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One-dimensional photonic crystal: The Kronig-Penney model
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(Received 31 October 2002; published 30 July 2003

We formulate the photonic band-structure problem for a one-dimensional photonic crystal in terms of the
reflection and transmission coefficients, obtaining a transcendental photonic band equation. The reflection and
the transmission coefficients may be evaluated by using the standard transfer-matrix method. The structure of
the equation reveals the existence of gaps, analogous to the Kronig-Penney model in the electronic band-
structure problem. As an example, the photonic band equation is solved for the simple case of the “Kronig-
Penney” dielectric structure, consisting of alternating slabs of refractive indicesdn,.
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[. INTRODUCTION In the following, the dielectric constar(r) is translation-
ally invariant along the andz directions, varying only along
The idea of photonic crystals was demonstrated by théhe x direction, in a periodic mannefSee Fig. 1. Mean-
early experiments of Yablonovitch and Gmitteand the while, the magnetic permeability is taken to be uniform
flurry of theoretical works that followetiThese crystals are throughout this paper, being equal to its vacuum value
microstructured materials in which the dielectric constant isu(r) = uq, Which is an excellent approximation for practical
periodically modulated with the result that the multiple inter- systems of interest.
ference of light scattered from different unit cells in the crys- Combining now the Maxwell’s equations, we get
tal produces a photonic band structure, where gaps may othe second-order differential equation for the displacement
cur. The existence of a photonic gap leads to a number dfe|d D:
physical properties, of both fundamental interest and for po-
tential device applications. VX VX[D(r)/e(f)]=w?uoD. (3)
In this paper, we derive a transcendental equation for the . . ]
photonic band structure, akin to the solution of the Kronig-The dielectric can be broken down into segmerlts of constant
Penney model arising in the electronic band-structure probe as indicated in Fig. 1, so that the electric fi#dsatisfies
lem. The equation, written in terms of the reflection andthe equation in each segment,
transmission coefficients of the unit cell of the crystal, allows

us to derive several general properties of the photonic band V2E— _ wznzé @
structure. The method presented here is an alternative proce- N ¢z

dure to the plane-wave-expansion method, commonly used ) ) ) ]
to solve the photonic band-structure problem. Some generdfnerec is the vacuum speed of light amdis the refractive
relations between the reflection and transmission coefficient§dex for the segment.
for the electromagnetic waves are also presented in the Ap-

pendix.

n(x)

IIl. MAXWELL'S EQUATIONS

The Maxwell's equations for an electromagnetiem)
wave propagating through a dielectric medium with no free
charge or current are given by

VXE=iwB,

+iw|5=0,

T

V X

V.D=0,

V.B=0, (1)
. ) FIG. 1. Variation of the refractive index(x) for the one-
Whgre the the delpendenﬁce of th? em f'.eld has been taken H?mensional photonic crystal and its segmentation into regions of
beE(F,t)=E(F)e ' andB(F,t)=B(F)e '“'. Furthermore, constantn (shown in the lower part The lower part of the figure
we also have shows the refractive index of one unit cell, attached to the
R asymptotic regions of the constant refractive indgxoutside the
D(r)=e(r)E(F). (2 cell. The quantitiesi(x) andn’(x) are identical inside the unit cell.
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I1l. PHOTONIC BAND EQUATION
A. Bloch periodicity
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at the cell boundary. This will ensure that the Bloch sum of
such functions is well behaved whenevgix) is smoothly
varying.

In view of the fact that we have translational symmetry  The tail may be chosen such that it satisfies the Maxwell’s
along directions parallel to the slab and Bloch periodicityequation, Eq(8), for somen(x) in the tail region, but it is
along the direction perpendicular to the slab, the electric fielthot necessary that it does &ince the tails will cancel out

may be written as

E(r)=eIMx E(x), (5)

F(x)=2, eXeMAg(x—mA), (6)

where a Bloch form has been taken i%(x) by adding the
functionsé(x— mA), centered in thenth cell, after multiply-

It is convenient to choose the tails étx) to satisfy the
Maxwell's equation with a constamiy=n(x=A/2), i.e., the
same refractive index as its value at the boundaries of the
central cell. That way we can compute the transmission and
reflection coefficients easily, which are needed later. The re-

fractive indexn’(x) that £&(x) sees in the entire space is
indicated in the lower part of Fig. 1, while the upper part of
the same figure indicates the refractive indgx) seen by

the functionlf(x). The refractive indicea(x) andn’(x) are

ing them with the appropriate phase factors. Any function forthe same in the central cell, differing from each other only
&(x) is good enough as far as the Bloch symmetry is conoutside the cell.

