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ABSTRACT 

 

Even though computer usage may seem very intuitive to almost everyone, they have 

minimum usability requirements that the user’s ability to read is in the language being used. 

In developing countries such as India, where the adult literacy rate is 66% [1], this basic 

requirement for computer usage is its major hindrance. Some other hindrances to accessing 

modern technology are socio-economic inequality and cultural diversity. InfoKiosk is an end-

user application as a step towards providing a text-free user interface (UI) using an existing 

architectural framework [2]. InfoKiosk UI is designed using features such as action images to 

represent types of information, mouse-over audio for navigation help, and universal help 

videos throughout every screen of the application. User inputs and outputs to InfoKiosk are 

kept intuitive and easy to understand. Two kinds of possible user inputs are – audio and 

mouse click. In response, the user will receive streaming audio and/or video from YouTube 

or the InforKiosk server.  The design and development of InfoKiosk involve working with 

technologies such as Java Sound API and, Lumenvox text-to-speech translator. 
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CHAPTER 1 

INTRODUCTION 

Currently, majority of people use computers for business, education and 

entertainment through laptops, desktop computers and mobile phones.  If we take a careful 

look at section of people who can interact with these computers, then we find computers have 

always been a productive tool for literate people with at least a minimum ability to read and 

understand. These devices have been a powerful source of information and knowledge. If one 

is using such devices then one must be, at minimum, able to read the text in the language in 

use. Such a restriction renders millions of people, who are non-literate or semi-literate, 

unable to access world of information that could be of their importance. InfoKiosk is a step 

towards making the information available to people irrespective of their literary skills. 

InfoKiosk is an end-to-end user application with a text-free user interface (UI) and interacts 

with user based on audio, video and image display. In my work I have considered India as a 

case in point because of reasons such as  

1. India is house to world’s largest number of adult illiterates [1],  

2. India offers diversity challenges by being a multi-lingual and, multi-religious country [2]. 

3. India also has vast socio-economic and cultural diversity [2]. 

Even though I will talk about InfoKiosk application considering the challenges in 

India, its architecture and application design is quite adaptable to any region of the world 

facing similar challenges. 

India has adult literacy rate of 66% [33, 26] which well below the world literacy rate 

of 83%. According the UNESCO Institute for Statistic’s worldwide survey [1], in 2008, 796 

million adults were reported non-literate. Due to illiteracy and poverty people are unable to 

make use of the information which is easy and, sometimes, freely available. They are left 
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behind in the world where, if googled, one can get all kind of information on web. Some of 

information has universal understandability when provided in multimedia formats – audio, 

video and images. For example, a person in a village in India would cherish availability of 

public health information from a nearby information kiosk. And for a farmer equally valuable 

would be any information about kind of fertilizer to be used for a certain crop. Also, 

information about vaccination, immunizations, employment, government schemes are useful 

when communicated on time. For making such information accessible to the varied 

population with characteristic like non-literate or semi-literate, multi-lingual and multi-

cultural, it is important to concentrate on how it is presented to user. The information on web 

and in general can be broadly divided into four kinds - text, audio only, audio-video and 

images. The last three together are also called multi-media. InfoKiosk application heavily 

uses video/audio output (YouTube), text-to-audio conversion, audio feedback and images. 

InfoKiosk application ensures that non-literate users do not feel restricted while using 

applications on computer. 

Generally, Information & Communication Technologies enabled public health 

projects reach users in one of the following ways: [9]  

> Exclusive Websites for diseases 

> Training material available on internet such as medical journals and periodicals for 

nurses and paramedics. 

> e-Learning facilities such as web-based portals.  

> Virtual knowledge centers for information dissemination.  

> e-consultation of sensitive information such as AIDS 
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All the current and similar applications have exceedingly high level of complexity and 

diversity. 

My goal while working on, InfoKiosk, was to create a text free UI with an 

architectural capability to enable non-literate or semi-literate people to interact and obtain 

essential information from an intuitive computer application. My implementation is inspired 

from the innovative work in the paper [2] by Chowdhury and Medhi. The authors have 

proposed an architectural framework for electronic access and retrieval of public health 

system in developing countries like India. There architecture was built considering myriad of 

factors like socio-economic diversity, multilingualism. The final design has qualities like 

inclusive, dialectic, adaptive, evolving, robust, and people sensitive.  

 There have been few attempts to create applications, projects and products which are 

aimed to help illiterate population in developing countries. In early 2000, seven Indian 

scientist and engineers at Simputer Trust [30], designed a self-contained handheld computer, 

called Simputer [29], as an alternative to Personal Computer. “Simputer” stands for Simple 

Inexpensive Multilingual People’s computer. Simputer has Linux Operating System, text-to-

speech software, smart card reader/writer, web interfacing, touch screen operated by stylus 

and simple handwriting recognition software. The device was though aimed to help citizens 

in villages of India it ended up being used for other purposes such as land records 

procurement by Indian state of Karnataka, automobile engine diagnostics, and so on. Some of 

the success inhibitors could have been high license cost, lower cost of laptops and PDAs and 

lack of support from Government and NGOs.  

Another work in the area of application development for illiterate population and one 

of the biggest influences to my work has been text-free UI application by Medhi which was 

discussed in [27]. She suggested some innovative design principles, for developing text-free 
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UIs, through an ethnographic design process. The process involved working with 250 people 

and more than 300 hours for field work at urban slums in Bangalore, India. These designed 

principles [7, 26] have been used for some test applications such as one developed for 

informal labor job search. While developing InfoKiosk, I have followed these proposed 

design principles and also added few additional principles. She has also explored similar 

design principles for mobile phones and also performed a usability test with design 

suggestions such as general text based, using multimedia and with spoken dialog feedback. It 

was concluded that non literates and semi-literate had faster completion rates and required 

less assistance while using spoken-dialog system. It may be noted that design methods for 

mobile interface for non-literate users is addressed in [16].  

A major influence in the design and development of InfoKiosk is the Digital Green 

project [3]. This project based on a participatory learning framework and helps small and 

marginal farmers in India to access targeted agricultural information. This information is 

stored in a video repository and the content is generated by farmers and domain gurus. The 

produced videos are facilitated to the farmers for dissemination and training. The aim is to 

deliver the targeted information and enable farmer to efficiently perform their farming 

operations. Some of the important findings from the digital green project are as follows: 

1. Video clips which attracted more attention have an entertaining flavor, such as 

women group singing folk songs. 

