

INFOKIOSK: AN INFORMATION KIOSK WITH TEXT-FREE USER INTERFACE

A THESIS IN
 Computer Science

Presented to the Faculty of University
 of Missouri-Kansas City in partial fulfillment of

the requirement for the degree

MASTER OF SCIENCE

by

PRASHANT SUNKARI

B.Tech, Jawaharlal Nehru Technological University, India, 2008

Kansas City, Missouri

2010

© 2010

PRASHANT SUNKARI

ALL RIGHTS RESERVED

iii

INFOKIOSK: AN INFORMATION KIOSK WITH TEXT-FREE USER INTERFACE

Prashant Sunkari, Candidate for the Master of Science Degree

University of Missouri-Kansas City, 2010

ABSTRACT

Even though computer usage may seem very intuitive to almost everyone, they have

minimum usability requirements that the user’s ability to read is in the language being used.

In developing countries such as India, where the adult literacy rate is 66% [1], this basic

requirement for computer usage is its major hindrance. Some other hindrances to accessing

modern technology are socio-economic inequality and cultural diversity. InfoKiosk is an end-

user application as a step towards providing a text-free user interface (UI) using an existing

architectural framework [2]. InfoKiosk UI is designed using features such as action images to

represent types of information, mouse-over audio for navigation help, and universal help

videos throughout every screen of the application. User inputs and outputs to InfoKiosk are

kept intuitive and easy to understand. Two kinds of possible user inputs are – audio and

mouse click. In response, the user will receive streaming audio and/or video from YouTube

or the InforKiosk server. The design and development of InfoKiosk involve working with

technologies such as Java Sound API and, Lumenvox text-to-speech translator.

iv

 APPROVAL PAGE

The faculty listed below, appointed by the Dean of School of Computing and Engineering,

have examined a thesis titled “InfoKiosk: An Information Kiosk With Text-Free User

Interface”, presented by Prashant Sunkari, candidate for the Master of Science degree, and

certify that in their opinion it is worthy of acceptance.

Supervisory Committee

Deep Medhi, Ph.D., Committee Chair
Computer Science and Electrical Engineering

Yugyung Lee, Ph.D.

Computer Science and Electrical Engineering

Praveen Rao, Ph.D.
Computer Science and Electrical Engineering

v

CONTENTS
ABSTRACT .. iii

LIST OF TABLES .. vii

LIST OF ILLUSTRATIONS ... viii

ACKNOWLEDGMENTS ... ix

Chapter

1. INTRODUCTION .. 1

2. OVERVIEW .. 6

3. APPLICATION COMPONENT CHOICES ... 8

3.1. Unicode ... 9

3.2. Text Free UI .. 10

3.3 Speech -To-Text Translation ... 13

3.3.1. Julius ... 14

3.3.2. Lumenvox ... 16

4. ARCHITECTURAL FRAMEWORK FOR NETWORK BEHIND INFOKIOSK............. 23

4.1. Modules ... 23

4.1.1 User Interface (UI) .. 23

4.1.2 Request Interpreter (RI) ... 23

4.1.3 Translator ... 26

4.1.4 Information Base ... 26

5. APPLICATION DESIGN, IMPLEMENTATION AND TESTING 27

5.1 Stages of Design... 27

5.2 Tools and Software Used ... 37

5.2.1 Video Playback: .. 37

5.2.2 Audio Request Recording: .. 38

5.3 Evaluation .. 39

6. CONCLUSION AND FUTURE WORK .. 46

APPENDIX.. 50

REFERENCES .. 53

vi

VITA .. 56

vii

LIST OF ILLUSTRATIONS

Figure Page

1. InfoKiosk Network Architecture ...7

2. General SRE Decoder ...14

3. Speech Engine ...16

4. Lumenvox Grammar ..19

5. Start Lumenvox Services ...20

6. Lumenvox Audio Decode Output ..21

7. Language Selection ..29

8. Domain Selection ...30

9. Code To Capture Audio ..33

10. Audio Request Recording ... 34

11. Youtube Web Player ... 35

12. JMStudio Player .. 35

13. Code for Introduction Help Screen ...36

14. Code to Set Audio Format ..38

15. Code to Send Audio Bytes Over HTTP ..40

16. InfoKiosk Server Handling Client Data ...41

17. Sequence diagram for InfoKiosk Application ..45

18. Prototype Android Application – Language Selection……………………………...47

19. Prototype Android Application – Domain Selection………………………………..48

viii

LIST OF TABLES

Table Page

1. User Audio Query Format ...8

2. InfoKiosk Technologies Used ……………………………………………………………18

3. Request Processing Steps ..25

3. Possible Outputs from Request Interpreter ..32

4. InfoKiosk Test Cases ..42

ix

ACKNOWLEDGMENTS

Completion of any task requires two things passion to work on the topic and moral

support. I thank God for giving me the interest to work on such an interesting topic. I am also

grateful to Dr. Deep Medhi for his support and feedback as my advisor. It has been a pleasure

working under his guidance. I am thankful to Venkata Rama Krishna Jamithireddy, Chitti

Babu Ruddaraju for their contribution and assistance in my thesis work.

 I would like to thank my parents, Dr. Vishwanatham Sunkari and Aruna Sunkari, and

my sister Sai Madhavi Sunkari for their encouragement and moral support throughout my

life. I am also thankful to my close friends - Rahul Reddy Varakala and Wendy Seelbinder-

for their support and encouragement .

1

CHAPTER 1

INTRODUCTION

Currently, majority of people use computers for business, education and

entertainment through laptops, desktop computers and mobile phones. If we take a careful

look at section of people who can interact with these computers, then we find computers have

always been a productive tool for literate people with at least a minimum ability to read and

understand. These devices have been a powerful source of information and knowledge. If one

is using such devices then one must be, at minimum, able to read the text in the language in

use. Such a restriction renders millions of people, who are non-literate or semi-literate,

unable to access world of information that could be of their importance. InfoKiosk is a step

towards making the information available to people irrespective of their literary skills.

InfoKiosk is an end-to-end user application with a text-free user interface (UI) and interacts

with user based on audio, video and image display. In my work I have considered India as a

case in point because of reasons such as

1. India is house to world’s largest number of adult illiterates [1],

2. India offers diversity challenges by being a multi-lingual and, multi-religious country [2].

3. India also has vast socio-economic and cultural diversity [2].

Even though I will talk about InfoKiosk application considering the challenges in

India, its architecture and application design is quite adaptable to any region of the world

facing similar challenges.

India has adult literacy rate of 66% [33, 26] which well below the world literacy rate

of 83%. According the UNESCO Institute for Statistic’s worldwide survey [1], in 2008, 796

million adults were reported non-literate. Due to illiteracy and poverty people are unable to

make use of the information which is easy and, sometimes, freely available. They are left

2

behind in the world where, if googled, one can get all kind of information on web. Some of

information has universal understandability when provided in multimedia formats – audio,

video and images. For example, a person in a village in India would cherish availability of

public health information from a nearby information kiosk. And for a farmer equally valuable

would be any information about kind of fertilizer to be used for a certain crop. Also,

information about vaccination, immunizations, employment, government schemes are useful

when communicated on time. For making such information accessible to the varied

population with characteristic like non-literate or semi-literate, multi-lingual and multi-

cultural, it is important to concentrate on how it is presented to user. The information on web

and in general can be broadly divided into four kinds - text, audio only, audio-video and

images. The last three together are also called multi-media. InfoKiosk application heavily

uses video/audio output (YouTube), text-to-audio conversion, audio feedback and images.