cerned, but it has to be constructed such fﬁ@t) satisfies
the Maxwell’'s equations everywhere. Hekg, is the “Bloch

momentum” with — 7/A<kg=<w/A andA is the lattice con-
stant,x is normal to the slabs, andandz are parallel to the

slabs. The solution is thus characterized by the symmetr
labels QZH ,kg) and given a specific value of these, our goal is

to find w. This would give us all possible solutions for the
em fields(photonic band structuye
Putting the expression for the electric figlf) into the

wave Eq.(4), one finds that the equation for the figfgx) is
d?F

e K2 F(x),

()

wherek? = w?n/c?— ki . Thusk is fixed, whilek, ; varies
from segment to segment, according to the valueorre-

sponding to theth segment.

B. Tail cancellation

To find a solution,w(lﬂ)‘,ks), let us try a specific guess
solution w for the given values ok andkg. First we con-
struct the auxiliary functioré(x) for the central cell with
?wesek_f and o from the differential equation, E(8), in

erms of which the electric fielé(x) for the entire periodic
structure will be given by the Bloch sum E@). This will be

a solution for the entire dielectric structure, provided that the
Bloch sum of the tails of the auxiliary functions cancel ev-
erywhere. In that case, the Bloch sum will satisfy the Max-
well’s equation everywhere, because only the “heads” of the
auxiliary functions survive, which by explicit construction
satisfy the Maxwell’'s equation within the central cell. The
condition that the tails will cancel in the central cédnd
therefore in all other celjsis that

> ekeMAE(x—mA)=0

m+#0

(©)

for all values ofx in the central cell. The idea of the “tail

We first obtain the solution of the Maxwell’'s equation by cancellation” is in fact well known from the Korringa-Kohn-

the method of “tail cancellation,” which although a bit te-

Rostoker Green'’s function and the muffin-tin orbital formu-

dious in one dimension as compared to the method using thations of the electronic band-structure thedry.

boundary condition matching, is quite powerful for higher-

We now turn to the construction é(x), the explicit form

dimensional systems. The deri\(ation below illustrates theyf which is needed just for the tail, in order to apply the tail
method and can be generalized to two- and threecancellation condition. Now, since the geometry of our prob-
dimensional photonic crystals. Similar generalization involv-lem is such that TE and TM modes do not rfliand further,

ing the “tail cancellation” is used in the formulation of the

muffin-tin orbitals method in the electronic band-structure -

theory?

The auxiliary functionsé(x) are to be determined such
that the Bloch sum Eq6) satisfies Eq(7). Let us choose it
in the following way: In the central celldefined as—A/2

<x=<A/2), £(x) satisfies Eq(7), so that
d?é(x)
dx?

k2, &(x), ®)

while outside the central cell, the “tail” off(x) is such that
the function is well behavettontinuous and differentiable

since in regions with constaetx), V- E=0 implies that the

E fields are transverse to the direction of propagation, we can
work with the two modes separately, with the mode index
A=1 and 2. For each of the modes, we have two solutions,

right and left propagating, respectively, which we c?aI(x)

and EZ(X). Written in terms of the reflection and the trans-
mission coefficientsr, andt, , the four independent solu-

tions for the auxiliary functions_{?(x) satisfying Eq.(8) are
then

x<—A/2,
x=A/2,

. (eikxx+r}\e_ikxx)éx,
& (x)=

Ky X2
t,e"x'e ,
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. t,e e, x<—A/2, B AR
& (X)= (e kxpr!e)g | x=A/2, (10 y /
where > X
ki=w?/c?Xx ng—ki (12)
has the fixed value corresponding to the tail region, and the AL ’ Br
unit vector &, indicates the direction of the electric field x=0 x=A

corresponding to the polarization Note that since the val-
ues ofe andlu are same at the left and the r|ght cell bound- FIG. 2. Sketch of the unit cell for Obtaining the photoniC band

aries for a periodic crystal, the transmission coefficients ar&auation using the boundary condition matching for the TE mode.
the same, while the reflection coefficiemtandr ' differ by Electric-field co_eff_|C|entsA andB) on the I_eft and right 5|d§s of _

a phase factofsee Eq(A21)]. the cell are valid in the small shaded region, where the dielectric

Note also that the above expressions are only for the tail&O"Stants may be taken to be unchanged.

since, at this point, we don't really care how the auxiliary
electric fields look inside the central cell. The electric field
may be obtained everywhere by integration of the Maxwell’s
equations, Eq(8), once the eigenfrequenay has been de-

