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The cooperative Jahn-Teller coupling between the Mn eg electrons and the oxygen octahedral distor-
tions in LaMnO3 is studied using ab initio density-functional calculations and tight-binding models. The
linear and quadratic vibronic coupling parameters are calculated using density-functional methods. It is
shown that the cooperative Jahn-Teller coupling, primarily due to the interoctahedral electron hopping
(band structure term), leads to the ordering of the octahedral distortion and simultaneously to orbital
ordering. The coupling results in a two-minima adiabatic potential surface in the solid, instead of the
three-minima “Mexican-hat” surface for the isolated octahedron.

PACS numbers: 75.30.Vn, 31.30.Gs
An important piece of physics in the colossal magnetore-
sistive manganites is the Jahn-Teller (JT) coupling between
the eg electrons and the distortion modes of the MnO6 oc-
tahedron. This coupling plays an integral role in trans-
port [1] and is manifested beautifully in the isotope effect
[2,3]. This so-called E 3 e vibronic coupling has been
studied quite well for the isolated JT center [4], and these
results have been widely used to interpret the vibronic cou-
pling in the manganites. We show here that the vibronic
coupling for the isolated center is modified by interaction
between the individual centers in the crystal (cooperative
Jahn-Teller effect) mediated via electron hopping. Focus-
ing on LaMnO3, we show that this coupling results in the
simultaneous ordering of the octahedral distortions as well
as of the eg orbitals as observed in the LaMnO3 crystal.

Consider first the isolated MnO6 octahedron. The vi-
bronic JT coupling in this case is described by the well-
known Hamiltonian

H �
1
2

KQ2 1 HJT , (1)

where Q2 � Q2
1 1 Q2

2 1 Q2
3 , with the Q’s being the

three active octahedral distortion modes. The JT Hamilto-
nian is given by [4–6]

HJT � 2 g�Q2tx 1 Q3tz�

2 G�Q2
3 2 Q2

2�tz 1 2GQ2Q3tx , (2)

where both the linear and the quadratic vibronic coupling
terms have been included, the respective coefficients be-
ing g and G, and �t is the pseudospin describing the two
eg orbitals, viz., j "� � jz2 2 1� and j #� � jx2 2 y2�.
For the case of the isolated octahedron, this leads to the
well-known “Mexican-hat” type adiabatic potential sur-
face with three energy minima in the Q2-Q3 plane along
f � 0, 62p�3, where f � tan21�Q2�Q3� [4].

In the solid, the above expression for the Hamiltonian
is modified because first, the vibronic coupling strength
for different modes could be different due to the reduc-
tion of the octahedral symmetry in the crystal, and second,
and more importantly, two additional terms, viz., the band
0031-9007�00�84(7)�1603(4)$15.00
structure term and the elastic energy term between neigh-
boring octahedra, should now be included. The Hamil-
tonian in the crystal may be written in the following form
[7]:

Hcryst �
X

i

1
2

KQ2
i 1 K 0

X
�ij�a

Q̃iaQ̃ja

1
X

i

H i
JT 1 Hke , (3)

where in the elastic interaction term between neighbor-
ing octahedra, the Q̃a’s are defined as Q̃x � �Q3 1p

3 Q2��2, Q̃y � �Q3 2
p

3 Q2��2, Q̃z � Q3, and �ij�a

are the nearest-neighbor (NN) pairs of octahedra along the
direction a � x̂, ŷ, or ẑ. The last two terms in Eq. (3) are
the electronic structure terms for the eg electrons: H

i
JT

is the intra-octahedral JT term [Eq. (2)] at the ith Mn site
and Hke is the kinetic energy due to the inter-octahedral
hopping of the eg electrons in the lattice. Adopting a
tight-binding model for the latter, we write

Hke �
X

�ij�,s

X
ab

Vab
ij c

y
iascjbs 1 H.c. 2 JH

X
i,a

Si ? sia ,

(4)

where s is the electron spin, i is the site index, and a is the
orbital index. The t2g core spins S are considered classical
and localized, and, furthermore, we take the Hund’s-rule
energy JH to be ` as appropriate for the manganites. The
hopping integral is V , which depends on the relative po-
sitions of the two Mn sites. For NN along x̂, e.g., we
have [8]