2. It was influential when presentations and interviews where with the farmers who 

have farming experience or have benefited from the practices that are being preached.  

3. It was well understood when a brief overview of (3-5 minutes) of topic is presented 

before conveying the actual point.   
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4. Farmers felt comfortable when familiar farmers from local vicinity performed 

demonstrations. 

5. It was observed that farmers felt the need to review the video for 5 times on 

average. 

 The above findings are also important in our design of InfoKiosk. 

      InfoKiosk is a desktop based client-server application where all the processing tasks such 

as decoding the speech, retrieving appropriate video playback, text-to-text and text-to-audio 

translation and more takes place on the server side. Client is a text-free user interface 

developed using Java Swing and Java Sound technology. The user interface as described 

above has been inspired by design principles discussed in [7, 27]. InfoKiosk is a desktop 

based application but with these design principles one could develop an equally competent 

web based application or a phone application.  
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CHAPTER 2 

OVERVIEW 

While creating a text free UI I have concentrated on design principles recommended 

in [7, 27]. One of the authors of [27], Medhi has done extensive field work while developing 

these design principles and her field work included travelling and meeting people from 400 

villages in India and South Africa. The thesis documentation has been divided into chapters 

to discuss - InfoKiosk components choice, architecture behind the application and future for 

InfoKiosk. In chapter 3, I tried to justify the choice of each component used in the InfoKiosk 

application. A detailed discussion on each module of the architecture behind the application 

is provided in chapter 4. Also in the same chapter is the high level discussion about 

interaction between those modules. The five stages of application design, software 

components used, and application tests run are all elaborated in three sections of chapter 5.   

Following are the four main stages of operation when user interacts with InfoKiosk: 

1. Selecting “kind of information” sought (On Client Side) 

For example: Public health Information, Agricultural Information 

2. User recording the query (On Client Side) 

For example: Malaria Samachar, Polio Vartalu or in a pre-defined format <<Disease>> 

<<Language>> 

Audio bytes are transmitted over to server using HTTP Post protocol.  

3. Audio to Text translation using Lumenvox (On Server Side) 

Lumenvox is a speech recognition engine used to decode the disease and language.  

4. Requesting Interpreter and Translator (On Server Side) 

After decoding the disease and language information, following steps are performed: 
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i. Using the disease and language information find the Youtube video ID for the 

requested information. 

ii. If the video is unavailable in desired language then there are  two possibilities: 

a. “Text is available in desired language”: Translator is called to speak the text 

b. “Text is available in different language”: Translator is called to convert the 

text in desired language and speak it. 

 

 

 

 

  Fig 2.1: InfoKiosk Network Architecture 

 

This architecture is originally outlined in [2]; the implementation of the core 

communication of this architecture is discussed in [11], while my work focuses from the 

perspective of a text-free user interface for this architecture. 

A more detailed explanation about each module is given in chapter 4. A view of the 

modules involved in the network architecture behind InfoKiosk is show in Figure 2.1. 
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CHAPTER 3 

APPLICATION COMPONENT CHOICES 

Design, development and implementation of the components in InfoKiosk involved 

trying various possible choices for each and finding the optimal solution where all the 

components perfectly work together. For example for Audio-to-Text translation I tried an 

open source and a subscription based SREs (Speech Recognition Engine) available in the 

market. The open source option, Julius [15], is a two-pass large vocabulary continuous 

speech recognition (LVSR) decoder software. Julius requires acoustic model, which I tried 

creating using VoxForge but the model was efficient to handle various user input. Finally, 

Lumenvox was used for Speech-to-Text translation.  

While working on the InfoKiosk I studied various topics such as Unicode for data 

storage and translation, SREs for audio to text translation and few Java APIs for interface 

development. Detailed information about each of the topics is given below sections and an 

overview can be obtained using Table 3.1 

   Table 3.1: InfoKiosk Technologies Used 

 

 Technologies  Used for 

1. Java Swing API User Interface Design 

2. Java Sound API 
JMF 
Youtube API 
Native Swing API 

Audio, Video Interaction 

3. Lumenvox API 
Unicode 
Julius 

Speech to Text Translation 

4. SGRS Grammar Grammar for Lumenvox Speech Engine 
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Continued… 

 Technologies  Used for 

5. Java Servlet Simulate HTTP Server 

6. Jffmpeg Codec 

7. Fedora 11, Eclipse and NetBeans Development Platform 

 

3.1. Unicode 

I approached Unicode seeing it as a standard way to represent and translate between 

different languages using its features such as language tagging. Though Unicode has 

language tag functionality but it was not used and not recommended to use it for language 

translation.  

 Unicode [35] is an industry standard that allows computers to represent and 

manipulate text from majority of world’s writing systems. Language tag is specified by a 

string of characters U+E0001 as tag characters. Tag values are spelled out in a format 

underlined by Internet Request for Comments (RFC) 4646 [28], i.e., using user defined tag or 

registered tag which begins with “x-”. Unicode consortium advice for Unicode users is to 

avoid the language tags in plain text because of the additional overhead of implementation. 

[35]. whenever it is implemented few points must be considered  

1. Consider protocols such as MIME, HTML as they may also provide language attributes. 

2. Consider effect of tags on syntactic meaning of text.  
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3.2. Text Free UI 

The text free UI for InfoKiosk has been designed and developed following design 

principles [7, 27] and using Java Swing. For me the motivation and guiding parameter has 

been [7, 27] in the field of creating text-free interfaces for non-literate and semi-literate users 

with application such as Employment search, Health symptoms based search application. She 

has done extensive field work enabling people, with low literacy and minimum computer 

skills, to connect and utilize computers. The common base for all successful text-free UI 

applications has been ethnographic design process and eliminating need for text. 

