, we could
havem < /n. For example, iin=100,n could be more than 100,000, or even more than
1 million. The quality of clustering will not decrease dudhe increased number of new
documents. This is because once we get the initial featwterseof clusters, they evolve
as new documents are added in to better reflect the new cent&he overall runtime
of the CS2CS approach @(n + m) givenm < /n. In other words, it is linear with
respect to the total number of documents. Since complexiK+®ledoids algorithm is
quadratic Q(kt(n — k)?)) in terms of the number documents CS2CS is much faster
than K-Medoids. It is even faster than K-Means, even thougidéns is also a linear
algorithm. This is because its complexity is actudllykin), wheret is the number of
iterations used. Its coefficient is bigger than that of CS20& experiments (Table 12 in
Subsection 7.3.1)verify this analysis. Even though k-Meaaay be faster than CS2CS if

a bigger training set is used in CS2CS, its accuracy is ustalless than CS2CS.
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If we carry out splitting and merging during linear clusteyiin cases where the
categories of new documents are unknown, we need tdaddo equation 5.18. That is
the worst case when we check for splitting and merging attdimey each new document.
This is because that, after adding a new document, we needkat the newly updated
cluster to see whether we need to split it, and compare itarfe&ector with other clus-
ters’ to see whether we need to merge them. Once we merge tiweraf we may choose
to compare the newly merged again with others to see if we teeaterge more. This
process takes timé?z, wherex is the number of documents involved in splitting and/or
merging. So the run time of addingnew documents will end up witk?n? in the worst
case if we choose to check for splitting and merging afteiragldach new document.
However, this worst case could be avoided by using a diffesgategy on when to check
for splitting/merging. As a matter of fact, it does not makeaim sense to check for split-
ting/merging after adding each new document since the ieatector of one document
usually will not affect the feature vector of the cluster tnach. That is given, we may
check for splitting/merging after adding a significant amioof documents, say after the
original set is doubled. In this case, we will aélithlogn to equation 5.18. Clearly, the
total complexity would be&) (nlogn) which is close to linear time regarding the number
of documents being added.

Not only does CS2CS run fast, it also uses less memory comhparthe other
algorithms. Since it uses cluster feature vectors and teardent feature vector of the
new document to do incremental clustering, it only needs ttlester feature vectors and

the document featrure vector to be in memory and hence, @sespomplexity is only
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Table 3: Complexities of Document Clustering Algorithms

Algorithm Runtime Space
K-Medoids O(kt(n — k)?) O(n)
K-Means O(ktn) O(n)
CS2CS O(n) O(k)
CS2CsS with Splitting&Merging  O(nlogn) O(k),O(n)

n - number of documentg, - number of clusterg, - number of iterations

O(k). Only when carrying out splitting or merging, the space claxipy is O(n). Table

3 summarizes the comparison of complexities (runtime aratespof these document

clustering algorithms we just discussed.
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CHAPTER 6

INTEROBO: A FRAMEWORK FOR KNOWLEDGE SHARING IN BIOMEDICAL
DOMAIN

In the previous chapter, taking MeSH as an example, we hawgrsbntologies
are useful in document clustering in particular, and hendaowledge discovery in gen-
eral. In this chapter we are going to analyze the overlapgafagionships among ontolo-
gies, and provide an interoperability framework for shgtiomedical knowledge across
OBO communities. Our ontology modeling methods are coredras modeling the rela-
tions, computing overlapping of the ontologies, clustgrimtologies, building ontology
networks, and querying and inferencing in the ontology oekw

To provide integrated access to data annotated with diffenetologies, an impor-
tant requirement is to relate these ontologies. This is comyrdone by cross referencing
concepts from these ontologies. Although using a referent@ogy to map multiple on-
tologies is very promising, having an ideal reference agyplis not easy, and it is often
hard to find concepts from the reference ontology for mappetg/een ontologies. In our
model, we identify common characteristics of ontologiediirerse biomedical ontology
domain (OBO) and cluster them using these features. We atassfon the analysis of
semantic relationships that commonly appear in these agyalomains. Our approach
differs from and complements the related approaches destlater. Specifically, we use
pragmatic approaches to characterize and cluster onedpgithout relying on reference

or upper ontologies.
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In this study (Part of it has been published in [46]), we havalwated our ap-
proach by performing experiments using the OBO datasetdtyaa diverse biomedical
ontologies. Given the large number of the biomedical omfiél®, we focus on the analysis
of semantic overlapping relationships inherent in the logjies. In particular, we mea-
sure the similarity between ontologies by considering syno-based connectivity pat-
terns and analysis of shared concepts and relations adgffesst ontologies. We cluster
the ontologies using the developed similarity measureshod quantitative evaluations

of the utility of the proposed models.

6.1 Domain Overlapping Model

We propose a domain overlapping model, called the InterOBiQufe 17) that
describes the characteristics and patterns of knowledanghbetween ontologies. We
first present some basic definitions that are integral to rstaleding the domain sharing
model.

A Concept-level relation (CR) is a binary relation CR betwa@econcept1 and
a concept2. It expresses any kind of relationship between a conekepind a concept
2. The concepts ¢l and c2 may be either from the same ontolo@pmor different
ontologies. In our study, relationships are defined by thpigoal analysis of ontology
data. Apart from being similar, concepts may share othegcspe.g., sharing the same
parents, children or siblings. This forces us to think ndy@mterms of concepts per se,
but in terms of edges and other structural aspects of theepisic

An Ontology-level relation (OR) expresses any kind of lielahip between an
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Inter Ontology Mapping

Synonym Based
Transitive Equivalence
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Semantic Connections
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Ontology

Querying/Inferencing

InterOBO

Figure 17: InterOBO Framework

ontologyol and another ontology?2. In this chapter, we introduce two types of OR re-
lations. Firstly, OR can be defined as a unified view of retetiops between different
ontologies. This means that the CR level relationships ifiberént ontologies are accu-
mulated at the OR level and defined as a new “sharing” relshiign Secondly, OR can
be defined by synonym relationships in the CR level. We reféhnis as “synonym-based
transitivity” because some transitivity can be defined dwetween ontologies.

Our ontology modeling methods are comprised of the follgygteps: 1) synonym

based transitive equivalence, 2) connecting pattern retog for inter ontology mapping
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3) clustering the ontologies based on the overlapping pettand 4) finally querying
and inferencing over the clusters. These procedures ategrirstibdivided into specific
elementary steps.

The sharing relationship among ontologies is based on theedef sharing be-
tween ontologies. For the sharing relationships, we defieddllowing two specialized
relations: a) synonym based transitivity and b) conneqgpiaigern based on overlapping
relations. The latter can be measured in terms of concepiapgng and structural (edge)
overlapping. The degree of sharing between ontologiesdad usthe step of clustering
ontologies. It is determined by the following two aspect}¥:slaaring concepts and b)
sharing edges or paths. Finally, the clustered ontologes$uather structured as an on-
tology network. This network facilitates to integrate dater the ontology network and
discover a path of reasoning from specific capability thiothge network. There are also
feedback channels among clustering component, sharinguomy component, ontol-
ogy query/inferencing component. Note that the inferegcising this ontology patterns

and clustering is beyond the scope of this dissertation.

6.2 The Open Biological and Biomedical Ontology (OBO) Domai

The Open Biomedical Ontologies are well-structured cdiettiovocabularies for
shared use across different biological and medical domaims OBO represents community-
based efforts to support a range of ontologies designeddandxlical domains. Some of
them are generic and apply across all organisms while oHrermore restricted to spe-

cific domains.
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For this study, we have analyzed all the concepts of the 40 O@€rsion June

12, 2006). As shown in Table 4, the total number of the corscepl3,456. After fil-

tering duplications, we obtained 122,390 unique concept® maximum, average, and

minimum concept counts per ontology have been computedol@yyt counts for each

concept have been computed as well. These data have beactedtirom the OBO text

and OWL files, and stored into a local database. More detaifedmation about these

Table 4: The OBO Ontologies

Ontology Features Number

Number of Ontologies 40

Total Concept# 134567

Unique Concept# 122390

Concept# per Ontology Maximum 39
Minimum 1
Average 1.6

Ontology# per Concept Maximum 9
Minimum 2
Average 2.4

40 ontologies are show in Table 5. The following analysis\@apts, synonym, node and

edge) has been performed by considering a single type dimelsuch as IS-A xor Part-of

for the sake of simplicity. For instance, GO has both IS-A Radt-of relationships, but

we have mainly considered the commoner IS-A relation.

6.3 Ontology Mapping Methods

6.3.1 Synonym Based Transitive Equivalence

In order to provide sharing relations among multiple ong@és, we need to pro-

vide an advanced ontology mapping schema. A frequent phemomacross domains is

the presence of homonyms and synonyms. In the ontology mgmpocess, a concept
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Table 5: OBOs in Detail

1D Ontology Name Conc. | Syn. Node Edge | Type
Ol Adult_mouse_anatomy 2703 | 0 2971 2820 | IS-A
02 Arabidopsis_development 108 53 108 108 IS-A
03 Attribute_and_value 1228 | 0 1260 1248 | IS-A
04 Brenda 2218 | 1179 | 2515 2353 | IS-A
05 Cell 761 0 964 964 IS-A
06 Chebi 12734 | 23451 | 14666 | 14666 | IS-A
o7 Dictyostelium_discoideum_anatomy | 38 13 73 58 IS-A
08 Disease 19136 | 0 19389 | 19383 | IS-A
09 Emap 13731 | 0 13731 | 13731 | Part-of
010 | Event 2665 | 234 3499 3020 | IS-A
O11 | Evidence code 130 6 163 140 IS-A
012 | Fly anatomy 6130 | 0 13649 | 7273 | IS-A
013 | Flybase vocab 660 65 664 664 IS-A
014 | Fungal anatomy 65 15 82 76 IS-A
015 | GO 20733 | 17181 | 27574 | 27560 | IS-A
016 | Human dev_anat abstract 2314 | 0 2339 2324 | Part-of
017 | Human_dev_anat_staged 8340 | O 8362 8339 | Part-of
018 | Image 259 30 259 259 IS-A
019 | Loggerhead nesting 308 2 322 317 IS-A
020 | Mammalian_phenotype 4186 | 3010 | 6130 4630 | IS-A
021 | Mao 164 45 164 164 IS-A
022 | Medaka anatomy_development 4358 | 0 4404 4245 | Part-of
023 | MeSH 15337 | 33297 | 19525 | 19525 | IS-A
024 | Molecule role 7255 | 23588 | 7641 7393 | IS-A
025 | Mosquito_anatomy 1804 | 3501 | 2290 2057 | Part-of
026 | Mouse_pathology 459 0 459 459 IS-A
027 | Pathway 486 62 554 554 IS-A
028 | Plant_environment 489 308 518 506 IS-A
029 | Plant_trait 761 44 949 865 IS-A
030 | Plasmodium_life_cycle 47 0 98 64 IS-A
031 | Po_anatomy 763 218 785 785 IS-A
032 | Po_temporal 274 996 274 274 IS-A
033 | Psi_mi 194 165 223 212 IS-A
034 | Rex 546 140 1099 671 IS-A
035 | Sequence 1034 | 251 1171 1094 | IS-A
036 | Temporal gramene 235 168 235 235 IS-A
037 | Worm_development 69 0 69 69 IS-A
038 | Zea_mays_anatomy 179 30 181 141 Part-of
039 | Zebrafish_anatomy 1558 | 0 2184 1553 | Part-of
040 | Fly development 120 0 124 124 IS-A
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in an OBO ontology can be associated with another conceptathar OBO ontology if
both concepts have a synonym relation. The synonym relaticeflexive, transitive, and
symmetric. We propose three types of the synonym relatiandan be identified in the
ontology to ontology mapping of a concept.

There are many different meanings for the same word. Famest “PGA” stands
for “Polyglandular Autoimmune Syndrome” and the “Professil Golfers’ Association.”
Synonyms are used to relate to each other. For instance, dergo “stomach acid”
with “Betaine HCI,” others use “Hydrochloric Acid”. Resahg these semantic problems
present across multiple ontologies is a difficult task beedtrequires a comprehensive
understanding of ontologies to be linked and implicatiohthe mapping. These differ-
ences occur because different ontology designers may tiffegent world views to the
task, conceptualizing the world at different levels of gramity and abstraction. Such
differences are commonly considered semantic problems.

To handle these semantic problems, we have identified thneks lof synonym
relationships between ontologies. An ontola@y can be related to another ontology
02 through synonyms of concepts. A conceptin O1 can be synonymously related
to another concept” from O2 if 1) Y is included as a synonym of in O1 or 2) if
X is specified as a synonym &f in O2. The confidence in the semantic equivalence
of X andY is strengthened if they are mutually defined as synonyms i ether in
their ontologies. Another scenario that is indicative ahaatic equivalence is whek
andY are linked through having a common synonym. Note that the cbsxact matches

between X and Y is trivial and not a case of synonym-basedgitiaa equivalence. Figure
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18 shows these relations, also formally defined below.

Case 1 s1 ;
(e.g. comb
0. C1 N\ C2 0.
' (e.g. scale) (e.g. comb) J
Case 2 S1
(e.g. 5-azacytidine \
_ C1
O' (e.g. azacitidine \ 2 . s-gfcytidine) Oj
(e.g. azacitidine
Case 3
c1 S1 N\ S2 C2
(e.g. scale) €.g. squama €.g. squama (e.g. 35@%’@
O, 0.

J

Figure 18: Synonym Relations Between Ontologies

Let Ci € Oi andCj € Oj, whereOi andOj are ontologies, andi € 5’
andSj € S”, whereS’ andS” be a set of synonyms @fi andC'j, respectively. The
following three cases might be considered for synonym baseditivity across different
ontologies. The symbat is used to represent a synonym relation between concepts.

Case 1If Siis a synonym of’'i (i.e., St =~ C'i) or Sj is a synonym of”'j (i.e.,
Sj =~ Cj) and eitherCi = Sj or Cj = Si, butCi # Cj, thenCi ~ Cj can be
transitively retrieved from eithef'i = Sj ~ Cj or Cj = Si =~ Ci. As an example,
Medicine is a concept in MeSH and Drug is a concept in CheBiMadicine is defined

as a synonym of Drug in CheBi. Therefore, Medicine in MeSHyisosiymously related
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to Drug in CheBi.

Case 2Si is a synonym of’'i (i.e., Si ~ (i) andSj is a synonym ot’j (i.e.,
Sj =~ Cj)andCi = SjandCj = Si, butCi # Cj, thenCi ~ Cj can be transitively
retrieved fromCi = Sj ~ Cj andCj = Si ~ Ci. As an example, Polysome is a
concept and Polyribosome is its synonym in GO while Polystuoe is a concept and
Polysome is it synonym in MeSH. Therefore, Polysome in GQyiaymously related
to Polyribosome in MeSH.

Case 3If Si is a synonym ofCi (i.e., Si ~ Ci) and Sj is a synonym ofC'j
(.e., S5 ~ Cj)andSi = Sj, butCi # Cj thenCi ~ Cj can be transitively retrieved
fromCi ~ Si = Sj ~ Cj. As an example, Heterozygote is a concept and Carrier is its
synonym in MeSH and Transporter is a concept and Carries sytionym in Molecule

role. Therefore, Heterozygote is synonymously related-ém3porter.

6.3.2 Ontology Connecting Patterns

We are interested in relating distributed ontologies thars a common domain.
In order to relate multiple ontologies, we use the notionrefifiently recurring patterns
in overlapping ontologies. The idea of patterns has beerlwidsed in building soft-
ware system. The motivation behind characterizing a paiteto fully utilize known
solutions for commonly recurring problems in a specific eant The focus of research
on patterns has so far been mainly on ontology modeling ao@letge reuse such as
ontology construction and management. Here we are intiogwm initial method for

exploiting ontology connecting patterns with the aim otlfier expanding ontology space
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for query and inferencing. Two kinds of connecting patteares discussed: quantitative
connections and semantic connections. The first type oépeis defined based on the
quantity of overlapping while the latter is based on the emting position of concepts in

these ontologies.