Vab �

µ 1 2
p

3
2
p

3 3

∂
3

Vdds

4
. (5)

With the above model, we now obtain the band struc-
ture of the eg electrons in LaMnO3 in the “type A” an-
tiferromagnetic structure. Since the magnetization of the
successive ferromagnetic ab planes alternate along the c
direction, we need consider only planar hopping along the
Mn-O plane. This is because the interplanar hopping is
suppressed due to the Anderson-Hasegawa cos�u�2� fac-
tor [9,10] in the limit JH ! `.

Keeping two Mn sites in the planar unit cell, so as to
allow the possibility of the staggered distortion seen in
© 2000 The American Physical Society 1603
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LaMnO3, the tight-binding eg bands are obtained by the
diagonalization of a 4 3 4 Hamiltonian:

H� �k� �

√
A�Q2, Q3� C

C A�Q0
2, Q0

3�

!
, (6)
1604
where �Q2, Q3� and �Q0
2, Q0

3� are the distor-
tions of the two Mn JT centers, �k is the Bloch
momentum, and A and C are the 2 3 2 ma-
trices:
A�Q2, Q3� �

√
2gQ3 2 G�Q2

3 2 Q2
2� 1 aV 0

s 2gQ2 1 2GQ2Q3

2gQ2 1 2GQ2Q3 gQ3 1 G�Q2
3 2 Q2

2� 1 4aV 0
p

!

and

C �

µ
a1Vs 2

p
3 a2Vs

2
p

3 a2Vs 3a1Vs

∂
. (7)

In the expressions above, only the first- and the second-
neighbor hopping terms have been kept with
a6� �k� � �coskxa 6 coskya��2, a � coskxa 3 coskya,
and �Vs , Vp � and �V 0

s , V 0
p � are the Mn d 2 d hopping

integrals between the first and the second neighbors,
respectively.

The Hamiltonian becomes especially simple at the
R point in the Brillouin zone, �k � �1, 1, 1� 3 �p�2a�,
yielding eigenvalues identical to those for the isolated
octahedron,

e6�R� � 6Q�g2 1 G2Q2 1 2GgQ cos3f�1�2, (8)

with Q �
q

Q2
2 1 Q2

3 and f � tan21�Q2�Q3�. To the
second order in Q, this yields

De � e1�R� 2 e2�R� �

Ω
2gQ2 �Q2 only�
2Q3�g 1 GQ3� �Q3 only�.

(9)

Thus, the two vibronic coupling constants, g and G, may
be obtained from the splitting of the two doubly degenerate
eg bands at the R point, by considering pure Q2 and Q3
distortions.

To this end, we have performed a series of density-
functional band calculations for LaMnO3 in the local-
density approximation (LDA) with the self-consistent
linear muffin-tin orbitals (LMTO) method in the atomic
spheres approximation (ASA), with controlled amounts
of Q2 or Q3. (Density-functional bands for the observed
crystal structure have been discussed in Refs. [11,12].)
Figure 1 shows the LDA bands for three different values
of Q2. From these calculations, we have extracted the
gap value at the R points, which are plotted in Fig. 2 as a
function of the distortion strength. By fitting the gap value
to Eq. (9), we find the coefficients g � 2.05 eV�Å (Q2
mode) and g � 1.6 eV�Å and G � 2 eV�Å2 (Q3 mode).
The slightly different values of g for the two modes is
consistent with the fact that the octahedral symmetry of
the MnO6 unit is reduced in the crystal. For simplicity,
we shall take g � 2.0 eV�Å for both the Q2 and the Q3
modes in the rest of the paper.

We have also fitted the eg bands in the LMTO band
structure with the tight-binding bands obtained from
Eq. (6), which yields the following values for the parame-
ters: g � 2.0 eV�Å, G � 1.5 eV�Å2, Vs � 20.52 eV,
V 0
s � 20.42 eV, V 0

p � 0.09 eV, and V 00
s � 20.06 eV.