Ethnographic design process helped to understand that user feedback is sought after every 

step. The complete text elimination is compensated with audio feedback for all functional 

units, mouse over-actions, and semi abstracted cartoon. All the ideas have been assimilated 

into following principles of text free UI: 

  i. Minimal use of text: 

  - The reason for saying “minimal use” when target is text-free UI is that 

research has proven that numbers (1, 2, 3 etcetera) are readable by majority of people even if 

they have are illiterate.  

ii. Abstracted cartoons are preferred over simplified graphics: 

  -The hand drawn diagrams with action as visual representation of activity 

were easily understood.  

iii. Voice feedback on all functional units: 

 -  It has been observed that action on mouse over whenever possible is very 

helpful for user. All the functional elements on the application screen should have voice 

audio feedback in the language selected. Such a feedback assures users whether they have 

selected what they intended to. 
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For example- In my implementation after selecting for information on “public health” user is 

given voice feedback “You have selected to get information about “public health” (In 

appropriate language). 

iv. Full content video to dramatize the intent and mechanism of an application.  

According to [7, 27], using the above design principles led to increase in task completion 

percentage to 100% from 30%. For the Job search application the phases were: 

Intro page ---> Location Page ---- > Job Listing ---> Job Info 

For our application  

Language selection ---> Information type selection ---> Recording query ---> Video output  

 

It must be noted that user-centralized design in developing countries depends on factors such 

as: 

i. Requirement of innovation in design process 

ii. Tweaking established process to fit the context. 

iii. Designer must spend much time as possible engaging with potential user keeping 

in mind the cultural differences.  

 In another work [7], test results were presented for experiments with application using 

static images, text static drawing, hand-draw animation and videos - with & without voice 

annotation. Some of the important results were: 

i. Voice annotation helps in speed of completion.  

ii.  Richer info can be confusing and are not always better.  

iii.  Dynamic images were more understandable than static images.  
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Results from this work proved some obvious and non obvious things. Obvious things 

were  

i. Use of graphical icons may not be always useful. 

ii. Minimal use of text was productive  

iii. Voice annotation was very helpful. 

iv. Easy navigability helps in faster completion rate. 

v. Degree of interaction with subject is important. 

Not so obvious results were: 

i. Dynamic images were easy to understand than the static images. 

ii. Hand-drawn images were easier to recognize than regular photographs. 

iii. Visual representation was an important matter.  

The main challenges of designing a text free UIs has been that the visual representation must 

be comprehendible to all irrespective of culture. Major outcome of this work which was very 

useful for my thesis is that voice annotations and semi abstracted drawings were found to be 

best for non-literate user. I have introduced few additional principals which add on to the 

principles discussed in [7]: 

i. Universal help feature on all the stages of interaction with InfoKiosk. 

ii.  Audio Input: User interacts with InfoKiosk has been restricted to two types – button 

clicks and audio input. Audio Input feature makes it easy to add data on the server 

side without changing the user interface.  

iii.  Audio or video output only: The InfoKiosk user would receive response as a Youtube 

video played on Java Web player or an audio/video played using JMStudio player.  
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3.3 Speech -To-Text Translation 

Speech to text translation is a method of converting a given voice sample in to a text in 

the selected language. This is also called automatic speech recognition or speech recognition. 

Speech Engines are capable of recognizing individual words but they don’t really understand 

speech in same way as humans do. A Speech engine [35] communicates to speech 

application about what the user said and then the application decides on how to handle it. 

Some of the examples of dynamic speech-based application are Voice activated dialing, Bill 

payment, Doctor’s Appointments, Order Status, Flight Information and Phone Shopping. 

Speech recognition and voice recognition are different; voice recognition deals with 

identifying individual voices and not what the speaker said. Following are the general stages 

that speech recognition engines go through: 

1. The engine loads a grammar and speaker audio. 

2. The speaker audio, represented as waveform, is compared to waveform in acoustic 

model. 

3. The Engine compares the results in step 2 with the words in grammar. 

4. The closest matched word from the grammar is returned. 

In the development of InfoKiosk application I have tried two speech-to-text applications 

– Julius, an open source option and Lumenvox, market leaders in speech recognition software 

industry [24]. These applications have been discussed in the sections, 3.3.1 and 3.3.2. Figure 

3.2 gives a high level diagram for speech recognition engine with respect to Julius 

application. 
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Fig 3.1: General SRE Decoder 

 

 

3.3.1. Julius 

  Julius [15] is one of the best open source options available for speech 

recognition. Two of the important features of Julius which made me to try it are its two phase 

LVSR decoder software, and it being open source product. To run a Julius speech recognizer 

we need two things for your language - Language model and Acoustic Model. And this was 

biggest hurdle in adopting Julius as the audio-to-text translation module for InfoKiosk.  
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Julius is language independent decoding program which needs – a language model 

and then for the chosen language we need an acoustic model- to make a recognizer. The 

recognition accuracy depends on these models. One of the biggest problems for open-source 

SREs is the Acoustic models are not open source. Acoustic model is created using speech 

audio and that speech audio is not available freely. VoxForge tries to address this problem by 

creating speech audio and transcriptions, and by helping to create Acoustic Models for Julius 

and other open source SREs.  

An acoustic model is used to describe the statistical representation of phonemes in the 

defined in the SRE specific language. These statistical representations, also called Hidden 

Markov Models (HMMs), are created using large samples of Speeches and special training 

algorithms. As shown in the Figure 3.1, once an acoustic model is ready, the decoder listens 

for distinct user voice inputs and matches with the HMMs in the acoustic model. All the 

matching HMMs and their corresponding phonemes are recorded till a pause is reached. 

After the pause, decoder will look in pronunciation dictionary for the recorded sequence of 

phonemes. Once the word is determined a predefined grammar is scanned to get the display 

format.  

I tried to create Speaker dependent Acoustic model using Hidden Markov Toolkit 

(HTK) and Julius. Hidden Markov Models (HMMs) for representing sound in Speech 

Recognition are developed using HTK. There are three main steps involved in this process - 

Data Preparation and create Monophone HMMs, create Tied-state Triphones. Firstly, a 

phonetically balanced pronunciation dictionary has to be created with sorted list of words in 

grammar. Data preparation stage involved recording audio for the sample sentences which 

involve words in the grammar and more. After following the remaining steps the acoustic 

model prepared failed to decode recognize user input. One of the reasons for failure has been 
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the insufficient resources available to create Monophones, the second step of the complete 

process. The Monophone creation is a vital step in the creation of Hidden Markov Model and 

the tutorial is customized to create an HMM with general set of sentences. These words are 

associated with a particular frequency and are used in Monophone creation. The creation of 

HMM model was not flexible with every grammar. Also the creation of a successful acoustic 

model requires two important things – an in-depth knowledge of Hidden Markov Model and 

HTK toolkit and large amount of training data.  

