POSTER 62

SELECTIVE ATTENUATION OF CAROTID-CARDIAC RESPONSES TO HYPERTENSION AT THE ONSET OF STATIC HANDGRIP IN HUMANS

Shekhar H. Deo, PhD (Post Doctoral Fellow)
Colin N. Young, PhD
Seth T. Fairfax (Doctoral Student)
(Paul J. Fadel, PhD)
Department of Medical Pharmacology and Physiology
Dalton Cardiovascular Research Center

Previous studies have indicated that at the onset of exercise cardiac baroreflex function is reduced in an intensity-dependent manner, which appears to be mediated by a blunted ability to buffer hypertensive challenges. However, whether cardiac baroreflex responses to a hypotensive stimulus are altered at exercise onset is unclear. To examine this, ten subjects (25 ± 1 years) performed multiple 1-min bouts of static handgrip (HG) at 15 and 60% of maximal voluntary contraction (MVC), while breathing to a metronome set at eupneic frequency. Neck pressure (NP +40 Torr) or neck suction (NS -60 Torr) was applied for 5 s at end expiration, to simulate carotid baroreflex (CBR) hypotension and hypertension, respectively at rest, at the onset of $\mathrm{HG}(<1 \mathrm{~s})$, and at $\sim 40 \mathrm{~s}$ of HG. Cardiac responses to NP at the onset of exercise were maintained at both HG intensities, whereas heart rate responses to NS were blunted at exercise onset during 60% MVC HG (-16 ± 2 rest vs. $-9 \pm 3 \mathrm{bpm} 60 \% \mathrm{MVC} ; \mathrm{P}<0.05$) but preserved at 15% MVC. The response range of the carotid-cardiac baroreflex at the onset of 60% MVC was reduced (25 ± 1 rest vs. $18 \pm 3 \mathrm{bpm} 60 \%$ MVC $; \mathrm{P}<0.05$) compared to rest and 15% MVC. Heart rate responses to NP and NS applied at ~ 40 s of 15 and 60% MVC were similar to rest. These results suggest that carotidcardiac responses to hypertension are selectively contributing to an impaired CBR control of heart rate at the onset of static HG in humans.

