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One-dimensional photonic crystal: The Kronig-Penney model
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We formulate the photonic band-structure problem for a one-dimensional photonic crystal in terms of the
reflection and transmission coefficients, obtaining a transcendental photonic band equation. The reflection and
the transmission coefficients may be evaluated by using the standard transfer-matrix method. The structure of
the equation reveals the existence of gaps, analogous to the Kronig-Penney model in the electronic band-
structure problem. As an example, the photonic band equation is solved for the simple case of the ‘‘Kronig-
Penney’’ dielectric structure, consisting of alternating slabs of refractive indicesn1 andn2.
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I. INTRODUCTION

The idea of photonic crystals was demonstrated by
early experiments of Yablonovitch and Gmitter1 and the
flurry of theoretical works that followed.2 These crystals are
microstructured materials in which the dielectric constan
periodically modulated with the result that the multiple inte
ference of light scattered from different unit cells in the cry
tal produces a photonic band structure, where gaps may
cur. The existence of a photonic gap leads to a numbe
physical properties, of both fundamental interest and for
tential device applications.

In this paper, we derive a transcendental equation for
photonic band structure, akin to the solution of the Kron
Penney model arising in the electronic band-structure pr
lem. The equation, written in terms of the reflection a
transmission coefficients of the unit cell of the crystal, allo
us to derive several general properties of the photonic b
structure. The method presented here is an alternative pr
dure to the plane-wave-expansion method, commonly u
to solve the photonic band-structure problem. Some gen
relations between the reflection and transmission coeffici
for the electromagnetic waves are also presented in the
pendix.

II. MAXWELL’S EQUATIONS

The Maxwell’s equations for an electromagnetic~em!
wave propagating through a dielectric medium with no fr
charge or current are given by

¹W 3EW 5 ivBW ,

¹W 3HW 1 ivDW 50,

¹W .DW 50,

¹W .BW 50, ~1!

where the time dependence of the em field has been take
beEW (rW,t)5EW (rW)e2 ivt andBW (rW,t)5BW (rW)e2 ivt. Furthermore,
we also have

DW ~rW !5e~rW !E~rW !. ~2!
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In the following, the dielectric constante(rW) is translation-
ally invariant along they andz directions, varying only along
the x direction, in a periodic manner.~See Fig. 1.! Mean-
while, the magnetic permeability is taken to be unifor
throughout this paper, being equal to its vacuum va
m(r )5m0, which is an excellent approximation for practic
systems of interest.

Combining now the Maxwell’s equations, we g
the second-order differential equation for the displacem
field DW :

¹W 3¹W 3@DW ~r !/e~rW !#5v2m0DW . ~3!

The dielectric can be broken down into segments of cons
e as indicated in Fig. 1, so that the electric fieldEW satisfies
the equation in each segment,

¹2EW 52
v2n2

c2 EW , ~4!

wherec is the vacuum speed of light andn is the refractive
index for the segment.

FIG. 1. Variation of the refractive indexn(x) for the one-
dimensional photonic crystal and its segmentation into regions
constantn ~shown in the lower part!. The lower part of the figure
shows the refractive index of one unit cell, attached to
asymptotic regions of the constant refractive indexn0 outside the
cell. The quantitiesn(x) andn8(x) are identical inside the unit cell
©2003 The American Physical Society21-1
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III. PHOTONIC BAND EQUATION

A. Bloch periodicity

In view of the fact that we have translational symme
along directions parallel to the slab and Bloch periodic
along the direction perpendicular to the slab, the electric fi
may be written as

EW ~rW !5eikW uu.r uuW3FW ~x!, ~5!

FW ~x!5(
m

eikBmAjW~x2mA!, ~6!

where a Bloch form has been taken forFW (x) by adding the
functionsjW (x2mA), centered in themth cell, after multiply-
ing them with the appropriate phase factors. Any function
jW (x) is good enough as far as the Bloch symmetry is c
cerned, but it has to be constructed such thatFW (x) satisfies
the Maxwell’s equations everywhere. Here,kB is the ‘‘Bloch
momentum’’ with2p/A<kB<p/A andA is the lattice con-
stant,x is normal to the slabs, andy andz are parallel to the
slabs. The solution is thus characterized by the symm
labels (kW uu ,kB) and given a specific value of these, our goa
to find v. This would give us all possible solutions for th
em fields~photonic band structure!.