 

3.3.2. Lumenvox 

 

      

 

 

      

Fig 3.2 Speech Engine 

  Lumenvox provides speech recognition tools which are generally used in IVR and 

other applications. It is not a speech verification tool. Some of the products made by them 

are: 

  i. Speech Engine 

  ii. Speech Tuner 

We are interested in Lumenvox Speech Engine. It takes audio as input (file/live input) 

and is guided by grammar to recognizes the audio. It is speaker independent and no dictation 

is needed. 

 

1. Grammars  

2. Audio Speech Engine 3. Recognized 
Text 
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Why Lumenvox? 

There are several reasons to select Lumenvox for the project. They are as follows: 

 i. Efficient development & run-time platform by allowing dynamic language, grammar & 

audio formats. 

 ii. Grammar formation is easy. Grammar consists of a set of words or it can also be 

expressed using Speech Recognition Grammar Specification (SRGS). 

 iii. User independent. Lumenvox is independent of audio source. Speech recognition can be 

performed on any audio data. 

 iv. Has built in support for Voice Activity Detection (VAD), which is used for noise 

cancellation, NBest Results (Gives top few expected solution with probability), SRGS 

standard support. 

  Though Lumenvox is optimized for IVR solutions and turned out to be good 

dedicated application software.  

There are several standards that Lumenvox supports such as Media Resource Control 

Protocol (MRCP), Semantic Interpretation for Speech Recognition (SISR), VXML, and 

SRGS. We are interested in SISR - a W3C proposal that allows programmer to define a 

specific interpretation for user input. For example, if the user inputs "May sixth two thousand 

and four" the application will understand "2004-05-06". Lumenvox defines SISR as “SISR 

allows grammar authors to embed snippets of JavaScript code into their SRGS grammars, to 

automatically transform what a speaker says into a format understandable to an application.” 
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Grammar Design: 

For Lumenvox to work for our project, we need to design a SRGS(Speech 

Recognition Grammar Specification) grammar as an additional module for Lumenvox. Once 

the grammar is defined, Lumenvox uses the defined grammar to interpret the user audio 

input. I have designed a simple two word SRGS grammar which efficiently serves our 

purpose. The grammar is designed to accept two words - Information sought and native 

language translation for word “news”. For example if the users wants information about 

Malaria in Hindi then they would say “Malaria Samachar”, where “Malaria” is the 

information sought and “Samachar” is the Hindi translation for word “news”.  

 

Table 3.2: User Audio Query Format 

 

  Information 
Sought 
(RETRIEVED) 

Native Language 
translation for 
word “news” 
(RETRIEVED) 

Information 
sought in 
language  
(DERIVED) 

1. Malaria Samachar Malaria Samachar Hindi 

2. Malaria Varthalu  Malaria Varthalu Telugu 

3.  Malaria News Malaria News English 

 

     

 

Grammar format: 

 The Lumenvox Speech Engine supports grammars must be written according to 

SRGS grammar rules. The basic structure of a grammar file would consist of Grammar 

Identifier, Grammar Header and Rules. Grammar Identifier declares the type of grammar 

being used, for example ABNF grammar. The language of interaction, root rule definition 

(where the engine begins search) and expected interactive mode are the three section under 
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Grammar Header. Finally, the Grammar Rules specify combination of words the Engine can 

recognize. Each rule has a name starting with $ character and immediately after the = sign is 

the rule expansion. The rule expansion contains the words associated with the rule and 

optionally can include the word pronunciation with its probability of occurrence.  

 

Grammar used for InfoKiosk application is as show in Figure 3.3 

 

            

Fig 3.3 Lumenvox Grammar 

 

 

 

 

 

Grammar Header 

Rules 

Grammar Identifier 
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Running Lumenvox Service and Output: 

InfoKiosk application uses Speech Engine Lite - License service of LumenVox Speech 

Engine [20]. This license version can be used to recognize up to 500 words/pronunciations 

per interaction. LumenVox Speech Engine supports multiple languages and performs speech 

recognition with audio feed. Speech Engine API provides the application with a speech port 

to communicate with it. Following are the steps that InfoKiosk goes through to decode the 

user audio data: 

i. Opening a new port to connect InfoKiosk to Speech Engine 

ii.  Load a grammar 

iii.  Load audio data 

iv. Instruct the engine to get result. 

The Speech Engine Lite gives access to use speech recognition resource on per channel 

basis. Before running the program to connect to Speech Engine the LumenVox license 

server is turned on.  

 

                                                                                                               

    Fig 3.4: Start Lumenvox Services 
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Command for restarting LumenVox Services as seen in Figure 3.4 is 

“/etc/lumenvox/lvservices_restarter.sh”.  

 

 

 

 

    Fig 3.5: Lumenvox Audio Decode Output 

 

Once the services are started the C++ decode program [Appendix: I] is run to connect to 

Speech Engine using new grammar and audio. Figure 3.5 shows the output of that program.  

 

How Speech Engine works with Grammar: 

The Speech Engine begins audio decoding from root rule, “main” in InfoKiosk 

grammar as show in Figure 3.3. It then steps through the legal expansions. The control logic 

moves into the rules “$disease” and “$news”, as it can match against combination of both 
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rules. The final result, indicated using $main rule, is a concatenation of the results from 

$disease and $news rules. Figure 3.4 show an example where “2.raw” audio file has 

pronunciation “malaria varthalu” where $disease rule returns “malaria” and $news rule 

returns “varthalu”. The output of the decode program is shown in Figure 3.5. 
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CHAPTER 4 

ARCHITECTURAL FRAMEWORK FOR NETWORK BEHIND INFOKIOSK 

The architectural framework for the network is adopted from the framework 

suggested in paper [2] by Chowdhury and Medhi. This architectural framework has 4 main  

components: 

i. User-interface 

ii. Information Base 

iii. Request Interpreter 

iv. Translator 

   The module interactions have been elaborately discussed as a 

thesis work by Jamithreddy [11] in his thesis work.  

