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1. Introduction

In this paper we study properties of weakly analytic vector-valued measures.

To motivate the discussion, let us start with some relevant results for scalar-valued

measures. A fundamental result in harmonic analysis, the F. and M. Riesz Theorem,

states that if a complex Borel measure µ on the unit circle T (in symbols, µ ∈M(T))

is analytic that is, ∫ π

−π
e−intdµ(t) = 0, for all n < 0,

then µ is absolutely continuous with respect to Lebesgue measure m, that is µ� m.

Furthermore, the classical result of Raikov and Plessner [10], shows that µ � m

if and only if the measure µ translates continuously. That is the mapping t →

µ(· + t) is continuous from R into M(T). Hence, if µ is analytic, then t → µ(· +

t) is continuous.

The F. and M. Riesz Theorem has since been generalized to groups and measure

spaces by Helson and Lowdenslager [6], de Leeuw and Glicksberg [3], Forelli [5],

Yamaguchi [14], and many other authors.

In recent work in [1], it is shown that under certain conditions on T , where

T = (Tt)t∈R is a collection of uniformly bounded invertible isomorphisms of the

space of measures on a given measure space, if a measure µ is analytic, in some

weak sense, then the mapping t→ Ttµ is continuous.

This research is part of the second author’s doctoral thesis.
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However, not as much is known for vector-valued measures. First, let us con-

sider measures on the unit circle with values in some dual space X = Y ∗, that

is measures in M(T, Y ∗). R. Ryan [12] obtained that if µ is weakly analytic i.e.∫ π
−π e

−int d 〈y, µ(t)〉 = 0, for all n < 0, for all y ∈ Y , then µ � λ. Unlike the

scalar case, there exist weakly analytic vector-valued measures that do not trans-

late continuously. As a corollary of our main result, we show that if we further

assume that Y ∗ has the analytic Radon-Nikodým property (ARNP), then every

weakly analytic measure translates continuously.

We start with some definitions and notation. Denote the real numbers, the

complex numbers and the circle group {eit : 0 ≤ t < 2π} by R,C and T respectively.

Let M(R) be the Banach space of complex regular Borel measures on R. Denote

by L1(R) the space of Lebesgue integrable functions and by L∞(R) the space of

essentially bounded Lebesgue measurable functions. Define the spaces H1(R) and

H∞(R) as follows:

H1(R) = {f ∈ L1(R) : f̂(s) = 0, s < 0},

and

H∞(R) = {f ∈ L∞(R) :
∫
R

f(t)g(t)dt = 0, for all g ∈ H1(R)}.

Throughout this paper, let Σ denote a σ-algebra of subsets of a set Ω, and X

will be an arbitrary Banach space with norm denoted ‖ · ‖. If µ is a positive

measure on Ω, then a vector-valued function f : Ω → X is said to be Bochner (or

strongly) µ-measurable if there exists a sequence {fn} of X-valued simple functions

on Ω such that lim
n→∞

fn(ω) = f(ω) µ-a.e. on Ω. Let L1(Ω, µ,X) denote the Banach

space of all strongly measurable functions which satisfy
∫

Ω
‖f(ω)‖ dµ(ω) <∞, with

norm ‖f‖ =
∫

Ω
‖f(ω)‖ dµ(ω). Such functions f are always limits, in the norm of

L1(X), of simple functions, and this allows us to define the Bochner integral of

f ,
∫

Ω
f(ω) dµ(ω). For the remainder of this paper we will only consider Bochner

integrals. A function f : Ω → X is called weakly measurable if for each x∗ ∈ X∗,

the map t 7→ x∗(f(t)) is a scalar-valued measurable function.
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Also, denote by M(Ω, X) the space of countably additive X-valued measures of

bounded variation on (Ω,Σ), with the 1-variation norm ‖µ‖1 <∞ where

‖µ‖1 = sup
π

∑
B∈π
|| µ(B) ||X ,

and the supremum is over all finite measurable partitions π of Σ. We obtain results

for M(Ω, X), where X is a dual space, that is X = Y ∗, for some Banach space Y .