Putting the expression for the electric field~5! into the
wave Eq.~4!, one finds that the equation for the fieldFW (x) is

d2FW

dx2 52kx,i
2 FW ~x!, ~7!

wherekx,i
2 5v2ni

2/c22kuu
2 . ThuskW uu is fixed, whilekx,i varies

from segment to segment, according to the valueni corre-
sponding to thei th segment.

B. Tail cancellation

We first obtain the solution of the Maxwell’s equation b
the method of ‘‘tail cancellation,’’ which although a bit te
dious in one dimension as compared to the method using
boundary condition matching, is quite powerful for highe
dimensional systems. The derivation below illustrates
method and can be generalized to two- and thr
dimensional photonic crystals. Similar generalization invo
ing the ‘‘tail cancellation’’ is used in the formulation of th
muffin-tin orbitals method in the electronic band-structu
theory.3

The auxiliary functionsjW (x) are to be determined suc
that the Bloch sum Eq.~6! satisfies Eq.~7!. Let us choose it
in the following way: In the central cell~defined as2A/2
<x<A/2), jW (x) satisfies Eq.~7!, so that

d2jW~x!

dx2
52kx,i

2 jW~x!, ~8!

while outside the central cell, the ‘‘tail’’ ofjW (x) is such that
the function is well behaved~continuous and differentiable!
04512
ld

r
-

ry

he

e
-

-

at the cell boundary. This will ensure that the Bloch sum
such functions is well behaved whenevern(x) is smoothly
varying.

The tail may be chosen such that it satisfies the Maxwe
equation, Eq.~8!, for somen(x) in the tail region, but it is
not necessary that it does so~since the tails will cancel out!.
It is convenient to choose the tails ofjW (x) to satisfy the
Maxwell’s equation with a constantn0[n(x5A/2), i.e., the
same refractive index as its value at the boundaries of
central cell. That way we can compute the transmission
reflection coefficients easily, which are needed later. The
fractive index n8(x) that jW (x) sees in the entire space
indicated in the lower part of Fig. 1, while the upper part
the same figure indicates the refractive indexn(x) seen by
the functionFW (x). The refractive indicesn(x) andn8(x) are
the same in the central cell, differing from each other on
outside the cell.

To find a solution,v(kuuW ,kB), let us try a specific gues
solutionv for the given values ofkuuW andkB . First we con-
struct the auxiliary functionjW (x) for the central cell with
thesekuuW and v from the differential equation, Eq.~8!, in
terms of which the electric fieldFW (x) for the entire periodic
structure will be given by the Bloch sum Eq.~6!. This will be
a solution for the entire dielectric structure, provided that
Bloch sum of the tails of the auxiliary functions cancel e
erywhere. In that case, the Bloch sum will satisfy the Ma
well’s equation everywhere, because only the ‘‘heads’’ of t
auxiliary functions survive, which by explicit constructio
satisfy the Maxwell’s equation within the central cell. Th
condition that the tails will cancel in the central cell~and
therefore in all other cells! is that

(
mÞ0

eikBmAjW~x2mA!50 ~9!

for all values ofx in the central cell. The idea of the ‘‘tai
cancellation’’ is in fact well known from the Korringa-Kohn
Rostoker Green’s function and the muffin-tin orbital form
lations of the electronic band-structure theory.3

We now turn to the construction ofjW (x), the explicit form
of which is needed just for the tail, in order to apply the t
cancellation condition. Now, since the geometry of our pro
lem is such that TE and TM modes do not mix,4 and further,
since in regions with constante(x), ¹W •EW 50 implies that the
EW fields are transverse to the direction of propagation, we
work with the two modes separately, with the mode ind
l51 and 2. For each of the modes, we have two solutio
right and left propagating, respectively, which we calljW1(x)
and jW2(x). Written in terms of the reflection and the tran
mission coefficients,r l and tl , the four independent solu
tions for the auxiliary functionsjW (x) satisfying Eq.~8! are
then

jW1
l~x!5H ~eikxx1r le2 ikxx!êl , x<2A/2,

tleikxxêl , x>A/2,
1-2
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jW2
l~x!5H tle2 ikxxêl , x<2A/2,

~e2 ikxx1r l8eikxx!êl , x>A/2,
~10!

where

kx
2[v2/c23n0

22kuu
2 ~11!

has the fixed value corresponding to the tail region, and
unit vector êl indicates the direction of the electric fiel
corresponding to the polarizationl. Note that since the val
ues ofe andm are same at the left and the right cell boun
aries for a periodic crystal, the transmission coefficients
the same, while the reflection coefficientsr and r 8 differ by
a phase factor@see Eq.~A21!#.