Quantitatively connecting patterns The overall connectivity patterns between
two ontologies can be identified from analyzing the extenwkich concepts from one
ontology are mapped to the other. Formally, the connegtoan be defined in terms of
linguistic overlapping (concepts and synonyms) and stiratbverlapping aspects (links
and paths). An ontology O can be defined as a set of constitoacepts, relations and
properties, namely: O >. We now define the size of the concept set, (k&.Q) = || <
CO > ||, where< CO > is the set of concepts in the ontology O) and the size of the

link set, (i.e.,ls(O) = || < LO >

, Wwhere< LO > is the set of the link type (such as
IS-A or Part-of) of the ontology hierarchy). We consider ttypes of the relationships:
direct and indirect. The direct relationship defines a paaed child relationship of the
given concepts in the hierarchy. The indirect relationst@fines a predecessor/successor
relationship of given concepts (path) in the hierarchy. dbegree of concept overlap

cp(01, 02) and the degree of link overldp(O1, O2) is computed by the formulas below:

B cs(01) Nes(02)
cpl(01,02) = o5(01) U es(02) — es(O1) 1 C8(02)label(conceptOUerlapl) (6.1)
~¢s(01)Nes(02) es(01) Nes(02)
cp2(01,02) = o5(0D) 5(02) label(conceptOverlapy)  (6.2)
B [s(0O1) Nis(02) :
Ipl(01,02) = [5(01) Uls(02) — Is(01) ZS(OQ)label(lmk‘Overlapl) (6.3)
Ip2(01,02) = (s(01) N1s(02) (01N ZS(O2)label(linkOverlapg) (6.4)

1s(01)  1s(02)
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The relationship between ontologi@d andO2 can be as follows:

e Olisasubsetof2,i.e.0O1 C 02,0rO2is asubsetod1,i.e.O1 O O2.

e O1 partially overlaps)2,i.e.3z,y, (r € Ol ANz € O2) A (y € O1 ANy ¢ O2)

e Olisdisjointfrom02,i.e.0O1U0O2 = ¢
An ontology mapping fronO1 = (csl,lsl) to O2 = (es2,1s2) is defined as follows:
There is a subset ontology mapping fram = (csl,lsl) to 02 = (es2,1s2) if there
existscsl C cs2 andlsl C [s2. There is a partial overlapping froml = (csl,ls1) to
02 = (cs2,1s2) if there existsda, b, (a € csl Aa € ¢s2) A (b € csl ANb ¢ ¢s2) and
de,d, (c€lslNcels2) N (d €lsl Nd & s2)

Semantically Connecting PatternsThis connecting pattern focuses on repre-
senting inter-ontology relationships that might existwetn multiple ontologies. For
instance, an ontology can be a more specific ontology of anathtology (upper ontol-
ogy). In this case, there is a super/subclass relationgtypden these two ontologies. Or
there might be a sibling relationship between ontologiessulne that the ontology:
and a concept are given. In the following formulaéevel (z@0Oi) means the level of
the concept: at the ontologyO: anddepth(Oi) means the depth of ontology:. The
Concept Connection Position (CCP) is computed as follows:

level (xQO1)

CCP(z,00) = depth(O1)

(6.5)

The Ontology Connection Position (OCP) is computed basetth@melative position of
the concept in two ontologies, indicating the positionste# toncept from these two
ontology perspectives. Assuming that two ontologigsand Oj and a concept are

given, OCP is computed as follows:
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o CCP(z,0i

There might be multiple connection patterns in multipleabogies. Thus, it is
necessary to accumulate the connecting patterns and npertta¢m into an accumulated
connection score using a simple weight average formulatwdicnmarizes all weighted
OCPs. The weight for each pattern can be defined by a domaigrtelspsed on the
significance of the concept or simply as a uniform weight. Aleeumulated Ontology

Connection (AOC) score can be computed as follows:
AOC(0i,05) =Y OCP;- W, (6.7)

The connection pattern is a frequently recurring patterseoled during the ontology
overlapping analysis used to connect an ontology to anoftes pattern is mainly based
on the location of the concept overlapping between ontelgi

1)OntologyO1 is quantitatively connected to Ontolo@y2. Let us assume that
a concept in ontology)1 is connected to a concept in another ontol@g® and count
means the number of the common conceptdn this case, we map the class@n to
the class inD2, with the mapping being either equivalent or synonymousjyivealent.
Given a thresholgi: O1 is quantitatively connected to O25f, (z € O1 Az € O2) A
(count(x@O1) > u) A (count(c@QO2) > )

2)OntologyO1 is semantically connected to ontolog}2. This means that the
concepts inO1 can be semantically connected to the concept®2n In this case, a

conceptr is located at a low level in ontology1 while the same conceptis located at
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a high level in ontologyD2. Note that the synonym patterns described in the synonym-
based transitive equivalence section have been incogabiatio this semantic connection
pattern. For instance, Table 42 in Chapter 7 shows the syn@uattern Cell death .
Necrosis. Furthermore, if the number of connecting pastbetween O1 and O2 is higher
than a certain threshold defined by a domain expert, thenttodogy O1 is a specialised
ontology of the ontology O2. Then we can say the subconcéptsid>2 are semantically
related to the superconcepts of x in O1.

Olis semantically connected to OZif, (x € O1Ax € O2)A(OCP(z,01,02) >
aVOCP(x,02,01) > a)

Based on these pairwise similarity measures for concepédgd overlapping re-
lationships, we have developed a simple ontology modellémtering overlap in multiple
ontologies. This is discussed in the following section Qogy Clustering. These con-
necting patterns can be essentially used for automaticalipecting ontologies and ex-
panding the query space of ontologies, and to retrievenmition from available knowl-

edge sources within the ontology space.

6.4 Ontology Clustering

We posit that ontology clustering is a required step for effitontology mapping
involving the alignment and merging of ontologies. Here \ify our approach to on-
tology mapping within the above theoretical framework. Ariadogy mapping consists
of a collection of several relationships between multiphotogies. Given that ontolo-

gies are more closely related to some ontologies than gtbetslogy mapping can be
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clarified through ontology clustering the task of classifyia collection of ontologies
into clusters. The guiding principle is to minimize intexs$ similarity and maximize in-
traclass similarity, based on the notion of semantic destarfo discover the correlation
between ontologies, we used the MCL [47]. We compute and/aealorrelation based
on the common concepts between different ontologies.
The steps to compute the degree of overlap between ontslagado clustering
are as follows:
e For every pair of the OBO ontologies, determine the set o€epts in common.
e Calculate the overall similarity for each pair of ontologjigsing the following for-
mulas and store the values into respective summary matrices
— probability-based similarity (Approach S = (AN B/A) - (AN B/B)
— area-based similarity(Approach )S = AN B/(AUB — AN B)
In the above formulas,A N B) refers to the number of concepts (or, sepa-
rately, edges) common to both ontologies, whileu B) represents the total
number of unique concepts (or, separately, edges) praseither of the two
ontologies under consideration.
e For each of the two 40 by 40 upper-triangle matrices, clusterontologies using

the MCL algorithm to obtain the respective clustering.
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CHAPTER 7
EXPERIMENTAL RESULTS AND DISCUSSION

In this chapter, we present the experimental results fareeice clustering (or
citation clustering — we use these two terms interchangeaalthis dissertation), CS-VS
— document clustering using combined vector space andorits¢ mantics measures, and
CS2CS - document clustering with a 3-level feature selectide also analyze the results

and discuss their significance.

7.1 Experiments on Reference Clustering

We downloaded all 42 papers from the Search track of recemtdWugide Web
conference websites: www.www2007.org, www.www2006.angw.www2005.0rg, ww
w.www?2003.org, and www.www2002.org (Website for WWW 200dsaninaccessible).
Based on the nature of contextual information used, we gitearsix different approaches
— keyword matching, locality clustering, and four MCL cleishg approaches, to classi-

fying or clustering the citations for each of the 42 papeasately.

7.1.1 Approach 1: Keyword Matching

In this approach, we use each specified keyword in the papeckass or cluster
label. We try to map each reference title and its surroung@mence to each keyword. If
such a mapping exists, we put this reference into the clisbeted by this keyword.

The surrounding sentence refers to part of the sentencetdasreference number
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in the paper, either before or after the number. For exampl&he threshold algorithm
works as follows [12],” the words “The threshold algorithnorks as follows” are taken
as the surrounding sentence of reference 12. In “Jones Et@lexamine substitutions
that searchers make to their queries,” “examine subginatihat searchers make to their

queries” is treated as the surrounding sentence for refer&.

7.1.2 Approach 2: Locality Clustering

In this approach, we use the explicit grouping (we call itdiedt information or
citation locality) provided in the body of the paper to ckrsthe references. That is, if
two references are mentioned together in a paper, they elting to one cluster. For
example, if we see “[13, 21]", then reference 13 and 21 in plagter, are taken as being

in the same cluster.

7.1.3 Approaches 3-6: MCL (Markov Cluster Algorithm) Cleishg

In these approaches, we calculate the similarity betweerydwo references;
andr, as follows.

S(r1,m2) = S1(+52)(+S3)(+54). (7.1)

WhereS; is the similarity between references titlés,is the similarity between the sur-
rounding sentencesj is the similarity between the combination of titles and sunding
sentences, anfl, = 1 if the two references are mentioned together in the papdr asic
“[2, 10]". Otherwise,S, = 0. Sy, Sa, and.Ss are calculated by formula 3.2.

In approach 3, we use only; as the similarity of two references; in approach

4, we useS; + Ss; in approach 5, we us8; + S, + S3; andS; + S, + S3 + S, are
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used in approach 6. These approaches are referred to as M@CI31, MCL-2, MCL-
3 respectively. After calculating the similarities, we ukem as the inputs to MCL to

cluster these references.

7.1.4 Labeling

Our strategy for labeling the reference clusters is asvi@loThere are basically
two steps. For each cluster, we first compare it to the clsstietained by approach 1. If
half or more than half the number of the references fall imy af those keyword labeled
clusters, we use that keyword as the label. Otherwise, we ste@ two. In this step, we
first find the frequency (occurrence) of the term. If a termussdn half or more than
half the number of the members of a reference cluster, anctitrs at least twice, then
we use it as one of the labels for this cluster. Here we re@uieem occurs at least twice
to be considered because there might be only two referen@esluster, then every term
will occur in at least half of the cluster members. It does make sense if we use all
the terms to be the labels of the cluster. This requiremeltamdid such meaningless
labeling. In the case of multi-word terms used for labelifig, term is part of another
term, and they have same occurrences, we just keep the longeAfter getting all the
labels for a cluster, we then sort the labels according tio Hteres. The score of term X

is calculated as follow:
Score(X) = Occurrence(X) x Number_of_words(X) (7.2)

In this way, we favor longer phrase over shorter ones. Fomei@ suppose a cluster

has five references. If “web” occurs in all these referenapd,“semantic web” occurs in
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three of them, according to our equation 7.2, the score ob"wéll be 5, and the score
of “semantic web” will be 6. Therefore, we rank “semantic Wweigher than “web” in
the list of labels. In other words, we consider “semanticaa more appropriate label

than “web” for this particular cluster.

7.1.5 Experimental Results

Through evaluating the results of these approaches, agp®&avICL-3) turned
out to be the best. We will show the comparisons in next sulesecFirst we want to
summarize the results of using approach 6 (MCL-3).

The number of clusters of references for each paper ranged 10, with an
average value of 4.5, and standard deviation of 2.0. We alalyzed the keywords for
the papers. The number of keywords in a paper ranged from Oadtyan average value
of 3.7, and a standard deviation of 1.7. The following nurslzee for all the citations in
all papers taken together.

1. Total number of clusters: 190

2. Total number of labeled clusters: 169

3. Total number of clusters labeled by keyword: 34
4. Number of unique labels: 608

5. Number of unique keywords: 128

This demonstrates that as much as 88.9% of the clusters beudditomatically
labeled by approach 6. This contrasts with only 17.9% of thsters that could be labeled

by keywords based on explicit matches. More than 4-fold reems$ could be generated
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to describe the citation clusters compared to the numbeey#&rds in the citing paper.

7.1.6 Evaluation

In this subsection, we address the relative performandeeddifferent approaches
used for semantic classification of the references. Idehié/perfect clustering for each
set of references needs to be created manually. Once thedyauth is established, the
difference between this and a given clustering may be meddawy using a combination
of information theoretic measures such as average entrbflyeoclusters and mutual
information. However, this method of evaluation is not abé. Givern references and
up tok clusters, there are” / k! possible clusterings for every valueiafFurther, this has
to be repeated for each of papers. For a typical paper with 30 references and 4 clysters
this representd®/4! > 10'® possible clusterings. We therefore adopted the following
two alternative approaches: one is automatic and the othaual.

Automated evaluation The rationale is as follows. We considered the second
clustering approach, that specified implicitly by the awfgpin citing multiple references
together, as being the basis of the ideal clustering. Innegsen ideal clustering should
have a 1:1 correspondence with that specified by the aujhan(should have fewer
clusters with the constraint that some or all of the clusteesderived by fusion of the
author-specified groupings. In other words, a clusteringpissidered ideal if it does not
split the groups of references specified by the author(sptider way of stating this is that
grouped citations within the body of the document represighér the ideal clustering per

se or a sub-clustering of the ideal clustering. Thus, theopmance of a given clustering
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technique depends on its ability to merge bracket clustérowt shuffling them. Based
on the above rationale, we evaluated each MCL clusteringalgutating the distance of
each clustering from the corresponding Locality clusggrifhe distance D is defined in

the following equation.
D= d (7.3)
=1
Wheren is the number of clusters in Locality clustering of a givercaiment, andi;

(z = 1,,n) is the corresponding weighted average entropy calcubsddllows:
k
d; = —(M;/N,) Z m;/M;)log(m; ) M;) (7.4)

WhereN,. is the total number of references in the documaiit,is the number of refer-
ences in theth cluster of the locality clusteringy;(j = 1, , k) are the split fragments of
thesth cluster which are scattered in a MCL clustering. The sméflertotal distancé,
the better the corresponding MCL clustering is. Based orcéheulation ofd; we know
that if theith cluster is not broken, thefi = 0. Otherwised: > 0. For example, suppose
theith cluster of the locality clustering is “1, 2, 3" (which meamese three references
are mentioned together somewhere in the paper). For eachdW@tering, we check to
see if this locality cluster was broken or not. For a given Meéstering, if the locality
cluster is broken into [(1) (2, 3)], and the total number dérences is 20, then we have
d; = —(3/20)[(1/3)log2(1/3) + (2/3)log2(2/3)] = 0.1377 . As locality clustering is
author-defined, we assume it has 100% precision for thisiatiah purpose. However,
several of the clusters may be potentially fused with eatlerobn the account of be-
ing semantically homogeneous. Thus, an ideal clusterimgnt@onsist of a hierarchical

clustering of the locality clusters. Figure 19 shows a pfaihe distance from locality
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Figure 19: Distances from Different Approaches with MCL tchlity Clustering

clustering versus the number of clusters for each of theMbOL clustering approaches.
As expected, the distance from locality clustering progitedy decreases as we take more
contextual information into account. Figure 20 shows th&tllVB has the lowest distance
on average. MCL-O0 is the worst in being furthest away fromitieality clustering, with

a large variance as well. One limitation of the distance im@resented here is that it can
essentially result in a distance for any hierarchical etsg of the locality clusters, as
long as none of the original clusters are split. In the exg@ase, a single giant cluster
consisting of all the references would have a distance @ffzem the locality clustering.

To account for this, we also performed manual validationessdbed in the next section.
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Figure 20: Average Distances from Different Approache$WICL to Locality Cluster-
ing
Manual evaluation In addition to computing distances based on locality chuste

ing for each MCL clustering, we also manually checked all ¢hesters to calculate a

purity score for each clustering of each paper. The purityes® is calculated as follows.

=1
Wheren is the number of clusters in an MCL clustering of one papet,jafis computed
according to the following equation.

pi = (M;/N)(mi/M;) = m;/N (7.6)

N is the number of references in a papgf; is the number of references in th&
cluster, andn; is the number of references that are considered acceptabilectusion

in the cluster. The higher the score P, the better the cayrepg MCL clustering is.
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In contrast to the distance metric used in the automatiaiat@n above that is bounded
only on one side, P is bounded between the values of 0 and lhighest score is 1, and
a low score indicates a highly heterogeneous cluster. €iglirshows the distribution of
purity scores for different clustering approaches. Mclh&tering shows the best purity.
However, MCL-0 shows similar purity to MCL-1 and MCL-2. Figu22 shows how the

number of clusters is reduced by the other approachesvestatiocality clustering. Here

too, MCL-3 exhibits high values of purity, while successfutondensing the citations

into a smaller number of clusters.
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Figure 21: Purities of Different Approaches with MCL
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7.1.7 Summary

We have presented and evaluated an automated approacledsrehce cluster-
ing. Through our automatic and manual evaluations, appréa®ICL-3) brings us the
best result. Besides being used in document clusteringhaibitully discussed in this
dissertation, it can also be used as a summarization tashray scientific documents,
for the identification of new terms used in a domain, or singdya new way to order the

citations in a publication.

7.2 Results from CS-VS

We downloaded articles in the biomedical domain from PubKedtral [25]. We

chose twelve categories corresponding to topical jouasatsur original clusters as shown
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in Table 6. We evaluated our results based on these origitedories.

Table 6: The Document Categories

Category Number of
Documents
Behav Brain Funct 129
BMC Blood Disord 29
BMC Cardiovasc Disord 175
BMC Endocr Disord 38
BMC Neurol 161
BMC Oral Health 73
BMC Plant Biol 201
Cough 31
AIDS Res Ther 70
BMC Biochem 173
BMC Cancer 123
BMC Infect Dis 96

From these articles, we generated multiple document sdtaiasg data by the
random selection (Table 7). They are used to obtain ap@igpweights for formulas 4.2
(or 4.3) and 4.5, namely};, Ws, W3, Wy, W5, Note that there is no keyword provided in
these articles and we sBf; = 0. The document sets involved in each combination were
used as the ground truth for evaluating our clustering tesidlhe documents in Table 7
are only from the first eight categories of Table 6. The remgifour categories were held
back to serve as noise to test the robustness of our apprdaeine are two testing sets
— one only has documents from the same eight categoriesthibeltas documents from
all twelve original categories. To find these weights, weli@plpan evolution strategy to
our training process. The results of using the evolutioatstyy will be discussed in next
subsection.

To evaluate the quality of the clustering result of this aagh, we use F-Measure

[89], also known as F-Score, or the harmonic mean of the gitetand recall, to calculate
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Table 7: The Training Data

ID | Document Categories Number of
Documents
1 BMC Blood Disord, BMC Cardiovasc
. 40
Disord
2 Behav Brain Funct, BMC Blood Disord 40
3 BMC Blood Disord, BMC Neurol,
58
Cough
4 Behav Brain Funct, BMC Blood 60
Disord, BMC Oral Health
5 BMC Neurol, BMC Oral Health 234
6 BMC Blood Disord, BMC Neurol, 73
BMC Oral Health, Cough
7 Behav Brain Funct, BMC Blood
Disord, BMC Neurol, BMC Oral 98
Health, Cough
8 Behav Brain Funct, BMC Blood
Disord, BMC Endocr Disord, =~ BMC 119
Oral Health, BMC Plant Biol, Cough
9 Behav Brain Func t, BMC Blood
Disord, BMC Cardiovasc Disord, BMC 139
Endocr Disord, BMC Oral Health,
BMC Plant Biol, Cough
10 | Behav Brain Funct, BMC Blood
Disord, BMC Cardiovasc Disord, BMC 158
Endocr Disord, BMC Neurol, BMC
Oral Health, BMC Plant Biol, Cough,

the accuracy of the resulted clusters. It is defined as fallow

2P - R
F =
P+ R

(7.7)

Where P and R are precision and recall which are defined in the followingatmpns,
respectively.