So for the rest of the paper we will consider only M(Ω, Y ∗).

From now on, let T = (Tt)t∈R denote a collection of uniformly bounded invertible

isomorphisms of M(Ω, Y ∗) such that

(1.1) sup
t∈R
‖T±1

t ‖ ≤ c,

where c is a positive constant.

We can now turn to the notion of analyticity for measures. Two definitions are

needed.

Definition 1.1. Let (Tt)t∈R be a uniformly bounded collection of isomorphisms

of M(Ω, Y ∗). A measure µ ∈ M(Ω, Y ∗) is called weakly measurable if for every

A ∈ Σ, the map t→ Ttµ(A) is Bochner measurable.

Definition 1.2. Let (Tt)t∈R be a uniformly bounded collection of isomorphisms

of M(Ω, Y ∗). A weakly measurable µ ∈ M(Ω, Y ∗) is called weakly T -analytic (or

simply weakly analytic) if for all A ∈ Σ and for all y ∈ Y , the map t → y(Ttµ(A))

is in H∞(R).

We will repeatedly use the following two lemmas.

Lemma 1.3 ([7], Corollary to Theorem 7.5.11). If T : X → Y is a bounded

linear operator, and f : Ω → X is a Bochner integrable function with respect to a

positive measure λ, then Tf is Bochner integrable with respect to λ, and

(1.2)
∫

Ω

T

(
f(t)

)
dλ(t) = T

(∫
Ω

f(t)dλ(t)
)
.
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Lemma 1.4. Let T = (Tt)t∈R be a uniformly bounded collection of isomorphisms

of M(Ω, Y ∗), and suppose that µ ∈ M(Ω, Y ∗) is weakly measurable with respect to

T . Then for all f ∈ L1(R), and all y ∈ Y ,

(1.3)
∫
R

y

(
Ttµ(A)

)
f(t)dt = y

(∫
R

Ttµ(A)f(t)dt
)
.

Proof. Since ∫
Ω

‖y
(
Ttµ(A)

)
f(t)‖dt ≤ ‖y‖‖T‖ ‖µ‖1‖f‖

then Ttµ(A) is Bochner integrable and the result follows from Lemma 1.3. �

The following is a fundamental property that was introduced in [1] for scalar

valued measures.

Definition 1.5. Let T = (Tt)t∈R be a uniformly bounded collection of isomor-

phisms of M(Ω, Y ∗). Then we say that T satisfies hypothesis (A) if whenever

µ ∈ M(Ω, Y ∗) is weakly analytic and is such that for every A ∈ Σ we have

Ttµ(A) = 0 for almost all t ∈ R, then µ is the zero measure.

Next we introduce a property that has been studied extensively by several math-

ematicians (for instance see [2],[8]). One way of defining it is the following. Let λ

denote the normalized Haar measure on T.

Definition 1.6. A complex Banach space X is said to have the analytic Radon-

Nikodým property (ARNP) if every measure µ ∈M(T, X), such that

∫
T

e−intdµ(t) = 0, n < 0

has a Radon-Nikodým derivative in L1(T, λ,X).

The following theorem shows that ARNP passes from X to M(Ω, X) if X is a

dual space.

Theorem 1.7 [11]. The Banach space M(Ω, Y ∗) has the ARNP whenever Y ∗

does.
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2. Main Lemma

First we will define a subspace of M(Ω, Y ∗)∗, which is in effect the simple Y -

valued functions on Ω. This concept was used by Talagrand [13]. GivenB1, . . . , Bn ∈

Σ and y1, . . . , yn ∈ Y define ϕB1,B2,...,Bn
y1,y2,...,yn ∈M(Ω, Y ∗)∗ in the following way:

(2.1) ϕB1,B2,...,Bn
y1,y2,...,yn (µ) =

n∑
i=1

yi(µ(Bi)), µ ∈M(Ω, Y ∗).