InfoKiosk application ensures that non-literate users do not feel restricted while using

applications on computer.

Generally, Information & Communication Technologies enabled public health

projects reach users in one of the following ways: [9]

> Exclusive Websites for diseases

> Training material available on internet such as medical journals and periodicals for

nurses and paramedics.

> e-Learning facilities such as web-based portals.

> Virtual knowledge centers for information dissemination.

> e-consultation of sensitive information such as AIDS

3

All the current and similar applications have exceedingly high level of complexity and

diversity.

My goal while working on, InfoKiosk, was to create a text free UI with an

architectural capability to enable non-literate or semi-literate people to interact and obtain

essential information from an intuitive computer application. My implementation is inspired

from the innovative work in the paper [2] by Chowdhury and Medhi. The authors have

proposed an architectural framework for electronic access and retrieval of public health

system in developing countries like India. There architecture was built considering myriad of

factors like socio-economic diversity, multilingualism. The final design has qualities like

inclusive, dialectic, adaptive, evolving, robust, and people sensitive.

 There have been few attempts to create applications, projects and products which are

aimed to help illiterate population in developing countries. In early 2000, seven Indian

scientist and engineers at Simputer Trust [30], designed a self-contained handheld computer,

called Simputer [29], as an alternative to Personal Computer. “Simputer” stands for Simple

Inexpensive Multilingual People’s computer. Simputer has Linux Operating System, text-to-

speech software, smart card reader/writer, web interfacing, touch screen operated by stylus

and simple handwriting recognition software. The device was though aimed to help citizens

in villages of India it ended up being used for other purposes such as land records

procurement by Indian state of Karnataka, automobile engine diagnostics, and so on. Some of

the success inhibitors could have been high license cost, lower cost of laptops and PDAs and

lack of support from Government and NGOs.

Another work in the area of application development for illiterate population and one

of the biggest influences to my work has been text-free UI application by Medhi which was

discussed in [27]. She suggested some innovative design principles, for developing text-free

4

UIs, through an ethnographic design process. The process involved working with 250 people

and more than 300 hours for field work at urban slums in Bangalore, India. These designed

principles [7, 26] have been used for some test applications such as one developed for

informal labor job search. While developing InfoKiosk, I have followed these proposed

design principles and also added few additional principles. She has also explored similar

design principles for mobile phones and also performed a usability test with design

suggestions such as general text based, using multimedia and with spoken dialog feedback. It

was concluded that non literates and semi-literate had faster completion rates and required

less assistance while using spoken-dialog system. It may be noted that design methods for

mobile interface for non-literate users is addressed in [16].

A major influence in the design and development of InfoKiosk is the Digital Green

project [3]. This project based on a participatory learning framework and helps small and

marginal farmers in India to access targeted agricultural information. This information is

stored in a video repository and the content is generated by farmers and domain gurus. The

produced videos are facilitated to the farmers for dissemination and training. The aim is to

deliver the targeted information and enable farmer to efficiently perform their farming

operations. Some of the important findings from the digital green project are as follows:

1. Video clips which attracted more attention have an entertaining flavor, such as

women group singing folk songs.

2. It was influential when presentations and interviews where with the farmers who

have farming experience or have benefited from the practices that are being preached.

3. It was well understood when a brief overview of (3-5 minutes) of topic is presented

before conveying the actual point.

5

4. Farmers felt comfortable when familiar farmers from local vicinity performed

demonstrations.

5. It was observed that farmers felt the need to review the video for 5 times on

average.

 The above findings are also important in our design of InfoKiosk.

 InfoKiosk is a desktop based client-server application where all the processing tasks such

as decoding the speech, retrieving appropriate video playback, text-to-text and text-to-audio

translation and more takes place on the server side. Client is a text-free user interface

developed using Java Swing and Java Sound technology. The user interface as described

above has been inspired by design principles discussed in [7, 27]. InfoKiosk is a desktop

based application but with these design principles one could develop an equally competent

web based application or a phone application.

6

CHAPTER 2

OVERVIEW

While creating a text free UI I have concentrated on design principles recommended

in [7, 27]. One of the authors of [27], Medhi has done extensive field work while developing

these design principles and her field work included travelling and meeting people from 400

villages in India and South Africa. The thesis documentation has been divided into chapters

to discuss - InfoKiosk components choice, architecture behind the application and future for

InfoKiosk. In chapter 3, I tried to justify the choice of each component used in the InfoKiosk

application. A detailed discussion on each module of the architecture behind the application

is provided in chapter 4. Also in the same chapter is the high level discussion about

interaction between those modules. The five stages of application design, software

components used, and application tests run are all elaborated in three sections of chapter 5.

Following are the four main stages of operation when user interacts with InfoKiosk:

1. Selecting “kind of information” sought (On Client Side)

For example: Public health Information, Agricultural Information

2. User recording the query (On Client Side)

For example: Malaria Samachar, Polio Vartalu or in a pre-defined format <<Disease>>

<<Language>>

Audio bytes are transmitted over to server using HTTP Post protocol.

3. Audio to Text translation using Lumenvox (On Server Side)

Lumenvox is a speech recognition engine used to decode the disease and language.

4. Requesting Interpreter and Translator (On Server Side)

After decoding the disease and language information, following steps are performed:

7

i. Using the disease and language information find the Youtube video ID for the

requested information.

ii. If the video is unavailable in desired language then there are two possibilities:

a. “Text is available in desired language”: Translator is called to speak the text

b. “Text is available in different language”: Translator is called to convert the

text in desired language and speak it.

 Fig 2.1: InfoKiosk Network Architecture

This architecture is originally outlined in [2]; the implementation of the core

communication of this architecture is discussed in [11], while my work focuses from the

perspective of a text-free user interface for this architecture.

A more detailed explanation about each module is given in chapter 4. A view of the

modules involved in the network architecture behind InfoKiosk is show in Figure 2.1.

8

CHAPTER 3

APPLICATION COMPONENT CHOICES

Design, development and implementation of the components in InfoKiosk involved

trying various possible choices for each and finding the optimal solution where all the

components perfectly work together. For example for Audio-to-Text translation I tried an

open source and a subscription based SREs (Speech Recognition Engine) available in the

market. The open source option, Julius [15], is a two-pass large vocabulary continuous

speech recognition (LVSR) decoder software. Julius requires acoustic model, which I tried

creating using VoxForge but the model was efficient to handle various user input. Finally,

Lumenvox was used for Speech-to-Text translation.