P =N, /N, (7.8)
R =N, /N, (7.9)

Where N, is the number of documents which are correctly returnedhey are put into
the cluster they belong to (based on the original categavreeslownloaded)}V;, is the
total number of documents in a clusté¥;, is the the total number of correct documents a

cluster is expected to have. That is, when evaluating thétrekthe clustering algorithm
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over some documents which belong to some categories, weuad@ns 7.7 through 7.9,
to calculate the precision, recall, and f-measure for eashlted cluster. Then we com-
pute the average values which are considered as the acaurgaoglity of the clustering

over that set of documents.
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Figure 23: A Sample Result of Document Clustering with CS-VS

As an example, Figure 23 shows the results of both clustavitigvector space

measure only and clustering with combined vector space emeustics measures. On the
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left hand side, for the resulted two clusters, for the clusith medoid “BMC Cardiovasc
Disord-6--1413555", the precisiof? = 28/34 ~ 0.824, the recallR = 28/30 ~ 0.933,
and the F-Measure iB = (2 % 0.824 % 0.933)/(0.824 + 0.933) ~ 0.875. Similarly, we
can get these three values for the cluster with medoid “BM@oBIDisord-4--385232"
as0.875, 0.7, and0.778, respectively. Therefore, the (average) F-Measure ofabelt of
the clustering using vector space measure only over thaaesdawill be82.6%. In the
same way, we can get the (average) F-Measure of the resuilh¢omght hand side) of
the clustering using combined vector space and semantiasures over these data set as

95.8%.

7.2.1 Results of Using Evolution Strategy

To find the weights used in equations 4.2 (or 4.3) and 4.5, haiig, W5, W,
Wy, W5, we applied the evolution strategy in our training procd$se detailed discussion
of the evolution strategy is in Section 4.3 of Chapter 4. Tplaphe evolution strategy,
we need to have data sets ready. We first used papers of eigigbdas to construct
ten collections as our training data. Then we used papenstine same eight categories
to constructed ten collections as our test data 1. Lastlyisesl papers from all twelve
categories to construct ten collections as test data 2.

We used two different ways to find these weights through tloduéieon strategy.
1. We tried to find all the five weights simultaneously, by dpeiustering on training
data sets combining vector space and semantics measutds. 8Tshows the results of

this approach. 2. We find these weights through two stageat mans, we finds,
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Wy, andWj first, by doing document clustering on training data setagithie semantic
similarity (equation 4.5) only, then we do document clusigby combining vector space
and semantics measure to find weighits, 17,. Table 9 shows the results of using this

approach. The last two rows of both tables are the averagstandard deviation.

Table 8: Results of Evolution Strategy - Get All Weights Sitaneously

#G W3 W4 W5 W1 w2 train testl test2
56 2.898 2414 1.726 4.7717 0.152 0.863 0.809 0.767
71 0.915 1.036 0.000 13.146 1.459 0.866 0.800 0.794
68 0.436 0.900 0.338 2.452 0.129 0.851 0.762 0.782
19 0.747 3.983 0.000 5.418 0.888 0.852 0.772 0.793
95 0.994 4.841 2.454 10.575 1.142 0.866 0.790 0.814
60 0.351 1.184 0.444 3.683 1.269 0.862 0.803 0.806
8 0.716 2.449 1.446 2.989 0.208 0.857 0.780 0.837
6 0.112 0.692 0.206 2.726 2.407 0.864 0.788 0.828
17 0.805 1.373 0.000 1.661 0.487 0.851 0.765 0.797
21 1.371 3.957 0.009 3.156 0.040 0.861 0.757 0.762

42.1 0.935 2.283 0.662 5.058 0.818 0.859 0.782 0.798

314 0.776 1.502 0.886 3.795 0.764 0.006 0.018 0.024

Table 9: Results of Evolution Strategy - Get Weights Sepéyat

#G1 | #G2 W3 W4 W5 W1 W2 trainl train2 testl test2
10 39 | 0.203 3.205 0.000 | 4.540 | 0.574 0.629 0.861 0.787 0.781
5 54 | 0.534 5.006 0.782 | 4.707 | 0.396 0.605 0.857 0.797 0.792
4 100 | 0.000 0.776 0.705 | 3.153 | 0.000 0.604 0.758 0.719 0.739
8 14 | 0.658 3.072 0.194 | 6.326 | 1.162 0.621 0.855 0.782 0.794
24 4 0.692 2.497 0.086 1.706 | 0.443 0.602 0.855 0.779 0.790
3 11 | 0.859 4.509 1.798 | 2.051 | 0.113 0.618 0.859 0.780 0.834
11 27 | 0.939 9.636 3.526 | 8.697 | 0.446 0.613 0.859 0.781 0.824
3 19 | 0.875 4.168 2.330 | 6.436 | 0.316 0.616 0.859 0.779 0.812
13 7 0.901 4.507 4979 | 3.016 | 0.383 0.600 0.868 0.747 0.780
14 100 | 0.000 0.430 0.406 1.770 | 0.000 0.604 0.758 0.719 0.739
9.5 37.5 | 0.566 3.781 1.481 | 4.240 | 0.383 0.611 0.839 0.767 0.789
6.5 363 | 0.370 2.576 1.676 | 2.341 | 0.337 0.009 0.043 0.028 0.031

In both approaches, once we get promising values for theseviegights, we use

these weights to do clustering on two test sets. Resultslsmeshown in both tables. In
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using evolution strategy, we set 100 as the threshold of tineber of generations, 85%
of the average F-Measure as the stop criteria of documestiectlng by combining vector
space and semantics measure in both approaches, and 60&wstsytiariteria of the first
stage in the second approach. That means, in both approalcbdraining process will
stop when either the number of generations reaches 100ecavierage F-Measure of
clustering reaches 85%. For the second approach, the &gt gtill stop when either the
number of generations reaches 100, or the average F-Meastltestering reaches 60%.
In each approach, we obtained ten combinations of these fghts. Overall,
compared with F-Measure 71.9% and 73.9%, when doing clagten these two test sets
using vector space only, these twenty combinations fourmltih both approaches can
improve F-Measure by 5% on both test sets. These perforraareeconsistent, which
is evidenced through standard deviations of all the F-Messs(maximum is 0.031 on
test data sets). However, there are some differences betivege two approaches. First,
all ten combinations in the first approach resulted in moaa ®5% (75.9% when using
vector space measure only) on training data within 100 geiogrs, whereas two combi-
nations in the second approach did not reach 85% when ewolptbcess stopped after
competing 100 generations. Secondly, the first approaciiteesn 78.2% and 79.8% of
average F-Measure on the two test sets respectively. Thesbers are a little higher
than 76.7% and 78.9% obtained through the second approaahllyT the average num-
ber of generations was 42.1 in first approach which was less 47 (9.5+37.5) in the
second approach. From these comparisons we may concludbehast approach is a

little better than the second one. However, looking at tlvesd table carefully we found
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something interesting.

We noticed, in the second approach, two evolution strategggsses did not
reach expected F-Measure 85% on training data. Interdgtimgboth combinations,
the weightsi¥; and W, are 0’s. This means, when finding the first three weights using
semantics measure only/; was assigned 0 and the F-Measure still reached 60% within
100 generations (4 and 14 respectively). But, when findingand W5, with 1, also
occasionally being assigned 0, the F-Measure never re&@&8%dvithin 100 generations.
This may suggest that even though title is not significantustering papers (the average
F-Measure is 29.9% when doing clustering using title onty¥ important. To avoid this
situation we can mandai&’; to be bigger than 0 when finding these three weights. If we
remove these two exceptions from Table 2, we will get an @efaMeasure of 77.9%
and 80.1% which are almost the same as that in the first agpnoidic a lower average
number of generations 31.5 (9.6+21.9).

In conclusion, both approaches are consistent and coniparaiinding weights.
And weights found in both approaches can indeed improve ksMie of clustering.

The reader may have noticed that in all the combinations eég¢hwveights, we
always havell; > W,. That means the evolutions strategy assigned more weight to
vector space measure than to semantics measure. Thereogpessible reasons behind
this. First, is that the vector space vectors which use thieeeshocuments, include more
complete information than semantics extracted from titteferences, and co-citation,
which are part of the document. This can be seen through Tdblelt shows the F-

Measures of the results of clustering using single measwesthe training data. The
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Table 10: F-Measures of Clustering Using Single Measures
vector space | 75.9%

semantics 63.8%
titles 29.9%
co-citations 35.8%

citation semantics 59.3%

F-Measure of using vector space measure only is 75.9%, itragirto 63.8% of using
semantics measure only. Another reason is thathas been assigned a value about 5
in most cases, which implies a higher value for the semanteasure compared to the
vector space measure which is normally low with TF-IDF. Hfiere, assigning more
weight to vector space measure compensates for this ditferand hence balances these

two measures, which leads to the higher quality of clusterin

7.2.2 Combining Vector Space and Semantics Measure

In this approach, we actually have two ways to combine vespaice and se-
mantics measure as shown in equations 4.2 and 4.3. The fanneers the harmonic
mean of these two measure (as in F-Measure which is the h&smaan of precision
and recall), the latter is the simple addition of them. Sitieeformer combination bal-
ances these two measures, we expect a better result by tisigy iexperimental results
conformed this hypothesis. Figure 24 shows some of the cosgue, where “F-H”, “P-
H”, “R-H” are the F-Measure, precision, and recall, respety, of using the harmonic
mean of vector space and semantic measures, the other thrém aimple addition of

these two measures. On the x-axis, the labels are the cotidnsaf the five weights
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“Wi : Wy« W @ Wy : W5” used in equations 4.2 and 4.3. Overall, the results of using
harmonic mean is slightly better than using simple addivith about a 2% edge consid-
ering F-Measure. So, if not specified, in our experiments seglequation 4.2 to combine

these two measures.

86.0%
84 0%
82 0%

WF-H
80.0%

WFsS
78.0% H P-H
76.0% B P-S
74.0% R-H

= R-5

T2.0%

70.0%

10:1(1:5:1) 15:1 (1:10:1)

Figure 24: Comparison of Results Using Harmonic Mean andg&irAddition

7.2.3 Results of Using CS-VS on Physics Documents

To test the consistency of the performance of our approaglieaito different do-
mains, we downloaded some physics papers from Nature RBfysital [20]. We selected
nine sub-topics from the available collections. Their nameng with abbreviations are
as follows: Astrophysics (AP), Atomic and molecular phggl&MP), Biological physics

(BP), Chemical physics (CP), Condensed-matter physicER};Materials physics (MP),
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Nanotechnology physics (NP), Optical physics (OP), andnQura physics (QP).

From each category, we downloaded around 50 of the mosttrpapers. Out of
these papers, we created training data set, test data sed iest data set 2. We used
papers from the first seven categories as training data ahdata set 1. Then, we added
papers from the other two categories (Optical and Quantwsip) as noise to create test
data set 2. Training data and test set 1 each consisted aflxttons with a numberk)
of categorie=2, 3, 4, 5, 6, and 7 respectively. Test data set 2 consistglufellections
with k=2, 3, 4, 5, 6, 7, 8, and 9, respectively. More detailed infation of these three

data sets and F-Measures of clustering results are showahle T1 and Figure 25.

Table 11: Results of Clustering on Physics Documents

Data sets Categories Total Number | F-Measure of | F-Measure of VS
of Documents VS only (%) +Semantics (%)
Training AP, AMP 57 72.2 79.2
AP, AMP, MP 75 43.6 74.7
AP, AMP, CP, MP 104 473 49.3
AP, AMP, CP, CMP, MP 133 33.1 344
AP, AMP, CP, CMP, MP, NP 130 37.6 34.5
AP, AMP, BP, CP, CMP, MP, NP 128 40.7 36.5
Average -> 45.7 514
Test 1 AP, AMP 48 36.8 62.5
AP, AMP, MP 53 75.5 77.4
AP, AMP, MP, NP 73 453 534
AP, AMP, CMP, MP, NP 91 39.6 41.0
AP, AMP, BP, CMP, MP, NP 86 40.8 35.5
AP, AMP, BP, CP, CMP, MP, NP 145 29.4 28.7
Average F-Measure 44.6 49.8
Test 2 OP, QP 45 343 51.5
AP, AMP, QP 73 47.2 48.2
AP, AMP, MP, QP 63 51.5 53.2
AP, AMP, MP, NP, QP 86 41.8 49.4
AP, AMP, CMP, MP, NP, QP 97 40.5 42.5
AP, AMP, BP, CMP, MP, NP, QP 89 45.1 39.5
AP, AMP, CP, CMP, MP, NP, OP, QP 117 31.3 37.8
ég, AMP, BP, CP, CMP, MP, NP, OP, 192 279 351
Average -> 40.0 44.7

Using Evolutionary Strategy, we obtained a weight comlamadf “11/; : Wy (W3 : Wy :

Ws) = 12.419 : 1.094(5.580 : 7.296 : 3.778)” (There is no keyword information in
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Figure 25: Average F-Measures of Clustering on Physics Decus

this physics collection either), which improved the accyraf clustering by 5.7% (from

45.7% to 51.4%)over the training data in terms of F-MeasWerth mentioning, is that

F-Measures of clustering using title only, citation sen@nbonly, and co-citation only,

are 22.7%, 40.7%, and 21.9%, respectively. They were aletawan clustering over

the biomedical documents which are shown in Table 10. Howyéere is one thing in

common, the result of using citation semantics is the besingnthese three semantic
elements.

Using these weights we did clustering on test sets, we alsb.886 (from 44.6%
to 49.8%) improvement compared to that of using vector spaeasure only on test set
1, and 4.7% improvement on test set 2. These overall resgts nwot as good as the
results as we got from biomedical data sets where in manys¢dhsemprovements are
over 10%. Nevertheless, the performance of our approaamsigtent. In most cases, it

is much better than using vector space only to do clustering.
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Comparing these results and closely examining referencéisei documents of
both domains, we can tell that the quality or clarity of refezes in physics data sets is
not as good as that of Biomedical data sets. Also, granylairitategories in Physics data
sets varies more than that in Biomedical data sets. For eeammic and molecular
physics is closer to chemical physics than to astrophy3ibsse two reasons may make
the citation semantics less significant than that in Bioweddiata sets.

As a byproduct, the test on physics documents shines thioligginother potential
use of our approach - to reveal or measure the quality ofestes in a collection of
documents. That is, on the one hand, the semantics measuhnelpamprove the quality
of document clustering. On the other hand, the magnitudéefirmprovement of our

approach reveals the quality of the references used in thendent collection.

7.3 Results from CS2CS

7.3.1 Comparing CS2CS with Other Approaches

In the experiments of this approach, we used the documentstiie same eight
biomedical categories as used in the training set of CS-\SaMb used other categories
to test out splitting and merging algorithms. We first did esiqments using different
document clustering algorithms to compare their perforreanrable 12 and Figure 26
show the detailed results of using K-Means clustering (Kakk), Bisecting K-Means
clsutering (Bisecting K-Means) K-Medoids clustering witbctor space similarity mea-
sure (K-Medoids(VS)), K-Medoids clustering with combinezttor space and semantics

measure (CS-VS), linear clustering using feature selectidy from vector space vectors
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(FV (VS)), and CS2CS model based linear clustering usin@thexel feature selection
(CS2CYS), to cluster 567 of these 725 documents that are fnoseteight classes men-
tioned previously. For the last two clustering algorithriiee other 158 documents that
also belong to these eight classes were used as trainingldatas section, if not spec-
ified, all the values of the F-Measures, precisions, andlscaee the average values of

at least five runs on the data collection with the same sizdifferent documents. The

Table 12: Comparison of Results of Different Clustering &ithms

. F-Measure | Precision Recall Runtime
Algorithm (%) (%) (%) FV_Lengthl | FV_Length2 (Seconds)
K-Means 40.1 44 39.3 N/A N/A 301
Bisecting K-Means 42.4 45.1 41.7 N/A N/A 325
K-Medoids(VS) 50.7 50.2 54 N/A N/A 668
CS-vVS 55.9 56.3 55.1 N/A N/A 1219
FV(VS) 59.3 66.4 64.6 10~100 10~100 239
CS2Cs 61.9 61.7 72 10~100 10~100 254
75.0%
70.0%
65.0%
60.0%
55.0%
50.0%
45.0%
40.0% W F-Measure
35.0% M Precision
30.0%
25 0% H Recall
- (]
20.0%

Figure 26: Comparison of Results of Different Clustering@ithms
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original weights W, : Wy(W3 : Wy : W;)” are “10 : 1(1 : 5 : 1)” that were obtained
through the evolution strategy during the training procé$sese weights are for similar-
ity measure when doing K-Medoids clustering with combinedter space and semantics
measures. In doing CS2CS clustering, we do not need thessitwiarity measures.
However, as shown in equation 5.1,these weights (excepif@t) are used to calculate
the weight of each term of a feature vector. Since we adjustedveights of terms in
the vector space by dividing the average TF-IDF weight (8n#&han 1), we change the
weight for vector spac#@/; to 1 accordingly.

FV_Lengthl is the length of the feature vector of each singlexd@nt within an
existing cluster. In other words, it is the number of top terased to form the feature
vector of a single document. These feature vectors are wsgur the feature vector
of the cluster they belong to. Flength2 is the length of the feature vector of a new
document. This feature vector is used to compare with theufeazectors of existing
clusters to decide where the new document goes. Once the omyment is put into a
cluster, the feature vector with EMengthl (not F\/Length2) of this new document will
be used to update the feature vector of that cluster. A redderestimation of both length
are in the range of 10 and 100. If the length is less than 10,0s® foo much useful
information; if it is bigger than 100, more noise will be inded. In either case, the
resulting clustering had a lower quality. The last two roW3able 12 show the average
F-Measure, precision, and recall of approaches FV (VS) &2GS with the lengths in
this range.