Note also that the above expressions are only for the t
since, at this point, we don’t really care how the auxilia
electric fields look inside the central cell. The electric fie
may be obtained everywhere by integration of the Maxwe
equations, Eq.~8!, once the eigenfrequencyv has been de-
termined.

Since the TE and the TM modes don’t mix, the mo
general solution forjW (x) is written as a linear combination o
the two independent solutions for each mode,

jW~x!5AljW1
l~x!1BljW2

l~x!, ~12!

where, again,l51 and 2, corresponding to the TE and T
modes, respectively. Substituting the expression forjW (x) in
the tail cancellation condition Eq.~9! and equating the coef
ficients of e6 ikxx in the resulting expression to be zero, w
obtain the conditions that the coefficientsAl and Bl must
satisfy:

Al@S21tlS2* #1Blr l8S2* 50,

Alr lS11Bl@ tlS11S1* #50, ~13!

whereS6[S(kB6kx) with S(k)[(m51
` exp(iAmk).

The sumS(k) is over a series of oscillating terms. Th
oscillation can be traced to the fact that the plane-wave-
tails in Eq.~10! continue undamped to infinity. If we keep
finite number of termsN in the summation, then the secon
term in the numerator of the resultS(k)5@eikA

2eik(N11)A#/(12eikA) oscillates rapidly between21 and
11 asN→` with the average value zero. It turns out th
taking this average value yields the correct answer for
problem at hand. A more careful way of evaluating the s
is to take the limit

S~k!5 lim
N→`,m→0

(
n51

N

e( ik2m)nA5
eikA

12eikA
, ~14!

where the limit has been taken in such a way thatmA!1 and
mNA@1. Physically this corresponds to a small dampi
terme2muxu in the auxiliary functions, Eq.~10!, such that the
amplitudes of the plane-wave tails damp out at infinity b
do not change appreciably over the length of a unit cell. T
same situation arises in the solution of the Kronig-Pen
model by the tail cancellation method in the electronic pro
lem as well.5
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Eliminating now the unknownsAl andBl from Eq. ~13!
and after some algebra, we get the following transcende
equation forv:

S tl
22r lr l8

2tl
DeikxA1

e2 ikxA

2tl
5cos~kBA!. ~15!

Using Eq.~A21! of the Appendix, we write the left and th
right transport coefficients in terms of their magnitudes a
phases:

tl5tl85utlueihl,

r l5ur lueidl,

r l852ur luei (2hl2dl). ~16!

Putting this in Eq.~15!, we get

cos~kxA1hl!

utlu
5cos~kBA!. ~17!

This is the central equation of the paper, the solution
which gives the photonic band structure. It is very similar
the equation appearing in the Kronig-Penney model for
electronic case;5,6 however, unlike the electronic case, w
now have two modes corresponding to the two polarizati
of light, l51,2. The band structure is expressed here
terms of the complex transmission coefficientt for the unit-
cell dielectric structure embedded in a uniform dielectric
refractive indexn0 on either side. As we shall see later e
plicitly, the dependence ofn0 drops out of the photonic ban
equation as it must; however, it is needed to define the tr
mission coefficient.

C. Photonic band equation from boundary matching

The photonic band equation can be obtained more sim
by matching the boundary condition. Consider first the
mode. This is fine since for a stratified medium the TE a
TM modes don’t mix.4 Referring to Fig. 2, the electric field
in the immediate neighborhood on the left and right sides
the unit cell may be expressed as

EW L5eikW uu•rW uu3~ALeikxx1BLe2 ikxx!ẑ,

FIG. 2. Sketch of the unit cell for obtaining the photonic ba
equation using the boundary condition matching for the TE mo
Electric-field coefficients (A and B) on the left and right sides o
the cell are valid in the small shaded region, where the dielec
constants may be taken to be unchanged.
1-3
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EW R5eikW uu•rW uu3@~s11AL1s12BL!eikxx

1~s21AL1s22BL!e2 ikxx# ẑ, ~18!

where the right coefficientsAR andBR have been written in
terms ofAL and BL using the scattering matrix~Appendix
A!, and the wave vectorkx is related to the frequencyv via
Eq. ~11!. In this formulation, the refractive indexn0 entering
in that equation is the refractive index at the cell boundary
indicated in the shaded area in Fig. 2.