While working on the InfoKiosk I studied various topics such as Unicode for data

storage and translation, SREs for audio to text translation and few Java APIs for interface

development. Detailed information about each of the topics is given below sections and an

overview can be obtained using Table 3.1

 Table 3.1: InfoKiosk Technologies Used

 Technologies Used for

1. Java Swing API User Interface Design

2. Java Sound API
JMF
Youtube API
Native Swing API

Audio, Video Interaction

3. Lumenvox API
Unicode
Julius

Speech to Text Translation

4. SGRS Grammar Grammar for Lumenvox Speech Engine

9

Continued…

 Technologies Used for

5. Java Servlet Simulate HTTP Server

6. Jffmpeg Codec

7. Fedora 11, Eclipse and NetBeans Development Platform

3.1. Unicode

I approached Unicode seeing it as a standard way to represent and translate between

different languages using its features such as language tagging. Though Unicode has

language tag functionality but it was not used and not recommended to use it for language

translation.

 Unicode [35] is an industry standard that allows computers to represent and

manipulate text from majority of world’s writing systems. Language tag is specified by a

string of characters U+E0001 as tag characters. Tag values are spelled out in a format

underlined by Internet Request for Comments (RFC) 4646 [28], i.e., using user defined tag or

registered tag which begins with “x-”. Unicode consortium advice for Unicode users is to

avoid the language tags in plain text because of the additional overhead of implementation.

[35]. whenever it is implemented few points must be considered

1. Consider protocols such as MIME, HTML as they may also provide language attributes.

2. Consider effect of tags on syntactic meaning of text.

10

3.2. Text Free UI

The text free UI for InfoKiosk has been designed and developed following design

principles [7, 27] and using Java Swing. For me the motivation and guiding parameter has

been [7, 27] in the field of creating text-free interfaces for non-literate and semi-literate users

with application such as Employment search, Health symptoms based search application. She

has done extensive field work enabling people, with low literacy and minimum computer

skills, to connect and utilize computers. The common base for all successful text-free UI

applications has been ethnographic design process and eliminating need for text.

Ethnographic design process helped to understand that user feedback is sought after every

step. The complete text elimination is compensated with audio feedback for all functional

units, mouse over-actions, and semi abstracted cartoon. All the ideas have been assimilated

into following principles of text free UI:

 i. Minimal use of text:

 - The reason for saying “minimal use” when target is text-free UI is that

research has proven that numbers (1, 2, 3 etcetera) are readable by majority of people even if

they have are illiterate.

ii. Abstracted cartoons are preferred over simplified graphics:

 -The hand drawn diagrams with action as visual representation of activity

were easily understood.

iii. Voice feedback on all functional units:

 - It has been observed that action on mouse over whenever possible is very

helpful for user. All the functional elements on the application screen should have voice

audio feedback in the language selected. Such a feedback assures users whether they have

selected what they intended to.

11

For example- In my implementation after selecting for information on “public health” user is

given voice feedback “You have selected to get information about “public health” (In

appropriate language).

iv. Full content video to dramatize the intent and mechanism of an application.

According to [7, 27], using the above design principles led to increase in task completion

percentage to 100% from 30%. For the Job search application the phases were:

Intro page ---> Location Page ---- > Job Listing ---> Job Info

For our application

Language selection ---> Information type selection ---> Recording query ---> Video output

It must be noted that user-centralized design in developing countries depends on factors such

as:

i. Requirement of innovation in design process

ii. Tweaking established process to fit the context.

iii. Designer must spend much time as possible engaging with potential user keeping

in mind the cultural differences.

 In another work [7], test results were presented for experiments with application using

static images, text static drawing, hand-draw animation and videos - with & without voice

annotation. Some of the important results were:

i. Voice annotation helps in speed of completion.

ii. Richer info can be confusing and are not always better.

iii. Dynamic images were more understandable than static images.

12

Results from this work proved some obvious and non obvious things. Obvious things

were

i. Use of graphical icons may not be always useful.

ii. Minimal use of text was productive

iii. Voice annotation was very helpful.

iv. Easy navigability helps in faster completion rate.

v. Degree of interaction with subject is important.

Not so obvious results were:

i. Dynamic images were easy to understand than the static images.

ii. Hand-drawn images were easier to recognize than regular photographs.

iii. Visual representation was an important matter.

The main challenges of designing a text free UIs has been that the visual representation must

be comprehendible to all irrespective of culture. Major outcome of this work which was very

useful for my thesis is that voice annotations and semi abstracted drawings were found to be

best for non-literate user. I have introduced few additional principals which add on to the

principles discussed in [7]:

i. Universal help feature on all the stages of interaction with InfoKiosk.

ii. Audio Input: User interacts with InfoKiosk has been restricted to two types – button

clicks and audio input. Audio Input feature makes it easy to add data on the server

side without changing the user interface.

iii. Audio or video output only: The InfoKiosk user would receive response as a Youtube

video played on Java Web player or an audio/video played using JMStudio player.

13

3.3 Speech -To-Text Translation

Speech to text translation is a method of converting a given voice sample in to a text in

the selected language. This is also called automatic speech recognition or speech recognition.

Speech Engines are capable of recognizing individual words but they don’t really understand

speech in same way as humans do. A Speech engine [35] communicates to speech

application about what the user said and then the application decides on how to handle it.

Some of the examples of dynamic speech-based application are Voice activated dialing, Bill

payment, Doctor’s Appointments, Order Status, Flight Information and Phone Shopping.

Speech recognition and voice recognition are different; voice recognition deals with

identifying individual voices and not what the speaker said. Following are the general stages

that speech recognition engines go through:

1. The engine loads a grammar and speaker audio.

2. The speaker audio, represented as waveform, is compared to waveform in acoustic

model.

3. The Engine compares the results in step 2 with the words in grammar.

4. The closest matched word from the grammar is returned.

In the development of InfoKiosk application I have tried two speech-to-text applications

– Julius, an open source option and Lumenvox, market leaders in speech recognition software

industry [24]. These applications have been discussed in the sections, 3.3.1 and 3.3.2. Figure

3.2 gives a high level diagram for speech recognition engine with respect to Julius

application.

14

Fig 3.1: General SRE Decoder

3.3.1. Julius

 Julius [15] is one of the best open source options available for speech

recognition. Two of the important features of Julius which made me to try it are its two phase

LVSR decoder software, and it being open source product. To run a Julius speech recognizer

we need two things for your language - Language model and Acoustic Model. And this was

biggest hurdle in adopting Julius as the audio-to-text translation module for InfoKiosk.

15

Julius is language independent decoding program which needs – a language model

and then for the chosen language we need an acoustic model- to make a recognizer. The

recognition accuracy depends on these models. One of the biggest problems for open-source

SREs is the Acoustic models are not open source. Acoustic model is created using speech

audio and that speech audio is not available freely. VoxForge tries to address this problem by

creating speech audio and transcriptions, and by helping to create Acoustic Models for Julius

and other open source SREs.

An acoustic model is used to describe the statistical representation of phonemes in the

defined in the SRE specific language. These statistical representations, also called Hidden

Markov Models (HMMs), are created using large samples of Speeches and special training

algorithms. As shown in the Figure 3.1, once an acoustic model is ready, the decoder listens

for distinct user voice inputs and matches with the HMMs in the acoustic model. All the

matching HMMs and their corresponding phonemes are recorded till a pause is reached.

After the pause, decoder will look in pronunciation dictionary for the recorded sequence of

phonemes. Once the word is determined a predefined grammar is scanned to get the display

format.

