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ABSTRACT 

Using a classification guided feature selection (wrapper method) in conjunction with 

a new performance metric, I present a solution to multi-class subject invariant Brain 

Computer Interface (BCIs) using electroencephalography (EEG) and near infrared 

spectroscopy (NIRS) signals, a complex problem known to be prone to trivial classification. 

In a data-driven multi-class BCI, evaluation of the one versus rest (OVR) classifier is a major 

challenge using error rate. The hence derived multiclass OVRs using wrapper methods with 

error rate as the classifier feedback can show degeneracy in terms of imbalance in sensitivity 

and specificity, leading to trivial classification. This imbalance can be removed by the usage 

of a scalar quality factor as the performance metric. The error rate is replaced by a simple 

scalar quality factor that adjusts the simple correct rate with the ratio of sensitivity and 

specificity. A 4-class subject invariant EEG-based BCI using signals from 10 untrained 

subjects is presented here to prove the efficacy of the quality metric. Left hand, right hand, 

left leg, and right leg movements are classified using Naïve Bayesian, Gaussian SVM, 

Polynomial SVM, and k-Nearest neighbor classifiers. Extending the same method to optical 

signals, here I present an NIRS-based BCI using signals from two subjects to classify left 

hand and right hand movements. The same quality-metric based wrapper methods could 
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identify the salient time samples of oxy-hemoglobin (HbO) and deoxy-hemoglobin (Hb) 

channels from NIRS signals to achieve 100% classification rate, sensitivity, and specificity. 
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CHAPTER 1 

INTRODUCTION 

Brain Computer Interface is an evolving research topic since early 1970’s (Ortiz, 

2007). BCI is a thought translation device that can be used to operate an external device 

based on the brain activity with many potential applications (Birbaumer et al., 2000). The 

progress of the BCIs was enhanced as many studies hypothesized the correlation between 

EEG signals (or brain activity) and imagination (Anderson et al., 1998 and McFarland et.al 

2000). The aim of the BCI is to translate human thoughts into a useful control signal. BCIs 

can act as a communication channel for paralyzed, locked-in, spinal cord injury, amyotrophic 

lateral sclerosis and brainstem stroke patients (Wolpaw et al., 2002). Applications of BCI are 

computer speller (Felton et al., 2007 and Millan et al., 2003), wheel chair control (Millan et 

al., 2003 and Valsan et al., 2009), smart home technology (Chan et al., 2008), games 

(Martinez et al., 2007) and many more.  

The activity of the brain can be measured using various methods like 

Electroencephalography (EEG), Magneto-encephalography (MEG), Positron emission 

tomography (PET), Functional magnetic resonance imaging (fMRI) and Near Infrared 

Spectroscopy (NIRS). Observing the disadvantages like massive size of MEG and fMRI, and 

the exposure to radioactive traces using PET; EEG drew the attention of many researchers 

with advantages like portability, ease of usage, and price (Wolpaw et al., 2002 and Coyle et 

al., 2007).  NIRS signals provide a clear picture of brain hemodynamic activity besides some 

disadvantages like limited light penetration depth (Huppert et al., 2006). 

Electroencephalogram is a device to record the electrical activity of the brain that can 

be observed as a result of the excited nerve cell, Neuron. Neurons are the electrically active 
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cells that carry information through electrochemical signaling method through a complex 

network system (Gonon, 2003). Every thought or action involves several thousand’s of 

neurons firing across the brain (Wolpaw et al., 2002). EEG is composed of small scalp-

induced potentials from the electrical activity of the outer layers of the brain. However, as the 

electrical activity of the neurons is in terms of millivolts the real world application of these 

signals require several noise cancellation and filtering techniques. These signals are recorded 

using electrodes placed on the scalp (EEG caps) or by inducing in the scalp 

Electrocorticogram (ECoG). The increase in number of electrodes in an EEG cap improves 

spatial resolution and signal-to-noise ratio of the collected EEG signals. A standard 10-20 

placement EEG cap with 21 electrodes  is used in this study.  

As several thousands of neurons fire across the brain for each thought and action, 

they require more oxygen from blood to metabolize the consumed glucose (Heeger et al., 

2002). The required oxygen for the neurons is supplied by oxy-hemoglobin (chromophore) in 

the blood. After the required oxygen is acquired at capillary beds the oxy-hemoglobin turns 

into deoxy-hemoglobin. . NIRS is an optical technique that uses the absorption of near 

infrared lights to measure concentration changes in deoxy-hemoglobin (Hb) and oxy-

hemoglobin (HbO) (Coyle et al., 2007 and Schmitz et al., 2009). The changes in the tissue 

oxidation levels due to brain activity, regulates the scattering and absorption of the NIRS 

photons (Coyle et al., 2007). The relative changes in hemoglobin levels are determined by 

NIRS signals using Beer-Lamber law. The light emitted by the sources like Light emitting 

diode or Lasers with wavelength of 700 to 900 nm penetrates into the skin (here - cortex) up 

to a depth of few centimeters (0.5 to 2 cm in adult human (Fukui et al., 2003)), is collected 
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back using detectors around the source. The spatial resolution of the collected signals is 

modulated by the geometry of the probe (Sitaram et al., 2007).  

The objective of this study is to develop an automated wrapper method applicable to 

BCIs that choose features and select classifier parameters with balanced sensitivity and 

specificity. This method is applicable to the BCIs that operate on electric (EEG) and optic 

(NIRS) signals. A Wrapper method is an integrated data driven methodology to choose the 

features and select classification model based on a quality metric. In a multi class BCI, the 

evaluation of the performance of a two class classifier can be done using one vs. one or one 

vs. rest classifiers (OVR). In a N-class problem evaluation using one vs. one classifier we 

need to evaluate all possible pairs of classes, which lead for the evaluation of N(N-1)/2 

classifiers. The count of the classifiers which need to be evaluated grows rapidly with the 

increase in the number of classes. OVRs on the other hand solve this problem with N OVRs. 