Let E denote the collection of all such linear functionals. The set E is a norming

subspace, that is for all µ ∈M(Σ, Y ∗)

‖µ‖1 = sup{ϕ(µ) : ‖ϕ‖ = 1, ϕ ∈ E}.

Now we will state the principal result of this section.

Lemma 2.1. Suppose Y ∗ has ARNP. Let E be as above, and let f : R→M(Ω, Y ∗)

be such that sup
t∈R
‖f(t)‖1 < ∞. Suppose further that for all A ∈ Σ, t → f(t)(A) is

Bochner measurable and that for all y ∈ Y, for all A ∈ Σ the map t → y(f(t)(A))

is in H∞(R). Then there exists a Bochner measurable essentially bounded g : R→

M(Ω, Y ∗) such that for all ϕ ∈ E we have

ϕ(g(t)) = ϕ(f(t)),

for almost all t ∈ R .

Proof. Let Φ(z) = i 1−z
1+z be the conformal mapping of the unit disk onto the upper

half plane, mapping T onto R. Let F = f ◦ Φ. Consider the expression

y

(∫
A

F (θ)(B)
dθ

2π

)
,

where A is a Borel subset of T, B ∈ Σ. Since F (θ)(B) is Bochner integrable, one

can apply Lemma 1.4 to obtain that y(F (θ)(B)) is Lebesgue integrable and

(2.2) y

(∫
A

F (θ)(B)
dθ

2π

)
=
∫
A

y(F (θ)(B))
dθ

2π
.
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Using (2.2), in the notation of (2.1), we see that for all ϕ = ϕB1,...,Bn
y1,...,yn ∈ E:

(2.3)

y1

(∫
A

F (θ)(B1)
dθ

2π

)
+ · · ·+ yn

(∫
A

F (θ)(Bn)
dθ

2π

)
=
∫
A

ϕB1,...,Bn
y1,...,yn

(
F (θ)

)
dθ

2π
,

and that ϕ(F (θ)) is Lebesgue integrable for every ϕ ∈ E. Hence, θ → ϕ(F (θ)) ∈

H∞(T) by (2.3) and by the assumption that y
(
f(t)(A)

)
∈ H∞(R).

Define a scalar-valued measure µϕ on the Borel sets of T by

(2.4) µϕ(A) =
∫
A

ϕ(F (θ))
dθ

2π
, (ϕ ∈ E)

Then for all continuous functions h on T, one has that∫
T

h(θ)dµϕ(θ) =
∫
T

h(θ)ϕ(F (θ))
dθ

2π
.

Now we will restrict to ϕBy ∈ E, for the clarity of the proof, and later we will

generalize the formulas for any ϕ ∈ E. First we want to prove that the Y ∗-valued

set function defined by:

m(B) =
∫
A

F (θ)(B)
dθ

2π
, (B ∈ Σ)

is a countably additive measure of bounded variation, that is m ∈ M(Ω, Y ∗) . To

show that m is countably additive, it is enough ([4], Corollary 1.4.7) to prove that

the scalar measure, defined by:

ηy(B) = y

(∫
A

F (θ)(B)
dθ

2π

)
,

is countably additive , for every y ∈ Y . Hence we need to show that for any

sequence of disjoint sets {Bk} in Σ,
⋃∞
k=1 Bk ∈ Σ:

(2.5) lim
n→∞

y

(∫
A

F (θ)(
n⋃
k=1

Bk)
dθ

2π

)
= y

(∫
A

F (θ)(
∞⋃
k=1

Bk)
dθ

2π

)
.

Since F (θ) ∈M(Ω, Y ∗), then

lim
n→∞

F (θ)(
n⋃
k=1

Bk) = F (θ)(
∞⋃
k=1

Bk), (θ ∈ T)
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and also

‖F (θ)(
n⋃
k=1

Bk)‖Y ∗ ≤ ‖F (θ)‖1 <∞, (n > 0).