I tried to create Speaker dependent Acoustic model using Hidden Markov Toolkit

(HTK) and Julius. Hidden Markov Models (HMMs) for representing sound in Speech

Recognition are developed using HTK. There are three main steps involved in this process -

Data Preparation and create Monophone HMMs, create Tied-state Triphones. Firstly, a

phonetically balanced pronunciation dictionary has to be created with sorted list of words in

grammar. Data preparation stage involved recording audio for the sample sentences which

involve words in the grammar and more. After following the remaining steps the acoustic

model prepared failed to decode recognize user input. One of the reasons for failure has been

16

the insufficient resources available to create Monophones, the second step of the complete

process. The Monophone creation is a vital step in the creation of Hidden Markov Model and

the tutorial is customized to create an HMM with general set of sentences. These words are

associated with a particular frequency and are used in Monophone creation. The creation of

HMM model was not flexible with every grammar. Also the creation of a successful acoustic

model requires two important things – an in-depth knowledge of Hidden Markov Model and

HTK toolkit and large amount of training data.

3.3.2. Lumenvox

Fig 3.2 Speech Engine

 Lumenvox provides speech recognition tools which are generally used in IVR and

other applications. It is not a speech verification tool. Some of the products made by them

are:

 i. Speech Engine

 ii. Speech Tuner

We are interested in Lumenvox Speech Engine. It takes audio as input (file/live input)

and is guided by grammar to recognizes the audio. It is speaker independent and no dictation

is needed.

1. Grammars

2. Audio Speech Engine 3. Recognized
Text

17

Why Lumenvox?

There are several reasons to select Lumenvox for the project. They are as follows:

 i. Efficient development & run-time platform by allowing dynamic language, grammar &

audio formats.

 ii. Grammar formation is easy. Grammar consists of a set of words or it can also be

expressed using Speech Recognition Grammar Specification (SRGS).

 iii. User independent. Lumenvox is independent of audio source. Speech recognition can be

performed on any audio data.

 iv. Has built in support for Voice Activity Detection (VAD), which is used for noise

cancellation, NBest Results (Gives top few expected solution with probability), SRGS

standard support.

 Though Lumenvox is optimized for IVR solutions and turned out to be good

dedicated application software.

There are several standards that Lumenvox supports such as Media Resource Control

Protocol (MRCP), Semantic Interpretation for Speech Recognition (SISR), VXML, and

SRGS. We are interested in SISR - a W3C proposal that allows programmer to define a

specific interpretation for user input. For example, if the user inputs "May sixth two thousand

and four" the application will understand "2004-05-06". Lumenvox defines SISR as “SISR

allows grammar authors to embed snippets of JavaScript code into their SRGS grammars, to

automatically transform what a speaker says into a format understandable to an application.”

18

Grammar Design:

For Lumenvox to work for our project, we need to design a SRGS(Speech

Recognition Grammar Specification) grammar as an additional module for Lumenvox. Once

the grammar is defined, Lumenvox uses the defined grammar to interpret the user audio

input. I have designed a simple two word SRGS grammar which efficiently serves our

purpose. The grammar is designed to accept two words - Information sought and native

language translation for word “news”. For example if the users wants information about

Malaria in Hindi then they would say “Malaria Samachar”, where “Malaria” is the

information sought and “Samachar” is the Hindi translation for word “news”.

Table 3.2: User Audio Query Format

 Information
Sought
(RETRIEVED)

Native Language
translation for
word “news”
(RETRIEVED)

Information
sought in
language
(DERIVED)

1. Malaria Samachar Malaria Samachar Hindi

2. Malaria Varthalu Malaria Varthalu Telugu

3. Malaria News Malaria News English

Grammar format:

 The Lumenvox Speech Engine supports grammars must be written according to

SRGS grammar rules. The basic structure of a grammar file would consist of Grammar

Identifier, Grammar Header and Rules. Grammar Identifier declares the type of grammar

being used, for example ABNF grammar. The language of interaction, root rule definition

(where the engine begins search) and expected interactive mode are the three section under

19

Grammar Header. Finally, the Grammar Rules specify combination of words the Engine can

recognize. Each rule has a name starting with $ character and immediately after the = sign is

the rule expansion. The rule expansion contains the words associated with the rule and

optionally can include the word pronunciation with its probability of occurrence.

Grammar used for InfoKiosk application is as show in Figure 3.3

Fig 3.3 Lumenvox Grammar

Grammar Header

Rules

Grammar Identifier

20

Running Lumenvox Service and Output:

InfoKiosk application uses Speech Engine Lite - License service of LumenVox Speech

Engine [20]. This license version can be used to recognize up to 500 words/pronunciations

per interaction. LumenVox Speech Engine supports multiple languages and performs speech

recognition with audio feed. Speech Engine API provides the application with a speech port

to communicate with it. Following are the steps that InfoKiosk goes through to decode the

user audio data:

i. Opening a new port to connect InfoKiosk to Speech Engine

ii. Load a grammar

iii. Load audio data

iv. Instruct the engine to get result.

The Speech Engine Lite gives access to use speech recognition resource on per channel

basis. Before running the program to connect to Speech Engine the LumenVox license

server is turned on.

 Fig 3.4: Start Lumenvox Services

21

Command for restarting LumenVox Services as seen in Figure 3.4 is

“/etc/lumenvox/lvservices_restarter.sh”.

 Fig 3.5: Lumenvox Audio Decode Output

Once the services are started the C++ decode program [Appendix: I] is run to connect to

Speech Engine using new grammar and audio. Figure 3.5 shows the output of that program.

How Speech Engine works with Grammar:

The Speech Engine begins audio decoding from root rule, “main” in InfoKiosk

grammar as show in Figure 3.3. It then steps through the legal expansions. The control logic

moves into the rules “$disease” and “$news”, as it can match against combination of both

22

rules. The final result, indicated using $main rule, is a concatenation of the results from

$disease and $news rules. Figure 3.4 show an example where “2.raw” audio file has

pronunciation “malaria varthalu” where $disease rule returns “malaria” and $news rule

returns “varthalu”. The output of the decode program is shown in Figure 3.5.

23

CHAPTER 4

ARCHITECTURAL FRAMEWORK FOR NETWORK BEHIND INFOKIOSK

The architectural framework for the network is adopted from the framework

suggested in paper [2] by Chowdhury and Medhi. This architectural framework has 4 main

components:

i. User-interface

ii. Information Base

iii. Request Interpreter

iv. Translator

 The module interactions have been elaborately discussed as a

thesis work by Jamithreddy [11] in his thesis work.

4.1. Modules

4.1.1 User Interface (UI)

User interaction with InfoKiosk begins at this point. As the targeted users for

InfoKiosk are non-literate and semi-literate, I have created a text free user interface using the

design principles [7, 27]. Text-free UI has been discussed in detail in section 3.2.

4.1.2 Request Interpreter (RI)

This module is one part of server which listens to the User-Interface module for http

post request with audio of user request and other information such as language-response-

requested. After receiving the audio bytes, the Request Interpreter, in simplest scenario, will

pass the bytes to the speech-to-text sub module of Translator module and gets back text

format of words pronounced in the audio. After receiving result from Speech-To-Text sub

24

module, RI will check in Information base for a video containing requested information in

requested language. Based on this text request interpreter has to make one of the following

choices:

Case 1: If such a Youtube video is available then return the corresponding Youtube videoID

to UI module.