The performance measure of OVR classifier using a single scalar metric like correct rate 

might lead to degeneracy. In an multi-class BCI, the performance of an OVR need to be 

determined considering multiple metrics like correct rate, sensitivity, and specificity, rather 

than a single correct rate. For instance in a 5-class BCI with equal number of samples in each 

class, an OVR can generate correct rate of 80% without classifying none of the in-class 

samples (i.e., sensitivity = 0 and specificity = 1), trivial classifier. This problem is more 

prominent with the increase in number of classes in a BCI. By using a Quality factor (please 

refer section 2.5) as wrapper method feedback for the OVR we can achieve a non-

degenerative solution regardless of the number of class. The significance of this BCI is its 

subject invariance, as it is developed on 10 untrained subjects EEG signals. 
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NIRS signals for the motor movements do have distinct patterns in the hemodynamic 

responses from the motor cortex (Sitaram et al., 2007). In the approach to classify motor 

movements using NIRS signals, Sitaram et al., 2007 achieved an average 5-fold cross 

validation recognition rates of 87.5% for linear SVM and 93.4% for hidden Markov model, 

and Niide et al., 2009 achieved 93.4% for linear SVM and 93.9% for Gaussian SVM. They 

used same dataset with 4 subjects, in which each subject’s movements are classified 

separately and their recognition rates were averaged for each movement. Niide et al., 2009 

presented a maximum 5-fold cross validation rates of 97.1% for a subject. Here we present 

an automated wrapper method guided by quality factor to choose features and select 

classifier parameters for a two class subject invariant BCI (using wrapper methods) that 

generated 100% 5-fold cross validation recognition rates using time samples of the highly 

active NIRS channels as features. 

Science team for EEG experiment: Data collection and feature extraction was done by 

Jesse Sherwood. The feature ranking and selection, and classification were my own work 

under the guidance of Dr. Reza Derakhshani. The idea of Quality metric is brought up by 

RD. 

Science team for NIRS experiment: Using the dataset provided by NIRx GmbH the 

feature ranking and selection, and classification were done by me, under the guidance of Dr. 

Reza Derakhshani. Artifacts like Mayer waves, respiration and hair movements, were 

removed by the filtering techniques provided by NIRx GmbH.  
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CHAPTER 2 

METHODS 

In this study, a four class BCI system was developed using EEG signals collected 

from 10 untrained volunteers performing four body movements, namely left hand, right hand, 

left leg, and right leg (designated as Movement 1, Movement 2, Movement 3, and Movement 

4, respectively). Based on the literature and previous study by Dr. Reza Derakhshani and 

Jesse Sherwood, the selection of the four motor movements is done (Curran et al., 2003, 

Doynov et al., 2008, Mason et al., 2007 and Doyle et al., 2006).  

 

Figure 1: A block diagram of the overall EEG method. 



6 

 

Further preprocessing, feature extraction, feature selection and classification were 

done on these signals (Figure 1). A block diagram of the entire EEG analysis is shown in 

figure 1. To increase the statistical power of the results and eliminate over-fitting problem, all 

the classification results for the 4-class BCI did undergone a 5-fold cross validation with 10 

Monte Carlo repetitions. 

A two class BCI was developed using NIRS signal collected from two different 

volunteers performing two body movements, namely left hand and right hand movements. 

NIRS signals with the wavelength of 760 nm and 850 nm are used to measure HbO and Hb 

respectively. The recorded signals thereafter undergo preprocessing (artifact removal), 

feature selection and ranking, and classification (Figure 2). A 5-fold cross validation is done 

by creating each fold manually so as to divide the classes and subjects in equal proportions 

for all the folds. All the forty samples were divided into 5 eight sample folds, which have 2 

left hand movements of subject 1, 2 left hand movements of subject 2, 2 right hand 

movements of subject 1, and 2 right hand movements of subject 2. 

 

Figure 2: A block diagram of the overall NIRS method. 
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2.1. Data Collection 

EEG signals are recorded under the UMKC IRB approval #090218, from 10 

untrained volunteers for 4 movements using standard 10-20 electrode placement with two ear 

references (Fig 3). The EEG signals are amplified and filtered to reject power line 

interference using a NeuroPulse Systems MS-24R bioamplifier with 1.5 – 34 Hz bandpass 

filter at a sampling rate of 256 Hz. The subjects were asked to perform four body movements 

for 12 times in each of the two sessions without any preliminary training. Each sessions 

conducted is 4-6 weeks apart. Each of the four intended movements was repeated for 24 

times in both the sessions, producing 960 eight-second epochs. So, each movement has 240 

samples from 10 different subjects. During each session they were asked to perform 4 

intended movements 12 times each over the course of 2 hours. All the instructions to the 

subjects were given using a computer screen prompt. All the subjects were instructed not to 

blink during the task performance. They positioned their both feet on a foam pad, loosely 

gripped rubber balls with each hand, and applied slight pressure based on the displayed 

instruction (pseudo movements). A short audio tone followed by 8 second command prompt 

on a screen is used to specify the movement. This is followed by a 10 second break before 

the next pseudo movement was displayed on the screen. The first 2 second recordings of all 

the 8 second recordings are taken for the analysis. The motor cortex signals are captured 

from C3 and C4 electrodes (Fig. 3). Large Laplacian filters were applied for better spatial 

resolution, where the reference potentials were derived from the difference of C3 and the 

average of F3, T3, P3, and Cz (left hemisphere). Similarly, C4 was referenced to the average 

of F4, T4, P4, and Cz (right hemisphere).  Left and right hemisphere signals were filtered 

separately. 
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Figure 3: 10-20 EEG electrode placement system. 

 

Figure 4: Source and detector placement for NIRS signal recording. 

NIRS signals are recorded at a sampling frequency of 6.25 Hz from two subjects 

during left hand and right hand movements while clutching a ball in each hand. The NIRS 
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device used for the data collection has 8 sources and 16 detectors placed as shown in the 

figure 2. Source-detector placements resemble those of a 128 electrode EEG montage. Here, 

the 16 detectors for each of the 8 sources measured 128 different optical signals. In order to 

evaluate the major effective paths, the signals between each source and its immediate 

detector are considered, that resulted to 26 effectively active paths (shown in the green color 

in figure 4). The 26 selected signals, in terms of their source and detector paths, are in order: 

Signal 1: 1-1, Signal 2: 1-2, Signal 3: 1-7, Signal 4: 1-8, Signal 5: 2-2, Signal 6: 2-3, Signal 

7: 2-8, Signal 8: 2-9, Signal 9: 3-4, Signal 10: 3-5, Signal 11: 3-10, Signal 12: 3-11, Signal 

13: 4-5, Signal 14: 4-6, Signal 15: 4-11, Signal 16: 4-12, Signal 17: 5-3, Signal 18: 5-4, 

Signal 19: 5-9, Signal 20: 5-10, Signal 21: 6-13, Signal 22: 6-14, Signal 23: 7-14, Signal 24: 

7-15, Signal 25: 8-3, and Signal 26: 8-4 (All the red colored numbers represent the sources). 

 

Figure 5: Timing of experiment. 

Subjects were prompted for 10 left and 10 right hand movements, in a random order 

using a computer screen. Each recording session was initiated with 30 seconds of pre-waiting 

period with a blank screen, followed by twenty prompted hand pseudo movements trails. 