Now, the continuity conditions at the boundary, viz., th
Euu and H uu are continuous, together with the Maxwell
equation relating¹W 3EW to BW and the Bloch’s theorem, lead t
the two equations:

EW R~A!5eikBAEW L~0!,

~dEW R /dx!A5eikBA~dEW L /dx!0 . ~19!

Substituting these into Eq.~18!, we get the eigenvalue equa
tion

S s11e
ikxA s12e

ikxA

s21e
2 ikxA s22e

2 ikxAD S AL

BLD 5eikBAS AL

BLD . ~20!

The Bloch factoreikBA is therefore an eigenvalue of the 232
matrix,7,8 the structure of which is such that~see the Appen-
dix! if l is an eigenvalue then so isl* . And, since the trace
is unchanged by diagonalization, one gets

s11e
ikxA1s22e

2 ikxA52cos~kBA!. ~21!

Expressing now the elements of theSmatrix appearing in the
above equation in terms of the transport coefficients@Eqs.
~A9! and ~A17!#, viz.,

s115s22* 51/t* , ~22!

we obtain the same photonic band equation as Eq.~17!. For
the TM mode, the same equation may be derived by work
with the BW field and following similar arguments.

IV. SOLUTION OF THE PHOTONIC BAND EQUATION

A. Structure of the equation

The photonic band-structure Eq.~17! is of the form

f ~kW uu ,kB ,v!50. ~23!

Another auxiliary variable which is quite physical is th
angle of incidence defined as

sinu5
ukW uuu
K

, ~24!

whereK[vn/c. Since the refractive index varies alongx, so
do the quantitiesK andu. With this, the photonic band equa
tion has the form

f ~u inc ,kB ,v!50, ~25!
04512
s
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u inc being the angle of incidence at a reference point~say,
the edge of the unit cell,x56A/2 with refractive indexn0).
SincekW uu is a constant throughout the structure, so isKsinu
@Eq. ~24!#, from which it follows thatnsinu is also the same
throughout the system. This is nothing but Snell’s law, wh
is seen here to be a consequence of the translational sym
try.

The problem then boils down to solving forvl , given the
symmetry labels~‘‘Bloch momentum’’! kW uu and kB , or,
equivalently, givenu inc and kB . The solution of the tran-
scendental Eq.~17! is illustrated in Fig. 3, which shows th
occurrence of gaps in the photonic spectrum.

B. Computation of the transmission coefficient

In order to solve the photonic band equation, Eq.~17!, we
need to compute the transmission coefficienttl . This is most
simply computed by using the transfer-matrix method as o
lined below, a method that is quite familiar in the treatme
of light transmission in layered media.7,9–11

We first divide the cell into a large numberN of segments
along x such that the refractive index in each segment m
be considered to be a constant. For each of the two mo
~TE or TM!, the em fields at the left and right end of the i
segment are related via the 232 transfer matrixMi ,

FIG. 3. Plot of the functionf (v)5cosh̄ l /u t̄lu, for a slab dielec-

tric structure for the case of normal incidencekW uu50. As indicated
by the photonic band equation, Eq.~17!, those values ofv are
allowed for which the function lies between61. For other frequen-
cies, there is no Bloch solutions so that forbidden gaps in the
quency spectrum are formed, the first few of which have be
shaded in the figure. Lower part of the figure shows an enlargem
in the lower-frequency region. Dielectric parameters aree513 for
uxu<0.2A, and 1 for 0.2A<uxu<A in the unit cell of the crystal.
1-4
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S Ea

Ba
D 5Mi S Eb

Bb
D , ~26!

with the numerical value,

Mi5S cosd i isind i /g i

ig isind i cosd i D ,

d i52di k̄i ~TE or TM!,

g i
l5H k̄i /v ~TE!,

~ni /c!2/~ k̄i /v! ~TM!,

with

k̄i5$~vni /c!22kuu
2%1/2, ~27!

whereni is the refractive index of thei th segment,di is its
thickness (( i 51

N di5A), andc is the vacuum speed of light
The overall transfer matrix corresponding to the ent

unit cell, treated as a multisegment stack consisting oN
segments, is the product of the individual transfer matric

M[S m11 m12

m21 m22D 5 lim
N→`

)
i 51

N

Mi . ~28!