Case 2: If the video is not available for the requested information or in requested language

then we need to look for text information. In case of having text information in requested

language, a call to Text-To-Speech sub module will give us the required audio. This Audio is

returned back to UI module.

Case 3: If Case 1 and Case 2 are not satisfied then control logic comes to Case 3. Here a

check is made to see if the requested information is present as text in a language other than

requested language. In such a situation two sub modules of Translator module are used.

Firstly, the Text-To-Text module is used to convert the available text in requested language.

Secondly, the Text-To-Speech module is used to convert into audio bytes which are

transmitted to UI module via Request Interpreter.

Case 4: If none of the above cases are applicable then HTTP “501 Not Implemented”

response is sent back. On receiving this message at UI module, an audio informing user about

unavailability of information is played back in the language user is interacting.

25

Table 4.1: Request Processing Steps

 Possible Outcomes

 ----------->

 |

 |

 | Example Situation

 |

 |

 v

Video or

Audio

Available in

RL

Case 1

Text

Available in

RL

Case 2

Text Available

in Another

Language

Case 3

No Text or

Audio-

Video is

available

Case 4.

1 Requested

Information : Malaria

Requested

Language(RL):

Telugu

STEP1:

Youtube

VidoeID is

returned to

UI module

STEP 1:

Text-To-

Speech Sub

module of

Translator

module is

called.

STEP 2:

Audio bytes

are returned

to UI module

STEP 1: Text-

To-Text(TTT)

sub module is

called STEP 2:

TTT sub

module calls

Text-To-

Speech Sub

module (Sub

modules are

part of

Translator

Module)

STEP 3:

Audio bytes are

returned to UI

module

STEP 1:

Audio

saying that

the

requested

information

is played

back at UI

module

26

4.1.3 Translator

This module is second part of server, the first being the Request Interpreter. This

module has three sub modules - Text-To-Speech, Speech-To-Text and Text-to-Text. For the

Speech-To-Text translation I have tried Julius SRE and Lumenvox Speech Engine. Finally,

based on the advantages I decided to use Lumenvox Speech Engine. Lumenvox SE translator

needs two things - a grammar and C++ program to decode the recorded voice. Based on the

decoding requested information, a Youtube videoID is selected by server in corresponding

language and returned back to the User-Interface Module. The requested information - about

a Disease or Crop - may not be available, in such a case it will be checked if the same

information is available in text format in same or different language.

4.1.4 Information Base

For the information base, we decided to use a Youtube channel to store the videos

required. Each of the Youtube videos has a video ID, which is returned to User-Interface

module to be played for user. Information Base module also has videos, audios and text

documents. If the requested information is not available as a Youtube video then other

options are considered in the order of priority as discussed in table 5.1.

27

CHAPTER 5

APPLICATION DESIGN, IMPLEMENTATION AND TESTING

Text free UI Application design and implementation is very challenging mainly for

two reasons - there has not been much application development done in this field, and the

applications developed in this domain are very user centric and requires a constant developer-

user interaction during the software development. In this chapter, I discuss the different

stages of user interaction with InfoKiosk in section 5.1, the software tools used to build the

UI are discussed in following section 5.2 and finally in the section 5.3 an application

evaluation from user point of view has been made.

 5.1 Stages of Design

 InfoKiosk application has features which are universal to all its screens such as

buttons with voice over, introductory video link on all screens and use of hand draw images

to maximum extent. These features has been added keeping in mind the design principles of

[7, 27]. InfoKiosk application design can be divided into five levels based on the interaction

with the user. These stages are: Stage 1) Language selection, stage 2) Information domain

selection, stage 3) User request (audio) submission, stage 4) Video or audio reply and stage

5) Help video.

Stage 1: Language selection

The language selection stage gives user a choice of language in which user wants to

interact with the system. As the target users are non-literate and semi-literate, the possibility

that they have low income level and less social interaction is high. These are some of the

factors I have considered while identifying things users might relate to a particular language.

28

Following were the possible options for the images to be used to represent a language

selection:

1. Local Political leader’s pictures.

2. Regional Sport person or Movie Star

3. Regional famous monuments

4. Words written in the regional language and use of numbers.

 It is quite common that people tend to recognize their regional language if seen in

written format. They may not be able to read it but they identify it as their language. We have

built our Language Selection interface based on this thought. Figure 5.1 is a screenshot of the

InfoKiosk language selection interface. We have several buttons each with an icon depicting

words from that particular language. As we have discussed in the design principles [7, 27],

people tend to comfortable with number so we have used numbers with different colors to

identify the different languages along with the icons.

29

 Fig 5.1: Language Selection

Stage 2: Information Domain Selection

 As show in Figure 5.2, at this stage users have to make a choice of the kind of

information they will be seeking. The range of available domains is currently limited for the

demo purpose but the application is scalable to as many domains as desired. The domains can

Help Telugu

Tamil

Hindi

30

be accessed by clicking on buttons representing the domain. Each domain is represented by a

hand drawn image which is displayed as icon on the button. As described in this thesis in

chapter 2, the diagrams are made depicting an action taking place rather than a still image. It

has been observed that images depicting an action are more easily perceived. Once the users

make the choice of the information domain they are transferred to next stage. This stage also

provides the user choice to get back to language selection screen.

 Fig 5.2: Domain Selection

Following are the information domains which are largely used by user and thus have been

used for demonstration purpose:

1. Medical Domain Information

Language
Selection

Agriculture
domain

Health
domain

Help

31

 Medical information is direly needed by Indian people in villages and towns

especially in the circumstances where there is no public health facility or doctor available.

The kind of general information that is sought is about disease such as Malaria, Polio. Also

general information about vaccinations and immunization can be provided through this

domain.

2. Agricultural/farming Information

 India has been an agricultural country for a long time with 60% of the population [5]

living on it for livelihood. The livelihood of many and especially poor farmers has been made

critical due to many factors like unfriendly climate and government ignorance. Also, majority

of the Indian farmers suffer with lack of information of good modern farming practices. One

of the reason farmers tend to follow their intuition or go by the hearsay of fellow villagers.

These factors make agricultural related information a popular point of interest among

villagers.

 Other information domains where InfoKiosk can be used are rural employment

information, general election information and government welfare schemes. Also the

application of InfoKiosk is not limited to the domains discussed.

Stage 3: User request (Audio) submission

 Once the users are in this stage, they are ready to record their query in a predefined

format and click on next button. The user query should be in pre-defined format of two

words. For example if the user wants to query about information about malaria/polio in

Hindi/Telugu i.e. firstly, selecting “Hindi/Telugu in Language Selection” Stage and secondly,

selecting Public-health information in “Information Domain Selection“stage. The user audio

input for such a case would look like:

i. Malaria Samachar: Where Samachar means News.

32

ii. Polio Varthalu: Where Varthalu means News.