Each trial lasts for 30 seconds, where the first 10 second is pause period without movements, 

followed by a 10 second task execution (left or right hand), and finished with another 10 
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second pause. A vertical green line was appeared on the screen three seconds prior to each 

command to make the subject ready for task (Figure 5). 

2.2. Feature Extraction 

All the following feature extraction techniques were applied to the EEG signals by 

Jesse Sherwood. The features for all the modalities are extracted separately for left and right 

hemisphere EEG signals.  All the features vector derived from all the modalities were 

checked for the constant rows (Matlab command – removeconstantrows), that is all the 

features with their samples under a variance of 10
-8

 were removed considering that they are 

too hard to classify along with other high variance features. 

2.2.1. Linear Predictive Coefficients 

In BCI systems, the p
th
 order forward linear predictive coding (LPC) coefficients have 

been successfully used as time domain features (Anderson et al., 1995). The 256 Hz signal 

was down sampled by 3 and then based on the classification rates obtained using the SVM 

classifiers, 18
th
 order LPC features were used in the study. The increase in the order made the 

penalized error decrease and then relatively flat and the increased thereafter up to the order of 

20 (Roberts et al., 2006). Increasing the order beyond 20 reduced the training quality and 

generalization ability of the trained classifiers (Jain et al., 2000). LPC had a total of 36 

features, in which 18 are from left and the rest from right hemisphere. 

2.2.2. Short Time Fourier Transforms 

As EEG signals can be represented by the class of non-stationary signals, the time-

frequency features can be extracted using the short time Fourier transforms (STFT) (Mitra et 

al., 2006). A window length of 1 second with a 255 sample overlap and a range of 1-48 Hz 

aggregated into four 12 Hz frequency bins were used in this study. All this was done on the 
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EEG signals obtained from left and right hemisphere, separately. STFT had a total of 32 

features, in which 12 are extracted from the left hemisphere EEG signals and 12 from right. 

2.2.3. Power Spectral Density 

EEG signals representing imagined motor tasks are believed to be attributed to event-

related desynchronization of neuron signals. This can be reflected in changes in spectral 

energy levels within discrete frequency bands of the EEG signals. Based on this 

characteristic the selections of spectral features were chosen in this study (Herman et al., 

2008). The Welch periodogram spectral estimation method with the Hamming window 

length of 33 and 97% overlap is used for the calculation of the string of numbers representing 

frequency bin energies of power spectral density. A 1-48 Hz PSD span divided was into 

twelve 4 Hz frequency bins and then the energy was calculated under each non-overlapping 

bin. The above setting was derived by trial and error method. This contributed the feature 

vector with a total of 24 features for PSD (12 from left and 12 from right hemisphere EEG 

signals), that are used in the study. 

2.2.4. Cepstrum 

Cepstrum is a non-linear signal transform derived from the Fourier transform 

(Oppenheim et al., 1975). It was included as it provided a non-linear frequency-based feature 

set. A total of 1022 features (511 features from left and 511 features from right hemisphere 

EEG signals) are derived, and used in this study.  

2.2.5. Wavelet 

The drawbacks of the STFT such as time-frequency resolution in the non-stationary 

signals can be removed using a multi resolution time-frequency signal transform, known as 

Wavelet decomposition (Mallat, 2001). For the signal reconstruction, regular wavelet 
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decomposition and wavelet packet provide similar information. The features from the 

Wavelet packet are more classifiable, as they are produced as a result of a subdivision of high 

frequency details into sub-bands which provides advantages in extracting high frequency 

features (Vetterli et al., 1992; Ting et al., 2008).  

All the wavelet families available in the Matlab toolbox were tested using SVM 

classifiers and then the best families based on the minimum classification error were selected. 

Reverse biorthogonal and symlet families are used for this modality (Sherwood et al., 2009). 

Two kinds of wavelet features were constructed: as the filter banks outputs or aggregation of 

sub-band energies, where the latter foregoes temporal information in the interest of shift-

invariance by marginalizing over the shift parameter (Mallat, 2001). The wavelet 

decomposition filter bank output coefficients (WDC) were calculated by reverse biorthogonal 

3.7 wavelets and wavelet packet filter banks output coefficients (WPC) were calculated with 

symlet 15 wavelets. The energy of wavelet decompositions were marginalized over time shift 

and their energies across different frequency scales were calculated as WDE feature sets 

using reverse biorthogonal 3.1 wavelets. Similarly wavelet packets energy features (WPE), 

were calculated from wavelet packets using symlet 15 wavelets. 

A total of 1048-WDC features, 1032-WPC features, 48-WDE features, and 96-WPE 

features were derived from their respective feature extraction methods. All these feature 

vectors were checked for constant rows and removed. 

2.3. NIRS Feature Generation 

A band stop 6
th
 order Butterworth filter with a stop band of 0.09- 0.45 Hz is used in 

order to minimize the artifacts like Mayer waves, respiration and hair movements. The 

baseline changes of the signals are removed using a high pass filter (0.01 Hz, Butterworth 



13 

 

order 5). Baseline shifts are further removed by subtracting the mean of each 10-second 

preceding pause period signal from its following 10-second task execution signal. All the 

above filtration techniques are suggested by NIRx GmbH. Finally, these signals were 

decimated by 4. Considering the original sampling rate of 6.25 Hz, and the fact that the 

majority of the spectral contents of the fNIRS signals seemed to be under 0.75 Hz, and we 

deemed this new sampling rate of 1.5 Hz of the decimated signal to be sufficient. As the 

signals were recorded at a sampling rate of 6.25 Hz, each ten second task execution period 

have 62.5 samples which were round to 64 samples, so a 16 sample signal was derived after 

decimating each 10 second signal of each pseudo movement from all the 26 signals. Based 

on our pilot studies and related reports in the literature, we chose all these 16 points from 26 

channels as features in this study (Sitaram et al., 2007; Niide et al., 2007). In addition mean 

and variance of each signal are also taken as features. Thus, for each 10 second task-

execution span 936 feature elements were produced, with 416 HbO features (16 samples * 26 

channels), 416 Hb features, 26 features as mean of HbO, 26 features as mean of Hb, 26 

features as variance of HbO, and 26 features as variance of Hb. Given the 10 left hand and 10 

right hand movements from two subjects, a total of 40 feature vectors of length 936 was 

produced in the manner. Figure 6 and 7 shows the average of the entire 10 records for each 

subject and for each movement across all the 26 channel highly effective channels in terms of 

HbO and Hb signals. Each signal resembles 18 samples in which the middle 16 samples 

represents the second 10 seconds of each trial, the task execution period as shown figure 4, 

that is the leading pause followed by the task execution and end pause. It can be clearly seen 

that the temporal evolution of each signal is different. Thus the selection of salient time 
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samples is done for a robust classification of the target pseudo movements from single trial 

fNIRS signals. 