A small third-neighbor hopping V 00
s was necessary to

obtain the proper shapes for the eg bands. The quality of
the fit, as indicated from Fig. 1(c), is remarkably good
given the simplicity of our tight-binding model. The
magnitude of the second-neighbor hopping V 0

s is larger
than one might expect from the Harrison scaling [8], but is
not surprising considering that the hopping integrals orig-
inate from the overlap between the appropriate Wannier
functions. Interestingly enough, a significant strength for
the second-neighbor Mn-Mn hopping has been invoked
by Jaime et al. to explain the Hall data [14].

Following earlier authors [15], we take the magnitude
of the stiffness constant K 	 10 eV�Å2 from the optical
data for La1.85Sr0.15MnO3, identifying the highest-lying
phonon frequency vph 
 70 meV with the Mn-O bond-
stretching mode [16]. Now, one could in principle com-
pute K from LDA by stretching a single Mn-O bond in
a supercell calculation. However, this being too cumber-
some, we have contented ourselves by computing the LDA
total energy for a uniform volume change using the full-po-
tential and the ASA-LMTO methods [17]. The extracted
value of Keff � 20 6 2 eV�Å2 is, however, only an up-
per bound to K , since there are other “spring constants”

FIG. 1. LDA-LMTO bands for LaMnO3 in the “type-A” struc-
ture with varying Q2 distortions added to the ideal cubic crystal:
Q2 � 0 (a), 0.086 Å (b), and 0.259 Å (c). A volume preserv-
ing lattice constant a � 3.94 Å was used. The �k points are
G � �0, 0, 0�, R � �1, 1, 1�, and A � �1, 0, 1� in units of p��2a�
with cube axes along Mn-O bonds. The LDA bands are given
a width proportional to the contribution of the eg orbitals (“fat
bands”) [13]. Dotted lines in (c) show the tight-binding fit to
the eg bands which are crosshatched.
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FIG. 2. Variation of the band gap at the R point calculated
from the LDA with the magnitude of the octahedral distortion.
The variation follows Eq. (9).

involved in the total energy in addition to the stretching of
the Mn-O bond.

Turning now to the effect of the band structure term
on the adiabatic potential surface, we compute the band
structure energy from the occupied eigenvalues of (6),
Eband �

PeF

n �k
e�n, �k�, eF being the Fermi energy and

n the band index, as a function of the �Q2, Q3� distor-
tions. We considered all possible distortions of the type
�6Q2, 6Q3; 6Q2, 6Q3�, where the first (last) two quan-
tities correspond to the distortion of the first (second) JT
center in the unit cell. Note that the observed crystal struc-
ture [18] has the distortion of the type �Q2, Q3; 2Q2, Q3�,
with Q2 	 0.28 Å and Q3 	 20.10 Å, with the conven-
tion of Ref. [19] for the normal modes.

To identify the energy gained due to the band formation,
we define the band energy DE as

DE �
X

i

Ei
JT 2 Eband , (10)

which is a measure of the electronic energy gain due to
the inter-octahedral hopping, as opposed to the intra-
octahedral JT energy EJT (see Fig. 3). Note that a larger
DE indicates a more favorable situation energetically.
Since the lower JT-split level on each site is occupied in
LaMnO3, the energy gain DE comes from hopping to
the upper JT-split levels on the neighboring sites. Taking
into account electron hopping to the four NN octahedra
on the Mn-O plane, one may estimate DE from the
diagonalization of the 5 3 5 Hamiltonian matrix,

H �

0
BBBBBB@

2gQ V V V V
V 1gQ 0 0 0
V 0 1gQ 0 0
V 0 0 1gQ 0
V 0 0 0 1gQ

1
CCCCCCA , (11)

where V is some measure of the inter-octahedral hopping
strength and the expression Eq. (8) for the JT splitting has
been used, with G having been neglected for the sake
FIG. 3. Sketch of the JT splitting of the eg levels, which
broaden into bands due to inter-octahedral electron hopping.
Hatched area indicates the occupied bands.

of argument. Diagonalizing Eq. (11), one finds that the
band energy is maximum at Q � 0, varying monotonically
between the two limits DE ! 2jV j 2 gQ as Q ! 0 and
DE ! 4V 2��2gQ� as Q ! `. The latter is simply the
result of the second-order perturbation theory, which may
be obtained by inspecting Eq. (11). It is clear that the band
energy works against distortion.