 This interpretation of the users audio input is done at server side. Client application

would send the recorded audio bytes over HTTP to the server or Requester Interpreter and

server would decode the audio using the explained grammar to understand what information

is requested. The server side audio to text translation is done using the C program. After

understanding the information requested in the language, server side will look up if such

information is present in the defined priority order. The priority order is:

 a. Requested information in requested language in video format

 b. Requested information in audio format.

Table 5.1: Possible Outputs From Request Interpreter

 Information return priority
order

When is it
possible?

What will
client receive
from server?

Notes

1. Requested information in
requested language in video
format

If such a video is
present on our
Youtube channel

Youtube
VideoID

2. Requested information in
requested language in audio
format

1. Priority order 1
cannot be
satisfied.
2. Requested
information is
available in any
language as Text.
Or requested
information is
present in desired
language as audio.

Audio bytes
which will be
combined to
form an
audio file.

If requested
information is present
in given language as
text
then Server makes
call to text-to-speech
module.

If requested
information is present
in different language
as text then Server has
to make two calls -to
text-to-text module
and text-to-speech
module.

33

Fig 5.3 Code To Capture Audio

34

 Fig 5.4: Audio Request Recording

Stage 4: Video and/or Audio Reply

 InfoKiosk is capable of playing a typical Youtube video or standard format audio file using

JMStudio player. Client application makes an informed decision of which player to choose

based on the HTTP response from server.

Record Audio
Request

Process
request

35

Fig 5.5: Youtube Web Player

Fig 5.6: JMStudio Player

36

Stage 5: Help video

 A help button is displayed to the user on all the screens. This gives user the choice of

watching a Youtube video which has the usability demo of the entire application and its

features.

Fig 5.7 Code for Introduction Help Screen

37

5.2 Tools and Software Used

5.2.1 Video Playback:

 There are two players I have used to play videos and audio from the server. I have used

Adobe Flash player and Java Sound JMStudio[13]. Playing Youtube video was challenging

with respect to the format Youtube videos are returned. The Youtube videos are returned in

SWF format which cannot be streamed on normal video players like JMStudio and advanced

players like VLC. Note, the Youtube used to allow there video to be streamed from players

like VLC but they do not any more. In order to play Youtube video I needed a Java Web

player and I have used third party player from DJ Project [6].

The Youtube videos are automatically played full screen using this URL format. We

use the following Youtube link format to stream the video.

http://www.youtube.com/v/VIDEO_ID?f=videos&app=youtube_gdata&autoplay=1

In such a link, we would only need Youtube videoID, obtained from InfoKiosk Information

Base, to stream the video.

 To play an audio file in common format like WAV we use JMStudio player which is

provided by Oracle along with (Java Media Framework) JMF framework package. JMF is a

module which handles audio and video files in Java; and included in it is media player called

Java Media Studio (JMStudio). JMStudio finds the customized player, to play the audio,

based on properties such as Audio codec and video codec. Often times it fails to find a codec

and would be unable to handle the format. Jffmpeg plug-in [14] is used to playback a number

of audio and video formats. For example, audio formats supported are MP3, AC3 and Vorbis;

video formats supported are H263, MPEG, WMV and more.

 In the case when the audio is sent from server it is first downloaded and played back

using JMStudio player.

38

5.2.2 Audio Request Recording:

Voice recording has been done using Java Sound API. Java Sound accepts audio in

predefined formats only and it also based on the audio-video support of the system. It was

observed that the most generally used audio formats like mpeg, avi were not successfully

handled using basic Java Sound API. In order to accommodate the deficiency, I have used

JFFmpeg, free software licensed under the LGPL/GPL. It is a cross-platform solution to

record, convert and stream media - audio and video.

Fig 5.8: Code to Set the Audio Format

39

The audio format supported by JMstudio player is defined in the class

javax.sound.sampled.AudioFormat. Sound is defined by fields such big-endian or little-

endian storage format, number of channels, type of encoding, and frame size, frame rate,

sample size in bits and sample rate. The speech-to-text converter used in the thesis,

Lumenvox, requires audio to be fed in a specific format. Following are the values of the

parameters used:

i. Storage Format: little-endian format.

ii. Number of Channel: Mono channel.

iii. Sample Size: 16 bits

iv. Sample Rate and Frame Rate: 8KHz

v. Encoding: PCM Signed

vi. Frame Size: (Sample Size/8)*channels

 5.3 Evaluation

InfoKiosk has been tested to check following features of the application – content

understandability and ease of navigation. InfoKiosk has been designed keeping the non-

literate or semi literate population in India as a case in point. In general, a user makes a

request for certain information in a particular language. If the user is given the requested

information in the desired language and format then the test case is said to have successfully

passed.

40

Fig 5.9: Client Sending Audio bytes over HTTP

The test cases have been run against the InfoKioskServer, a server which accepts the

client’s audio data and creates a “.raw” audio file from it. The InfoKiosk application and

InfoKiosk server communicate using HTTP protocol. This audio file is fed to Lumenvox

code for decoding and recognizing the information requested. Depending on the availability

of the requested information and its format, a response is generated for the client. Figure 5.9

gives the code for connecting to InfoKioskServer using HTTP and sending audio data using

POST method.

41

Fig 5.10 : InfoKioskServer handling the client data

The InfoKioskServer would accept such post request and form a RAW format audio

file. The code handling the client request is shown in Figure 5.10.

42

Table 5.2 InfoKiosk Test Cases

 Test Case Steps Involved Results

1. Requested

Information is

available as

Youtube video.

Sub Cases:

- All requested

Language

- All requested

domains

Client:

a. Selecting a language.

b. Selecting a domain of interest

c. Recording and submitting the audio

request.

d. Stream the Youtube video based on

VideoID.

Server:

a. Request is decoded using Lumenvox.

b. Select corresponding Youtube VideoID

and return to client.

Successfully

Completed.

2

.

Requested

Information is

available as video

on server.

Sub Cases:

- All requested

Language

- All requested

domains

Client:

a. Selecting a language.

b. Selecting a domain of interest

c. Recording and submitting the audio

request.

d. Play the video after downloading it through

link obtained from server.

Server:

a. Request is decoded using Lumenvox.

b. Select corresponding video link and return

to client.

Successfully

Completed.

43

Table 5.2 continued …

 Test Case Steps Involved Results

3. Requested

Information is

available in same

or different

language as text

Client:

a. Selecting a language.

b. Selecting a domain of interest

c. Recording and submitting the audio

request.

d. Download the Audio and play

Server:

a. Request is decoded using Lumenvox.

b. Select the available text and input it to Text-

to-Text converter and then to Text-to-

Speech converter.

c. Send the audio link back to Client.

To Implement

4. Requested

Information

available in

different

languages as

audio/video

Client:

a. Selecting a language.

b. Selecting a domain of interest

c. Recording and submitting the audio

request.

d. Download the Audio and play

Server:

a. Request is decoded using Lumenvox.

b. Select the available audio/video and call

speech-to-speech converter.

c. Send the audio link back to client.