 

4.1. Modules 

4.1.1 User Interface (UI) 

User interaction with InfoKiosk begins at this point. As the targeted users for 

InfoKiosk are non-literate and semi-literate, I have created a text free user interface using the 

design principles [7, 27]. Text-free UI has been discussed in detail in section 3.2.  

 

4.1.2 Request Interpreter (RI) 

This module is one part of server which listens to the User-Interface module for http 

post request with audio of user request and other information such as language-response-

requested. After receiving the audio bytes, the Request Interpreter, in simplest scenario, will 

pass the bytes to the speech-to-text sub module of Translator module and gets back text 

format of words pronounced in the audio. After receiving result from Speech-To-Text sub 
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module, RI will check in Information base for a video containing requested information in 

requested language. Based on this text request interpreter has to make one of the following 

choices: 

 

Case 1: If such a Youtube video is available then return the corresponding Youtube videoID 

to UI module.  

Case 2: If the video is not available for the requested information or in requested language 

then we need to look for text information. In case of having text information in requested 

language, a call to Text-To-Speech sub module will give us the required audio. This Audio is 

returned back to UI module.  

Case 3: If Case 1 and Case 2 are not satisfied then control logic comes to Case 3. Here a 

check is made to see if the requested information is present as text in a language other than 

requested language. In such a situation two sub modules of Translator module are used. 

Firstly, the Text-To-Text module is used to convert the available text in requested language. 

Secondly, the Text-To-Speech module is used to convert into audio bytes which are 

transmitted to UI module via Request Interpreter. 

Case 4: If none of the above cases are applicable then HTTP “501 Not Implemented” 

response is sent back. On receiving this message at UI module, an audio informing user about 

unavailability of information is played back in the language user is interacting. 
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Table 4.1: Request Processing Steps 

 

  Possible  Outcomes 

            -----------> 

 

 

 | 

 | 

 | Example Situation   

 | 

 | 

 v                       

Video or 

Audio 

Available in 

RL 

 

Case 1 

Text 

Available in 

RL 

 

 

 

Case 2 

Text Available 

in Another 

Language 

 

 

Case 3 

No Text or 

Audio-

Video is 

available 

 

 

Case 4. 

1 Requested 

Information : Malaria 

 

 

Requested 

Language(RL): 

Telugu 

STEP1: 

Youtube 

VidoeID is 

returned to 

UI module 

STEP 1: 

Text-To-

Speech Sub 

module of 

Translator 

module is 

called. 

STEP 2: 

Audio bytes 

are returned 

to UI module 

STEP 1: Text-

To-Text(TTT)  

sub module is 

called STEP 2: 

TTT sub 

module calls 

Text-To-

Speech Sub 

module (Sub 

modules are 

part of 

Translator 

Module) 

STEP 3: 

Audio bytes are 

returned to UI 

module 

STEP 1: 

Audio 

saying that 

the 

requested 

information 

is played 

back at UI 

module 
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4.1.3 Translator 

This module is second part of server, the first being the Request Interpreter. This 

module has three sub modules - Text-To-Speech, Speech-To-Text and Text-to-Text. For the 

Speech-To-Text translation I have tried Julius SRE and Lumenvox Speech Engine. Finally, 

based on the advantages I decided to use Lumenvox Speech Engine. Lumenvox SE translator 

needs two things - a grammar and C++ program to decode the recorded voice. Based on the 

decoding requested information, a Youtube videoID is selected by server in corresponding 

language and returned back to the User-Interface Module. The requested information - about 

a Disease or Crop - may not be available, in such a case it will be checked if the same 

information is available in text format in same or different language.  

 

4.1.4 Information Base 

For the information base, we decided to use a Youtube channel to store the videos 

required. Each of the Youtube videos has a video ID, which is returned to User-Interface 

module to be played for user. Information Base module also has videos, audios and text 

documents. If the requested information is not available as a Youtube video then other 

options are considered in the order of priority as discussed in table 5.1. 
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CHAPTER 5 

APPLICATION DESIGN, IMPLEMENTATION AND TESTING 

Text free UI Application design and implementation is very challenging mainly for 

two reasons - there has not been much application development done in this field, and the 

applications developed in this domain are very user centric and requires a constant developer-

user interaction during the software development. In this chapter, I discuss the different 

stages of user interaction with InfoKiosk in section 5.1, the software tools used to build the 

UI are discussed in following section 5.2 and finally in the section 5.3 an application 

evaluation from user point of view has been made. 

                 5.1 Stages of Design 

  InfoKiosk application has features which are universal to all its screens such as 

buttons with voice over, introductory video link on all screens and use of hand draw images 

to maximum extent. These features has been added keeping in mind the design principles of  

[7, 27]. InfoKiosk application design can be divided into five levels based on the interaction 

with the user. These stages are: Stage 1) Language selection, stage 2) Information domain 

selection, stage 3) User request (audio) submission, stage 4) Video or audio reply and stage 

5) Help video.  

 

Stage 1: Language selection 

The language selection stage gives user a choice of language in which user wants to 

interact with the system. As the target users are non-literate and semi-literate, the possibility 

that they have low income level and less social interaction is high. These are some of the 

factors I have considered while identifying things users might relate to a particular language. 
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Following were the possible options for the images to be used to represent a language 

selection: 

1. Local Political leader’s pictures.  

2. Regional Sport person or Movie Star 

3. Regional famous monuments 

4. Words written in the regional language and use of numbers. 

 It is quite common that people tend to recognize their regional language if seen in 

written format. They may not be able to read it but they identify it as their language. We have 

built our Language Selection interface based on this thought. Figure 5.1 is a screenshot of the 

InfoKiosk language selection interface. We have several buttons each with an icon depicting 

words from that particular language. As we have discussed in the design principles [7, 27], 

people tend to comfortable with number so we have used numbers with different colors to 

identify the different languages along with the icons. 
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     Fig 5.1: Language Selection 

 

 

Stage 2: Information Domain Selection 

 As show in Figure 5.2, at this stage users have to make a choice of the kind of 

information they will be seeking. The range of available domains is currently limited for the 

demo purpose but the application is scalable to as many domains as desired. The domains can 

Help Telugu 

Tamil 

Hindi 
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be accessed by clicking on buttons representing the domain. Each domain is represented by a 

hand drawn image which is displayed as icon on the button. As described in this thesis in 

chapter 2, the diagrams are made depicting an action taking place rather than a still image. It 

has been observed that images depicting an action are more easily perceived. Once the users 

make the choice of the information domain they are transferred to next stage. This stage also 

provides the user choice to get back to language selection screen.  