The inter-octahedral hopping V depends on the JT dis-
tortions of the neighboring sites, and to proceed further
we must evaluate DE using Eqs. (6), (8), and (10) nu-
merically. The results are presented in Fig. 4 for various
distortions of the NN octahedra. We see that the configu-
ration �Q2, 2Q2� with alternating distortions of the NN oc-
tahedra is clearly preferred, the band energy gain being the
highest there. Notice also the linear form of DE for small
Q as was argued above.

We have also calculated DE in the entire �Q2, Q3�
plane which is shown as a contour plot in Fig. 5(a) for
the �Q2, Q3; 2Q2, Q3�-type staggered distortion of the
NN octahedra [20]. The band energy is maximum at
the center Q � 0 and this is therefore what the band
energy term would prefer. In that sense, the band term
is similar to the elastic energy term KQ2�2, except that
the band term has a strong directional dependence in
the �Q2, Q3� plane. Keeping in mind the proper limits
for DE as discussed above, we fitted the band term
in the entire �Q2, Q3� plane with the following form:
DE � const 1 A��Q 1 Q0� 2 BQ2 cos3f 2 C cos2f,

FIG. 4. Band energy DE as computed from Eq. (10). Here
either the Q2 or the Q3 distortion is kept on the two JT centers
in the unit cell as indicated in the figure.
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FIG. 5. (a) Energy contours of the band energy DE on the
�Q2, Q3� plane. DE is maximum at the center (Q � 0) and
decreases differently along different directions such that the
Q3 direction is the least favored. (b) Same for the total en-
ergy obtained from Eq. (3), which shows two minima in the
Q2-Q3 plane as opposed to three Mexican-hat-type minima for
the isolated JT center. Parameters are K � 9 eV�Å2, K 0 �
1 eV�Å2, g � 2.0 eV�Å, G � 1.5 eV�Å2, Vs � 20.52 eV,
V 0

s � 20.42 eV, V 0
p � 0.09 eV, and V 00

s � 20.06 eV.

with A 	 0.25 eV ? Å, B 	 0.4 eV�Å2, C 	 0.03 eV,
and Q0 	 0.25 Å. As seen from this form, DE is reduced
fastest along Q3 (f � 0), making the Q3-type distortion
relatively unfavorable.

For the isolated octahedron, the adiabatic potential sur-
face has three minima along f � 0, 62p�3. Of these, the
first direction is not favored by the band structure term in
the crystal. The energy minima occur along the remaining
two directions, although the band term changes the an-
gle f somewhat, as does the inter-octahedral elastic term
K 0. The corresponding total energy contours are shown
in Fig. 5(b). A small value of K 0 	 1 eV�Å2 was cho-
sen for the contour plot, so that the minima occur at the
point �Q, f� 	 �0.3 Å, 24±�, roughly the value observed
in LaMnO3.
1606
The electronic charge density corresponding to the two
minima of the adiabatic potential surface consists of stag-
gered �z2 2 1�-type orbitals in the basal plane with the
local z axis along the long Mn-O bond produced by the
Q2 distortion. This staggered ordering is long known both
from experiments and from LDA calculations [21].

In conclusion, we have shown how the cooperative Jahn-
Teller coupling between the individual MnO6 centers in the
crystal leads to the simultaneous ordering of the octahe-
dral distortion and the electronic orbitals. The basic ideas
developed here should be applicable to a wide variety of
crystals consisting of a lattice of interacting Jahn-Teller
centers.

We thank the Research Board of the University of Mis-
souri for partial financial support.
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