To Implement

5. Requested

information not

available

Server

a. Send Audio bytes which say “No

Information” in the user selected language

To Implement

44

 While I have tried to include all the test cases but there are cases which are not

covered due to the lack of availability of such features. The above test cases do include cases

when requested information is available in different language or when there is no information

available. This case with information available in different language requires a text-to-text

converter, which is seen as one of the future improvement to the application

Another aspect that has been studied under during the evaluation of the InfoKiosk

application is its ability to portable to different environment – it other terms its flexibility.

The two stages of InfoKiosk application – Language Selection, Information Domain

Selection – provide the flexibility by defining the button-based selection procedure.

Language selection in a button-based selection mode involves defining a language specific

button with an appropriate image. So adding or removing a new language involves adding or

removing a new button with a corresponding image. As shown in figure 5.1, with a small

image size we can show 9 different language categories. Similarly the Domain selection, as

shown in figure 5.2, also reflects similar flexibility. Figure 5.11 briefly shows kind of

information exchanged in a typical InfoKiosk application.

45

 Fig 5.11 Sequence diagram for InfoKiosk Application

46

CHAPTER 6

CONCLUSION AND FUTURE WORK

As the target user for InfoKiosk application is semi-literate and non-literate

population, one way to imagine the possible amount of usage of such application can be the

population of target audience. India currently has largest percentage of non-literate

population of any nation on earth. The population of adult illiterates in India [17] is 291

million out of world count of 796 million. So the application has the chance to be influence a

very large volume of consumers.

 Application is scalable with respect to the languages and applicable domain. Each

domain or language has can be selected by click of a button so adding a new domain or

language would mean adding a new button. I have created application with an example of

public health and agriculture information domain but it can be used for any domain of choice

of the user.

I understand the importance of testing an application and regret that we cannot test the

application using target users. In future if possible we can get feedback after testing

application against target user. Such a feedback would let us improve the usability aspect of

the application. For example - currently we have only one stage on the application which has

majority audio only interaction i.e. the User Request (Audio) phase. If the user is seen

comfortable to such an interaction we can extend it to other phases like languages selection.

 India has around 617 million mobile subscribers [37], second largest in the world.

The increasing number of phones with access to web will make an InfoKiosk mobile

application a very lucrative option. India entered 3G arena in 2008 with Government led

Bharat Sanchar Nigam Limited (BSNL) providing mobile and data services. The launch of

3G services by private mobile service provider starts November 2010 [38]. It would decrease

47

the hardware and labor cost as it would require no installation and it also makes the product

mobile, maintainable and more reachable to common people. InfoKiosk as a mobile

application would follow same stages of design illustrated in Section 5.1, thus not

deprecating users of its benefits. One of the hindrances of using InfoKiosk as mobile

application would be the cost of a smartphone, a phone with advanced computing capability

and connectivity. The price of a smartphone in India is Rs 20,000 and above [39]. With the

audience for our application in mind, such a smartphone can be shared between the people in

a under a community in a village. Developing text free UIs principles for mobile phones has

also been suggested in [25, 16]. Lalji and Good [16] have used user-centered, incremental

design approach and discuss mobile phone design approach for non-literate persons.

 A sample android phone application for InfoKiosk was created and figure 6.1 and 6.2

are the screenshots.

Fig 6.1: Prototype Android Application – Language Selection

48

Fig 6.2: Prototype Android Application – Domain Selection

Each domain of InfoKiosk application is defined to handle specific set of requests and

is not all compassing. For example, on selection of medical domain would handle request in a

specific format such as <disease-name><request-in-a-specific-language>. Disease domain

would give general information about a particular disease as available in the media such as

internet article or Youtube video. InfoKiosk cannot provide a knowledgeable feedback if

audio request is a question. The application would not be able to process request like “I have

49

102 F temperature, what medicine should I take?”. Its inability comes due to the fact that the

grammar defined for Speech Recognition Engine is not defined to handle it.

50

APPENDIX

I. Lumenvox Program

#include <LVSpeechPort.h>

#include <iostream>

#include <fstream>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <sys/mman.h>

#include <unistd.h>

void run_decode(std::string ip,std::string grammar_name)

{

 std::string FileName = grammar_name;

 SOUND_FORMAT audio_format = PCM_8KHZ;

 std::string grammar_fn="publicHealth.gram";

 LVSpeechPort port;

 //1. Open Audio file

 int FileHandle=open(FileName.c_str(), O_RDONLY, S_IREAD);

 if (FileHandle == -1)

 {

 printf("Cannot open the file %s \n",FileName.c_str());

 return;

 }

 struct stat temp_stat;

 //2. Getting statistics of the audio file e.g. length of file.

 if (stat(FileName.c_str(),&temp_stat) == -1)

 {

 close(FileHandle);

 printf("Cannot get size of file %s\n",FileName.c_str());

 return;

 }

 unsigned long Length=temp_stat.st_size;

 //3. Creating map file for the the audio file.

 void *MAP = mmap(NULL,Length,PROT_READ,MAP_PRIVATE |

MAP_DENYWRITE,FileHandle,0);

 if (!MAP || MAP == (void *)0xffffffff)

 {

51

 close(FileHandle);

 printf("Cannot create a mapfile from %s\n",FileName.c_str());

 return ;

 }

 char *C = (char *)MAP;

 //4. Point the client library to a local server and a remote server

 port.SetClientPropertyEx(PROP_EX_SRE_SERVERS,

PROP_EX_VALUE_TYPE_STRING,(void *)ip.c_str());

 unsigned int count = 0;

 int retval;

 printf("Connecting to %s\n",ip.c_str());

 while(count<5)

 {

 //5. Opening the Speech port

 if((retval=port.OpenPort())!=0)

 {

 printf("OpenPort() failed, errorcode returned %d\n",retval);

 }

 //6. Set properties of port

 port.SetPropertyEx(PROP_EX_DECODE_TIMEOUT, PROP_EX_VALUE_TYPE_INT,

(void*)50000, PROP_EX_TARGET_PORT);

 int vc = 1;

 //7. Adding Audio

 if((retval=port.LoadVoiceChannel(vc, C, Length, audio_format))!=0)

 {

 printf("LoadVoiceChannel failed, errorcode returned %d\n",retval);

 }

 //8. Working with Grammars

 if((retval=port.LoadGrammar("blah", grammar_fn.c_str())!=0))

 {

 printf("LoadGrammar() failed, errorcode returned %d\n",retval);

 }

 if((retval=port.ActivateGrammar("blah"))!=0)

 {

 printf("ActivateGrammar() failed, errorcode returned %d\n",retval);

 }

 //9.Decoding

52

 // this logs the responses that client receives to <installdir>/Lang/Responses directory

 port.SetProperty(PROP_SAVE_SOUND_FILES,1);

 int retv = port.Decode(vc, LV_ACTIVE_GRAMMAR_SET, LV_DECODE_BLOCK |

LV_DECODE_SEMANTIC_INTERPRETATION);

 //# of interpretations

 int numInterp = port.GetNumberOfInterpretations(vc);

 printf("Number of Interpretation %d\n",numInterp);

 for (int t = 0; t < numInterp; ++t)

 {

 printf("Interpretation %i:\n%s\n",t+1,port.GetInterpretationString(vc,t));

 printf("Interpretation Score :%d\n\n",(port.GetInterpretation(vc,t)).Score());