The transmission and the reflection coefficients for the en
multilayer stack may be written in terms of the followin
two quantities:

t̄ 52G0 /~G0m111G0
2m121m211G0m22!,

r̄ 5
~G0m111G0

2m122m212G0m22!

~G0m111G0
2m121m211G0m22!

, ~29!

where

G051/v3$~vn0 /c!22kuu
2%1/2 ~30!

corresponds to the tail region,n0 being the refractive index
at the two edges of the unit cell,x56A/2. The quantitiest̄
and r̄ are in fact the transmission and reflection coefficien
respectively, if we define them according to their values
the left and the right boundaries~see, e.g., Pedrotti an
Pedrotti9!. We have, in contrast, definedt andr according to
their asymptotic forms, Eq.~10!.

Note that the transfer matrices depend on the parame
of the slab only, without reference to the dielectric in whi
it is embedded, while the reflection and the transmission
efficients depend on the refractive index of the embedd
medium (n0), the dependence entering via the quantityG0 in
Eq. ~29!.

The barred and the unbarred coefficients (t, r , r̄ , and t̄ )
are related quite simply. Since for the construction of
auxiliary functionsjW (x) in Eq. ~10!, we have taken the di
electric constant to be fixed@e(x)5e(uA/2u) for x>uA/2u],
the asymptotic forms extend right up to the unit-cell boun
ary. Thus the em fields at the cell boundaries can be wri
04512
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in terms ofr and t, and a connection made with the barre
quantities. Following these lines, one finds that the bar
and the unbarred coefficients differ only by a phase facto

t5 t̄ 3e2 ikxA, r 5 r̄ 3eikx(2x0), ~31!

where the unit cell extends betweenx5x0 andx5x01A. In
terms of the barred transmission coefficients for the two
larizationsl,

t̄ l5u t̄ lu3ei h̄l, ~32!

the photonic gap Eq.~17! is then written as

cosh̄l

u t̄ lu
5cos~kBA!. ~33!

While the photonic band equation@Eq. ~33!# is quite physi-
cal, being analogous to the corresponding equation in
electronic case, and it provides the connection between
transmission coefficient and the photonic bands, it may
simplified somewhat for practical calculations by writing
in terms of the transfer matrixM. We first note that the
diagonal elements ofM are real, while the off-diagonal el
ements are purely imaginary, a form that originates from
matrix form for the individual segmentMi and is retained as
we multiply such matrices to obtain the finalM. Therefore,
in the expression forM @Eq. ~28!#, m11 and m22 are real,
while m12 and m21 are purely imaginary. Using this fact in
evaluating the left part of the photonic band equation@Eq.
~33!# by plugging in the transmission coefficient@Eq. ~29!#,
we find that the photonic band equation may alternatively
written as

1/23TrM5cos~kBA!. ~34!

The equation may also be obtained directly from the bou
ary condition matching.10 The three equivalent equations fo
the photonic band structure@Eqs.~17!, ~33!, and~34!# are the
central equations of the paper.

It is clear from Eq.~34! that the band structure is inde
pendent of the constantn0, since it never appears in th
expression forM. Secondly, the band structure is indepe
dent of the choice of the unit cell. This is simply because
trace of a product of matrices is unchanged under cy
permutation of the matrices, Tr(ABC)5Tr(CAB), and in
our formulation, choosing a different unit cell amounts
multiplication of the same set of transfer matrices, witho
altering the sequence, e.g.,M13M23M33M4 vs M2
3M33M43M1, if the unit cell is divided into four seg-
ments.

