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The Kronig–Penney model of an electron moving in a periodic potential is solved by the so-called
tail-cancellation method. The problem also serves as a simple illustration of the tail-cancellation
method itself. ©2001 American Association of Physics Teachers.
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The Kronig–Penney model serves to illustrate the forma-
tion of energy bands in a periodic solid and appears as a
pedagogical example in many textbooks in elementary solid
state physics. The model is generally solved either by match-
ing the boundary conditions for the wave functions at the cell
boundaries,1 by a plane-wave expansion of the wave function
in the reciprocal lattice space,2 or even by the somewhat
more involved T-matrix method.3

In this note, we point out that perhaps the simplest way of
solving the problem is by using the tail-cancellation condi-
tion, which has been used extensively in the solution of the
band structure problem in realistic solids.4 The solution
therefore serves as a simple illustration of the tail-can-
cellation method as well.

The Schro¨dinger equation for a one-dimensional solid is

2
\2

2m

d2C~x!

dx2
1U~x!C~x!5EC~x!, ~1!

where the potential is periodic with lattice constanta:

U~x!5 (
n52`

`

V~x2na!. ~2!

Consider first a single potential well, where the potential is
V(x) in the central cell,2a/2<x<a/2, and zero elsewhere.
Once we find a solutionf(x) to this potential for a given
energyE, the wave function for the solidC(x) may be con-
structed by taking a linear superposition of such functions
centered in different cells, with the coefficients given by the
Bloch theorem, i.e.,

C~x!5(
n

eiknaf~x2na!, ~3!

wherek is the Bloch momentum. Now, sincef(x) already is
a solution of the Schro¨dinger equation in the central cell, the
‘‘tails’’ of the functions f(x2na) coming from other cells
must interfere destructively inside the central cell~and hence
inside any other cell!. Thus we have the condition

(
nÞ0

eiknaf~x2na!50 ~4!

for all values ofx in the central cell. This is the so-called
‘‘tail-cancellation’’ condition. The problem therefore boils
down to finding the solutionf(x) for a given energy for a
single potential well and then applying the tail-cancellation

condition. If the condition can be satisfied then we have a
solution for that energy, otherwise not.

We now apply the method to the Kronig–Penney model.
For a single potential well, the most general solution of the
Schrödinger equation for the energyE is given by

f~x!5Af1~x!1Bf2~x!, ~5!

where f1 and f2 are the two independent solutions with
energyE. These solutions extend in all space and for the case
of the one-dimensional potential may be written in terms of
the transmission and reflection coefficients:

f1~x!5eiKx1re2 iKx, x<2a/2

5teiKx, x>a/2 ~6!

and

f2~x!5te2 iKx, x<2a/2

5e2 iKx1reiKx, x>a/2, ~7!

where\2K2/2m5E. Notice that the above wave functions
are simply the ‘‘tails’’—we don’t really care at this point
how the wave function looks inside the cell itself, i.e., for
uxu<a/2. Once the energy is obtained, the wave function
inside the cell~and hence everywhere! may be obtained by
integrating the Schro¨dinger equation.

Substituting the expression forf(x) from Eqs.~5! to ~7!
in the tail-cancellation condition Eq.~4!, equating the coef-
ficients ofe6 iKx to zero, and eliminating A and B, we obtain
the following condition:

~r 22t2! f 1 f 22t~ f 1 f 2* 1 f 1* f 2!2 f 1* f 2* 50, ~8!

where f 6[ f (K6k) and f (k)5(n51
` eikna.

The last sum is over a series of oscillating terms. The
oscillation can be traced to the fact that the plane-wave-like
tails in Eqs.~6! and~7! continue undamped to infinity. If we
keep a finite number of termsN in the summation, then the
second term in the numerator of the resultf (k)5(eika

2eik(N11)a)/(12eika) oscillates rapidly between21 and
11 asN→` with the average value zero. It turns out that
taking this average value yields the correct answer for the
problem at hand.

A more careful way of evaluating the sum is to take the
limit
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f ~k!5 lim
N→`,m→0

(
n51

N

e~ ik2m!na5
eika

12eika
, ~9!

where the limit has been taken in such a way thatma!1 and
mNa@1. Physically this corresponds to a small damping
term e2muxu in the two basis functions Eqs.~6! and ~7! such
that the amplitudes of the plane-wave tails damp out at in-
finity but do not change appreciably over the length of a unit
cell.

We now write the transmission coefficient in terms of the
phase-shifth, t5utueih, so that the reflection coefficient has
the well-known general formr 56 i ur ueih. Substituting Eq.
~9! into Eq. ~8! we get the desired result

cos~Ka1h!

utu
5coska. ~10!

This is the standard transcendental equation for the model,5

which we derived here from the tail-cancellation condition.
For a periodic array ofd functionsV(x)5gd(x), Eq. ~10!

takes the form

S P

KaD sinKa1cosKa5coska, ~11!

where the well-known result, utu5cosh and tanh
52mg/\2k, for the transmission coefficient of the delta-
function potential has been used andP[mag/\2.

In summary, we have shown how the tail-cancellation
condition can be applied to the solution of the Kronig–
Penney model.
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An experimental demonstration1 has been presented in this
journal2 using a diode laser, two optical fibers, a photodiode,
and a wave analyzer. This demonstration is very simple and
has the didactic value of clearly presenting important optical
concepts. In this note I propose a simplification of the ex-
perimental apparatus that, as a further advantage, should al-
low the observation of the Alford–Gold effect in a more
interesting way.

In their experimental demonstration, L. Basano and P. Ot-
tonello use two optical fibers although the same can be
achieved with justone optical fiber, as is schematically

shown in Fig. 1. In this case, one of the beams goes directly
to the photodiode and the other, extracted with the beam
splitter BS1, is retarded in an optical fiber before being di-
rected, with a beam splitter BS2, to the photodiode~I have
omitted in the drawing possible positioning of lenses!. In the
space between the two beam splitters, additional beam split-
ters, or a partially reflecting mirror, can be placed if it is
desired to compensate for the transmission losses of the other
beam. This setup amounts to a slight simplification of the
apparatus but is essentially the same experiment. A real im-
provement of the experiment is obtained with a further modi-
fication of the setup. For this, we can eliminate the second
beam splitter~BS2! and place the end of the optical fiber at
the top sideof ~BS1! in order to feed the reflected part into
the photodiode. Notice, however, that thetransmittedpart
can make~with proper alignment! a second turn along the
optic fiber with the corresponding time delay 2t. This would
cause second-order dips in the spectral analysis, separated by
half of the separation of the first-order dips. Perhaps higher
order dips can also be observed.
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Fig. 1. Experimental setup. DL5diode laser; BS1, BS25beam splitters;
PD5photodiode; WA5wave analyzer; OF5optic fiber.
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