Therefore one can use the Dominated Convergence Theorem ([7], Theorem 3.7.9)

to obtain

lim
n→∞

∫
A

F (θ)(
n⋃
k=1

Bk)
dθ

2π
=
∫
A

F (θ)(
∞⋃
k=1

Bk)
dθ

2π
.

Next we can apply y ∈ Y to both sides to get (2.5), which shows that m is countably

additive. All that is left to show is that ‖m‖1 <∞:

‖m‖1 = sup
π

∑
B∈Σ

|| m(B) ||Y ∗= sup
π

∑
B∈Σ

||
∫
A

F (θ)(B)
dθ

2π
||Y ∗

≤ sup
π

∑
B∈Σ

∫
A

‖F (θ)(B)‖Y ∗
dθ

2π

≤ sup
π

∫
A

∑
B∈Σ

‖F (θ)(B)‖Y ∗
dθ

2π

≤ sup
π

∫
A

‖F (θ)(B)‖1
dθ

2π

≤ sup
θ∈T
‖F (θ)‖1 <∞.

Thus we have shown that m ∈ M(Ω, Y ∗). Denoting µ(A) = m ∈ M(Ω, Y ∗), it

follows from (2.3) and (2.4) that

µϕBy (A) = y(m(B)) = ϕBy (m) = ϕBy (µ(A)).

Similarly, for any ϕ ∈ E using the definition of µϕ(A), and the formula (2.3) we

can show that

(2.6) µϕ(A) = ϕ

(
µ(A)

)
.

We show now that the above defined µ is a M(Ω, Y ∗)-valued countably additive

measure of bounded variation. First, the fact that µ is countably additive follows

easily from the definition of µ. Next, we will obtain the inequality:

(2.7) ‖µ(A)‖1 ≤
∫
A

‖F (θ)‖1
dθ

2π
.
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This follows because E is a norming subspace and hence, given A ∈ Σ and ε > 0,

there exists ϕ ∈ E, with ‖ϕ‖ ≤ 1 and ‖µ(A)‖1 ≤ |ϕ(µ(A))| + ε, and hence (2.7)

follows since

|ϕ(µ(A))| = |
∫
A

ϕ(F (θ))
dθ

2π
| ≤

∫
A

‖F (θ)‖1
dθ

2π
.

Therefore we have established that µ is a measure of bounded variation, that is

µ ∈M(T,M(Ω, Y ∗)).

Next we show that ∫
T

e−inθdµ(θ) = 0, (n < 0).

This follows because E is norming, and if ϕ ∈ E and n < 0, then

ϕ

(∫
T

e−inθdµ(θ)
)

=
∫
T

e−inθdµϕ(θ) =
∫
T

e−inθϕ

(
F (θ)

)
dθ

2π
= 0.

Since we assume that M(Ω, Y ∗) has ARNP, one can find a Bochner integrable

function G ∈ L1(T,M(Ω, Y ∗)) such that

(2.8) µ(A) =
∫
A

G(θ)
dθ

2π
,

for all Borel subsets A of T. Using (2.4), (2.6), and (2.8) one gets for all A ∈ B,

ϕ ∈ E, ∫
A

ϕ

(
G(θ)

)
dθ

2π
= ϕ(µ(A)) = µϕ(A) =

∫
A

ϕ

(
F (θ)

)
dθ

2π
.

Since this is true for all ϕ ∈ E and A ∈ B, one can conclude that for given ϕ ∈ E,

ϕ(G(θ)) = ϕ(F (θ)) for almost all θ.