In figures 6 and 7, red and blue lines indicate the oxy-hemoglobin and deoxy-

hemoglobin signals. Left and right hand movements are depicted with solid and dashed lines, 

respectively. 
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Figure 6: Average fNIRS signals for subject 1. 
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Figure 7: Average fNIRS signals for subject 2. 
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2.4. Feature Ranking and Selection 

2.4.1. Univariate Feature Ranking (ROC ranking) 

The features within each modality are ranked using the area under Receiver Operating 

Characteristic (ROC AUC) as classifiability criterion (Fawcett, 2006). ROC is a plot of true 

positives rate (y-axis) versus false positives rates across different classification thresholds for 

univariate class likelihood. A higher area under the curve is indicative of better overall 

sensitivity and specificity. For the EEG data set ranking for the 8 feature modalities has been 

done individually and also for all the eight modalities so as to obtain the ranked list of the 

features in a specific modality and among all the modalities to pick the best modality. Using 

this ranked list, features were aggregated from the top till the classification quality metric 

was maximized. Since the ranking has been done to discriminate the 4 movements across all 

the subjects, the results provide features with higher movement-discrimination power 

irrespective of subjects. For the NIRS, all the 936 features were ranked using ROC AUC 

criterion and the ranked list is used in the same way as in EEG. 

2.4.2. Classification-Guided Subset Selection and Ranking  

First, within each modality, a number of fixed-length feature subsets that can attain a 

certain classification rate (Threshold) are selected and merged (Waske et al., 2006). The 

feature with highest frequency is ranked first, and so on. Here in the EEG analysis, the 

classification rates of the randomly sampled subsets were calculated using a four class k-NN 

classifier with a configuration of k varied from 5 to 20 (5, 10, 15, & 20), a Euclidean distance 

metric and majority voting method. In NIRS analysis k is varied from 4 to 10. For a set of 

configuration (Pool size, subset size and k) the threshold was started with 60% and ended up 

with the maximum achieved by my machines, in this order for NIRS analysis three ranked 
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list obtained using 3 different configurations are used in this study; 1. Subset size – 10, Pool 

Size – 150, Threshold – 0.905; 2.Subset size – 15, Pool Size – 80, Threshold – 0.87; 3.Subset 

size – 20, Pool Size – 80, Threshold – 0.88. For EEG analysis a subset size – 12, Pool Size – 

100, Threshold – 0.69 was used. 

2.4.3. Sequential Selection  

The sequential algorithm selects the features from a set of candidates so that an 

ensuing classification metric is optimized (Bishop, 2006). Sequential forward (SF) and 

sequential backward (SB) selection methods are used in this analysis. SF starts from an initial 

feature element adding more elements one at a time, as long as the classification metric is 

improving. Sequential backward selection works similarly but in the opposite direction: all 

the features are initially selected into the best set, and then elimination of the features occurs 

with one element at a time based on the feedback from the selected classification metric. 

2.5. Quality Factor 

As mentioned during the introduction, classification rates might not be a successful 

performance measure of the OVR model. This can be observed when the sensitivity and 

specificity are lopsided, leading to degeneracy and trivial classification despite of high 

classification rates. For instance in a 4-class OVR classifier with sensitivity and specificity of 

10 and 90 respectively will come up with a classification rate of 70%, despite of poor 

sensitivity. To be more specific, in an N class BCI design with equal number of samples in 

each class we need N individual OVR’s, wherein each compare two groups. Each OVR need 

to classify two groups where all the samples of one class are in group 1 and rest of all the 

samples of N-1 class are in group 2. In such a case with unbalance between each group, the 

measure of performance using classification rates can mislead.  
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In the approach to solve this problem a confusion matrix can be used to measure 

performance. Sensitivity and specificity can be used to reduce the number of scalar metrics, 

which need to be considered in the confusion matrix (True positives, true negatives, false 

positives, and false negatives). But for the classification of the signals using wrapper 

methods multiple scalar metrics cannot be used, as it uses single scalar metrics as classifier 

feedback to its feature search and selection routine. 

Most of the studies do avoid this issue just by presenting the classification rates 

(instead of sensitivity and specificity), or by using other classifier arrangements. A method to 

solve this issue is presented in BCI2005 competition through Cohen’s Kappa coefficient 

(Schlögl et al. 2005, and Schlögl et al. 2007). A scalar value that falls in chance-corrected 

agreement statistics which measures the correlation between predicted and an actual class is 

used. This scalar, derived from the confusion matrix, was proved to have one deficiency by 

Gwet (Gwet, 2002). Here I present an approach to solve the problem using a single scalar 

metric which uses confusion matrix, which improved the classification quality metric thus 

called as Quality factor, Q. This reflects the recognition rate and also addresses the N-1/N 

classification rate problem with the use of sensitivity and specificity. Q is defined as the ratio 

of classification rate to the sensitivity vs. specificity or its inverse, whichever greater.   

               
               

    (
           

           
)  (

           

           
)  

 

2.6. Classification 

2.6.1. k-NN Classifier 

The k-NN classifier classifies an unknown sample based on majority vote of k nearest 

samples of the classified training samples (Cover et al., 1967). Here in this study, a Euclidean 

metric is used to measure the distance between test sample and its k nearest training samples. 
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A better classifier is selected, not only using classification rate, but with an equal importance 

given to k value and classification rate. For instance in an unbalanced two class classifier 

with a ratio of 1:4 samples in class1 vs. class 2 of the training and test sets, if the k value is 

greater than 2/5
th

 of training dataset, no matter what ever the test sample it would be 

classified into class 2. For EEG data, k values are varied from 1 to 100 and for NIRS it’s 1 to 

10.  

2.6.2. Naïve Bayesian Classifier 

Bayes classifiers assume normal distribution of classes, and thus operate on the basis 

of quadratic or linear discriminants that result from intersection of normal log-likelihoods 

(Duda et al., 2001). Two Bayesian classifier configurations were chosen. One used a linear 

discriminant function with a diagonal covariance estimate pooled across the classes (DL). 

The second method used a quadratic discriminant function with the diagonal covariance 

estimates stratified by classes (DQ). 