Runtime is the time used to cluster these 567 documents #handped to eight
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classes. It did not include the runtime used in the trainirgess in the cases of CS2CS
and CS-VS. The training process could be skipped if we sew#ights (e.g. “1:1:1:5:1”
in this case) heuristically. Or, even if we need the trairpngcess, we could use a small
training data set (which results in a fixed small trainingd)rwithout affecting much of
the clustering quality, since the feature vectors of chest®olve as they grow. Therefore
the training time is ignorable, should there be a large nunob@ew documents to be
clustered.

In this table, we can see CS2CS is better than any othersdiagdyoth accuracy
and runtime. FV (VS) uses a similar procedure as CS2CS, Hutus®es vector space
vectors to form feature vectors for documents. For FV (VB¢ average F-Measure is
59.3%, whereas it is 64.8% in the case of CS2CS. It clearlyothstnates the importance
of considering semantic elements in clustering. Anothésworthy point is that the result
of FV (VS) is better than that of any other algorithms except €S2CS. This shows
that our strategy of forming feature vectors and normadjfature vectors effectively

retrieved important information and excluded noise in i@ time.

7.3.2 Results of Automatically Finding F\/ength2

As discussed in Section 5.6, instead of setting [E&hgth2 explicitly, we can
search for the best value in real time. Table 13, Figure 2d,Figure 28 show the re-
sults of CS2CS using different strategies to search forahgth of new documents: brute

force search, and two sampling search algorithms, namegail increment search and
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exponential increment search. The two graphs show the adsopeaof the average F-

Measure, precision, recall, and runtime, respectively. _Llevigthl is the length of the

Table 13: Results of CS2CS with Automatic Finding the LesgithDocument Feature

Vectors
FV_Lengthl Brute Force Search Linear Increment Search Exponential Increment Search
F-Measure Runtime F-Measure Runtime F-Measure Runtime
(%) (Seconds) | (%) (Seconds) | (%) (Seconds)
10 52.6 440 51.9 257 513 233
20 63.4 619 63.3 308 65.4 261
50 66.0 1099 68.6 400 66.5 332
70 67.0 1360 66.2 468 66.7 374
100 73.1 1748 72.8 559 71.1 437
Average -> 64.4 1053 64.5 398 64.2 327
70.0%
65.0%
60.0% -
55.0% -
g s500%
a
| 450% -+
2 _
I 400%
35.0%
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Brute force search Linearincrement  Exponential increment
search search

Figure 27: Results of CS2CS with Automatic Finding the Lésgif Document Feature
Vectors

feature vector of any existing document used to form theufeatector of the cluster it
belong to. From this table, one can tell that the differenoersg the F-Measures of us-
ing these strategies is trivial. But the Brute Force Seaa&led much longer time than
the other two do. Considering the tradeoff between the Fedeaand the runtime, the

exponential increment search is the best one. The folloamregwo examples of which
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Figure 28: Runtime of CS2CS with Automatic the Lengths of Duent Feature Vectors

lengths have been checked between 10 and 100 by using Lmzament Sampling and

Exponential Sampling. In both examples, a fewer number rftles has been checked

Table 14: Examples of Lengths Checked by These Two Sampkagcs

Exponential Increment Search Linear Increment Search
10, 11,13, 17, 25,41, 73 10, 11,13, 16, 20, 25, 31, 38, 46, 55, 65, 76, 88
10, 11, 12, 14, 1819, 20, 22, 26, 34, 50, 82 10, 11, 12, 14, 1721, 22, 24, 27, 31, 36, 42, 49, 57, 66, 76, 87, 99

using exponential increment search. Also in the first exantpey both found the same
best length as 13; while in the second one, the best lengtydtlund are a little differ-
ent (19 vs. 21). On average, exponential increment sealthiveick a fewer number of
lengths than linear increment search (8 vs. 14.5).

From the results and analysis above we can see, even thoaggaof lengths of
the feature vector of a new document still need to be set $tazaily, the range could be
very large. This is because using exponential incremenpbagwe can quickly find a

best length within even a very large range. While the runisrstill comparable with that
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of using a length manually set, and the F-Measures are ¢ensjishigher.

7.3.3 Forming Feature Vector with the Aid of MeSH

To take advantage of MeSH ([18]), we adjusted weights of #mn$ found in
MeSH terms. That is, we increase the weights of terms foundeSH since MeSH
terms are considered as important terms in Biomedical ateasach feature vector, if a
word is found in any MeSH term, we adjust its weight by doubplin Table 15 shows
the results of using MeSH compared to results of not usingh&®th use exponential

increment search to find the best length of the feature ve¢@mnew document.

Table 15: Results of CS2CS with MeSH and without MeSH

Without MeSH With MeSH
FV_Lengthl F-Measure Precision Recall F-Measure Precision Recall

(%) (%) (%) (%) (%) (%)

10 513 51.8 64.8 513 50.8 62.2

20 65.4 64.1 74.6 62.4 61.7 73.1

50 66.5 65.1 80.3 72.7 70.0 80.0

70 66.7 65.7 80.8 72.9 69.5 82.7

100 71.1 68.1 823 79.5 77.4 83.6

150 73.4 72.7 80.9 77.0 77.1 81.7
Average -> 65.7 64.5 77.3 69.3 67.8 77.2

While the recalls of these two results are almost the saneeFtNeasure and
precision did increase by using MeSH. This is because MeS8Hhistare relevant or sig-
nificant terms in biomedical domain, by assigning more wesigh these terms in cluster-
ing biomedical documents, we expected to get clusters vigthem precisions and hence
higher F-Measures even though the recalls may remain the.gamom this table, we also
see that with F\Length1=100, we have the highest increment of F-Measurk4 (/.
79.5). That means, when we using 100 as the length of theréeadator of existing doc-

uments to form the feature vector of the clusters they betonge get the best tradeoff
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between keeping enough useful information and eliminatimige.

We also investigated the case of multi-word terms with pytor exactly match-
ing MeSH terms. Table 16 is the example of using terms withaufive words. As
expected,CS2CS clustering with multi-word terms with jghrhatch takes much longer
time than exact match. Since with exact match, we can usehatable to store MeSH
terms, and the search will just take a constant time. But éotigd match, we need look
at every MeSH term to find the best match, in other words, wel tedéind the highest
percentage of match. For the exact match, we double the weigimatched terms. For
partial match, we multiply the weight of a term by p, wherep is the highest percentage
of the match between the term and some MeSH term. Surprysihglaverage F-Measure
of the partial match is almost the same as that of exact mata with the high cost of
runtime. This is because, by increasing weights of termh wé#rtial match to MeSH
terms, we somehow give more weights to some noise terms. \owbe average differ-
ence between their precisions and recalls are not surgrigiith exact MeSH match, we
get a little higher precision, while with partial match, wavie a little higher recall. An-
other observation on this table is that, it seems the F-Measte@adily increase with the
FV_Lengthl except “20”. Actually, as we mentioned before, viAth.Lenghtl increase,
more noise terms will be included in the feature vector oheduaster. So the F-Measure
will go down at certain point. We did try length “200”, and gtit.9%, 69.4%, and 82.5%
for F-Measure, precision, and recall, respectively. TdiMeshows an example of the
words of a feature vector with length 20. It is the documeantdee vector of document

“Assessment of the role of transcript for GATA-4 as a markeurdavorable outcome in
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Table 16: Results of CS2CS Using Multi-word Terms PartialtyExactly Matching

MeSH
Partial Match Exact Match
FV_Lengthl | F-Measure | Precision Recall F-Measure Precision | Recall

() (%) (%) (%) (%) (%)

10 66.5 64.6 77.9 65.7 66.6 72.2

20 62.8 61.8 75.7 67.3 66.2 76.2

50 69.2 67.2 81.1 71.3 69.3 81.7

70 70.8 69.2 82.8 70.7 68.9 80.9

100 74.7 71.6 85.2 73 71.7 81.3

150 77.3 75 85.8 73.7 72.3 82.9
Average -> 70.2 68.2 81.4 70.3 69.2 79.2

Table 17: Words of a Document Feature Vector Mapped to MeShhJe

Word MeSH ID MeSH Term

carcinoma A11.251.860.590 Embryonal Carcinoma Stem Cells
marker D12.644.360.543 01factory Marker Protein

fate

db

trigger C05.651.869.870.800.800 Trigger Finger Disorder

tumor A11.251.210.190 Cell Line, Tumor

cell A03.556.124.369.320 Goblet Cells

transgene B01.050.050.680.136.500 Mice, Transgenic

mutat E05.393.760.700.300 DNA Mutational Analysis

optic A08.800.800.120.680 Optic Nerve

1t

promote G02.111.570.080.689.675 Promoter Regions, Genetic
malignant C02.256.466.606 Malignant Catarrh

conserve D27.505.696.242 Bone Density Conservation Agents
pediatric H02.163.700 Pediatric Dentistry

transcript D08.811.913.050.134.440 p300-CBP Transcription Factors
predict E01.370.378.530.775 Ovulation Prediction

leydig A05.360.444.849.513 Leydig Cells

bromide D01.139.300.050 Bromides

mice B01.050.050.157.040.500 Mice, Congenic

human adrenocortical neoplasms Barbosa Angela”, whiabnigsito the category “BMC
Endocr Disord” (“BMC Endocrine Disorders”). They have besented according to their
weights. And their weights have been adjusted considerie§M We can see, among

these 20 words, 17 were found in some MeSH terms.
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Table 18

: Words of a Cluster Feature Vector Mapped to MeSih3er

Label Weight MeSH ID MeSH Term Root MeSH Term
reinhardtii 0.0638 | B01.040.080.925.344.650 Chl;rﬁl‘l‘;g:ﬁ“as Eukaryota
polyp 0.0638 C04.557.470.035.215 Adenomatous Polyps Neoplasms
polyphosphate 0.0638 D01.248.497.158.730.650 Polyphosphates Inorganic Chemicals
saito 0.0638
ecppxc 0.0638
pbp 0.0638
exopolyp(}:osphatas 0.0638
ssp 0.0631
membership 0.0631 N04.452.122 ﬁ;f;g‘rtstﬁf’p Iiﬁf&if::;if
mtic 0.0631
' Familial Congenital, Here.:ditary,
mediterranean 0.0631 C16.320.382.625 Mediterrancan Fever and Neonatal D1§§ases
and Abnormalities
hereafter 0.0631
arabia 0.0623 701.252.245.500.750 Saudi Arabia Geographic Locations
xerostomia 0.0623 C07.465.815.929 Xerostomia Stomatognathic
Diseases
dryness 0.0623
farsi 0.0623
bardow 0.0623
vdp 0.0615
debt 0.0615
longterm 0.0615
vocation 0.0615 E02.831.782 Rehabilitation, Therapeutics
Vocational
United States Office
opportune 0.0615 101.409.137.500.996 of Economic Social Sciences
Opportunity
gallagher 0.0615
aapd 0.0607
smokeless 0.0607 B01.650.388. 1400'905'900'87 Tobacco, Smokeless Eukaryota
gansky 0.0607
cate 0.0599
fluorapatite 0.0599
inhomogenity 0.0599
gaengler 0.0599
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Table 19: Words of a Cluster Feature Vector Mapped to MeSikh$éMeSH Considered
in Forming Document Feature Vectors)

Label Weight MeSH ID MeSH Term Root MeSH Term
Inorganic
polyphosphate 0.0786 D01.248.497.158.730.650 Polyphosphates Chemicals
orthophosphate | 0.0786 | DO08.811.913.696.645.700 | Lyruvate, Orthophosphate Enzymes and
Dikinase Coenzymes
ecppxc 0.0786
polyp 0.0786 C04.557.470.035.215 Adenomatous Polyps Neoplasms
arabia 0.0776 701.252.245.500.750 Saudi Arabia Geographic
Locations
xerostomia | 0.0776 C07.465.815.929 Xerostomia Stomatognathic
Diseases
dryness 0.0776
vocation 0.0765 E02.831.782 Rehabilitation, Vocational Therapeutics
gallagher 0.0765
vdp 0.0765
smokeless 0.0754 BO1 '650'388'71400'905'900'8 Tobacco, Smokeless Eukaryota
. . Physical
porosity 0.0744 G01.374.710 Porosity Phenomena
fluorapatite 0.0744
inhabit 0.0733
emplovee 0.0733 NO1.824.417.510.300 Employee Retirement Income Population
ploy’ ) R Security Act Characteristics
nicola 0.0733
farmer 0.0733 €08.381.483.125.365 Farmer's Lung R"“Sp]‘;?“"y Tract
iseases
clermont 0.0733
workforce 0.0726
Psychological
career 0.0726 F02.463.785.373.346.400 Career Choice Phenomena and
Processes
obliterated 0.0722
traumatol 0.0722
periapical 0.0722 A14.549.167.646.700 Periapical Tissue Stomatognathic
System
. . Hemic and
jacobsen 0.0722 C15.378.140.855.440 Jacobsen Distal 11q Deletion Lymphatic
Syndrome .
Diseases
metamorphosis | 0.0722 G07.700.320.500.550 Metamorphosis, Biological Physiological
Phenomena
andreasen 0.0722
calcified 0.0722 C04.182.089.530.690.605 Odontogenic Cyst, Calcifying Neoplasms
sequela 0.0722
discoloured 0.0722
subluxation 0.0722 C11.510.598 Lens Subluxation Eye Diseases

Tables 18 and 19 show the top 30 terms (single words) of thectugier feature
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vectors of cluster “BMC Oral Health”. If a term match a wordanMeSH term, it is
followed by the corresponding MeSH id and MeSH term, as wetha root term, that is
the root category the MeSH term belongs to. Table 18 is thdtredthout considering
MeSH when forming document feature vectors. Table 19 is¢kelt considering MeSH
when forming document feature vectors. In particular, tieggivt of that term is doubled
if it matches a word of a MeSH term. These are the cases thagnigeh of the feature
vector of each document is 100, high level weights are 11:1).: Even though you are
not an expert in biomedical domain, you can find the positifeceby using MeSH. More
MeSH terms were brought up to the top 30 (16 versus 10). Okeptinere are still many
terms which are not mapped to MeSH terms. This is becauseetret though they are
not MeSH terms (yet), they are important to this particulaster (or category) based
on the data from this collection. As an interesting exampkng MeSH, the feature
selection process brought “smokeless” (part of MeSH terobatco, Smokeless”, with
ID “B01.650.388.100.905.900.874") from th'" position to thell® position in the
cluster feature vector.

Another point we want to mention here is, as we pointed oudrigeon one hand,
using ontologies can help improve document clustering; h@endther hand, document
clustering can help update ontologies in the sense thahifind new significant terms
in a domain or particular categories (subdomains). For @kanthe termsdryness and
“ecppx&(Escherichia coli exopolyphosphatase, a protein) areoth bables. But neither
is a MeSh term. However, based on our results, they could teedsidd MeSH, especially

if the category “Oral Health” is included in MeSH in the fugur
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Table 20 shows the number of documents of each cluster inxmparienents and
the actual length of each cluster feature vector with anthaut considering MeSH in
forming document feature vectors. The top 30 terms of therattuster feature vectors

and their mapping to MeSH terms are listed in the appendikisfdissertation.

Table 20: Lengths of Cluster Feature Vectors

Cluster Name Number (éfll]l)s(:z:lments m Length of Cluster Feature Vector

With MeSH | Without MeSH With MeSH Without MeSH
Behav Brain Funct 126 124 2715 3266
BMC Blood Disord 57 65 2175 2710
BMC Cardiovasc Disord 108 96 2585 2935
BMC Endocr Disord 55 47 2151 2247
BMC Neurol 95 100 2592 3085
BMC Oral Health 74 80 2220 2723
BMC Plant Biol 175 174 3267 4030
Cough 35 39 1542 1815

7.3.4 High-level Weights

As mentioned in Subsection 7.3.1, the high-level weightsigs for different
parts of a document) were set to] : Wo(W3 : Wy : W5) =1 :1(1:5: 1)" based
on the training process used in CS-VS. In this subsectionyar to show that we still
can get good results without this training process. In ownands, we just use the data
set in training process as starting set, and use uniformhigiget them be 1:1 (1:1:1))
to get initial feature vectors for the starting clustersthi result is comparable with that
using the weights obtained from training process, we canieéte the training process.
Table 21 shows the results using different weights. In tkgeement, we used single-
word terms, and the weights of terms matched exactly with M&3ms were doubled.
FV_Lengthl is the length of the feature vector of each docunieitis used to form the

feature vector of the cluster it belongs to.
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From this table we can see, the average F-Measure of using:1:1) is even a

little better than using 1:1 (1:5:1) which is obtained thgburaining process. Of course

it does not mean that the less we assign the weight to citagamantics, the higher the

F-measure will be. We have shown at the beginning of this@ethat without citation

semantics, the F-Measure is usually lower than using eiiagemantics. Furthermore,

from this table, we can see, that the highest F-Measure 76&%ens when weights are

1:1 (1:5:1). However, the results of using these two difiekeeight sets are comparable.

Also we notice that the F-Measure is not so sensitive tollevigthl when using 1:1

(1:1:1). That is a merit we want since H\Mengthl has to be set heuristically.

Table 21: Results of Using Different Weights

1:1 (1:1:1) 1:1 (1:5:1)
FV-Lengthl | F-Measure | Precision Recall F-Measure | Precision Recall
(%) (%) (%) (%) (%) (%)
10 68.9 67.3 78.1 63 62.6 75.7
20 66.6 65.4 75.9 68.2 65.7 80.7
50 71.2 69.8 81.3 69.7 67.9 82.8
70 71.5 70.3 83.1 70.8 69.7 82.8
100 71.7 69.7 82.1 76.2 73.7 84.9
150 71.8 69.2 80.9 71.6 69.3 81.6
Average -> 70.3 68.6 80.2 69.9 68.1 81.3
Deviation -> 2.1 1.9 2.7 4.3 3.7 3.1

7.3.5 Confusion Matrix and Fuzzy Clustering

We have shown the average F-Measures of the clustering vifdresht param-

eters. Now we want to look at each cluster in detail to see wlzast going on there.