Since we have (2.7), and (2.8), we can apply Lemma 2.3 in [1], from which it

follows that G is essentially bounded. Let g(t) = G(Φ−1(t)). Then g is a Bochner

measurable, essentially bounded function and for every ϕ ∈ E,

ϕ(g(t)) = ϕ(G(Φ−1(t))) = ϕ(F (Φ−1(t))) = ϕ(f(t)), for almost all t ∈ R

completing the proof of the lemma. �
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We will use the lemma in the following setting. Let T = {Tt}t∈R be a family of

uniformly bounded isomorphisms of M(Ω, Y ∗) such that ‖Tt‖ ≤ c. Suppose that

µ ∈ M(Ω, Y ∗) is weakly analytic and let f(t) = Ttµ for t ∈ R. Then we have that

‖f(t)‖1 ≤ c‖µ‖1, and that the map t → y

(
f(t)(A)

)
∈ H∞(R) for all y ∈ Y and

for all A ∈ Σ.

Corollary 2.2. Let Y ∗ have ARNP. Let T = {Tt}t∈R be a family of uniformly

bounded isomorphisms of M(Ω, Y ∗). Let µ ∈ M(Ω, Y ∗) be a weakly analytic

measure. Then there exists a Bochner measurable essentially bounded function

g : R→M(Ω, Y ∗) such that for all A ∈ Σ,

g(t)(A) = Ttµ(A) for almost all t ∈ R.

Remark 2.3. Since the results in this section hold for Banach spaces which are

dual spaces and have ARNP, we give some examples of these spaces. Examples of

Banach spaces which are dual spaces and have ARNP are:

(1) Orlicz spaces LΦ(µ), where (Ω,Σ, µ) is a σ-finite measure space, and Φ is an

Orlicz function for which it and its Young’s complementary function satisfy

the ∆2-condition (see [4] and [9]).

(2) All dual spaces that are Banach lattices not containing c0, or preduals of a

von Neuman algebra (see [8]).

3. Bochner measurability of weakly analytic measures

For all the results of this section, which include the main results of this paper,

we will suppose that T = (Tt)t∈R is a one-parameter group of uniformly bounded

invertible isomorphisms of M(Σ) for which (1.1) holds. We will also suppose that

(3.1) T ∗t : E → Ē,

where Ē denotes the closure of E in M(Ω, Y ∗)∗.
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We begin with some properties of the convolution, which are technical, but

needed for proving the main theorem.

Consider a weakly measurable µ ∈ M(Ω, Y ∗) and ν ∈ M(R), where ν is abso-

lutely continuous with respect to Lebesgue measure. Define:

(3.2) ν ∗T µ(A) =
∫
R

T−tµ(A)dν(t).

When there is no risk of confusion, we will simply write ν∗µ for ν∗T µ. The integral

is well defined since T−tµ(A) is ν-measurable and bounded, hence ν-integrable. One

can check that the formula defines a countably additive vector-valued measure of

bounded variation, using properties of Bochner integral and the fact that µ ∈

M(Ω, Y ∗). Hence, ν ∗T µ ∈M(Ω, Y ∗).

From now on assume that ν, σ ∈ M(R) and let µ ∈ M(Ω, Y ∗) be weakly mea-

surable. Let ν, σ be absolutely continuous with respect to Lebesgue measure. Let

E be defined as in the previous section.

Lemma 3.1. Suppose that ϕ ∈ Ē. Then the mapping t → ϕ(Ttµ) is Lebesgue

measurable on R. Futhermore,

∫
R

ϕ(T−sµ)dν(s) = ϕ(ν ∗T µ).

Proof. It is sufficient to prove it in the case that ϕ ∈ E. The mapping t→ ϕ(Ttµ)

is Lebesgue measurable, because µ is weakly measurable. Consider ϕAy ∈ E. Then

∫
R

ϕAy (T−sµ)dν(s) = y

(∫
R

(T−sµ)(A)dν(s)
)

= y

(
ν ∗T µ(A)

)
= ϕAy (ν ∗T µ).