2.6.3. Support Vector Machines 

Support Vector Machines (SVM) separates the data in a feature space using a 

maximum margin hyperplane (Sebald et al., 2000). The data points near the hyper-plane are 

called support vectors and are used to determine SVM discriminant. The SVM determines its 

parameters based on the solution of a convex optimization problem, and as such the local 

solution can be a global optimum (Bishop C.M., 2006). The Gaussian and Polynomial 

estimates for the calculation of the hyper-plane are used in this analysis. In a Gaussian SVM, 

the training data is projected into a feature space spanned by Gaussian kernels, whose spread 

represented by sigma (σ), where in a polynomial SVM the classes are separated by 

polynomial functions. The tested range on both datasets for the spread of the Gaussian kernel 
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in the Gaussian SVM is 0.1 to 25 and the order of the polynomial in the polynomial SVM is 

2 to 5. The box constraints (or C parameter) values were changed from 0.1 to 100 to control 

sensitivity of SVM boundaries to outliers using “soft” or “hard” margins, allowing trade-off 

between the slack variables, misclassification penalty, and the discriminant rigidity (Bishop 

C.M., 2006). Increasing the C value from 0.1 to 100 refers to a change of margin type from 

soft to hard, affecting outlier tolerance and training error. 
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CHAPTER 3 

RESULTS 

3.1.EEG Analysis 

Using the ranked list from univariate feature ranking, and classification guided subset 

selection and ranking methods for each feature modality, the feature vector to the classifier 

are given starting from the top ranked and then adding the next best until the Q factor is 

maximized. All these feature vectors are tested by the classifiers with all the different 

configurations possible (within the test range mentioned). The set of features obtained for the 

sequential forward and sequential backward selection are tested with all the classifier 

configurations and the best classifier is selected based on the Q factor. The tested range for 

all the classifiers are Naïve Bayesian (Diagonal linear-DL, Diagonal Quadratic-DQ), kNN (k 

= 1-100), and SVMs (Polynomial with n=2-5; Gaussian with σ=1-25; C=0.1-100 in both 

cases). For all the movement classifications, the top 5 best classifier used the univariate 

feature ranked list of WPC and WDC modality. All results presented here are 5-fold cross-

validation results with 10 Monte Carlo repetitions to reflect upon predictive power of the 

results (generalization). The automated wrapper method guided by error rate is initially 

applied to each class and most of the obtained top ranked classifiers had imbalance in the 

sensitivity and specificity, signifying the importance of Q factor based wrapper methods. The 

error factor guided wrapper methods were tested with k = 1, 5, and 10; C = 0.1, 1, 5, and 10; 

σ = 1 and 25; n = 2 and 3. Although it was a small test range, most of them ended with Q 

factor <50%, that was due to low sensitivity and high specificity. Thus, Q factor based 

wrapper methods eliminates the imbalance in sensitivity and specificity. 
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3.1.1. Movement 1 

Table 1: Best 5 classifiers for movement 1. 

Classifier Configuration 

Selected 

Features 

Feature 

type 

Sensitivity Specificity 

Correct 

rate 

Q factor 

Naïve 

Bayes 

Diagonal 

Linear 

ROC 1-79 WPC 0.7 0.801 0.832 0.727 

Naïve 

Bayes 

Diagonal 

Linear 

ROC 1-83 WPC 0.699 0.803 0.833 0.725 

Naïve 

Bayes 

Diagonal 

Linear 

ROC 1-81 WPC 0.695 0.803 0.838 0.725 

Naïve 

Bayes 

Diagonal 

Linear 

ROC 1-66 WPC 0.697 0.804 0.836 0.725 

SVM σ=15, C=2 ROC 1-17 WPC 0.689 0.734 0.749 0.703 

 

Using the ranked list obtained from univariate feature ranking method, the Naïve 

Bayesian OVRs outperformed with a best Q factor of approximately 72%, followed by 

Gaussian SVMs. All the top 5 classifiers used the univariate ranked list of the WPC feature 

modality (Table 1). For the Gaussian SVMs, box constraints (C) and σ values were tested 

with all the possible combination (within the test range), and the values of the Gaussian SVM 

shown in the table 1 is chosen based on the best-attained Q factor. Here in general, for the 

movement 1 classification Q factor decreased with C while keeping σ constant. This 

indicates a preference for soft margins that are less sensitive towards outliers, which is 

expected given the low signal to noise ratio EEG-based BCI dataset. On the other hand, 

while maintaining a constant C, Q factor initially increased with σ, followed by an abrupt 

decline for the values >15. Here k-NN classifiers with all different feature ranking and 
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selection methods performed poorly, with less than 50% Q factor. Polynomial SVM with 

order 2 and 3 performed poorly, and the higher orders struggled to converge with few feature 

modalities. Best 10 classifiers used univariate ranked list of WPC features followed by 

WDC. Although sequential forward and sequential backward feature sets yielded good error 

rates their Q factor were poor.  

3.1.2. Movement 2 

Table 2: Best 5 classifiers for movement 2. 

Classifier Configuration 

Selected 

Features 

Feature 

type 

Sensitivity Specificity 

Correct 

rate 

Q factor 

SVM σ=15, C=0.2 ROC 1-70 WPC 0.72 0.804 0.827 0.741 

SVM σ=15, C=0.1 ROC 1-65 WPC 0.715 0.792 0.813 0.734 

Naïve 

Bayes 

Diagonal 

Linear 

ROC 1-80 WPC 0.701 0.808 0.839 0.728 

Naïve 

Bayes 

Diagonal 

Linear 
ROC 1-78 WPC 0.701 0.803 0.833 0.727 

Naïve 

Bayes 

Diagonal 

Linear 

ROC 1-68 WPC 0.700 0.801 0.834 0.727 

 

For the classification of movement 2, the Gaussian SVM OVR’s outperformed other 

classifiers with the best Q factor of 74.1%, followed by naïve Bayesians using WPC features 

ranked by univariate feature ranking method (Table 2). k-NN OVRs were on the bottom of 

the list, with the best Q factor of 47% using WPC features at k=18. Most of the SVMs with 

high Q factor had smaller C values (0.1-0.2), indicating that more slack was needed to allow 

for softer margins. This states that outliers in the training datasets needed to be misclassified 

to yield a more sensible maximum margin boundary. Similar to the movement 1, WPC 
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features ranked by univariate feature ranking method produced better results followed by the 

univariate ranked list of WDC features. As seen, the correct rate of fifth best classifier is 

better than the correct rate of first best Q factor based classifier due to the imbalance in 

sensitivity vs. specificity.  

3.1.3. Movement 3 

Table 3: Best 5 classifiers for movement 3. 