 

 

 

 

      Fig 5.2: Domain Selection 

 

 

Following are the information domains which are largely used by user and thus have been 

used for demonstration purpose: 

1. Medical Domain Information 

Language 
Selection 

Agriculture 
domain 

Health 
domain 

Help 
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 Medical information is direly needed by Indian people in villages and towns 

especially in the circumstances where there is no public health facility or doctor available. 

The kind of general information that is sought is about disease such as Malaria, Polio. Also 

general information about vaccinations and immunization can be provided through this 

domain.  

2. Agricultural/farming Information 

 India has been an agricultural country for a long time with 60% of the population [5] 

living on it for livelihood. The livelihood of many and especially poor farmers has been made 

critical due to many factors like unfriendly climate and government ignorance. Also, majority 

of the Indian farmers suffer with lack of information of good modern farming practices. One 

of the reason farmers tend to follow their intuition or go by the hearsay of fellow villagers. 

These factors make agricultural related information a popular point of interest among 

villagers.  

 Other information domains where InfoKiosk can be used are rural employment 

information, general election information and government welfare schemes. Also the 

application of InfoKiosk is not limited to the domains discussed.  

Stage 3: User request (Audio) submission 

 Once the users are in this stage, they are ready to record their query in a predefined 

format and click on next button. The user query should be in pre-defined format of two 

words. For example if the user wants to query about information about malaria/polio in 

Hindi/Telugu i.e. firstly, selecting “Hindi/Telugu in Language Selection” Stage and secondly, 

selecting Public-health information in “Information Domain Selection“stage. The user audio 

input for such a case would look like: 

i. Malaria Samachar: Where Samachar means News. 
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ii. Polio Varthalu: Where Varthalu means News. 

 This interpretation of the users audio input is done at server side. Client application 

would send the recorded audio bytes over HTTP to the server or Requester Interpreter and 

server would decode the audio using the explained grammar to understand what information 

is requested. The server side audio to text translation is done using the C program. After 

understanding the information requested in the language, server side will look up if such 

information is present in the defined priority order. The priority order is: 

  a. Requested information in requested language in video format 

  b. Requested information in audio format. 

 

Table 5.1: Possible Outputs From Request Interpreter 

 

 Information return priority 
order 

When is it 
possible? 

What will 
client receive 
from server? 

Notes 

1. Requested information in 
requested language in video 
format 

If such a video is 
present on our 
Youtube channel 

Youtube 
VideoID  

 

2.  Requested information in 
requested language in audio 
format 

1. Priority order 1 
cannot be 
satisfied. 
2. Requested 
information is 
available in any 
language as Text. 
Or requested 
information is 
present in desired 
language as audio. 

Audio bytes 
which will be 
combined to 
form an 
audio file.  

If requested 
information is present 
in given language as 
text 
then Server makes 
call to text-to-speech 
module. 
 
If requested 
information is present 
in different language 
as text then Server has 
to make two calls -to 
text-to-text module 
and text-to-speech 
module.  
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Fig 5.3 Code To Capture Audio 



34 
 

 

 

 

 

    Fig 5.4: Audio Request Recording 

 

 

Stage 4: Video and/or Audio Reply 

 InfoKiosk is capable of playing a typical Youtube video or standard format audio file using 

JMStudio player. Client application makes an informed decision of which player to choose 

based on the HTTP response from server.  

  

 

Record Audio 
Request 

Process 
request 
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Fig 5.5: Youtube Web Player 

 

 

 

 

Fig 5.6: JMStudio Player 
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Stage 5: Help video 

    A help button is displayed to the user on all the screens. This gives user the choice of 

watching a Youtube video which has the usability demo of the entire application and its 

features. 

  

 

 

Fig 5.7 Code for Introduction Help Screen 
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5.2 Tools and Software Used 

5.2.1 Video Playback: 

       There are two players I have used to play videos and audio from the server. I have used 

Adobe Flash player and Java Sound JMStudio[13]. Playing Youtube video was challenging 

with respect to the format Youtube videos are returned. The Youtube videos are returned in 

SWF format which cannot be streamed on normal video players like JMStudio and advanced 

players like VLC. Note, the Youtube used to allow there video to be streamed from players 

like VLC but they do not any more. In order to play Youtube video I needed a Java Web 

player and I have used third party player from DJ Project [6]. 

The Youtube videos are automatically played full screen using this URL format. We 

use the following Youtube link format to stream the video.  

http://www.youtube.com/v/VIDEO_ID?f=videos&app=youtube_gdata&autoplay=1  

In such a link, we would only need Youtube videoID, obtained from InfoKiosk Information 

Base, to stream the video.  

 To play an audio file in common format like WAV we use JMStudio player which is 

provided by Oracle along with (Java Media Framework) JMF framework package. JMF is a 

module which handles audio and video files in Java; and included in it is media player called 

Java Media Studio (JMStudio). JMStudio finds the customized player, to play the audio, 

based on properties such as Audio codec and video codec. Often times it fails to find a codec 

and would be unable to handle the format. Jffmpeg plug-in [14] is used to playback a number 

of audio and video formats. For example, audio formats supported are MP3, AC3 and Vorbis; 

video formats supported are H263, MPEG, WMV and more.  

 In the case when the audio is sent from server it is first downloaded and played back 

using JMStudio player.  
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5.2.2 Audio Request Recording: 

Voice recording has been done using Java Sound API. Java Sound accepts audio in 

predefined formats only and it also based on the audio-video support of the system. It was 

observed that the most generally used audio formats like mpeg, avi were not successfully 

handled using basic Java Sound API. In order to accommodate the deficiency, I have used 

JFFmpeg, free software licensed under the LGPL/GPL. It is a cross-platform solution to 

record, convert and stream media - audio and video.  