Eliminating now the unknown4, andB, from Eq. (13
and after some algebra, we get the following transcendental
equation forw:

termined. 2oy “ik A
Since the TE and the TM modes don't mix, the most (—A A A)eikx/hr = cogKgA). (15)
general solution fog(x) is written as a linear combination of 2ty
the two independent solutions for each mode, Using Eq.(A21) of the Appendix, we write the left and the
- 2\ . right transport coefficients in terms of their magnitudes and
E(X)=A\E"(X)+ B &5 (X), (12 phases:
where, againh=1 and 2, corresponding to the TE and TM t=t =t |e‘ ™
modes, respectively. Substituting the expression&{o) in Mo ’
the tail cancellation condition E¢9) and equating the coef- NGRS
ficients ofe™** in the resulting expression to be zero, we oA '
obtain the conditions that the coefficiemds and B, must r=—|r,|e@n=a) (16)
satisfy: A A .
Putting this in Eq(15), we get
A\S_+t,SE]+B,r, St =0,
cogkA+ 1)
A1, S, +B,[t,S, +S¥1=0, (13 T=cos(kBA)- 17

WhereSiES(kBi,kX) with S(k)_EEm=lexp(|A_mk). This is the central equation of the paper, the solution of
'Ifhe.sumS(k) is over a series of oscillating terms. Thg which gives the photonic band structure. It is very similar to
oscillation can be traced to the fact that the plane-wave-likgy,, equation appearing in the Kronig-Penney model for the
tails in Eq.(10) continue undamped to infinity. If we keep a gjactronic casé® however, unlike the electronic case, we
finite number of terma\ in the summation, then the s?kcAond now have two modes corresponding to the two polarizations
te”i'l‘((NJ'rq)A the niLdLneratqr of the resuliS(k)=[e of light, A=1,2. The band structure is expressed here in
-e 1/(1—e™) oscillates rapidly between-1 and  orms of the complex transmission coefficiérior the unit-
+1 asN—oo with the average value zero. It tums out that oq|| gielectric structure embedded in a uniform dielectric of
taking this average value yields the correct answer for thesfraciive indexn, on either side. As we shall see later ex-

problem at har_1d._ A more careful way of evaluating the SUMyjicitly, the dependence af, drops out of the photonic band
Is to take the limit equation as it must; however, it is needed to define the tran-

N KA mission coefficient.

S(ky=lim > el mmnie— (14)
N—w,u—0n=1 l1-e C. Photonic band equation from boundary matching
where the limit has been taken in such a way A1 and The photonic band equation can be obtained more simply

uNA>1. Physically this corresponds to a small dampingby matching the boundary condition. Consider first the TE
terme™#X in the auxiliary functions, Eq(10), such that the mode. This is fine since for a stratified medium the TE and
amplitudes of the plane-wave tails damp out at infinity butTM modes don’t mix: Referring to Fig. 2, the electric fields
do not change appreciably over the length of a unit cell. Thén the immediate neighborhood on the left and right sides of
same situation arises in the solution of the Kronig-Penneghe unit cell may be expressed as

model by the tail cancellation method in the electronic prob- .

lem as well E =€ IMIx (A e**+ B e )z,
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Ep=eMITIX[(SAL +51,B, ) ek
A I_hy
+(SpAL+ 5B e Kz, (18) 1 ‘ 1 """""""""

where the right coefficientdg andBg have been written in 2 0 !
terms of A_ and B, using the scattering matrigAppendix
A), and the wave vectds, is related to the frequency via =1 - A N RN &
Eqg.(11). In this formulation, the refractive indax, entering ' '

in that equation is the refractive index at the cell boundary as ‘
indicated in the shaded area in Fig. 2.

Now, the continuity conditions at the boundary, viz., that

E; and H), are continuous, together with the Maxwell's P

equation relatiny X E to B and the Bloch's theorem, lead to
the two equations:

f(o

0 2 4 6 8 10 12 14

Er(A)=€*s*E, (0), =

(dEgr/dx) 4= e eA(dE, /dX)o. (19)

Substituting these into Eq18), we get the eigenvalue equa-

tion
AL
BL _
FIG. 3. Plot of the functiorf(w) = cosp, /|t,], for a slab dielec-

The Bloch factore'*&* is therefore an eigenvalue of thex2 ~ tric structure for the case of normal inciderlﬁpzo. As indicated
matrix,”® the structure of which is such thatee the Appen- by the photonic band equation, E(L7), those values ot are

dix) if A is an eigenvalue then so i¢. And, since the trace allowed for which the function lies betweenl. For other frequen-
is unchanged by diagonalization, one gefs cies, there is no Bloch solutions so that forbidden gaps in the fre-

quency spectrum are formed, the first few of which have been
SlleikxA+Szze—ikxA: 2cogkgA). (21) ;haded in the figure. Lower part c_)f the figure shows an enlargement
in the lower-frequency region. Dielectric parameters exd 3 for
Expressing now the elements of tBenatrix appearing in the |x|<0.2A, and 1 for 0.2<|x|<A in the unit cell of the crystal.
above equation in terms of the transport coefficidiiigs.