Classifier Configuration 

Selected 

Features 

Feature 

type 

Sensitivity Specificity 

Correct 

rate 

Q factor 

Naïve 

Bayes 

Diagonal 

Linear 

ROC 1-90 WDC 0.702 0.757 0.772 0.716 

Naïve 

Bayes 

Diagonal 

Linear 

ROC 1-88 WDC 0.703 0.755 0.769 0.716 

Naïve 

Bayes 

Diagonal 

Linear 

ROC 1-89 WDC 0.698 0.751 0.769 0.715 

Naïve 

Bayes 

Diagonal 

Linear 

ROC 1-86 WDC 0.700 0.752 0.768 0.715 

SVM σ=15, C=0.1 ROC 1-80 WPC 0.700 0.755 0.770 0.714 

 

Naïve Bayes OVRs were the best performed classifiers for movement 3 using 

univariate feature ranked list of WDC feature modality, followed by the Gaussian SVMs 

using univariate feature ranked list of WPC feature modality (Table 3). kNNs and polynomial 

SVMs again failed to match these numbers with their best result. kNNs yielded a maximum 

Q factor of 52%  with WDC features, and k value of 31. Polynomial SVMs with higher order 

and high box constraints struggled to converge with few modalities.  In terms of feature 

selection and ranking, univariate feature ranked list performed better followed by 



26 

 

classification guided subset selection and ranking, keeping sequential forward and sequential 

backward selection to the end of the list. Although sequential backward selection feature sets 

from PSD and CEPS modalities showed low error rates with naive bayes and SVM classifier 

respectively, they faced imbalance problem with sensitivity and specificity and landed-up 

with low Q factor. 

3.1.4. Movement 4 

Classifying this movement was the most challenging case compared to rest. Gaussian 

SVMs with σ=15 and C=0.1 yielded the best results using WPC features ranked using 

univariate feature ranking. The better performances of Gaussian SVM over the rest of the 

classifiers indicate a more nonlinear decision boundary. kNNs and polynomial SVMs 

performed poorly with <50% Q factors, although the top three classifier based on error rates 

were kNN classifiers they had high imbalance in sensitivity and specificity. All the features 

for the top 5 ranked classifiers were derived for the ROC ranked list (Univariate feature 

ranking), using WPC features followed by WDC.  

Table 4: Best 5 classifiers for movement 4. 

Classifier Configuration Selected Features 

Feature 

type 

Sensitivity Specificity 

Correct 

rate 

Quality 

factor 

SVM σ=15, C=0.1 ROC 1-51 WPC 0.677 0.719 0.732 0.689 

SVM σ=15, C=0.2 ROC 1-50 WPC 0.679 0.718 0.726 0.687 

SVM σ=15, C=0.1 ROC 1-50 WPC 0.679 0.722 0.730 0.687 

SVM σ=15, C=0.1 ROC 1-40 WPC 0.674 0.707 0.718 0.685 

Naïve 

Bayes 

Diagonal 

Linear 

ROC 1-24 WDC 0.617 0.648 0.659 0.628 
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3.2.NIRS Analysis 

Similar to the EEG analysis all combination of the feature selection and ranking 

methods, and classifiers were analyzed. The features for the classifier from univariate 

ranking method and classification guided subset selection and ranking methods are taken in 

the order of the top ranked feature list similar to EEG analysis. For the sequential forward 

(SF) and backward (SB) selections the number under the feature column represent the total 

number of elements selected in the feature set out of 936 total features. The tested range for 

all the classifiers are Naïve Bayesian (Diagonal linear-DL, Diagonal Quadratic-DQ), kNN (k 

= 1-10), and SVMs (Polynomial with n=2-5, and Gaussian with σ=1-25; C=0.1-10 in both 

cases). Here in the two-class BCI with equal number of samples in both classes, usage of the 

Q factor does not make much significance but the same method used for electric signals is 

applicable to the optical signals. All the results presented here in the NIRS analysis are the 5-

fold cross validation results. Here I present the classifiers (Table: 5, 6, 7, 8) which are best of 

each different feature selection and ranking methods with each different classifier. Ranked 

list from the classification guided subset selection and ranking dominated the rest of the 

feature selection methods. 

3.2.1. kNN Classifier 

Although the test range of the k is 1 to 10, the classifiers with k value above 3 were 

selected for consistency in the results. The best performed kNNs produced a Q factor of 

90.03% using the ranked feature list obtained from classification guided subset selection and 

ranking with subset size of 10, pool size of 150 and threshold of 0.905. The best quality 

factors for Univariate ranking methods, Classification guided subset selection and ranking, 

Sequential forward selection, and Sequential backward selection seen in the table 5. 
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Table 5: k-NN. 

 Movement 1 Movement 2 

Ranking 

method 

K Features Sens Spec Q K Features Sens Spec Q 

ROC 7 1 – 96 0.8 0.8 0.8 7 1 - 96 0.8 0.8 0.8 

Random 4 1-26 0.95 0.9 0.9003 4 1 - 22 0.95 0.9 0.9003 

SF 8 5 0.7 0.9 0.7055 4 3 0.80 0.75 0.7504 

SB 7 985 0.7 0.7 0.7 7 984 0.7 0.7 0.7 

 

3.2.2. SVM Classifiers 

Table 6: Polynomial SVM. 

 Movement 1 Movement 2 

Ranking 

method 

Order 

& C 

Features Sens Spec Q 

Order 

& C 

Features Sens Spec Q 

ROC 3 & 0.1 1-16 0.8 0.75 0.7504 3 & 0.1 1-16 0.8 0.75 0.7504 

Random 3 & 0.1 1-15 1 1 1 3 & 0.1 1 - 24 1 1 1 

SF 2 & 0.1 5 0.85 0.75 0.515 3 & 0.1 3 0.8 0.9 0.8015 

SB 2 & 0.1 985 0.55 0.65 0.5519 2 & 0.1 984 0.55 0.65 0.5519 

Sens –Sensitivity, Spec–Specificity.   

Unlike the EEG analysis, polynomial SVM performed better than Gaussian SVM. 

Both polynomial and Gaussian SVMs yielded better results using classification guided 

random subset selection and ranking with subset size of 10, pool size of 150 and threshold of 

0.905. High tolerance of the sensitivity and specificity in most of the SVM’s for the changes 

in the C values reveal the information that they have very few outliers. The 100% 5-fold 

cross validation results of the polynomial SVM using the ranked list from classification 

guided subset selection and ranking method proves the significance of the NIRS signals and 
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the wrapper methods in designing a BCI. Best classifiers based on quality factor using the 

features from the 4 different feature ranking and selection methods are tabulated below. 

Table 7: Gaussian SVM. 