 

 

 

Fig 5.8: Code to Set the Audio Format  
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The audio format supported by JMstudio player is defined in the class 

javax.sound.sampled.AudioFormat. Sound is defined by fields such big-endian or little-

endian storage format, number of channels, type of encoding, and frame size, frame rate, 

sample size in bits and sample rate. The speech-to-text converter used in the thesis, 

Lumenvox, requires audio to be fed in a specific format. Following are the values of the 

parameters used: 

i. Storage Format: little-endian format.  

ii.  Number of Channel: Mono channel. 

iii.  Sample Size: 16 bits 

iv. Sample Rate and Frame Rate: 8KHz 

v. Encoding: PCM Signed 

vi. Frame Size: (Sample Size/8)*channels 

 

         5.3 Evaluation 

InfoKiosk has been tested to check following features of the application – content 

understandability and ease of navigation. InfoKiosk has been designed keeping the non-

literate or semi literate population in India as a case in point. In general, a user makes a 

request for certain information in a particular language. If the user is given the requested 

information in the desired language and format then the test case is said to have successfully 

passed.  
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Fig 5.9: Client Sending Audio bytes over HTTP 

 

 

The test cases have been run against the InfoKioskServer, a server which accepts the 

client’s audio data and creates a “.raw” audio file from it. The InfoKiosk application and 

InfoKiosk server communicate using HTTP protocol. This audio file is fed to Lumenvox 

code for decoding and recognizing the information requested. Depending on the availability 

of the requested information and its format, a response is generated for the client. Figure 5.9 

gives the code for connecting to InfoKioskServer using HTTP and sending audio data using 

POST method.  
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Fig 5.10 : InfoKioskServer handling the client data 

 

 

The InfoKioskServer would accept such post request and form a RAW format audio 

file. The code handling the client request is shown in Figure 5.10. 
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Table 5.2 InfoKiosk Test Cases 

 

 Test Case  Steps Involved Results 

1. Requested 

Information is 

available as 

Youtube video. 

Sub Cases: 

- All requested 

Language 

- All requested 

domains 

Client:  

a. Selecting a language. 

b. Selecting a domain of interest 

c. Recording and submitting the audio 

request. 

d. Stream the Youtube video based on 

VideoID. 

Server: 

a. Request is decoded using Lumenvox. 

b. Select corresponding Youtube VideoID 

and return to client. 

 

Successfully 

Completed. 

2 

.  

Requested 

Information is 

available as video 

on server. 

Sub Cases: 

- All requested 

Language 

- All requested 

domains 

Client:  

a. Selecting a language. 

b. Selecting a domain of interest 

c. Recording and submitting the audio 

request. 

d. Play the video after downloading it through 

link obtained from server. 

Server: 

a. Request is decoded using Lumenvox. 

b. Select corresponding video link and return 

to client. 

 

Successfully 

Completed. 
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Table 5.2 continued …   

 Test Case  Steps Involved Results 

3. Requested 

Information is 

available in same 

or different 

language  as text 

Client:  

a. Selecting a language. 

b. Selecting a domain of interest 

c. Recording and submitting the audio 

request. 

d. Download the Audio and play 

Server:  

a. Request is decoded using Lumenvox. 

b. Select the available text and input it to Text-

to-Text converter and then to Text-to-

Speech converter.  

c. Send the audio link back to Client. 

To Implement 

4. Requested 

Information 

available in 

different 

languages as 

audio/video 

Client:  

a. Selecting a language. 

b. Selecting a domain of interest 

c. Recording and submitting the audio 

request. 

d. Download the Audio and play 

Server:  

a. Request is decoded using Lumenvox. 

b. Select the available audio/video and call 

speech-to-speech converter. 

c. Send the audio link back to client. 

 

To Implement  

5. Requested 

information not 

available 

Server 

a. Send Audio bytes which say “No 

Information” in the user selected language 

To Implement 
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 While I have tried to include all the test cases but there are cases which are not 

covered due to the lack of availability of such features. The above test cases do include cases 

when requested information is available in different language or when there is no information 

available. This case with information available in different language requires a text-to-text 

converter, which is seen as one of the future improvement to the application 

Another aspect that has been studied under during the evaluation of the InfoKiosk 

application is its ability to portable to different environment – it other terms its flexibility. 

The two stages of InfoKiosk application – Language Selection, Information Domain 

Selection – provide the flexibility by defining the button-based selection procedure. 

Language selection in a button-based selection mode involves defining a language specific 

button with an appropriate image. So adding or removing a new language involves adding or 

removing a new button with a corresponding image. As shown in figure 5.1, with a small 

image size we can show 9 different language categories. Similarly the Domain selection, as 

shown in figure 5.2, also reflects similar flexibility.  Figure 5.11 briefly shows kind of 

information exchanged in a typical InfoKiosk application.  
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     Fig 5.11 Sequence diagram for InfoKiosk Application 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

As the target user for InfoKiosk application is semi-literate and non-literate 

population, one way to imagine the possible amount of usage of such application can be the 

population of target audience. India currently has largest percentage of non-literate 

population of any nation on earth. The population of adult illiterates in India [17] is 291 

million out of world count of 796 million. So the application has the chance to be influence a 

very large volume of consumers.  

 Application is scalable with respect to the languages and applicable domain. Each 

domain or language has can be selected by click of a button so adding a new domain or 

language would mean adding a new button. I have created application with an example of 

public health and agriculture information domain but it can be used for any domain of choice 

of the user.  

I understand the importance of testing an application and regret that we cannot test the 

application using target users. In future if possible we can get feedback after testing 

application against target user. Such a feedback would let us improve the usability aspect of 

the application. For example - currently we have only one stage on the application which has 

majority audio only interaction i.e. the User Request (Audio) phase. If the user is seen 

comfortable to such an interaction we can extend it to other phases like languages selection.  

 India has around 617 million mobile subscribers [37], second largest in the world. 