Table 22 is the confusion matrix (or matching matrix) of tleeulting eight clusters us-

ing weights 1:1 (1:1:1), FM.ength1=100, with MeSH. From this table we can see, six

out of these eight clusters had high precisions (higher #té4). There are two reasons

why the other two clusters had low precisions. First, theeeewonly a small number of
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documents in the original two categories (18 for “BMC Endbgord” and 9 for “BMC
Blood Disord”). Therefore, the feature vectors of these tlusters extracted from these
documents could not precisely reflect the semantics of thesecategories as feature
vectors of other clusters did, in other words, the boundatefined by these two feature
vectors were not as clear as others and hence, some docuimentsther categories
were “trapped” into these two clusters, which led to low g®ns. Another reason is
that they are also semantically close to other categorieshacauses the misplacement
of documents from other categories. For example, “BMC Endisord” is close to
“BMC Cardiovasc Disord”, hence nine documents from “BMC @iavasc Disord” were
put into “BMC Endocr Disord”. Obviously, “BMC Blood Disord’ also close to “BMC
Cardiovasc Disord”, so eight documents from “BMC CardiavBssord” were put into

cluster “BMC Blood Disord".

Table 22: The Confusion Matrix of a Sample Clustering

Actual number of documents of each category Prioc/l:)l on
BMC BMC BMC BMC BMC BMC Behav

- Endocr Neurol Cardiovasc | Blood Oral Plant | Brain | Cough 69.7
f‘..m‘ Disord 141 Disord Disord | Health Biol Funct an (avg)
£ as) 84 ) (53) ae1) 90
et BMC
2| Endocr 16 15 9 0 0 3 3 0 3438
= N
2 Disord
St
= BMC 0 66 6 1 0 0 1 0 89.2
S Neurol
@ BMC
£ | Cardiovasc 0 23 59 0 0 0 1 0 71
42 Disord
g | BMCBlood |, 16 8 6 1 0 0 0 18.8
s Disord
S | BMC Oral
=
= Health 1 2 0 1 50 0 1 0 90.9
5 | BMC Plant
'E Biol 0 1 1 0 2 156 0 0 97.5
> Behav
Z

Brain Funct 0 14 1 1 0 2 84 0 82.4

Cough 0 4 0 0 0 0 0 11 73.3
82.1(avg) 88.9 46.8 702 66.7 94.3 969 | 933 100 <‘%§§““
0
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To see relations between clusters, we computed the sitr@adf every two clus-
ters as shown in Tables 23 and 24. An important observaticdhese two tables is that
the similarities become smaller as the boundaries of alsistecome clearer as new doc-

uments being added in.

Table 23: Similarities Between Clusters of the Starting Set

BMC BMC BMC BMC BMC Behav

Endocr | BMC Cardiovasc | Blood Oral Plant Brain

Disord | Neurol Disord Disord Health Biol Funct Cough
BMC Endocr 1.0000 | 0.0437 0.0666 0.0583 | 0.0425 | 0.0307 | 0.0370 | 0.0327
Disord(20)
BMC Neurol(19) | 0.0437 | 10000 0.0624 0.0508 | 00526 | 0.0269 | 0.0593 | 0.0437
BMC Cardiovasc | osc6 | 00624 1.0000 0.0341 0.0436 | 0.0305 | 0.0339 | 0.0412
Disord(20)
BMC Blood 0.0583 | 0.0508 0.0341 1.0000 | 0.0340 | 0.0489 | 0.0362 | 0.0275
Disord(20)
BMC Oral
Healfh(20) 0.0425 | 0.0526 0.0436 0.0340 1.0000 | 0.0270 | 0.0359 | 0.0405
BMC Plant 0.0307 | 0.0269 0.0305 0.0489 | 0.0270 | 1.0000 | 0.0316 | 0.0234
Biol(20)
Behav Brain 0.0370 | 0.0593 0.0339 0.0362 0.0359 | 0.0316 | 1.0000 | 0.0335
Funct(20)
Cough(19) 0.0327 | 0.0437 0.0412 0.0275 | 0.0405 | 0.0234 | 0.0335 | 1.0000

Table 24: Similarities Between Clusters After Adding Newddments

BMC BMC BMC BMC | Behav

Endocr | BMC Cardiovasc | Blood BMC Oral | Plant Brain

Disord | Neurol Disord Disord Health Biol Funct Cough
BMC Endocr 1.0000 | 0.0396 0.0328 0.0363 0.0282 0.0219 | 0.0304 | 0.0231
Disord(66)
BMC Neurol(93) | 0.0396 | 1.0000 0.0460 0.0365 0.0312 0.0131 | 0.0386 | 0.0283
BMC Cardiovasc | 135¢ | (0460 1.0000 0.0343 0.0343 0.0149 | 0.0282 | 0.0304
Disord(103)
BMC Blood 0.0363 | 0.0365 0.0343 1.0000 0.0278 0.0225 | 0.0218 | 0.0258
Disord(52)
BMC Oral
Health(7S) 0.0282 | 0.0312 0.0343 0.0278 1.0000 0.0173 | 0.0295 | 0.0356
BMC Plant 0.0219 | 0.0131 0.0149 0.0225 0.0173 1.0000 | 0.0187 | 0.0123
Biol(180)
Behav Brain 0.0304 | 0.0386 0.0282 0.0218 0.0295 0.0187 | 1.0000 | 0.0257
Funct(122)
Cough(34) 0.0231 | 0.0283 0.0304 0.0258 0.0356 0.0123 | 0.0257 | 1.0000

From these two tables one can easily tell that some clusterda@se to each other

while some are far away from others. This situation refldwgeality. In any domain, no
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experts can set document categories that are evenly digidgidtributed. As the number

of documents grows, some categories will be close to (evenlapy) each other while

fall away from others. That is, in most situation, multi-msenship of a document is

more reasonable. However, for convenience, in many simgtieach document is put in
one category. Especially in the cases of conference andgbpapers, where there are
clearly defined tracks or areas, and each paper is usualypsartinto one of these tracks
or areas. Nevertheless, it is worth looking at this fuzzystung issue in our context of

linear clustering with feature vectors. The following am®texamples of memberships in
the process of CS2CS linear clustering.

Example 1 Document Behav Brain Funct-21483829 (It belongs to category
Behav Brain Funct in the original data set) is to be put int® e¢ight existing clusters.
With Exponential Increment Search (discussed in Chaptezdiéh 5.6), we found the
best length of its feature vector is 15. The terms in its fieaitector are felatonin;
diseas; brain; oxid; cell; patient; antioxid; sleep; alzing protein; neuron; effect; acid;
amyloid; radi¢. The similarities between this feature vector and theueavectors of
eight clusters (calculated with equation 5.5) and the degodé memberships (calculated
with equation 5.17) are shown in Table 25. From this table cese see that this doc-
ument is most similar to cluster “BMC Neurol” with similayi).0176. In the case of
hard clustering, it will be put into this cluster. Howevaris also similar to others such
as “BMC Blood Disord” (with similarity “0.0138”) and “BMC Edocr Disord” (with
similarity “0.0135”). In the case of fuzzy clustering, ifétuser set the threshold of de-

gree of membership to be 10%, then this document would benpoit‘BMC Neurol”,
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“BMC Blood Disord”, “BMC Endocr Disord”, and “BMC CardiovasDisord”, and “Be-
hav Brain Funct”, together with their degrees of membeshiNote, according to its
original category “Behav Brain”, this document wouldéplacednto “BMC Neurol”

in the case of hard clustering.

Table 25: The Memberships of A Document of Category BehawBfanct

BMC BMC BMC BMC BMC Behav
Endocr | BMC Cardiovasc | Blood Oral Plant Brain
Disord | Neurol Disord Disord Health Biol Funct Cough

Similarity | 0.0135 | 0.0176 0.0108 0.0138 0.0039 0.0059 0.0088 0.0066
Degree(%) of
Membership

16.7 21.7 13.4 17.1 4.8 7.2 10.9 8.2

Example 2 Document Cough-3-2174508 (It belongs to category Behav Brain
Functin the original data set) is to be put into the eighttexisclusters. With Exponential
Increment Search (Chapter 5 Section 5.6), we found the éxegth of its feature vector is
10. The terms in its feature vector areapsaicin; reflex; cough; oral; chemesthesi; tast;
test; capsiat; induc; differ The similarities between this feature vector and theuesat
vectors of eight clusters (calculated with equation 5.5) e degrees of memberships
(calculated with equation 5.17) are shown in Table 26. Thisuthent is most similar to
cluster “Cough” which is its original category. In the cadeéhard clustering, it will be
correctly put into the cluster where its original categopgafy. However, in the case
of fuzzy clustering, it also belongs to cluster “BMC Oral ltBashould the user set the
threshold of degree of membership to 10%. Of course, itlstidl the highest degree of
membership in the cluster “Cough”.

Table 27 shows the comparison between CS2CS hard clustemohfuzzy clus-

tering (with the simplest case where a document is assigneul cluster with the degree
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Table 26: The Memberships of A Document of Category Cough

BMC BMC BMC BMC BMC Behav
Endocr | BMC Cardiovasc | Blood Oral Plant Brain
Disord | Neurol Disord Disord Health Biol Funct Cough
Similarity | 0.0024 | 0.0048 0.0012 0.0014 | 0.0081 0.0008 0.0028 0.0561
Degree(%) of 7
Membership 3.1 6.1 1.5 1.8 10.4 1.0 3.6 2.4

of membership). In this example, we used weights=1:1 (}, kihgle-word terms, and
considering MeSH. From this example we can see, the reseltseanparable. And we
got a higher average F-Measure, precision, and recall withyf clustering. Also, if we
give partial credits of thesmisplaceddocuments in calculating precisions, we get even
higher precisions which are recorded in the column “Countriership”. However, we
will not apply the same adjustment in computing recall. @thse, the recalls would be
more than 1 in some cases. Keep in mind this is just an examspldto demonstrate the
idea that our CS2CS algorithm can easily do fuzzy clustenitigout much change. The
difference between their results would be data dependdrat i, on one collection, the

hard clustering does better, on another, the fuzzy clusgemay do better.

Table 27: Comparison Between CS2CS Hard Clustering andyFolzstering

CS2CS Hard Clustering CS2CS Fuzzy Clustering
FV-Lengthl | F-Measure | Precision Recall F-Measure Precision (%) Rec-
(%) (%) (%) (%) W/0 Count all
Membership | Membership | (%)
10 68.9 67.3 78.1 70.5 68.7 80.9 77.9
20 66.6 65.4 75.9 72.6 70.8 81.2 81.1
50 71.2 69.8 81.3 71.8 69.3 79.2 82.1
70 71.5 70.3 83.1 73.8 72.1 80.8 83.1
100 71.7 69.7 82.1 74.6 72.6 80.8 82.8
150 71.8 69.2 80.9 74.2 71.9 80.3 81.4
Average -> 70.3 68.6 80.2 72.9 70.9 80.5 81.4
Deviation -> 2.1 1.9 2.7 1.6 1.6 0.7 1.9
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Table 28: Confusion Matrix of Clusters Before Splitting

Actual number of documents of each category Priﬁ/ls)l on
0
BMC BMC BMC BMC | BMC Behav
. Endocr Nl'ae 1:;[:“ Cardiovasc | Blood | Oral | Plant | Brain Cough (li;lc(; 63.4
2 Disord 141) Disord Disord | Health | Biol Funct an ’ (76) (avg)
2 as) (84 ) (53) | ey 90
= BMC
= Endocr 12 3 6 0 0 5 2 0 12 30
5 Disord
= BMC
5
§ Neurol 0 79 7 1 0 1 2 0 2 85.9
i BMC
£ | Cardiovasc 1 24 56 0 0 0 0 0 1 68.3
2 Disord
g | BMC Blood I 6 3 6 2 0 0 0 2 143
g Disord
S | BMC Oral
= 7
< Health 1 4 0 1 50 0 1 0 2 84.7
St
g | BMC Plant 3 1 9 0 1 152 1 0 34 72
£ Biol
= Behav
V4
Brain Funct 0 10 3 1 0 3 84 0 0 83.2
Cough 0 4 0 0 0 0 0 11 1 68.8
79.8(avg) 66.7 56 66.7 667 | 943 | 944 | 933 100 n/a <'1(§Z°)a”

7.3.6 Cluster Splitting and Merging

Splitting To test our strategy of splitting discussed in Section 5.Eloépter 5,
we included 76 documents of another category “BMC Canced the new document
set (it has nine categories now) to be added into the stashgvhere there are eight
categories as before. Tables 28 and 29 show the confusiomcesabefore and after
cluster splitting. In this test we used weights=1:1 (1:1E\N_Length1=100, single-word
terms, and considering MeSH.

From Table 28 we can see, that around 1/3 (24 out of 76) of thedoeuments
of category “BMC Cancer” go to cluster “BMC Blood Disord” wdfi is understandable

since these two categories are semantically close to eaein ddowever, in the case of
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hard clustering, this makes the precision of the cluster @BBlood Disord” very low

(14.3%). This problem could be solved by the splitting pchoe we proposed. Table

Table 29: Confusion Matrix of Clusters After Splitting

Actual number of documents of each category

Precision
(%)

BMC BMC BMC BMC | BMC Behav .
Endocr N]'Se 1\:5)] Cardiovasc | Blood Oral Plant Brain Cough (!?;;lcir 66.8
g Disord 41 Disord Disord | Health | Biol Funct an '27 6) (avg)
% (L)) (84) ) 53 1e1) 90)
= BMC
< | Endocr 12 3 6 0 0 5 2 0 12 30
2 Disord
E]
g 1\1111:115)1 0 79 7 1 0 1 2 0 2 85.9
El BMC
@ | Cardiovasc 1 24 56 0 0 0 0 0 1 68.3
£ Disord
E BMC Blood 0 0 0 3 0 0 0 0 3 50
£ Disord
= | BMC Oral
é Health 1 4 0 1 50 0 1 0 2 84.7
S
S | BMC Plant 3 11 9 0 1 152 1 0 34 72
] Biol
2
E | Behav 0 10 3 1 0 3 84 0 0 83.2
Z Brain Funct
Cough 0 4 0 0 0 0 0 11 1 68.8
? Mc 1 6 3 3 2 0 0 0 21 58.3
Cancer
<-Recall
70.3 (avg) 66.7 56 66.7 333 94.3 94.4 93.3 100 27.6

(%)

29 shows the result of this splitting. It results in a new #uSBMC Cancer”. 21 out of

24 of themisplaceddocuments of “BMC Cancer” in cluster “BMC Blood Disord” have

been successfully moved into this new cluster. Moveover piecisions of both newly

formed clusters by splitting are higher than that of clusBMWC Blood Disord” before

being split. This in turn makes the average precision ohalldlusters higher than before

splitting. Even though we have a little lower recall (aclyahe recall almost stays the

same if we consider the recall for “BMC Cancer” as zero begpitting since we did

not have a cluster of “BMC Cancer” at all), the most importidumg is that, through this
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splitting, we obtained more clearly defined clusters irgtgfahe old ambiguous cluster.

Merging Based on the result of splitting shown in Table 29, we cortilyuadd 46 more

Table 30: Confusion Matrix of Clusters Before Merging

Actual number of documents of each category Priﬁ/'s)‘ on
0
BMC BMC BMC BMC | BMC | Behav .
Endocr N]'Se 1\:5)] Cardiovasc | Blood Oral Plant Brain Cough (!?;;lcir 66.1
g Disord 41 Disord Disord | Health | Biol Funct an '(‘17 2) (avg)
2 (8) (84) ()] (53) | (161) 90) -
= BMC
< | Endocr 12 3 6 0 0 5 2 0 26 222
= Disord
=
g 1\1111:115)1 0 79 7 1 0 1 2 0 2 85.9
El BMC
@ | Cardiovasc 1 24 56 0 0 0 0 0 1 68.3
= Disord
< | BMC Blood
g Disord 0 0 0 3 0 0 0 0 5 37.5
= | BMC Oral
é Health 1 4 0 1 50 0 1 0 2 84.7
S
° BMC.Plant 3 11 9 0 1 152 1 0 35 71.7
5 Biol
2
E | Behav 0 10 3 1 0 3 84 0 0 83.2
Z Brain Funct
Cough 0 4 0 0 0 0 0 11 2 64.7
?M(’ 1 6 3 3 2 0 0 0 49 76.7
Cancer
<-Recall
71.7 (avg) 66.7 56 66.7 333 94.3 94.4 93.3 100 40.2 (%)

documents from category “BMC Cancer”, the confusion maifithe new resultis shown
in Table 30. In this new result, 14 out of these 46 documents awedded to cluster “BMC
Endocr Disord”, that made the precision of this cluster ey (30%). However, since
so many documents (26) are from “BMC Cancer”, this makes itndagity of this two
clusters getting closer to the extent that we consider mgrtfiem. Table 31 shows the
confusion matrix after merging with the category of “BMC Exed Disord” present. Table
32 shows the confusion matrix with category of “BMC Endocs®@d” absorbed into

category “BMC Cancer”. In other words, it is the result if wensider these two category
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as the same one. Obviously, this will cause both the pretmiml the recall to increase.

Of course, if more documents of “BMC Endocr Disord” are adtatethis cluster later on,

it may be splitinto two clusters again and thus cluster “BM@i&cr Disord” will be back

on.