(A9) and(A17)], viz., 0inc being the angle of incidence at a reference péaaty,
the edge of the unit celk= = A/2 with refractive index).
S11=S5= 11, (22) 2 ’ 0

SincelZ” is a constant throughout the structure, st&K&néd
we obtain the same photonic band equation as(Ef). For  [Eq. (24)], from which it follows thatnsing is also the same
the TM mode, the same equation may be derived by workinghroughout the system. This is nothing but Snell’'s law, which
with the B field and following similar arguments. is seen here to be a consequence of the translational symme-
try.
The problem then boils down to solving fex, , given the
. symmetry labels(“Bloch momentum”) IZH and kg, or,
A. Structure of the equation equivalently, givené;,. and kg. The solution of the tran-

The photonic band-structure Eq_7) is of the form scendental ECK].?) is illustrated in Flg 3, which shows the
occurrence of gaps in the photonic spectrum.

05 1 15
(b) wA/(2nc)

ik A AL

ikgA
BL

kA =e (20

57 s
sy A s, e”

IV. SOLUTION OF THE PHOTONIC BAND EQUATION

f(K[ kg, ) =0. (23)

- . L . . . B. Computation of the transmission coefficient
Another auxiliary variable which is quite physical is the P

angle of incidence defined as In order to solve the photonic band equation, &), we
need to compute the transmission coefficigntThis is most
_ ||Z”| simply computed by using the transfer-matrix method as out-
sing= vt (24) lined below, a method that is quite familiar in the treatment
of light transmission in layered medid
whereK=wn/c. Since the refractive index varies alorgso We first divide the cell into a large numbirof segments
do the quantitie and 6. With this, the photonic band equa- alongx such that the refractive index in each segment may
tion has the form be considered to be a constant. For each of the two modes
(TE or TM), the em fields at the left and right end of the ith
f(Oine .Kg,w)=0, (25  segment are related via the<2 transfer matrix\; ,
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Ea Ep in terms ofr andt, and a connection made with the barred
(B :Mi(B , (26) quantities. Following these lines, one finds that the barred
a b and the unbarred coefficients differ only by a phase factor:
with the numerical value, .
t=txe A r=rxekd2¥), (31
coss;,  ising; /vy, _
Mi=\iysins  coss, | where the unit cell extends betwees Xo andx=Xp+A. In
terms of the barred transmission coefficients for the two po-
o larizationsA,
5i:_diki (TE or TM), . —
_ t=[t,x e, (32
Y= kife» - (TB), the photonic gap Eq.17) is then written as
Yl(nile)¥(kilw) (TM), -
. cos
with |t_7|7” = cogkgA). (33
— A
ki={(wn;/c)?—kff}*2 (27)

While the photonic band equatidiq. (33)] is quite physi-
wheren; is the refractive index of theth segmentd; is its  cal, being analogous to the corresponding equation in the
thickness Ef\‘zldi=A), andc is the vacuum speed of light. electronic case, and it provides the connection between the
The overall transfer matrix corresponding to the entiretransmission coefficient and the photonic bands, it may be
unit cell, treated as a multisegment stack consistingNof simplified somewhat for practical calculations by writing it
segments, is the product of the individual transfer matricesin terms of the transfer matriM. We first note that the
diagonal elements aM are real, while the off-diagonal el-

My My N ements are purely imaginary, a form that originates from the
M={m,, my,|=lm H M;. (28)  matrix form for the individual segment{; and is retained as
N—eel =1 we multiply such matrices to obtain the fin&l. Therefore,

The transmission and the reflection coefficients for the entird? the expression forM [Eq. (28)], my;, and my, are real,

multilayer stack may be written in terms of the following Whilé M1z andmy, are purely imaginary. Using this fact in
two quantities: evaluating the left part of the photonic band equatifuq.