Similarly, one can show the result holds for any ϕ ∈ E, so the lemma follows. �

Corollary 3.2. For all t ∈ R, we have

Tt(ν ∗ µ) = ν ∗ (Ttµ).

Moreover, the measure ν ∗ µ is weakly measurable.
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Proof. Using lemma 1.3 we have that for any A ∈ Σ, y ∈ Y :

y

(
ν ∗ (Ttµ)(A)

)
= y

(∫
R

T−s+tµ(A)dν(s)
)

=
∫
R

y

(
T−s+tµ(A)

)
dν(s)

=
∫
R

ϕAy

(
Tt(T−sµ)

)
dν(s)

=
∫
R

T ∗t (ϕAy )(T−sµ)dν(s).

Applying the previous lemma:∫
R

T ∗t (ϕAy )(T−sµ)dν(s) = T ∗t (ϕAy )(ν ∗T µ)

= ϕAy

(
Tt(ν ∗T µ)

)
= y

(
Tt(ν ∗T µ)(A)

)
,

hence ν ∗ (Ttµ) = Tt(ν ∗ µ).

Next we want to show that ν ∗T µ is weakly measurable, that is we need to prove

that f(t) = Tt(ν ∗µ)(A) is Bochner measurable for all A ∈ Σ. By the previous part

we have that

f(t) = Tt(ν ∗ µ)(A) = ν ∗ (Ttµ)(A) =
∫
R

Tt−sµ(A)dν(s).

By the Pettis measurability theorem [4,Theorem II.2], we need to show that f(t)

is weakly measurable and essentially separably valued. Since Ttµ(A) is Bochner

measurable, there exists a sequence of simple functions {fn} such that fn(t) →

Ttµ(A) in Y ∗ -norm. Let

fn(t) =
k∑
i=1

y∗i,nχAi,n(t).

Note that for all n ∈ N

ν ∗ fn(t) =
∫
R

k∑
i=1

y∗i,nχAi,n(t− s)dν(s)

=
k∑
i=1

y∗i,n

∫
R

χAi,n(t− s)dν(s)

=
k∑
i=1

y∗i,n

(
χAi,n ∗ ν(t)

)
.
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This calculation shows that ν ∗ fn has finite dimensional range, hence ν ∗ fn(R) is

separable for all n ∈ N. It can be easily checked that ν ∗ (Ttµ)(A) = lim
n→∞

(ν ∗fn)(t)

in Y ∗-norm, therefore ν ∗(Ttµ)(A) has separable range. To show that f(t) is weakly

measurable, we need to verify that y(f(t)) is measurable for all y ∈ Y . It follows

from Lemma 1.3 that

y(f(t)) =
∫
R

y

(
Tt−sµ(A)

)
dν(s),

and hence y(f(t)) is measurable being the convolution of a measure in M(R) and

a bounded measurable function on R. This finishes the proof of the corollary . �

Corollary 3.3. With the above notation, one has

(σ ∗ ν) ∗ µ = σ ∗ (ν ∗ µ).

Proof. For A ∈ Σ, y ∈ Y , one can reduce it to the scalar case using Lemma 1.3:

y

[
(σ ∗ ν) ∗ µ(A)

]
= y

[∫
R

(T−sµ(A)d(σ ∗ ν)(s)
]

=
∫
R

y(T−sµ(A))d(σ ∗ ν)(s).

Next we can use the results known in scalar case [5, Theorem 19.10] to obtain that∫
R

y(T−sµ(A))d(σ ∗ ν)(s) =
∫
R

y

(
ν ∗ T−sµ(A)

)
dσ(s).

Finally, using Lemma 1.3 again gives us that:∫
R

y

(
ν ∗ T−sµ(A)

)
dσ(s) = y

(
σ ∗ (ν ∗ µ)(A)

)
.

�

Let g be the Bochner measurable function defined on R with values in M(Ω, Y ∗)

given by Corollary 2.2. Let µ be a weakly analytic measure in M(Ω, Y ∗). For y > 0,

let Py be the Poisson kernel on R:

Py(x) =
1
π

y

x2 + y2
(x ∈ R).