C. Weak scatterers

We consider now the limiting case of a weak scatterer a
normal incidence (kuuW50). For a weak scatterer defined a
utu'1, ur u'0, andh'0, the transcendental Eq.~17! shows
that the band gaps are centered around the wave ve
k0A5mp, m being an integer. Band states begin with near
kx values ofk65k06a, so that
1-5
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ucos~k0A6aA!u5utu, ~35!

since at these values the right-hand side of Eq.~17! becomes
plus or minus one. Solving this, with the assumption thar
does not vary strongly in the gap region, one finds the va
for the gap to be

Dv5c~k12k2!/n05
2c

n0A
3ur u, ~36!

where r is the reflection coefficient for some average fr
quencyv in the gap region. Thus the band gap scales linea
with the magnitude of the reflection coefficient in the lim
that it is small.

In the case of the strong scatterers, the transmission c
ficient as a function of the frequencyv is small much of the
time except for sharp resonances. Photonic bands wil
narrow, forming in the region in which the resonances occ
i.e., ut(v)u'1, with the bandwidth controlled by the sha
variation of the complext(v) with v. Apart from these
bands, only in rare cases will the cosine term in the nume
tor in Eq.~17! conspire with a smallutu in the denominator to
produce a ratio of magnitude less than unity to provide
ditional bands away from the resonances.

D. Numerical results

We now turn to the calculation of the photonic band stru
ture for a specific example. We consider a Kronig-Penn
slab dielectric, consisting of alternate slabs of dielectric c
stantsn2 and n1, of thicknessesa and b, respectively, with
the unit-cell sizeA5a1b. The ratio cosh̄l /u t̄lu appearing in
the photonic band equation@Eq. ~33!# is easily obtained by
constructing and multiplying twoM matrices following Sec.
IV B.

There are just twoM matrices involved corresponding t
the two slabs, viz.,

M15S cosd1 isind1 /g1

ig1sind1 cosd1 D , ~37!

and

M25S cosd2 isind2 /g2

ig2sind2 cosd2 D , ~38!

which are obtained from Eq.~27!. Multiplying the two ma-
trices and taking the trace of the resulting matrixM5M1
3M2, we get the photonic band equation

2
1

2
3S g1

g2
1

g2

g1
D sind1sind21cosd1cosd25cos~kBA!.

~39!

The gammas and the deltas for the two slabs are define
Eq. ~27! and note that they are different for the TE and t
TM modes, leading to two different equations for the tw
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modes. However, for normal incidencekuuW50, the two equa-
tions become identical:

2
1

2
3S n1

n2
1

n2

n1
D sind1sind21cosd1cosd25cos~kBA!,

~40!

so that for the case of normal incidence, TE and TM mod
are degenerate.

The photonic band structure obtained by solving the tr
scendental Eq.~39! is plotted in Fig. 4. For normal incidenc
(kW uu50), the TE and the TM modes are degenerate, as m
be expected, while for slanted incidence (kW uuÞ0), they are
not. The results shown in Fig. 4 agree completely with ear
results for the same structure obtained by using the pla
wave-expansion method.12

V. CONCLUSION

In conclusion, we have obtained a transcendental equa
for the photonic band structure for a one-dimensional pho
nic crystal in terms of the reflection and the transmiss
coefficients, analogous to the solution of the Kronig-Penn
model in the electronic structure problem. The photonic ba
equation allows us to extract several general features of
photonic band structure and illustrates the origin of the ba
gaps. The case of the Kronig-Penney dielectric structu
with slabs of refractive indexn1 alternating with slabs ofn2,
was solved as an illustration of the method.

FIG. 4. Photonic band structure for the same slab dielec

structure considered in Fig. 3 for both normal (kW uu50; left panel!

and slanted (kW uuÞ0; right panel! incidence. For the left panel,kW uu
50 and the Bloch momentumkB varies along thex axis, while for

the right panel, we havekB50 and varyingkW uu . For the slanted
incidence, the TE and the TM modes have different frequencies
they are indicated by solid and dashed lines, respectively.
1-6
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APPENDIX: REFLECTION AND TRANSMISSION
COEFFICIENTS

In this Appendix, we outline the relationship between t
transmission and reflection coefficients for the electrom
netic waves incident on a dielectric. Consider the dielec
medium with the dielctric constant and the magnetic perm
ability varying alongx: e(x) andm(x) varying from one set
of constants,e1 ,m1 as x→2`, to another,e2 ,m2 as x
→`, as in Fig. 5. In the absence of any free charge
current, the electric field obeys the Maxwell wave equat
in the asymptotic region (x→6`):

¹2EW 52
v2n2

c2 EW , ~A1!

where we have assumed a harmonic time depende
EW (rW,t)5EW (rW)e2 ivt, with c the vacuum speed of light, andn
the refractive index,n5Ame3c. Not just in the asymptotic
region, but in all space one can in fact write down the abo
equation forEW , provided one divides the givene(x), m(x)
into piecewise segments of constantse andm.