The increasing number of phones with access to web will make an InfoKiosk mobile 

application a very lucrative option. India entered 3G arena in 2008 with Government led 

Bharat Sanchar Nigam Limited (BSNL) providing mobile and data services. The launch of 

3G services by private mobile service provider starts November 2010 [38]. It would decrease 
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the hardware and labor cost as it would require no installation and it also makes the product 

mobile, maintainable and more reachable to common people. InfoKiosk as a mobile 

application would follow same stages of design illustrated in Section 5.1, thus not 

deprecating users of its benefits. One of the hindrances of using InfoKiosk as mobile 

application would be the cost of a smartphone, a phone with advanced computing capability 

and connectivity.  The price of a smartphone in India is Rs 20,000 and above [39]. With the 

audience for our application in mind, such a smartphone can be shared between the people in 

a under a community in a village. Developing text free UIs principles for mobile phones has 

also been suggested in [25, 16]. Lalji and Good [16] have used user-centered, incremental 

design approach and discuss mobile phone design approach for non-literate persons.  

 A sample android phone application for InfoKiosk was created and figure 6.1 and 6.2 

are the screenshots.  

 

 

Fig 6.1: Prototype Android Application – Language Selection 
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Fig 6.2: Prototype Android Application – Domain Selection 

 

Each domain of InfoKiosk application is defined to handle specific set of requests and 

is not all compassing. For example, on selection of medical domain would handle request in a 

specific format such as <disease-name><request-in-a-specific-language>. Disease domain 

would give general information about a particular disease as available in the media such as 

internet article or Youtube video. InfoKiosk cannot provide a knowledgeable feedback if 

audio request is a question. The application would not be able to process request like “I have 



49 
 

102 F temperature, what medicine should I take?”. Its inability comes due to the fact that the 

grammar defined for Speech Recognition Engine is not defined to handle it.  
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APPENDIX 

I. Lumenvox Program 

#include <LVSpeechPort.h> 

#include <iostream> 

#include <fstream> 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

#include <sys/mman.h> 

#include <unistd.h> 

 

void run_decode(std::string ip,std::string grammar_name) 

{ 

 

         std::string FileName = grammar_name; 

        SOUND_FORMAT audio_format = PCM_8KHZ; 

       std::string grammar_fn="publicHealth.gram"; 

 

        LVSpeechPort port; 

        //1. Open Audio file 

        int FileHandle=open(FileName.c_str(), O_RDONLY, S_IREAD); 

 

        if (FileHandle == -1) 

        { 

                printf("Cannot open the file %s \n",FileName.c_str()); 

                return; 

        } 

 

        struct stat temp_stat; 

        //2. Getting statistics of the audio file e.g. length of file. 

        if (stat(FileName.c_str(),&temp_stat) == -1) 

          { 

                close(FileHandle); 

                printf("Cannot get size of file %s\n",FileName.c_str()); 

                return; 

        } 

 

        unsigned  long Length=temp_stat.st_size; 

        //3. Creating map file for the the audio file. 

        void *MAP = mmap(NULL,Length,PROT_READ,MAP_PRIVATE |     

MAP_DENYWRITE,FileHandle,0); 

        if (!MAP || MAP == (void *)0xffffffff) 

        { 
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         close(FileHandle); 

         printf( "Cannot create a mapfile from %s\n",FileName.c_str()); 

         return ; 

        } 

 

        char *C = (char *)MAP; 

 

         //4. Point the client library to a local server and a remote server 

        port.SetClientPropertyEx(PROP_EX_SRE_SERVERS, 

PROP_EX_VALUE_TYPE_STRING,(void *)ip.c_str()); 

        unsigned int count = 0; 

        int retval; 

 

        printf("Connecting to %s\n",ip.c_str()); 

 

        while(count<5) 

        { 

        //5. Opening the Speech port 

         if((retval=port.OpenPort())!=0) 

          { 

             printf("OpenPort() failed, errorcode returned %d\n",retval); 

          } 

        //6. Set properties of port 

        port.SetPropertyEx(PROP_EX_DECODE_TIMEOUT, PROP_EX_VALUE_TYPE_INT, 

(void*)50000, PROP_EX_TARGET_PORT); 

 

        int vc = 1; 

           //7. Adding Audio 

        if((retval=port.LoadVoiceChannel(vc, C, Length, audio_format))!=0) 

        { 

          printf("LoadVoiceChannel failed, errorcode returned %d\n",retval); 

        } 

 

        //8. Working with Grammars 

        if((retval=port.LoadGrammar("blah", grammar_fn.c_str())!=0)) 

        { 

          printf("LoadGrammar() failed, errorcode returned %d\n",retval); 

        } 

 

        if((retval=port.ActivateGrammar("blah"))!=0) 

        { 

          printf("ActivateGrammar() failed, errorcode returned %d\n",retval); 

        } 

 

        //9.Decoding 
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        // this logs the responses that client receives to <installdir>/Lang/Responses directory 

        port.SetProperty(PROP_SAVE_SOUND_FILES,1); 

        int retv = port.Decode(vc, LV_ACTIVE_GRAMMAR_SET, LV_DECODE_BLOCK | 

LV_DECODE_SEMANTIC_INTERPRETATION ); 

 

        //# of interpretations 

        int numInterp = port.GetNumberOfInterpretations(vc); 

 

        printf("Number of Interpretation %d\n",numInterp); 

        for (int t = 0; t < numInterp; ++t) 

        { 

                printf("Interpretation %i:\n%s\n",t+1,port.GetInterpretationString(vc,t)); 

                printf("Interpretation Score :%d\n\n",(port.GetInterpretation(vc,t)).Score()); 

        } 

        if(count<=3) 

        printf("count=%d, decode returns %d\n", count, retv); 

 

                ++count; 

    //close port 

        port.ClosePort(); 

        } 

 

        msync(MAP,Length,MS_SYNC); 

        munmap(MAP,Length); 

        close(FileHandle); 

} 

 

 

int main(int argc,char *argv[]) 

{ 

        if(argc <2) 

        { 

                printf("Lumenvox Lite Command: %s SERVER_IP GRAMMAR_NAME \n",argv[0]); 

                return -1; 

        } 

      run_decode(argv[1],argv[2]); 

 

return 0; 
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