From Table 31 we see that there also are many (35) “BMC CammeEtiments in

cluster “BMC Plant Biol”. However, since this cluster is by than the cluster “BMC

Endocr Disord” (177 versus 54 documents), the similaritpieen “BMC Plant Biol” and

“BMC Cancer” is still under the threshold of merging. Thenef, we do not merge them

at this point.

Table 31: Confusion Matrix of Clusters After Merging with BaCategories Remaining

Actual number of documents of each category Priﬁ/ls)l on
0
BMC BMC BMC | BMC | BMC | Behav .

= Endocr N]'se l:il:ﬂ Cardiovasc | Blood Oral Plant Brain Cough C[i:llc(e'r 70
§ Disord 141 Disord Disord | Health | Biol Funct an (‘1 22) (avg)
5 (18) 84) ) (53) | ael | (90)
=
g| BMC 0 79 7 ! 0 1 2 0 2 85.9
2 Neurol
g BMC
= | Cardiovasc 1 24 56 0 0 0 0 0 1 68.3
= .
s Disord
£ | BMCBlood |, 0 0 3 0 0 0 0 5 375
@ Disord
g B“éecal%f al 1 4 0 1 50 0 1 0 2 84.7
=
g | BMCPlant |, 1 9 0 1 152 1 0 35 717
; Biol

Behav
St
5 | Brain Funct 0 10 3 1 0 3 84 0 0 83.2
E|  Cough 0 4 0 0 0 0 0 11 2 64.7
Z. 1

BMC 13 9 9 3 2 5 2 0 75 63.6

Cancer

71.7 (avg) n/a 56 66.7 333 | 943 | 944 | 933 100 402 | “Recal

(%)
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Table 32: Confusion Matrix of Clusters After Merging with ®@ategory Remaining

Actual number of documents of each category Pr?ﬁ/ls)l on
0
BMC BMC BMC | BMC Behav .
5 1\111 D:E)l Cardiovasc | Blood | Oral | Plant | Brain Cough (lil?]lc(;' 71.3
§ (141) Disord Disord | Health | Biol Funct an ‘(1 40) (avg)
3 (84) 9 (53 | ael) | (90
=
£ BMC 79 7 1 0 1 2 0 2 85.9
] Neurol
$ BMC
= Cardiovasc 24 56 0 0 0 0 0 2 68.3
s Disord
£ | BMCBlood |, 0 3 0 0 0 0 5 37.5
e Disord
= | BMC Oral
s 5
E Health 4 0 1 50 0 1 0 3 84.7
g | BMCPlant |, 9 0 1 152 1 0 38 717
- Biol
° Behav
St
2 | Brain Funct 10 3 1 0 3 84 0 0 83.2
E[  Cough 4 0 0 0 0 0 11 2 64.7
zZ y
BMC 9 9 3 2 5 2 0 88 74.6
Cancer
75.1 (avg) 56 66.7 333 | 943 | 944 | 933 100 62.9 <'l({;‘;a“
0

7.3.7 ICF Versus IDF

As we explained in Section 5.3 of Chapter 5, we used ICF assiaquation 5.3
to normalize the feature vectors across clusters. To detrad@sts importance in finding
feature vectors of clusters and hence in our CS2CS lineatresing, here we compare the
result of using equation 5.3 to that using IDF like normdl@maas shown in the following
equation.

VVijl = VVijQZOg |{c (7-10)

WhereW;;; andW,;, are the weights of term; in the feature vector of clustérafter
and before this adjustment, respectivélys the number of clusters. Table 33 shows the
sharp comparison of the result using equation 5.3 and tht kesng 7.10. The result of

using ICF is much better than using IDF like adjustment. dsstie analyzed in Chapter
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5 Section 5.3, this is because some terms that occur in alldbements of a cluster were
eliminated because of the use of logarithm and thus somelusé&irmation were lost.

In addition, In Chapter 5 Section 5.3 we argued why we choosaroence count-
ing over weight sum in forming the cluster feature vectorsrdHve also shows the result
of using ICF with weight sum in Table 34. Even though the restilCF with weight
sum was better than using IDF like approach, it was still mogj@od as using ICF with
occurrence counting. These results further confirm ouryaisabn the formation and
normalization of cluster feature vectors.

Lastly, regarding the lengths of document feature vectdnghvare used to form
cluster feature vectors, we show the comparison betweeretudts of fixed lengths of
document feature vectors and varied lengths of documetirteaectors used to form
cluster feature vectors. The varied lengths are that of n@surhents which are deter-
mined by Exponential Increment Search, as discussed ino8egi6 of Chapter 5. For
the cluster feature vectors of the starting set, we use figadths of document feature
vectors in both cases. Table 35 shows this comparison. Hiatable, we can see that
the average F-Measure of these two are almost the same (¥8.380.7%).

Figure 29 summarizes these comparisons by showing theddfaMeasure, pre-
cision, and recall. In all these three tests we used weidhig4:1:1), single-word terms,

and considering MeSH.
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Table 33: Comparison of Using ICF and IDF Like Weight Adjustits

ICF Weight Adjustment IDF like Weight Adjustment
FV-Lengthl | F-Measure | Precision Recall F-Measure | Precision Recall
(%) (%) (%) (%) (%) (%)
10 68.9 67.3 78.1 52.8 53.1 63.3
20 66.6 65.4 75.9 51.4 50.7 61.8
50 71.2 69.8 81.3 52.3 51.2 64.5
70 71.5 70.3 83.1 47.9 47.3 60.9
100 71.7 69.7 82.1 459 44.7 59
150 71.8 69.2 80.9 42 42.2 53.9
Average -> 70.3 68.6 80.2 48.7 48.2 60.6
Deviation -> 2.1 1.9 2.7 4.3 4.2 3.8

Table 34: Comparison of ICF with Occurrence Counting and\With Weight Sum

ICF with Occurrence Counting ICF with Weights Sum
FV-Lengthl | F-Measure | Precision Recall F-Measure | Precision Recall
(%) (%) (%) (%) (%) (%)
10 68.9 67.3 78.1 63.9 63.4 71.7
20 66.6 65.4 75.9 64.1 63.2 76.1
50 71.2 69.8 81.3 51.7 47.5 69.4
70 71.5 70.3 83.1 46.6 43.9 58
100 71.7 69.7 82.1 52.8 53.2 62
150 71.8 69.2 80.9 56.2 55 63.5
Average -> 70.3 68.6 80.2 55.9 54.4 66.8
Deviation -> 2.1 1.9 2.7 7.0 8.0 6.8

Table 35: Comparison of Using Fixed and Varied Lengths ofuboent Feature Vectors

ICF with fixed length of document ICF with fixed length of document
feature vector feature vector only for starting set
FV-Lengthl | F-Measure | Precision Recall F-Measure | Precision Recall
(%) (%) (%) (%) (%) (%)
10 68.9 67.3 78.1 70 68.2 78.2
20 66.6 65.4 75.9 69.3 68 78.5
50 71.2 69.8 81.3 67.7 67 79.1
70 71.5 70.3 83.1 69.7 68 80.6
100 71.7 69.7 82.1 72.9 71.7 79
150 71.8 69.2 80.9 74.3 72.2 80.8
Average -> 70.3 68.6 80.2 70.7 69.2 79.4
Deviation -> 2.1 1.9 2.7 2.5 2.2 1.1

7.3.8 Results of Using CS2CS on Physics Documents

Just as we did for CS-VS which is discussed in Subsectiol,A& also tested
CS2CS on physics collection downloaded from Nature PhyRBarsal [20], to test the
consistency of the performance of CS2CS in different domaWe put the nine sub-

topics or categories and their abbreviations here agaitroplsysics (AP), Atomic and
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Figure 29: Results of Using Different Weight Normalizatidpproaches of Terms in
Cluster Feature Vectors
molecular physics (AMP), Biological physics (BP), Chenhighysics (CP), Condensed-
matter physics (CMP), Materials physics (MP), Nanotecbgpl(NP), Optical physics
(OP), and Quantum physics (QP). We divided this collectidtin w1l papers into two
sets. Set 1 contains 90/80 documents with 10 from each agteget 2 contains the other
documents. CS2CS uses Set 1 as starting set, and add dosum&et 2 to Set 1 one
by one, the results are for clustering Set 2. The other dlgus do clustering on Set 2
only. Table 36 shows the results of using different clustgrlgorithms on the physics
set 2. Even though the overall F-Measure are all low usingelagorithms, CS2CS is
still much better than other algorithms.

To investigate the reason of why the results are much loveer tiat over biomed-
ical documents, we computed the similarities between etasising their cluster feature

vectors. The results are shown in Table 37. Comparing theskasties to those between
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Table 36: Results of Using Different Algorithms on PhysicscDments

Categories -> AP, AMP, BP, CP, CMP, MP, NP, OP, QP AP, BP, CP, CMP, MP, NP, OP, QP
Algorithm F-Measure | Precision Recall F-Measure Precision Recall
(%) (%) (%) (%) (%) (%)
K-Means 17 16 21.4 17.7 17.8 20.8
Bisecting K-Means 16.3 16.1 223 19.1 18.7 23.6
CS-VS 28.4 29.2 41.2 28.7 29.4 44
CS2CS 33 343 35.1 41.1 42.3 43.6

biomedical documents (Tables 23 and 24), it is easy to tatlttie similarities between
physics document clusters are much higher than that betliearedical document clus-
ters. This means, the boundary of categories of this physilbsction is not as clear as
that in the biomedical collection. We also notice that thmeilsirities between the cluster
AMP are higher than other similarities. Our hypothesis wWe if we remove this cate-
gory, we would get better result. The right half of Table 36vyas our assumption. The

results are better than that with all nine categories whiehshow on the left half of the

same table.
Table 37: Similarities Between Physics Document Clusters
MP AMP CMP AP QP (0) 4 Cp BP NP
MP(35) 1.0000 0.0504 0.0478 0.0308 0.0353 | 0.0479 | 0.0454 | 0.0568 0.0686
AMP(65) 0.0504 1.0000 0.0783 0.0359 0.0513 | 0.0760 | 0.0395 0.0470 0.0496
CMP(74) 0.0478 0.0783 1.0000 0.0326 0.0504 | 0.0388 | 0.0369 | 0.0340 0.0643
AP(41) 0.0308 0.0359 0.0326 1.0000 0.0267 | 0.0481 | 0.0395 0.0291 0.0285
QP(69) 0.0353 0.0513 0.0504 0.0267 1.0000 | 0.0450 | 0.0286 | 0.0401 0.0359
OP@43) 0.0479 0.0760 0.0388 0.0481 0.0450 | 1.0000 | 0.0345 0.0407 0.0462
CP(25) 0.0454 0.0395 0.0369 0.0395 0.0286 | 0.0345 | 1.0000 | 0.0439 0.0453
BP(28) 0.0568 0.0470 0.0340 0.0291 0.0401 | 0.0407 | 0.0439 1.0000 0.0462
NP(31) 0.0686 0.0496 0.0643 0.0285 0.0359 | 0.0462 | 0.0453 0.0462 1.0000
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7.4 Results from InterOBO

7.4.1 Synonym Based Transitive Equivalence

After analyzing the synonym relations between OBO ont@sgwe found 6123
instances of Case 1, 78 instances for Case 2 and 66818 iastéorcCase 3, that are
described in Subsection 6.3.1. Tables 38, 39, and 40 shoesemative examples of the
cases. In these tablgs] and(C?2 stand for the related concepts whifé andS2 are the

synonyms of conceptS1 in OntologyO: andC'2 in OntologyO; respectively.

Table 38: Synonym Transitivity Case 1

Oi 0j Instance | Example

023 | 06 236 C1=S2=medicine C2=drug

023 | 024 114 C1=S2=neuroleukin C2=gb6pi_human

022 | O16;017 105 Cl=stage 29, midbrain hindbrain boundary (mhb)
C2=S1=isthmus

012 | 025 102 C1=S2=episternum C2=proepisternum

015 | 024 98 Cl=sodium-translocating f-type atpase activity
C2=S1=atp synthase

06 023 50 Cl=dihydrogen C2=S1=hydrogen

O15 | 023 62 Cl=phototransduction C2=S1=phototransduction,
visible light, light adaptation

0O15 | O10 55 C1=S2=protein kinase c activation
C2=pkc activation signaling

022 | 016;017;023 | 53 Cl=stage 22, forebrain C2=S1=prosencephalon

015 | 023 39 Cl=actin filament C2=S1=microfilament

Table 39: Synonym Transitivity Case 2

Oi [0)] Instance | Example

06 023 16 C1=S2=l-serine C2=S1=serine

023 | 06 13 Cl1=S2=azacitidine C2=S1=5-azacytidine

031 | 04 5 C1=S2=nucellus C2=S1=megasporangium
015 | 024 4 C1=S2=pre-replicative complex C2=S1=pre-rc
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Table 40: Synonym Transitivity Case 3

Oi [0)] Instance | Examples
06 023 1044 Cl=dioxygen(.1+) C2=peroxide S1=S2=02
06 024 375 Cl=azo group C2=notc2_mouse S1=S2=N2
015 | 024 300 Cl=hal clathrin adaptor C2=jun_human S1=S2=AP1
023 | 024 184 Cl=heterozygote C2=transporter S1=S2=carrier
024 | 06,023 64 Cl=deca_drome C2=hydroxide S1=S2=HO
025 | O12 55 Cl=gonostylus C2=unguis S1=S2=claw
022 | 01;04;016; | 53 Cl=stage 20, hindbrain C2=hindbrain
017,039 S1=S2=rhombencephalon
022 | 016;017; 53 Cl=stage 28, hindbrain C2=hindbrain
039 S1=S2=rhombencephalon
024 | 023 42 Cl=ifnal human C2=interferon S1=S2=IFN
032 | 036 39 Cl=cotyledon emergence
C2=1.01-seedling emergence
S1=S2=maize growth stage-1.1

7.4.2 Ontology Connection Patterns

Table 41 shows some of quantitatively connecting patteapguced from mul-
tiple ontologies. In this example, the strongest conngcpatterns are between Hu-
mandev.anatabstract and Humadev.anatstaged, and between Rmatomy and Zeaaysanatomy.
The three ontologies that contain the strongest quaniigtconnecting patterns are Hu-

mandev.anatabtract, Humardev.anatstaged and Brenda.

Table 41: Quantitative Connection Patterns

Ontology 1 Ontology 2 Cpl Cp2

Human dev anat abstract | Human dev anat staged 0.051816801 | 0.103584007
Po_anatomy Zea mays anatomy 0.034859457 | 0.079037801
Adult mouse anatomy Brenda 0.017509850 | 0.070480748
Flybase vocab Plant_environment 0.016062465 | 0.066852368
Brenda Po_anatomy 0.006391173 | 0.036148766
Human dev anat abstract | Zebrafish anatomy 0.004833003 | 0.035294118
Brenda Cell 0.004047477 | 0.028422877
Brenda Human dev anat abstract 0.004040174 | 0.032816773
Brenda Zebrafish anatomy 0.003760804 | 0.031130530
Adult mouse anatomy Zebrafish anatomy 0.003140380 | 0.027737578
Adult mouse anatomy Human dev anat staged 0.002772477 | 0.023163161
Mao Psi_mi 0.002011567 | 0.022857143
Brenda Human dev anat staged 0.001136602 | 0.013924902
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Table 42: Semantic Connection Patterns

Overlapped
ID | Ontology 1 Ontology 2 Concepts Patterns | Score | Std
Fly .
P1 Mesh Development Drosophila [0.9,0.2] 4.5 0
pp | Loggerhed Event Event [04,01] | 40 | 0
Nesting
Cellular component [1.0,0.2]
Go Daily Molecular function [1.0,0.2]
P3 Mao Termdb Biological process [1.0,0.1] 3.08 1766
Phosphorylation [1.0,0.8]
Attribute and Coordination [1.0,0.9]
P4 Value Rex Process [1.0,0.2] 306 | 2.75
Parasite [1.0,0.2]
Plasmodium Sporozoite [1.0,1.0]
P5 | MeSH Life Cycle Zygote (Lo, Lo] | 200 | 346
Oocyst [1.0,1.0]
S Sequence variant
P6 Psi Mi Sequence Mutation [1.0,0.5] | 2.00 0
Molecule Gap [1.0,0.8]
P7 Sequence Role Protein [1.0.0.3] 1.82 | 1.62
Go Daily Xanthophore [1.0,1.0]
P8 Termdb Cell Cell [1.0.0.1] 1.82 | 8.22
Cell death
P9 Event Mammalian Necrosis [0.9,0.9] 181 | 186
Phenotype Tumorigenesis [1.0,0.3] ’
Diarrhea [1.0,0.9]
Flybase Reduction [1.0,0.5]
P10 Vocab Rex Detachment [1.0,0.7] L71 1 04

Table 42 shows some semantic connection patterns iderdifieohg these OBO
ontologies. The pattern contains some connection pattetances as [level value in
Ontology 1,level value in Ontology 2]. For example [0.9,]Gr#zans that the CCP i1
is 0.9 and CCP 92 is 0.2. This pattern implies that the concept appears ctodestleaf
node inO1 while it appears close to the root node(id. By definition, it is a connecting
pattern betwee®1 andO2. Figure 30 shows the plot of the semantic pattern distrauti

of the 10 patterns listed in Table 42.
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Figure 30: Semantic Connection Patterns
7.4.3 Ontology Clustering

Following the method described in 6.4, we clustered the 4@®@Btologies us-
ing MCL. As shown in Table 43, the clustering experimentailtesl in seven clusters
for each of the two formulas, when degree of concept overlap ethosen to be the met-
ric of similarity. Both approach | (probability-based) aapproach Il (area-based), are
largely consistent in clustering the OBO ontologies inteeseclusters; a few differences
are observed. The following ontologies fall into differetisters depending on choice
of approach: Dictyostelium Discoideum Anatomy (O7), Fungaatomy (O14), Fly De-
velopment (040), Rex (034) and Plasmodilifa Cycle (O30). Three of the ontologies
Emap (09), Evidenceode (O11), and Image (0O18) were found to be singletonsin.e.
clusters by themselves.

