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NOTES AND DISCUSSIONS

Kronig—Penney model with the tail-cancellation method

Subodha Mishra and S. Satpathy®
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The Kronig—Penney model of an electron moving in a periodic potential is solved by the so-called
tail-cancellation method. The problem also serves as a simple illustration of the tail-cancellation
method itself. ©2001 American Association of Physics Teachers.
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The Kronig—Penney model serves to illustrate the forma<condition. If the condition can be satisfied then we have a
tion of energy bands in a periodic solid and appears as aolution for that energy, otherwise not.
pedagogical example in many textbooks in elementary solid We now apply the method to the Kronig—Penney model.
state physics. The model is generally solved either by match-or a single potential well, the most general solution of the
ing the boundary conditions for the wave functions at the cellSchralinger equation for the enerdy is given by
boundarieg,by a plane-wave expansion of the wave function
in the reciprocal lattice spaceor even by the somewhat d(X)=Ac¢;1(X)+Bpy(x), 5
more involved T-matrix methotl.

In this note, we point out that perhaps the simplest way ofvhere ¢; and ¢, are the two independent solutions with
solving the problem is by using the tail-cancellation condi-energyE. These solutions extend in all space and for the case
tion, which has been used extensively in the solution of theéf the one-dimensional potential may be written in terms of
band structure problem in realistic solitisSThe solution the transmission and reflection coefficients:
therefore serves as a simple illustration of the tail-can-

cellation method as well. dr(x)=e"+re KX x<—a/2
The Schrdinger equation for a one-dimensional solid is —telkX,  x=a/2 ©®)
72 d?W(x)
_ = and
om gz DOV O=ET (), (1)

dr(x)=te *X  x=<-a/2

where the potential is periodic with lattice constant , _
. =g KxqrelKx  x=a/2, (7)
U(X):n;m V(x—na). () \where#2K2/2m=E. Notice that the above wave functions
are simply the “tails"—we don’t really care at this point
Consider first a single potential well, where the potential ishow the wave function looks inside the cell itself, i.e., for
V(x) in the central cell-a/2<x=<a/2, and zero elsewhere. |x|<a/2. Once the energy is obtained, the wave function
Once we find a solutiorp(x) to this potential for a given inside the cellland hence everywherenay be obtained by
energyE, the wave function for the soli# (x) may be con- integrating the Schiinger equation.
structed by taking a linear superposition of such functions Substituting the expression fef(x) from Egs.(5) to (7)
centered in different cells, with the coefficients given by thein the tail-cancellation condition Eq4), equating the coef-
Bloch theorem, i.e., ficients ofe*'** to zero, and eliminating A and B, we obtain
the following condition:
— ikna
Y(x)=2 e"p(x—na), ® (FP—12)f f_—t(f.F* +F5F )—f*f* =0, @®)
wherek is the Bloch momentum. Now, sineg&(x) already is
a solution of the Schidinger equation in the central cell, the
“tails” of the functions ¢(x—na) coming from other cells
must interfere destructively inside the central ¢atid hence
inside any other cell Thus we have the condition

wheref.=f(K+k) andf(k)=3_, e,

The last sum is over a series of oscillating terms. The
oscillation can be traced to the fact that the plane-wave-like
tails in Egs.(6) and(7) continue undamped to infinity. If we
keep a finite number of terniy in the summation, then the
e second term in the numerator of the resit)=(e'"®
go e""p(x—na)=0 (4)  —gix(N+Day (1 _gix@) ogcillates rapidly between-1 and

+1 asN—« with the average value zero. It turns out that
for all values ofx in the central cell. This is the so-called taking this average value yields the correct answer for the
“tail-cancellation” condition. The problem therefore boils problem at hand.
down to finding the solutiorp(x) for a given energy for a A more careful way of evaluating the sum is to take the
single potential well and then applying the tail-cancellationlimit
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N eiKa
f(k)=lim > elix wna——
N—o,u—0 n=1 l_eIKa

P
9) (E) sinKa+ cosKa=coska, 11

where the limit has been taken in such a way fhat1 and
t;;lr\lrsjilmxlfhysmally this porresp_onds to a small dampmgwhere the well-known result, [t|=cosz and tany
in the two basis functions Eqgt) and (7) such =—mghk, for the transmission coefficient of the delta-
that the amplitudes of the plane-wave tails damp out at in- i ,t tial has b d aRe 52
finity but do not change appreciably over the length of a unifunction potential has been use magh”. .
cell. In summary, we haye shown how .the taH-canceIIafuon
We now write the transmission coefficient in terms of thef::)ond't'Orl 03n| be applied to the solution of the Kronig—
phase-shift, t=|t|e'”, so that the reflection coefficient has enney model.
the well-known general form= =i|r|e'”. Substituting Eq.
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(9) into Eq. (8) we get the desired result pa’y
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An experimental demonstratibhas been presented in this shown in Fig. 1. In this case, one of the beams goes directly
journaf using a diode laser, two optical fibers, a photodiodeto the photodiode and the other, extracted with the beam
and a wave analyzer. This demonstration is very simple andplitter BS1, is retarded in an optical fiber before being di-
has the didactic value of clearly presenting important opticalected, with a beam splitter BS2, to the photodidbdbave
concepts. In this note | propose a simplification of the ex-omitted in the drawing possible positioning of lensés the
perimental apparatus that, as a further advantage, should apace between the two beam splitters, additional beam split-
low the observation of the Alford—Gold effect in a more ters, or a partially reflecting mirror, can be placed if it is
interesting way. desired to compensate for the transmission losses of the other

In their experimental demonstration, L. Basano and P. Otbeam. This setup amounts to a slight simplification of the
tonello usetwo optical fibers although the same can beapparatus but is essentially the same experiment. A real im-
achieved with justone optical fiber, as is schematically provement of the experiment is obtained with a further modi-

fication of the setup. For this, we can eliminate the second
beam splitteBS2) and place the end of the optical fiber at
the top sideof (BSJ) in order to feed the reflected part into
the photodiode. Notice, however, that thansmittedpart
can make(with proper alignmenta second turn along the

DL BS1 BS2 PD WA optic fiber with the corresponding time delay. Zhis would
E N / D"D cause second-order dips in the spectral analysis, separated by
half of the separation of the first-order dips. Perhaps higher
OF order dips can also be observed.
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