We can form the Poisson integral of g as follows :

Py ∗ g(t) =
∫
R

g(t− x)Py(x)dx,

where the integral exists as a Bochner integral.
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Proposition 3.4. We have that

(3.3) lim
y→0

Py ∗ g(t) = g(t)

in M(Ω, Y ∗)-norm, for almost all t ∈ R.

Proof. Since g is measurable and essentially bounded, the proof is similar to the

classical proof for scalar-valued functions. �

Lemma 3.5. For all t ∈ R, one has that

Py ∗ g(t) = Py ∗ Ttµ.

Proof. For any A ∈ Σ, y1 ∈ Y , one has by Lemma 1.3:

y1

(
Py ∗ g(t)(A)

)
= y1

(∫
R

g(s)(A)Py(t− s)ds
)

=
∫
R

y1

(
g(s)(A)

)
Py(t− s)ds.

By Lemma 1.3 again,∫
R

y1

(
g(s)(A)

)
Py(t− s)ds =

∫
R

y1

(
Tsµ(A)

)
Py(t− s)ds

=
∫
R

y1

(
Tt−sµ(A)

)
Py(s)ds

= y1

(∫
R

Tt−sµ(A)Py(t− s)ds
)

= y1

(
Py ∗ (Ttµ)(A)

)
,

which completes the proof of the lemma. �

Lemma 3.6. Let t0 be any real number such that (3.3) holds. Then for all t ∈ R,

we have:

lim
y→0

Py ∗ Ttµ = Tt−t0

(
g(t0)

)
in M(Ω, Y ∗)-norm.

Proof. Since Py ∗ g(t0)→ g(t0), it follows that

Tt−t0

(
(Py ∗ g(t0)

)
→ Tt−t0

(
g(t0)

)
.

By Lemma 3.5 and Corollary 3.2 we get

Tt−t0

(
Py ∗ g(t0)

)
= Tt−t0

(
Py ∗ Tt0µ

)
= Py ∗ Ttµ,

establishing the lemma. �



14 NAKHLÉ H. ASMAR, ANNELA R. KELLY AND STEPHEN MONTGOMERY-SMITH

Theorem 3.7 (Main theorem). Suppose T = (Tt)t∈R satisfies hypothesis (A).

Let g be as above. Then we have

Ttµ = g(t), for almost all t ∈ R.

Consequently, the mapping t→ Ttµ is Bochner measurable.

Proof. It is enough to show that the equality in the theorem holds for all t = t0

where (3.3) holds. Fix such a t0 and let A ∈ Σ. Since t → Ttµ(A) is a bounded,

measurable function on R, then, as in Proposition 3.4, one can show that

Py ∗ (Ttµ)(A)→ Ttµ(A), for almost all t ∈ R.

By Lemma 3.6:

Py ∗ (Ttµ)(A)→ Tt−t0

(
g(t0)(A)

)
, (t ∈ R).

Hence

(3.4) Ttµ(A) = Tt−t0g(t0)(A), for almost all t ∈ R.

From Lemma 3.5, one has that Tt0g(t0) = lim
t→0

Py ∗ µ in M(Ω, Y ∗) norm. Since µ

is weakly analytic, it follows that Py ∗ µ is weakly analytic, because for all y1 ∈ Y

and all A ∈ Σ and all h(t) ∈ H1(R) we have that∫
R

y1

(
Tt(Py ∗ µ)(A)

)
h(t)dt =

∫
R

y1

(
Tt

∫
R

T−sµ(A)Py(s)ds
)
h(t)dt

=
∫
R

∫
R

y1

(
Tt−sµ(A)

)
Py(s)h(t)dsdt

=
∫
R

∫
R

y1

(
Tt−sµ(A)

)
Py(s)h(t)dtds

=
∫
R

y1

(
T−s

∫
R

Ttµ(A)h(t)dt
)
Py(s)ds = 0.