As shown Table in 44, more substantial differences betweerivwo approaches

| and Il were observed where the area-based similarity veesd on common edges
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(parentchild term pair) in Ill. While the Concept-based noetesulted in seven clusters,
the edge-based one resulted in six clusters. They showfedatif results. Specifically, the
edge-based clustering showed different results for tHeviimhg ontologies: Arabidopsis
Development (O2), Attribute and Value (O3), Dictyosteliiscoideum Anatomy (O7),
Disease Ontology (08), Loggerhead Nesting (019), Mosquiitatomy (O25), Pathway
(027), Plant Trait (029), Plasmodium Life Cycle (030), Panperal (032), Psi Mi
(033), Temporal Gramene (036), Worm Development (O37),Mags Anatomy (O38)
and Fly Development (O40). The clustering graphs showngarés 31-33 are generated

using the Pajek [23] that is the program for the large netveordysis.
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Table 43: Ontology Clustering Based on Shared Concepts

ID Ontology clustering using Approach I Ontology clustering using Approach II

CCl1 Adult_mouse_anatomy (O1), Adult_mouse_anatomy (O1),
Brenda (04), Brenda (04),

Chebi (06), Chebi (06),
Dictyostelium_discoideum_anatomy Fly_anatomy (012),

(07), Human_dev_anat_abstract (016),
Fly anatomy (O12), Human_dev_anat_staged (O17),
Fungal_anatomy (014), Medaka_anatomy_development (022),
Human_dev_anat_abstract (016), Mesh (023),
Human_dev_anat_staged (O17), Molecule_role (024),

Medaka anatomy_development (022), Mosquito_anatomy (025),

Mesh (023), Zebrafish_anatomy (039)
Molecule_role (024),

Mosquito_anatomy (025),

Plasmodium_life_cycle (030),

Zebrafish_anatomy (039),

Fly_development (040)

cC2 Attribute_and_value (O3), Attribute_and_value (O3),
Flybase vocab (013), Flybase vocab (013),
Loggerhead nesting (O19), Loggerhead nesting (O19),
Plant_environment (028), Plant_environment (028),
Plant_trait (029) Plant_trait (029),

Rex (034)
CC3 Cell (05), Cell (05),
Po_anatomy (O31), Dictyostelium_discoideum_anatomy
Worm_development (037), (07),
Zea_mays_anatomy (O38) Fungal_anatomy (014),
Go_anatomy (O31),
Worm_development (037),
Zea_mays_anatomy (O38),
Fly_development (040)
CC4 Event (010), Event (010),
Go (015), Go (O15),
Pathway (027), Pathway (027)
Rex (034)
CC5 Mao (021), Mao (021),
Psi_mi (033), Psi_mi (033),
Sequence (035) Sequence (035)

CC6 Disease _ontology (O8), Disease_ontology (O8),
Mammalian_phenotype (020), Mammalian_phenotype (020),
Mouse_pathology (026) Mouse_pathology (026)

CC7 Arabidopsis_development (02), Arabidopsis_development (02),
Po_temporal (032), Plasmodium_life_cycle (030),
Temporal gramene (036) Po_temporal (032),

Temporal gramene (036)

Singletons | Emap (09), Evidence code (O11), Image | Emap (09), Evidence code (O11),

(018)

Image (O18)
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Table 44: Comparison of Ontology Clustering Based on Sh@mattepts and Links

ID Approach I Approah IIT

CCl1 Adult_mouse_anatomy (O1), RCl1 Adult_mouse_anatomy (O1),
Brenda (04), Brenda (04),

Chebi (06), Chebi (06),
Dictyostelium_discoideum_anatomy Fly_anatomy (012),

07), Fungal_anatomy (014),
Fly_anatomy (O12), Human_dev_anat_abstract (016),
Fungal anatomy (O14), Human_dev_anat_staged (017),
Human_dev_anat_abstract (016), Medaka anatomy_development
Human_dev_anat staged (O17), (022),
Medaka_anatomy_development (022), Mesh (023),

Mesh (023), Molecule_role (024),
Molecule_role (024), Zebrafish_anatomy (039)
Mosquito_anatomy (025),

Plasmodium_life_cycle (030),

Zebrafish_anatomy (039),

Fly_development (040)

cC2 Attribute_and_value (03), Flybase vocab (O13),
Flybase_vocab (013), Plant_environment (028)
Loggerhead_nesting (019),

Plant_environment (028),
Plant_trait (029)

CC3 Cell (05), RC3 | Cell (05),

Po_anatomy (O31), Po_anatomy (O31)
Worm_development (037),
Zea_mays_anatomy (O38)

CC4 Event (010), RC4 | Event (010),

Go (015), Go (015),
Pathway (027), Rex (034)
Rex (034)

CC5 Mao (021), RC5 | Mao (021),
Psi_mi (033), Sequence (035)
Sequence (035)

CC6 Disease_ontology (O8), RC6 Mammalian_phenotype (020),
Mammalian_phenotype (020), Mouse_pathology (026)

Mouse pathology (026)

CC7 Arabidopsis_development (02), Other | Arabidopsis_development (02),
Po_temporal (032), Attribute_and_value (O3),
Temporal gramene (O36) Dictyostelium_discoideum_anatom

y (O7), Disease_ontology (O8),
Emap(09), Evidence code(O11),
- Image (O18), Loggerhead_nesting
Other | Emap (09), Evidence code (O11),

Image (O18)

(019), Mosquito_anatomy (025),
Pathway (027), Plant_trait (029),
Plasmodium_life cycle (030),
Po_temporal (032), Psi_mi (033),
Temporal_gramene (036),
Worm_development (O37),
Zea_mays_anatomy (O38),

Fly development (040)
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Figure 31: Ontology Clustering Result of Approach |
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Figure 33: Ontology Clustering Result of Approach 11l

7.4.4 InterOBO Prototype Development

We have implemented a prototype of InterOBO to establislofpobconcept for
the proposed model for analyzing and clustering ontolodiée InterOBO prototype has
been implemented using Java, Java 2 Platform Standard&d2SE platform) 5.0 and
SuSe Linux on an AMD Opteron dual CPU machine with 2.4 GHz CRGb mem-
ory, and a 120 Gb hard disk. The backend database is MySQioues). InterOBO
maintains a representation of the OBO ontologies. In orddsrowse and search the

OBO ontology analysis and clustering information, Inte@pPBrovides query interfaces
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(shown in Figure 34):

e Query on a specific concept: for a given concept, this previtie description of
the concept, synonyms, information on ontologies thataiarthe concept.

e Query on the overlapping relationships between ontolod@sa given set of on-
tologies, try to find overlapping relationships such aseathi@aoncepts, shared links,
shared properties.

e Query on the shared concepts and links through the overdapp®logies: for a

given ontology, try to find any links to other ontologies amhcepts or properties

involved in the connections.
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There are 46 concepts matching zinc

INTEROBO

zinc(0)
: zinc xas
Search [zinc zinc(2+)
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Figure 34: InterOBO Query Interfaces
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CHAPTER 8

SUMMARY AND FUTURE WORK

8.1 Citonomy

8.1.1 Summary

In this dissertation, a framework, called Citonomy, wasspreged to utilize the
semantic information, especially the citation semanticsdientific documents, to im-
prove the quality of document clustering. The CSE (CitaBemantics Extraction) model
which involves reference clustering and labeling was arpth Two approaches — CS-
VS (combining Citation Semantics and Vector Space meaaneLS2CS (from Citation
Semantics to Cluster Semantics) were discussed and exdlu@ur experimental results
showed that both could improve the quality of document eltisg) over traditional docu-
ment clustering algorithms such as K-Means and K-MedoidsthEérmore, CS2CS as a
linear (or nearly linear with splitting and merging) clustg algorithm, is also faster than
many traditional document clustering algorithms. A briehparison between CS-VS
and CS2CS is shown in Chapter 3. For convenience, we coptatblathere again (Table
45).

In CS-VS, when calculating similarity of two documents, vee bboth the similar-
ity between vectors of two documents and the similarity leetvthe citation semantics
of these documents. That is, we calculate these two kindsrolasity separately, then

combine them together through either harmonic mean or siragbdiition. Then use this
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Table 45: Comparison Between Approaches of Citonomy: C&uBCS2CS

CS-VS CS2CS
Similarity between Citation
Semantics

Highlight 3-Level Feature Selection

VSM + Citation Semantics + Title + Feature Vector (formed from VSM +

Model of Documents . Citation Semantics + Title +
Keywords + Co-citation
Keywords)

Combined VSM similarity and

Similarity measure L
semantics similarity

Similarity between feature vectors

CS2CS linear clustering, dynamic,
the number of clusters changes, real
time clustering

K-Medoids clustering, static, the

Document Clustering number of clusters is predefined

Use evolution strategy on training set
Use of training set to get weights in combining
similarities

Get initial cluster feature vectors
from training set

Accuracy compared to traditional K-
Medoids and K-Means clustering
Runtime complexity in terms of the
number of documents n

Improved more than 5% on average Improved more than 10% on average

O(n) or O(nlogn) with splitting and
merging

o)

measure to do K-Medoids clustering. Note, we also consitesimilarity between titles
and take into account the information of co-citation. Beseaaf the process of comput-
ing the extra similarities, especially the similarity betmn citation semantics, CS-VSis a
little slower than K-Medoids without using these similaa#, but they have same runtime
complexity in terms of the number of documents.

In CS2CS, a 3-level feature selection with a 2-dimensionahalization is intro-
duced to utilize citation semantics in document clusterifigat is, we form feature vec-
tors for single documents and clusters by selecting featimereference clusters (level
1), single documents (level 2), and document clusters |(lBveThen we do document
clustering by finding the similarities between documentdeavectors and cluster fea-
ture vectors. Since the runtime of CS2CS clustering is ftimeéerms of the number of
documents, it is much faster than K-Medoids clustering. d&f @o splitting and merg-
ing in CS2CS clustering whenever the total number of docusnisrdoubled, its runtime

complexity would beD(nlogn) which is still faster than CS-VS. And with splitting and
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merging, CS2CS can determine the number of clusters dyadlgnido realtime cluster-
ing over evolving dataset of documents. Moreover, since3tievel feature selection
process effectively selects important terms and removise nthe quality of the resulted
clusters is much higher than that resulted from traditiclo@lument clustering algorithms
and CS-VS. It even performed better than the traditionabritlygns without using the
semantics information of documents. In other words, CSZ0®t limited to scientific
documents.

We also investigated the use of ontologies in document edungt and CS2CS
based fuzzy clustering. The experimental results on batbgeed solutions were also

promising.

8.1.2 Future Work

Citonomy is used to explore the idea that by correctly utitizhe hidden informa-
tion in documents, one can improve the quality of documargteking. Our experiments
on scientific documents verified our assumption and appesacfihe same idea could
also be applied to online documents where not only the titkferences, and keywords
could be utilized, but the hyper-links that serve for theiEinpurpose as references, could
also be utilized as well. For example, in wikipedia (www.ipidia.org), the users can
create articles and save them to predefined categories.\goveboosing the category is
subjective and mistake is unavoidable. If CS2CS could bd tsénd the best matches

for the users, the system could prompt the users to choose appropriate categories.
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Similarly, the idea of CS2CS can also be used in scientificzdwmmt search en-
gines. One can form a feature vector from the user query sestand compare it to the
feature vectors of existing categories. Since it avoidscéiag for all the documents, the
response to query would be faster.

We discussed fuzzy clustering in this dissertation andgmtesl the algorithm us-
ing similar process of CS2CS. We also showed some experaneggults. However,
more work need to do to fully investigate the advantages aedatl performance of us-
ing CS2CS to do fuzzy clustering. A hard part of research @azyfclustering is the
evaluation. It is hard to find collections which have be fuzhystered and hence, it is

difficult to (automatically) evaluate the quality of the uéis of the fuzzy clustering.

8.2 InterOBO Summary and Future Work

Ideally, one would like to relate all ontologies in a domafrdscourse to a cen-

tral reference ontology. The latter refers to an upper leméblogy that would serve as a
semantic anchor for all ontologies in a domain. Howevemefthere was general agree-
ment on what would constitute a central reference ontolégyt¢logy of ontologies”),
the cost and constraint of relating current and future agfiels to a reference ontology
renders such an approach impractical. The pragmatic atteenis to maintain pairwise
mappings between ontologies. While this may lack the sematdrity of having an
overarching upper level ontology, it is a feasible approghb-domain-specific ontolo-

gies may be developed by different teams of domain expepariallel. As the workload
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is distributed, this keeps the task of creating ontologrepaxce with the growth of knowl-
edge. The disadvantage is that, in principle, the mapping néw ontology (or new
concepts) tan existing ontologies requiress comparisons. However, the actual work
of maintenance can be reduced if the new ontology is addegbte-axisting network of
ontologies. Higher the degree of redundancy or overlap gnesisting ontologies, the
lower the amount of work required to incorporate the new logiyp

The main motivation in creating a mapping between variouslogies is to fa-
cilitate searches of annotated data. Given a query for aitdsta(sequence, structure or
some other biological item), the retrieved dd?amight be explicitly annotated with a
term7; from ontologyO,. However, if there exists a mapping from tefinto term7;
in ontologyO;, then someD; annotated with ternl; may also be relevant to the query.
Similarly, searches for ontology terfij can be extended to all synonymdiisand the as-
sociated annotated data retrieved. This would facilitate@l integration of search space
without the need to create a centralized data warehouse eftire set of annotated data.
The clustering of ontologies can be useful as a guide to tteneto which a given search
should be broadened. A cluster boundary can serve as a piag@ach space delimiter
for maximizing recall with minimal loss of precision. Givarsearch that maps explicitly
to an ontology within a cluster, it makes intuitive sensexterd it to other ontologies
within the same cluster. In terms of parallel implementadicexhaustive searches could
be implemented by maintaining separate indices for eactteriwon physically distinct
nodes. This would prevent duplication of searches and dlew #he maintenance of

efficient indices of minimal size.
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We have presented a scheme for extrapolating concept ardl@dsg synonym
matches to mapping at the level of ontologies, and applied. ¥Ghe OBO ontologies
to obtain ontology clusters. The future work would be to ggpis framework to other

domains where there are multiple ontologies available anansform the InterOBO

prototype into a real world application.
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APPENDIX

Table A.1: Words of the Cluster Feature Vector of ClusterdBl®vMiapped to MeSH Terms

Label Weight | MeSH ID MeSH Term Root MeSH Term
leaflet 0.0590
scri 0.0590
fth 0.0590
rot 0.0590 | C22.394 Foot Rot Animal Diseases
atrosepti
cum 0.0590
reca 0.0590
stably 0.0590
gyra 0.0590
bestkeep
er 0.0590
topa 0.0590
housekee Health Care Facilities,
ping 0.0590 | N02.278.354.422.412 Housekeeping, Hospital Manpower, and Services
toth 0.0590
tsx 0.0590
pectobac
terium 0.0590 | B03.440.450.425.585 Pectobacterium Bacteria
glna 0.0590
nsv 0.0581
B01.650.388.100.300.1
melo 0.0581 | 88.444 Cucumis melo Eukaryota
mnsv 0.0581
D08.811.913.696.620.6
eif 0.0581 | 82.700.300 elF-2 Kinase Enzymes and Coenzymes
aranda 0.0581
melon 0.0581
moriones 0.0581
cvyv 0.0581
zeyheri 0.0581
cucurbit 0.0581
nieto 0.0581
ecotiling 0.0581
atfkbp 0.0572
frb 0.0572
scfkbp 0.0572
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Table A.2: Words of the Cluster Feature Vector of Clusterdgltviapped to MeSH Terms

(MeSH Considered in Forming Document Feature Vectors)

Label Weight MeSH ID MeSH Term Root MeSH
Term
suramin 0.0710 | D02.455.426.559.847.638.555.750 Suramin Organic
Chemicals
tde 0.0710
roseus 0.0710
Amino Acids,
phosphotyrosine 0.0710 D12.125.072.050.875.750 Phosphotyrosine Peptides, and
Proteins
catharanthine 0.0710
egta 0.0710
mbpk 0.0710
cdpk 0.0710
atfkbp 0.0698
raptor 0.0698 B01.050.150.900.248.815 Raptors Eukaryota
frb 0.0698
polysome 0.0698
sctkbp 0.0698
Amino Acids,
ternary 0.0698 D12.776.260.665.600 Ternary Complex Factors | Peptides, and
Proteins
attor 0.0698
fkbp 0.0698
cyclodextrin 0.0685 D04.345.103 Cyclodextrins Polycyclic
Compounds
taxane 0.0685
guanidine 0.0685 D02.078.370 Guanidines Organic
Chemicals
. . Physical
hypergravity 0.0685 G01.595.060.535.369.300 Hypergravity Phenomena
taxol 0.0685
. . . Equipment
gravity 0.0685 E07.440 Gravity Suits and Supplies
. Nervous
urea 0.0685 C10.228.140.163.100.937 Urea Cycle Disorders, System
Inborn h
Diseases
baccatin 0.0685
guanidino 0.0685
durzan 0.0685
ventimiglia 0.0685
Amino Acids,
citrulline 0.0685 D12.125.095.226 Citrulline Peptides, and
Proteins
busulfan 0.0673 D02.033.455.125.125 Busulfan Organic
Chemicals
Hemic and
aplasia 0.0673 C15.378.071.750 Red-Cell Aplasia, Pure Lymphatic
Diseases
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Table A.3: Words of the Cluster Feature Vector of Clusterifdfanc Mapped to MeSH