 Movement 1 Movement 2 

Ranking 

method 

Sigma 

& C 

Features Sens Spec Q 

Sigma 

& C 

Features Sens Spec Q 

ROC 1 & 0.1 1 - 21 0.75 0.75 0.75 1 & 0.1 1 - 21 0.75 0.75 0.75 

Random 2 & 0.1 1 – 13 0.95 0.90 0.9003 1 & 0.1 1 - 17 0.95 0.95 0.95 

SF 3 & 0.1 5 0.85 0.85 0.85 2 & 0.1 3 0.9 0.85 0.8503 

SB 9 & 0.1 985 0.8 0.7 0.702 9 & 0.1 984 0.8 0.7 0.702 

 

3.2.3. Navïe Bayesian Classifier 

Navïe Bayes classifiers were at the end of list, with best Q factor of 80.04% and 80% 

for the two configurations Diagonal linear (DL) and Diagonal quadratic (DQ) respectively, 

using the features from sequential forward selection for left hand and right hand respectively. 

For most of the values DL and DQ yielded similar results. 

Table 8: Navïe bayesian classifier 

 Movement 1 Movement 2 

Ranking 

method 

Type Features Sens Spec Q Type Features Sens Spec Q 

ROC DL/DQ 1-8 0.7 0.7 0.7 DL/DQ 1-8 0.7 0.7 0.7 

Random DL 1-8 0.65 0.75 0.6517 DL/DQ 1-23 0.7 0.7 0.7 

SF DL/DQ 5 0.8 0.85 0.8004 DL/DQ 3 0.8 0.8 0.8 

SB DL 985 0.65 0.7 0.6504 DL 984 0.7 0.65 0.6504 
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CHAPTER 4 

DISCUSSION 

4.1. EEG 

As the complexity of the BCI increases with the number of brain states, the usage of 

Q factor in OVR models will reduce the required minimum number of individual classifiers 

and the imbalance in the sensitivity and specificity. We here proved how the Q factor in 

conjunction with wrapper methods can be used for multi-class subject-invariant BCIs 

challenging the problem which lead to trivial OVR classification. Figure 8 shows a simple 

best-first wrapper method that uses ROC AUC ranked feature list for a navïe Bayesian 

classifier with Q as the OVR classifier feedback. This could successful realize the best 4-

class subject invariant BCI by solving the earlier mentioned problems with not only 

classification rate but also sensitivity and specificity. More sophisticated wrapper methods 

such as sequential forward selection, sequential backward selection (Theodoridis et al., 

2009), and classification guided subset selection (Li et al., 2004) without Q factor as a 

classifier feedback failed to achieve acceptable results using similar datasets as they 

degenerated to the trivial classifiers using the same OVR models.  

Although we used 4 different feature selection and ranking methods, univariate 

feature ranking were proved to be the best of all. For the best classifier using univariate 

feature ranking, the input feature vector of the classifier contains first D elements of the 

ranked list whose Q factor is the maximum out of all possible D’s from the list. Figure 8 

shows one such wrapper feature selection by plotting Q factor vs. the number of included 

features. The best classifier for movement 1 classification has a Q factor of 0.727 whose 

input vector has top 76 ranked features from WPC modality using univariate feature ranking 
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method. The presence of the correlated elements in the feature vector results the fluctuations 

in Q factor, also known as nesting problem (Theodoridis et al., 2009). By using wrapper 

process, it is possible to remove such features using a sequential float forward selection. To 

prove this we eliminated all the local minima’s (features ranked with 4, 6, 34, 37 and 69; as 

shown in figure 8 with red dots), that resulted in an improved Q factor of 0.7305. Now we 

tried to add all different combinations of the local minima’s and achieved 0.7378 Q factor by 

adding 14
th

 ranked element. Although there is slight improvement, it clearly shows the 

nesting problem. More advanced sequential selection algorithms like sequential float forward 

selection can eliminate this problem. 

 

Figure 8: Quality factor verses number of features using a best-first wrapper with naïve 

Bayesian OVR. Q peaks at 0.728 using the first 76 features from ROC-AUC ranked WPC. 

All the different classifiers were examined with all the modalities with error rate and 

Q factor as the classifier grading criterion. Talking about the overall performance of the 
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classifiers, naïve Bayesian classifiers with diagonalized covariance matrices and normal 

distribution assumption, followed by Gaussian kernel SVMs, performed better than kNNs 

and polynomial kernel SVMs. The stability and robustness of the linear naïve Bayesian given 

the diagonalized covariance matrix proved to be the best for the EEG dataset. Wavelets 

features, both as packets (WPC) and regular decompositions (WDC), outperformed 

compared to the WPEs, WDEs, LPCs, PSDs, CEPS, and STFTs.  

All the codes were designed in MATLAB using the built-in functions available for 

features extraction methods, feature selection and ranking methods, and classifiers. The built-

in command for the sequential forward and sequential backward selections did struggled a lot 

and performed poorly. In most of the cases, the sequential backward selection ended up with 

majority of the input feature list notifying its struggle in the deletion of the features and 

consistent working. On the other hand for the classification guided subset selection and 

ranking, pool size and subset size need to be selected based on the number of input features 

and also subset size need to be varied to maximize the threshold. This can be clearly 

observed while we have a look at the results of the NIRS analysis. 

4.2. NIRS 

Applications of the BCI in the real world need to consider environmental noise, 

portability of the equipment, robustness, and processing time. For the applications like wheel 

chair control or any other equipment for the locked-in or paralyzed patients, the portable 

NIRS equipment need to consider the processing time. Noting that the difference in the 

temporal evolution of NIRS signals, I present a BCI eliminating the complex and time 

consuming feature extraction methods used in the EEG analysis. Resulting with the 

processing time is less than two seconds involving feature generation, selecting the pre-
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ranked features and classifying them using pre-tested configuration using a 2.5 GHz 

processor (Intel Core 2 Duo - T9300). 

Considering the non-linear patterns of the limited NIRS data, polynomial SVMs 

outperformed the navïe Bayesian, Gaussian SVMs, and kNNs. Although I used 3 different 

configurations for classification guided subset selection and ranking lists, the one with 

maximum threshold performed well. Once again feature set from sequential backward 

selection remained at the end of the list with the poor performance. Also, the mean and 

variance of the HbO and Hb signals of all the 26 channels did not showed up in the first 50 

top ranked list of the classification guided subset selection and ranking. 

 

Figure 9:  Selected paths for left hand classification. 