One can also show that T−t0g(t0) is weakly analytic, because µ is weakly analytic,

that is for all y1 ∈ Y and all A ∈ Σ and all h(t) ∈ H1(R) we have that∫
R

y1

(
Tt−t0g(t0)(A)

)
h(t)dt =

∫
R

y1

(
Tt{ lim

y→0
Py ∗ µ(A)}

)
h(t)dt

=
∫
R

lim
y→0

y1

(
Tt

(
Py ∗ µ(A)

))
h(t)dt

= lim
y→0

∫
R

y1

(
Tt

(
Py ∗ µ(A)

))
h(t)dt.
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Taking t = 0 in (3.5) one has that

µ(A)− T−t0g(t0)(A) = 0, (A ∈ Σ).

Since the measure µ− T−t0g(t0) is weakly analytic, then using hypothesis (A), we

have that

µ = T−t0g(t0).

Applying Tt0 to both sides of this equality completes the proof. �

Theorem 3.8. Let T and µ be as in the main theorem. Then

lim
y→0

Py ∗ µ = µ in the M -norm.

Proof. Let t0 be such that (3.3) holds. Then

T−t0(Py ∗ g(t0))→ T−t0(g(t0))

in the M(Ω, Y ∗)-norm. By Lemma 3.2, we have that T−t0(Py ∗ g(t0)) = Py ∗µ. By

Theorem 3.7 we have that T−t0g(t0) = µ. The result follows. �

Theorem 3.9. Let µ and T be as in the main theorem. Then the mapping t→ Ttµ

is uniformly continuous from R into M(Ω, Y ∗).

Proof. For each y > 0, consider the map t → Py ∗ g(t). Since g is essentially

bounded, one can easily see that this map is continuous. Hence by Lemma 3.2 we

have that the map t → Py ∗ Ttµ = Tt(Py ∗ µ) is continuous. By Theorem 3.5. one

has that

Tt(Py ∗ µ)→ Ttµ

uniformly in t. It follows that t→ Ttµ is uniformly continuous. �

Definition 3.10. Let µ ∈ M(Ω, Y ∗) , where Ω is a σ-field and λ ∈ M(Ω). The

measure µ is called λ-continuous (in symbols µ � λ), if µ vanishes on sets of

|λ|-measure zero.
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Let Ω = T, take Tt to be translation, that is Ttµ(·) = µ(· + t). It is possible to

show (see [1] and Proposition 1.7, [5]), similarly as in scalar case that, the definition

of weak analyticity of the measure µ can be written as a condition:

∫ π

−π
e−intd 〈y, µ(t)〉 = 0, ∀n < 0, ∀y ∈ Y.

This definition coincides with the definition of the analyticity in [12] by R. Ryan.

Although in [12] it is referred to as a Pettis integral, it is an example of what [4]

calls a Gelfand or weak∗ integral. R. Ryan [12] obtained that if µ is weakly analytic,

then µ� λ. Unlike the scalar case, there exist weakly analytic vector-valued mea-

sures that do not translate continuously. For example, let g(t) = exp
(
−i cot

t

2

)
.

Then the measure defined by dµ(t) = g(t − ·)dt, is a weakly analytic measure in

M(T, L∞(T)), but it does not translate continuously, although µ � λ. We have

the following as a corollary of Theorem 3.9.

Corollary 3.11. Let µ ∈M(T, Y ∗). Assume that Y ∗ has ARNP. If µ is a measure

such that ∫ π

−π
e−intd 〈y, µ(t)〉 = 0, ∀n < 0, ∀y ∈ Y.

then the mapping t→ µ(ei(·+t)) is continuous.

Hence we have obtained that if we further assume that Y ∗ has the analytic

Radon-Nikodým property (ARNP), then every weakly analytic measure translates

continuously.
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