Terms
Label Weight MeSH ID MeSH Term Root MeSH Term
panl 0.0520
cnlt 0.0520
agronomic 0.0520
issrb 0.0520
murri 0.0520
trotter 0.0520
pilosa 0.0520
masl 0.0520
kaye 0.0520
tefera 0.0520
Disorders of
crush 0.0520 C21.866.797.240 Crush Syndrome Environmental
Origin
rufipogon 0.0520
dzbs 0.0520
dzls 0.0520
ril 0.0520
ethiopia | 0.0520 701.058.290.120.310 Ethiopia (}Le(?cgart‘:ggéc
rpr 0.0520
pswt 0.0520
issr 0.0520
issra 0.0520
lodg 0.0520
dia 0.0520
eragrostis 0.0520 B01.650.388.100.822.355 Eragrostis Eukaryota
agro 0.0520
ninter 0.0520

rehearse 0.0511
ietswaart 0.0511
meinzer 0.0507
konstanz 0.0507
neologism 0.0507
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Table A.4: Words of the Cluster Feature Vector of of ClustexiBFunc Mapped to MeSH

Terms (MeSH Considered in Forming Document Feature Vectors

Label Weight MeSH ID MeSH Term Root MeSH Term
cnlt 0.0620
pswt 0.0620
lodg 0.0620
murri 0.0620
pedl 0.0620
ril 0.0620
pilosa 0.0620
ethiopia 0.0620 701.058.290.120.310 Ethiopia Geographic Locations
eragrostis 0.0620 | B01.650.388.100.822.355 Eragrostis Eukaryota
agro 0.0620
crush 0.0620 C21.866.797.240 Crush Syndrome Envigjgj;‘; ‘grigin
pwt 0.0620
rpr 0.0620
issra 0.0620
issrb 0.0620
agronomic 0.0620
fss 0.0606
daphn 0.0606 | B01.650.388.100.932.500 Daphne Eukaryota
rao 0.0606
vas 0.0606
mfi 0.0606
analogue 0.0606
neologism 0.0601
precentral 0.0601
paraphasia 0.0601
intergenerational | 0.0591 F01.829.263.370.110 Intergenerational Relations Behi?ng;ZZEggisms
kindred 0.0591
spinocerebellar 0.0591 A08.612.220.725 Spinocerebellar Tracts Nervous System
farrer 0.0591
poorkaj 0.0591




Table A.5: Words of the Cluster Feature Vector of Clusterdi@atasc Mapped to MeSH

Terms
Label Weight MeSH ID MeSH Term Root MeSH
Term
unguided 0.0655
yepes 0.0648
neuroserpin 0.0648
som 0.0648
precondition 0.0641 E02.592 ISCh(?II'llC . Therapeutics
Preconditioning
Nutritional and
hyperglycemia 0.0641 C18.452.394.952 Hyperglycemia Metabolic
Diseases
fagan 0.0641
mcao 0.0641
ergul 0.0641
tortuosity 0.0641
grosset 0.0634
pdq 0.0634
pulsatile 0.0634 G01.595.560.620 Pulsatile Flow Physical
Phenomena
Chemical
antiparkinson 0.0634 D27.505.954.427.090.050 Antiparkinson Agents Actions and
Uses
mannac 0.0627
sialylated 0.0627
acetylmannosamine 0.0627
ncam 0.0627
hibm 0.0627
. D03.383.742.686.850.600.677.1 Uridine Diphosphate Heterocyclic
acetylglucosamine 0.0627 20 N-Acetylglucosamine Compounds
. . Musculoskeleta
Quadriceps 0.0627 A02.633.567.850 Quadriceps Muscle I System
epimerase 0.0627 D08.811.399.894 Racemases and Enzymes and
Epimerases Coenzymes
. . Nervous
sialic 0.0627 C10.228.140.163.100.435.810 Sialic Acid Storage System
Disease h
Diseases
gne 0.0627
Amino Acids,
dystroglycan 0.0627 D12.776.210.500.410.500 Dystroglycans Peptides, and
Proteins
oman 0.0620 701.252.245.500.600 Oman Geographic
Locations
omani 0.0620
pandian 0.0620
shafaee 0.0620
sultan 0.0620
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Table A.6: Words of the Cluster Feature Vector of Clusterdiéatasc Mapped to MeSH

Terms (MeSH Considered in Forming Document Feature Vectors

Label Weight MeSH ID MeSH Term Root MeSH
Term
leap 0.0746
Itp 0.0746
neuroserpin 0.0732
. Musculoskeleta
capsule 0.0725 A02.835.583.443 Joint Capsule
1 System
doctor 0.0718
ssmce 0.0718
cbt 0.0718
apt 0.0718
ergul 0.0711
tortuosity 0.0711
mcao 0.0711
precondition 0.0711 E02.592 Ischeppc . Therapeutics
Preconditioning
Nervous
dysarthria 0.0711 C10.597.606.150.500.800.150.200 Dysarthria System
Diseases
pdq 0.0704
pulsatile 0.0704 G01.595.560.620 Pulsatile Flow Physical
Phenomena
grosset 0.0704
pill 0.0704
Chemical
antiparkinson 0.0704 D27.505.954.427.090.050 Antiparkinson Agents Actions and
Uses
beyond 0.0697
bogoslovsky 0.0697
salvage 0.0697 E02.186.800 Salvage Therapy Therapeutics
penumbra 0.0697
oman 0.0690 701.252.245.500.600 Oman Geographic
Locations
omani 0.0690
sultan 0.0690
Behavior and
warn 0.0690 F01.145.209.259.800.200 Duty to Warn Behavior
Mechanisms
margarita 0.0684
nedices 0.0684
pop 0.0684
pamplona 0.0684
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Table A.7: Words of the Cluster Feature Vector of ClustergoMapped to MeSH Terms

Label Weight MeSH ID MeSH Term Root MeSH Term
pungency 0.0677
gustatory 0.0677 C10.177.825 Sweating, Gustatory NerVD"i‘;:aSSZ:tem
chemesthesis 0.0677
pepper 0.0677 J02.500.250.725.500 Black Pepper Food and Beverages
tohoku 0.0677
yazawa 0.0677
capsinoid 0.0677
geriat 0.0677
capsiate 0.0677
pungent 0.0677
codeine 0.0660 | D03.132.577.249.547.547.149 Codeine Ezt;rggzsgs
takahama 0.0660
citric 0.0660 D02.241.081.901.434.249 Citric Acid Organic Chemicals
kamei 0.0660
narcotic 0.0660 D27.505.696.277.600 Narcotics Chemical Actions
and Uses
tractus 0.0660
opiate 0.0660 D03.132.577 Opiate Alkaloids %Zﬁfﬁﬁiﬁf}ﬁ
cholinergic 0.0660 A08.663.542.234 Cholinergic Fibers Nervous System
Pathological
snore 0.0643 (C23.888.852.779.850 Snoring Conditions, Signs
and Symptoms
apnoea 0.0643
surinder 0.0643
strachan 0.0625
indoor 0.0625 N06.850.460.100.080 Air Pollution, Indoor E‘;,Vu‘g‘l’i‘;“:glg?d
kloft 0.0625
charit 0.0625
groneberg 0.0625
dinh 0.0625
fischer 0.0625
audience 0.0608
broadcast 0.0608
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Table A.8: Words of the Cluster Feature Vector of ClustergoMapped to MeSH Terms

(MeSH Considered in Forming Document Feature Vectors)

Label Weight MeSH ID MeSH Term Root MeSH Term
pepper 0.0734 J02.500.250.725.500 Black Pepper Food and Beverages
tohoku 0.0734
chemeszsthem 0.0734
capsiate 0.0734
. Nervous System
gustatory 0.0734 C10.177.825 Sweating, Gustatory Discases
capsinoid 0.0734
pungent 0.0734
cholinergic 0.0713 A08.663.542.234 Cholinergic Fibers Nervous System
takahama 0.0713
citric 0.0713 D02.241.081.901.434.249 Citric Acid Organic Chemicals
codeine 0.0713 | D03.132.577.249.547.547.149 Codeine Heterocyclic
Compounds
narcotic 0.0713 D27.505.696.277.600 Narcotics Chemwallj‘:‘;“(’ns and
opiate 0.0713 D03.132.577 Opiate Alkaloids Heterocyclic
Compounds
Pathological
snore 0.0692 (C23.888.852.779.850 Snoring Conditions, Signs and
Symptoms
apnoea 0.0692
Nervous System
lethargy 0.0692 C10.597.606.441 Lethargy Discases
ther 0.0671
indoor 0.0671 N06.850.460.100.080 Air Pollution, Indoor Environment and
Public Health
pulm 0.0671
strachan 0.0671
groneberg 0.0671
pupt 0.0671
cook 0.0671 701.494.300 Cooking anc‘i Eating Technolog}{, Industry,
Utensils and Agriculture
. Serum Albumin, Radio- . .
radio 0.0650 D01.496.448.496.665 . Inorganic Chemicals
Iodinated
broadcast 0.0650
Investigative
manometry 0.0629 E05.559 Manometry Techniques
huisman 0.0608
antitussive | 0.0605 D27.505.954.427.153 Antitussive Agents Chem‘cab’::st“’"s and
beraprost 0.0587
mite 0.0587 B01.050.500.131.166.132.419 Mites Eukaryota
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Table A.9: Words of the Cluster Feature Vector of Cluster &mBisord Mapped to

MeSH Terms
Label Weight MeSH ID MeSH Term RO"Ttel:’ln‘iSH
horstman 0.0640
fvii 0.0640
miami 0.0640
minagar 0.0640
acl 0.0640
phosphatidylserine 0.0640 D10.570.755.375.760.400.971 Phosphatidylserines Lipids
apla 0.0640
jimenez 0.0640
gpi 0.0640
cardiolipin 0.0640 | D10370733373760.400.885.18 Cardiolipins Lipids
ahn 0.0640
bidot 0.0640
wmw 0.0626
horiuchi 0.0626
Behavior and
rage 0.0626 F01.470.093.640 Rage Behavior
Mechanisms
carboxymethyl 0.0626
optima 0.0626
camcog 0.0626
epicentre 0.0612
immunopositive 0.0612
gfap 0.0612
timp 0.0612
oval 0.0612 A07.541.459.500 Foramen Ovale Cardiovascular
System
jnnp 0.0599
chabardes 0.0599
vesper 0.0599
subthalamic 0.0599 | A08.186.211.730.317.800.800 Subthalamic Nucleus I\SI';TSZ;‘;S
pollak 0.0599
pallidal 0.0599
stereotact 0.0599
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Table A.10: Words of the Cluster Feature Vector of Clusted&mDisord Mapped to
MeSH Terms (MeSH Considered in Forming Document FeaturéoY&c

Label Weight MeSH ID MeSH Term R“"TteIXESH
UDPglucose-Hexose-1- Enzymes and
hexose 0.0740 DO08.811.913.696.445.850 ) Phosphate Coenzymes
Uridylyltransferase
radiolabel 0.0740
moiety 0.0740
path 0.0740
apoplasm 0.0740
sugarcane 0.0740
recover 0.0740
sorghum 0.0740 B01.650.388.100.822.894 Sorghum Eukaryota
japonicum 0.0727 BO]'050'500'500‘77036'715'770'680'5 Schistosoma japonicum Eukaryota
meliloti 0.0727 B03.440.400.425.700.887.500 Sinorhizobium meliloti Bacteria
indol 0.0727 D03.132.436 Indole Alkaloids }Clzt;r:gﬁ}i‘sc
vulgaris 0.0727 B01.040.080.469.400 Chlorella vulgaris Eukaryota
overproduce 0.0727
rhizobia 0.0727
rhizobium 0.0727 B03.440.400.425.700.800 Rhizobium Bacteria
mdete:nmat 0.0727
pin 0.0727 E06.292 Dental Pins Dentistry
iaamtms 0.0727
operon 0.0727 G05.360.340.024.686 Operon Pgﬁgiﬁfm
rhp 0.0713
arid 0.0713
nine 0.0713
g iv 0.0713
isf 0.0713
baydar 0.0713
esselink 0.0713
g i 0.0713
damascena 0.0713 B01.650.388.100.838.518.500 Nigella damascena Eukaryota
vosman 0.0713
damask 0.0713
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Table A.11: Words of the Cluster Feature Vector of ClusteufdeMapped to MeSH
Terms

Label Weight MeSH ID MeSH Term Root MeSH Term
ambul 0.0561 E02.831.335 Early Ambulation Therapeutics
leap 0.0561
Itp 0.0561
overground 0.0561
homocarnosine 0.0556
Amino Acids,
carnosine 0.0556 D12.644.400.100 Carnosine Peptides, and
Proteins
balion 0.0556
carnosinase 0.0556
tatsch 0.0550
pirker 0.0550
oertel 0.0550
ibzm 0.0550
normalcy 0.0550
radiotracer 0.0550
booij 0.0550
lokkegaard 0.0550
schwarz 0.0550
asenbaum 0.0550
tracer 0.0550 D01.496.749.731 Radioactive Tracers ér}llzl;i?él;]cs
hed 0.0544
migraineurs 0.0544
tth 0.0544
westgaard 0.0544
uir 0.0544
leistad 0.0544
treadmill 0.0541
immuno 0.0539
sudanese 0.0539
kuwaiti 0.0539
whoqol 0.0539
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Table A.12: Words of the Cluster Feature Vector of ClusteufdeMapped to MeSH

Terms (MeSH Considered in Forming Document Feature Vectors

Label Weight MeSH ID MeSH Term Root MeSH Term
Amino Acids,
carnosine 0.0672 D12.644.400.100 Carnosine Peptides, and
Proteins
carnosinase 0.0672
pirker 0.0665
schwarz 0.0665
nucl 0.0665
ibzm 0.0665
radiotracer 0.0665
tracer 0.0665 D01.496.749.731 Radioactive Tracers ér}l::;gl?él;s
migraineurs 0.0658
tth 0.0658
westgaard 0.0658
kuwaiti 0.0651
whoqol 0.0651
facet 0.0651
bref 0.0651
spiritual 0.0651 E02.190.901 Spiritual Therapies Therapeutics
cit 0.0650
vlaar 0.0650
worsen 0.0644
meaningful 0.0644
cholinesterase | 0.0644 | DO08.811.277.352.100.170 Cholinesterases Eé‘éey;‘;;n?;d
cibic 0.0644
donepezil 0.0644
Psychological
smell 0.0636 F02.830.816.643 Smell Phenomena and
Processes
becker 0.0636
maastricht 0.0636
weber 0.0636 C04.557.645.375.850 Sturge-Weber Syndrome Neoplasms
azm 0.0636
overground 0.0629
hars 0.0629
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Table A.13: Words of the Cluster Feature Vector of ClustanPMapped to MeSH Terms

Label Weight MeSH ID MeSH Term Root MeSH
iridaceae 0.0401 B01.650.388.100.549 Iridaceae Eukaryota
agostino 0.0401

sacl 0.0401

camara 0.0401

crocus 0.0401 B01.650.388.100.549.500 Crocus Eukaryota

glucosyltransferase | 0.0401 D08.811.913.400.450.460 Glucosyltransferases Eggzgiﬁ;d

saffron 0.0401

spice 0.0401 302.500.250.725 Spices Food and

Beverages

crocetin 0.0401

panax 0.0398 B01.650.388.100.087.500 Panax Eukaryota
subgenus 0.0398
constraint 0.0398

nonphotosynthetic | 0.0398
ipomoea 0.0398 B01.650.388.100.238.500 Ipomoea Eukaryota
convolvulaceae 0.0398 B01.650.388.100.238 Convolvulaceae Eukaryota
obtusiflora 0.0398
pseudogene 0.0398 G05.360.340.024.340.700 Pseudogenes P}fgﬁgf;fna
ndh 0.0398

exaltata 0.0398
memelink 0.0396

egta 0.0396

catharanthine 0.0396
mbpk 0.0396
cdpk 0.0396
tde 0.0396
suramin 0.0396 D02.455.426.559.847.638.555.75 Suramin Orgapic
0 Chemicals
hple 0.0394
hplf 0.0394
nile 0.0394 B04.820.250.350.300.950 West Nile virus Viruses
aldehyde 0.0394 D02.047 Aldehydes c(ﬁiiaiﬁs
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Table A.14: Words of the Cluster Feature Vector of ClustanPMapped to MeSH Terms

(MeSH Considered in Forming Document Feature Vectors)

Label Weight MeSH ID MeSH Term RO"TtelrllﬁSH
spice 0.0469 302.500.250.725 Spices ;gjfr:;‘s
saffron 0.0469
iridaceae 0.0469 B01.650.388.100.549 Iridaceae Eukaryota
sacl 0.0469
crocus 0.0469 | B01.650.388.100.549.500 Crocus Eukaryota
glucosyltransfera | 160 | D3 811.913.400.450.460 Glucosyltransferases Enzymes and
se Coenzymes
sativus 0.0469 301'650'38261600‘300' 188. Cucumis sativus Eukaryota
obtusiflora 0.0466
autotroph 0.0466 G02.111.087.070 Autotrophic Processes Pigsgln‘ga
nonphot((:)syntheti 0.0466
constraint 0.0466
ipomoea 0.0466 | B01.650.388.100.238.500 Ipomoea Eukaryota
convolvulaceae 0.0466 B01.650.388.100.238 Convolvulaceae Eukaryota
panax 0.0466 | B01.650.388.100.087.500 Panax Eukaryota
ndh 0.0466
exaltata 0.0466
hpl 0.0464
localise 0.0464
fp 0.0464
hple 0.0464
hplf 0.0464
nile 0.0464 | B04.820.250.350.300.950 West Nile virus Viruses
detergent 0.0464 D27.720.877.265 Detergents Cher:lil((:iab/;;tions
hydroperoxide 0.0464
aldehyde 0.0464 D02.047 Aldehydes C(})l;ii‘;iacls
micelle 0.0464 D05.374 Micelles Macromolecular
Substances
pp 0.0461
tir 0.0461
mpss 0.0461
poptrarf 0.0458
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