 }

 if(count<=3)

 printf("count=%d, decode returns %d\n", count, retv);

 ++count;

 //close port

 port.ClosePort();

 }

 msync(MAP,Length,MS_SYNC);

 munmap(MAP,Length);

 close(FileHandle);

}

int main(int argc,char *argv[])

{

 if(argc <2)

 {

 printf("Lumenvox Lite Command: %s SERVER_IP GRAMMAR_NAME \n",argv[0]);

 return -1;

 }

 run_decode(argv[1],argv[2]);

return 0;

53

REFERENCES

1. Adult And Youth Literacy: Global Trends in Gender Parity UNESCO Institute for
Statistics, http://www.unesco.org/education/ild2010/FactSheet2010_Lit_EN.pdf ;
accessed on 11/12/2010

2. Chowdhury, R., and Medhi, D. e-System for Public Health in India: Towards an

Architectural Framework Incorporating Illiteracy and Linguistic Diversity, in Systems
Thinking and e-Participations: ICT in the Governance of Society, edited by J.
Cordoba-Pachon and A. Ochoa-Arias, IGI Global, pp. 69—91, 2010

3. Digital Green About page, http://www.digitalgreen.org/aboutus/; accessed on

11/12/2010

4. Digital Green Overview of farmer, http://www.digitalgreen.org/overviewfarmer/ ;
 accessed on 11/12/2010

5. Digital Green Standard of operation, http://www.digitalgreen.org/sop/ ; accessed on
11/7/2010

6. DJ Native Swing, http://djproject.sourceforge.net/ns/; accessed on 11/12/2010

7. Donner, J., Gandhi, R., Javid, P., Medhi, I., Ratan, A., Toyoma, K., and
Veeraraghava, R. Stages of Design in Technology for Global Development. IEEE
Computer 41(6) 34-41 (2008)

8. FAQ about UIS Literacy Data,

http://www.uis.unesco.org/TEMPLATE/pdf/Literacy/FAQlit.pdf ; accessed on
11/12/2010

9. Garai, A., and Shadrach, B. Processes and Appropriation of ICT in Human

Development. In Rural India: Bridging the Research and Practice Gaps. Retrieved on
August 15th 2008, from
http://www.dgroups.org/groups/oneworld/OneWorldSA/docs/TICTEIV_pdf.pdf

10. Indian Literacy projects, http://www.ilpnet.org/AboutILP ; accessed on 11/1/2010

11. Jamithreddy, V.R.K. , Socio-Cultural Communication System – A Communication

Mechanism for Multi-Media Information Access System for Non-literate and
Linguistically Diverse Users, MS Thesis, University of Missouri-Kansas City, 2010

12. Java sound and JMF: http://java.sun.com/products/java-media
sound/techReference/javasoundfaq.htmlt#formats ; accessed on 11/25/2010

54

13. Java Sound Links, http://www.oracle.com/technetwork/java/index-jsp-140234.html;
accessed on 11/12/2010

14. JFFMPEG : http://jffmpeg.sourceforge.net/download.html ; accessed on 11/25/2010

15. Julius Speech Recognition Engine, http://julius.sourceforge.jp/en_index.php; accessed

on 11/12/2010

16. Lalji, Z. and Good, J., Designing new technologies for illiterate populations: A study
in mobile phone interface design, Interacting with Computers, 20 (2008) 574-586.

17. Literacy in India: Wikipedia Article, http://en.wikipedia.org/wiki/Literacy_in_India;
accessed on 11/12/2010

18. Literacy situation in India, http://www.roomtoread.org/Page.aspx?pid=304 ; accessed

on 11/12/2010

19. Lumenvox Resources, http://www.lumenvox.com/resources/ ; accessed on
11/12/2010

20. Lumenvox Speech Engine: http://www.lumenvox.com/products/speech_engine/;
accessed on 12/5/2010

21. Lumenvox Speech Recognition Engine,

http://www.lumenvox.com/resources/tips/HowLVsoftwareUsed.aspx; accessed on
11/12/2010

22. Lumenvox Speech Recognition Introduction
http://www.lumenvox.com/resources/tips/SpeechRecognitionSolutions.aspx ;
accessed on 12/4/2010

23. Lumenvox Speech Recognition solution: http://lumenvox.com/resources/; accessed
on 12/1/2010

24. Lumenvox Wikipedia page: http://en.wikipedia.org/wiki/LumenVox; accessed on

12/4/2010

25. Medhi, I., Profile, http://research.microsoft.com/en-us/people/indranim/; accessed on
11/12/2010

26. Medhi, I., Pitti B., and Toyama K. Text-Free UI for Employment Search. Asian

Applied Computing Conference. Nepal, (2005).

27. Medhi, I., Sagar, A., and Toyama K. Text-Free User Interfaces for Illiterate and Semi-
Literate Users. In Proceedings of IEEE/ACM International Conference on
Information and Communication Technologies and Development, Berkeley, USA,
2006.

55

28. Phillips, A. and Davis, M. (Eds.), Tags for Identifying Languages, IETF RFC 4646,

September 2006.

29. Simputer Media Coverage, http://news.bbc.co.uk/2/hi/science/nature/1442000.stm ;
accessed on 11/12/2010

30. Simputer Organization, http://simputer.org/simputer/ ;accessed on 11/12/2010

31. Simputer Overview, http://en.wikipedia.org/wiki/Simputer ; accessed on 11/12/2010

32. UNESCO Institute of Statistics,

http://www.uis.unesco.org/en/stats/statistics/literacy2000.htm; accessed on
11/12/2010

33. UNESCO Illiteracy Projection,
http://www.uis.unesco.org/en/stats/statistics/UIS_Literacy_Country2002.xls ;
accessed on 11/12/2010

34. UNICEF India Statistics, http://www.unicef.org/infobycountry/india_statistics.html ;

accessed on 11/12/2010

35. Unicode Language Tagging: Ch 5 Pg150.
http://unicode.org/versions/Unicode5.2.0/ch05.pdf; accessed on 12/5/2010

36. VoxForge, http://voxforge.org/ ; accessed on 11/12/2010

37. Volume of Indian mobile subscribers,

http://www.ciol.com/Technology/Mobility/News-Reports/Mobile-subscriber-base-
crosses-617-million-mark/138238/0/ ; accessed on 11/12/2010

38. Wireless services: 3G, http://en.wikipedia.org/wiki/3G; accessed on 11/18/2010.

39. Wireless phone prices in India :

http://www.fonearena.com/mobile_phone_pricelist.html; accessed on 11/18/2010

56

VITA

Prashant Sunkari was born in Hyderabad, Andhra Pradesh, India and was awarded

under-graduation degree in Computer Science & Engineering at Jawaharlal Nehru

Technological University. He did his under-graduation final year project at Wipro

Technologies, India on “Enterprise level VoIP application: Automated provisioning of Ekiga

Instant Messaging tool”.

 After completing his under-graduation, he decided to pursue his interest in learning

more about Computer Networking and Software development at University of Missouri

Kansas City. While doing his Master’s degree he gained valuable industrial experiences by

working at Billing Tester Intern at National Insurance Producer Registry (NIPR) and

Software Engineer Intern/Co-op at Garmin International.