A similar wave equation for the magnetic field can
written, viz.,

¹2BW 52
v2n2

c2 BW . ~A2!

With our geometry, the TE and TM modes don’t mix and it
convenient to work with the wave equation forEW for the TE
mode and the wave equation forBW for the TM mode.

1. TE mode: Asymptotic forms and the scattering matrix.

Considering first the TE mode, the asymptotic form of t
electric field is given, both forx→2` and forx→1`, by
a sum of two plane-wave components

FIG. 5. Reflection and transmission coefficients for light in
dent from the left and the right. The coefficients are defined w
reference to the plane-wave solutions in the asymptotic regionx
→6`.
04512
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EW 5eikyy3~ALeikxx1BLe2 ikxx!ẑ, x→2`,

EW 5eikyy3~AReik̄xx1BRe2 i k̄xx!ẑ, x→`, ~A3!

where v2n1
2/c25kx

21ky
2 , v2n2

2/c25 k̄x
21 k̄y

2 , and we have

chosen they direction alongkW uu ~fixed throughout the struc
ture owing to the translational symmetry along directio
parallel to the slab! and the direction of polarization ofEW to
be alongẑ.

Since these expressions are asymptotic forms of the s
solution of a linear differential equation, there must be
linear relation between the coefficients, which defines
scattering matrix:

S AR

BRD 5S s11 s12

s21 s22D S AL

BLD . ~A4!

It is clear from Eq.~A1! that if EW is a solution, then so isEW * .
In addition, it also follows from Eq.~A1! that if EW 5eily

3 f (x) ẑ is a solution, then so is the functionEW 5e2 ily

3 f (x) ẑ. The asymptotic forms, obtained by taking the co
plex conjugate of Eq.~A3! and changing the sign ofky ,

EW 5eikyy3~AL* e2 ikxx1BL* eikxx!ẑ,

EW 5eikyy3~AR* e2 i k̄xx1BR* eik̄xx!ẑ, ~A5!

differ from Eq.~A3! only in the nomenclature of the consta
coefficients. We therefore have

S BR*

AR* D 5S s11 s12

s21 s22D S BL*

AL* D . ~A6!

Taking the complex conjugate and comparing with Eq.~A4!,
we obtain the relations between theS-matrix elements:

s115s22* ,

s125s21* . ~A7!

2. TE mode: Reflection and transmission coefficients.

Meanwhile, let the reflection and transmission coefficie
for a wave incident from the left be denoted byr andt, while
be let r 8 and t8 denote the corresponding quantites for
wave incident from the right as indicated in Fig. 5. For t
wave incident from the left, the asymptotic form of the ele
tric field is given by

EW 5eikyy3~eikxx1re2 ikxx!ẑ,

EW 5eikyy3~ teik̄xx!ẑ. ~A8!

This is a special case of the general asymptotic solution~A3!
with AL51, BL5r , AR5t, andBR50. Putting these values
into Eq. ~A4!, theS matrix can be written as

h

1-7
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S5
1

12ur u2 S t 2tr *

2t* r t * D 5S 1/t8* r 8/t8

r 8* /t8* 1/t8 D .

~A9!

The second equality comes from an alternative form of thS
matrix expressed in terms ofr 8 andt8, by considering an em
wave incident from the right. Equating the two alternati
forms of theS matrix @Eq. ~A9!# element by element, we
obtain

12ur u25tt8* ,

2r *

t8*
5

r 8

t8
. ~A10!