The best classifier with 100% recognition rates for left hand and right hand 

classification is achieved by polynomial SVM using the features from classification guided 

subset selection and ranking.Table 9 shows the top 15 ranked time samples by the 

classification guided subset selection and ranking algorithm which were used by polynomial 

SVM to achieve 100% quality factor for left hand classification. The list mostly contains 

deoxy-hemoglobin time samples than that of oxy-hemoglobin. Figure 9 shows paths of the 

selected signals in the table 9 (5, 14, 17, 16, 10, 13), which come from the blood absorption 

around the electrodes C1, Cz, C2, and C4 of a 128 electrode placement style. Also, the 
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majority of selected time samples for the best classifier are from the second half of the 

recorded 10 second signal. This shows that the fNIRS signals have intrinsic time delay.  

Table 9: Best classified signals and their time samples. 

Ranking 

method 

Signal Time 

Hb 5 9.375 

Hb 14 6.25 

HbO 5 7.5 

Hb 14 7.5 

Hb 5 7.5 

Hb 14 8.125 

Hb 5 8.75 

Hb 17 2.5 

Hb 5 6.875 

Hb 16 6.25 

HbO 5 6.25 

HbO 16 7.5 

Hb 10 8,125 

Hb 13 4.375 

Hb 13 5.625 
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CHAPTER 5 

CONCLUSION 

Although the BCI performance evaluation have not become more significant till date, 

the future designs of more complex BCI (multiclass BCI) will prove the significance. So as 

to signify the importance of performance evaluation, I here present the 4-class subject 

invariant BCI based on the EEG data of 10 different untrained subjects given the fact that the 

spatio-temporal characteristics of the EEGs differ with respect to each subject and each trial 

with the subject (Christoforou et al., 2010). For the complex multiclass and subject invariant 

EEG data, the data driven OVR feature selection and classification using simple scalar metric 

like the classification rates lead to the degenerate multi-class BCI systems. This study 

signifies the usage of the Q factor in conjunction with wrapper methods for the classifier 

performance evaluation. 

Naïve Bayesian classifiers with linear discriminant functions and Gaussian SVMs 

outperformed polynomial SVMs and kNN classifiers. WPC and WDC feature modalities 

outperformed the rest notifying that the features with proper time shift information are more 

salient. Also the Q-guided classification is needed for the feature extraction methods, 

classification guided subset selection and ranking, and sequential selection methods. 

The best obtained OVRs for each movement were as follows (Tables 1 through 4, 5-

fold cross-validation results with 10 monte-carlo repetitions): Movement 1: sensitivity 0.7, 

specificity 0.801, correct rate 0.832, and a Q factor of 0.727 (Naïve Bayesian classifier, top 

79 WPC features ranked by univariate feature ranking method). Movement 2: sensitivity 

0.72, specificity 0.804, correct rate 0.827, and a Q factor of 0.741 (SVM classifier, top 70 

WPC features ranked by univariate feature ranking method). Movement 3: sensitivity 0.702, 

specificity 0.757, correct rate 0.772, and a Q factor of 0.716 (Naïve Bayesian classifier, using 
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90 WDC features ranked by univariate feature ranking method). Movement 4: sensitivity 

0.677, specificity 0.719, correct rate 0.732, and a Q factor of 0.689 (SVM classifier, top 15 

WPC features ranked by univariate feature ranking method). Without considering this 

complex subject invariant design over 10 different untrained subject using Q factor are 

evaluation performance, other studies state that 70% accuracy is adequate to control a two 

class BCI (Sebald et al., 2000). 

The aforementioned wrapper methods used in the EEG analysis were also applied to 

the NIRS signals time sample to achieve perfect classification. In the NIRS analysis, I 

present a perfect classifier with 100% 5-fold cross validation recognition rates challenging 

the classification rates problem of the BCI’s. The best 5-fold cross validation classification 

rate of 97.1% for single subject in the previous study (Niide et al., 2009) is being replaced by 

100% 5-fold recognition rates using dataset of two subjects. Unlike the other studies who 

classified each subject separately and averaging the 5-fold cross validation results, here I 

combined two subject’s data (subject invariant BCI) which is more complex. The best 

obtained classifiers for each movement were as follows (Tables 5 through 8, cross-validation 

results): Movement 1: sensitivity 1, specificity 1, correct rate 1, and a Q factor of 1 

(Polynomial SVM classifier, top 15 features ranked by classification guided subset selection 

and ranking method). Movement 2: sensitivity 1, specificity 1, correct rate 1, and a Q factor 

of 1 (Polynomial SVM classifier, top 24 features ranked by classification guided subset 

selection and ranking method). 
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CHAPTER 6 

FUTURE WORK 

Future focus will be on the study of malfunctions in basal ganglia and corresponding 

regions. Given the location of the basal ganglia the signals produced by it are difficult to 

record on the scalp. Due to the presence of the dopamine pathways between the frontal lobe 

and motor cortex, and basal ganglia, the signals can be detected on the scalp. Study will 

focus on the patterns of the brain signals measured from EEG. As a case study I would like to 

analyze the EEG patterns of a dystonic subject with psychogenic dystonia subject. 

Dystonia is a neurological movement disorder characterized by involuntary muscle 

movements involving twists, abnormal postures, and repeated movements in a part or whole 

body (Fahn, 1987). Dystonia can be considered as the inability to select the required muscles 

for a movement (Guehl et al., 2009). Although several theories evolved from past few 

decades on Dystonia, the cure is yet to be determined. Some studies defined the cause to be 

hereditary or Genetic disorder (Ozelius et al., 1997), birth-related (Ozelius et al., 1997), 

infection, reactions to pharmaceutical drugs, specific role of brain stem, basal ganglia nuclei 

(Bhatia et al., 1994 and Fross et al., 1987), premotor cortex (Feve et al., 1994), and brain 

disease (Marsden et al., 1976). Dystonia caused due to malfunction of basal ganglia can be 

observed in motor cortex using electroencephalography (EEG) through dopamine pathways 

connecting frontal lobe and motor cortex. Also Dystonia-specific early and late movement 

related Electroencephalographic (EEG) patterns have been observed in patient EEG signals 

during their dystonic episodes (Feve et al., 1994). EEG signals of some movements and 

thoughts have unique signatures observed across the brain and also their characteristics do 

differ with respect to subject and also repetition of single EEG experiment (Allison et al., 
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2007 and Christoforou et al., 2010). The subject participated in future study have 

psychogenic dystonia. I would like to compare his EEG signals to that of a Dystonic subject. 

However, all the efforts for controlling Dystonia or any other activity by humans are as result 

of the activity in brain and thus it benefits the study. The study and observation of the EEG 

patterns related to the psychogenic dystonia and dystonia is the primary concern. In the 

future study I would like to apply a variety of simple mathematical and complex machine 

learning algorithms related to Brain Computer Interfacing for recognizing the patterns of 

brain activity. 
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