3. TE mode: Conservation of energy

Consider now the conservation of energy current. In
lossless and source-free medium, the conservation of en
implies that

E ReSW .dAW50, ~A11!

whereSW 5 1
2 (EW 3HW * ) is the Poynting vector and the integr

has been taken on a closed surface.
The Poynting vector can be easily computed for

asymptotic forms of the em fields. For example, for theEW
field in Eq. ~A3!, we have

SW 5
1

2mv
$ ikx@ uALu22uBLu22~ALBL* e2ikxx2c.c.!#

1 jky@ uALu21uBLu21~ALBL* e2ikxx1c.c.!#%. ~A12!

This form is valid everywhere and not just in the asympto
region, provided that we make the segmentation into regi
of constante andm. Inspection of Eq.~A12! shows that

]~ReSx!

]x
50,

]~ReSy!

]y
50. ~A13!

Applying the conservation relation~A11! to a rectangular
box, with faces normal to the Cartesian coordinates, and
ing the relation~A13!, we find that

î •ReSW 5const ~A14!

in all space. This is easily shown to be true for the TM mo
as well.

The conservation relation~A14! applied to the asymptotic
solution~A3! and the resulting expression~A12! for SW leads
to the condition that

kx

m1
~ uALu22uBLu2!5

k̄x

m2
~ uARu22uBRu2!. ~A15!
04512
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Substituting the right coefficientsAR , BR in terms of
AL , BL , and theS matrix, we find

kx

m1
5

k̄x

m2
~ us11u22us12u2!, ~A16!

which in turn leads to the relation

ur u21
k̄xm1

kxm2
utu251. ~A17!

Using the analogous equation forr 8 andt8, plus the fact that
ur u5ur 8u @which follows from Eq.~A10!#, we find that

ut8u5S k̄xm1

kxm2
D utu. ~A18!

4. TE mode: Relationship between the left and the right
transport coefficients: r ,t and r 8,t8

Consider em waves of equal amplitude incident from b
sides of the dielectric. Applying the energy conservati
~A14!, we find that

kx

m1
~12ur 1t8u2!5

k̄x

m2
~ ur 81tu221!, ~A19!

which leads to the condition

ReS kxm2

k̄xm1

rt 8* 1r 8t* D 50. ~A20!

The most general form of the transport coefficients satisfy
all relations between them is that

r 5ur ueid,

t5utueih,

r 852ur uei (2h2d),

t85S k̄xm1

kxm2
D utueih. ~A21!

5. TE mode: Symmetric dielectric

The above equations are valid for both a symmetric a
nonsymmetric dielectric. Consider now the symmetric
electric,e(2x)5e(x) andm(2x)5m(x), on which an em
wave is incident from both the left and right with equal am
plitudes. From symmetry, the energy current is zero eve
where. Computing the current in the asymptotic regionx→
2`, we obtain

î •ReSW 5
kx

2m1v
~12ur 1t8u2!50, ~A22!

which leads to the condition that

Re~rt * !50, ~A23!
1-8
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i.e., rt * 5purely imaginary, where we have used the relatio
t5t8 @Eq. ~A21!# and ur u21utu251 @Eq. ~A17!#. Equation
~A23! together with Eq.~A21! leads to the result

r 5r 856 i ur ueih,

t5t85utueih, ~A24!

for the symmetric case. In addition, from Eq.~A17!, we also
have

ur u21utu251, ~A25!

Note that if the dielectric structure is symmetric but on
about the pointx5x0 @i.e., e(x02x)5e(x2x0) and simi-
larly for m], then the em waveseikx incident from the left
ande2 ikx incident from the right do not produce a zero cu
rent, because the two incident waves approach the struc
with different phases. Therefore, Eqs.~A24! and ~A25! are
not valid in that case.
04512
s

re

6. TM mode

For the TM mode, we choose to work with theBW field.
The Maxwell’s wave equation is

¹2BW 52
v2n2

c2 BW . ~A26!

With BW along ẑ, this equation is exactly the same as t
corresponding Eq.~A1! for the EW field with EW along ẑ.
Therefore all asymptotic properties of the differential equ
tion are identical. Therefore, all relations between the tra
port coefficientsr ,t and r 8,t8 derived for the TE case als
hold true for the TM case. Note, however, that sinceEW andBW
satisfy different boundary conditions at the interface betwe
two dielectric media, the numerical values of the reflecti
and transmission coefficients and theSmatrix will be differ-
ent in general.
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