(33)] by plugging in the transmission coefficieiq. (29)],
T= 2F0/(F0m11+l“§m12+ Mo+ ToMyy), meitzrr? ;2at the photonic band equation may alternatively be

2
— (Lomyy+I'gMyp— My —'omyp)

= > , (29) 1/2X TrM=cogkgA). (39
(Fomyy+1I'gMyp+ My +1Tomyy) . . .
The equation may also be obtained directly from the bound-

where ary condition matching® The three equivalent equations for
the photonic band structuf&qgs.(17), (33), and(34)] are the
_ 211/
['o=LwX{(wne/c)?—~kij}*? (B0 central equations of the paper.
corresponds to the tail region, being the refractive index It is clear from Eq.(34) that the band structure is inde-

pendent of the constamty, since it never appears in the
T . . . expression forM. Secondly, the band structure is indepen-
andr are in fact the transmission and reflection coefficients

respectively, if we define them according to their values aEent of the choice of the unit cell. This is simply because the
the left and the right boundarie@ee, e.g., Pedrotti and race of a product of matrices is unchanged under cyclic

. : . permutation of the matrices, T8 C)=Tr(CAB), and in
;i?rrc:f;}nﬁigf\f/g%nsng;i%?t’ defingdindr according to our formulation, choosing a different unit cell amounts to

Note that the transfer matrices depend on the p(,jlrametep%uItiplication of the same set of transfer matrices, without
of the slab only, without reference to the dielectric in which &1tering the sequence, e.gMy X MpX MsX My Vs M,

it is embedded, while the reflection and the transmission cofﬁé\r/]téx MaX My, if the unit cell is divided into four seg-
efficients depend on the refractive index of the embedding '

medium (), the dependence entering via the quariigyin
Eq. (29). C. Weak scatterers

at the two edges of the unit cel= = A/2. The quantitiest_

The barred and the unbarred coefficiertsr(, r, andt_) We consider now the limiting case of a weak scatterer and

are related quite simply. Since for the construction of thenormal incidence K;=0). For a weak scatterer defined as
auxiliary functionsé(x) in Eqg. (10), we have taken the di- |t|~1,|r|~0, and»~0, the transcendental E(L7) shows
electric constant to be fixelde(x) = €(|A/2]) for x=|A/2|],  that the band gaps are centered around the wave vector
the asymptotic forms extend right up to the unit-cell bound-koA=ms, mbeing an integer. Band states begin with nearby
ary. Thus the em fields at the cell boundaries can be writtek, values ofk.. =ky* «, so that
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|cogkoA= aA)|=]t], (39 !

since at these values the right-hand side of @) becomes

plus or minus one. Solving this, with the assumption that 0.8
does not vary strongly in the gap region, one finds the value
for the gap to be

0.6

2c
Aw=c(k+—k_)/n0=—noA><|r|. (36)
0.4

Frequency ( ®A/(2rc))

wherer is the reflection coefficient for some average fre-
guencyw in the gap region. Thus the band gap scales linearly
with the magnitude of the reflection coefficient in the limit 0.2
that it is small.

In the case of the strong scatterers, the transmission coef-

ficient as a function of the frequeneyis small much of the 0 . '

time except for sharp resonances. Photonic bands will be n 0 n 2n 3n
narrow, forming in the region in which the resonances occur, kpA KA

i.e., |t(w)|~1, with the bandwidth controlled by the sharp

variation of the complext(w) with w. Apart from these FIG. 4. Photonic band structure for the same slab dielectric

bands, only in rare cases will the cosine term in the numerastructure considered in Fig. 3 for both normé € 0; left pane)

tor in Eq.(17) conspire with a smaltt| in the denominator to and slanted K”#O right panel incidence. For the left panekH

produce a ratio of magnitude less than unity to provide ad=0 and the Bloch momentuiiky varies along thex axis, while for

ditional bands away from the resonances. the right panel, we havég=0 and varyingIZH. For the slanted
incidence, the TE and the TM modes have different frequencies and

D. Numerical results they are indicated by solid and dashed lines, respectively.

We now turn to the calculation of the photonic band struc-
ture for a specific example. We consider a Kronig-Penneynodes. However, for normal incidenkg=0, the two equa-
slab dielectric, consisting of alternate slabs of dielectric conlions become identical:
stantsn, andn,, of thicknessesa andb, respectively, with

the unit-cell sizeA=a+b. The ratio cos, /[t,| appearing in 1

the photonic band equatidiEq. (33)] is easily obtained by - =X E—I— h sind;sind, + c0s9,€0s5, = cog kgA),

constructing and multiplying twa1 matrices following Sec. Nz M

IV B. (40

There are just two\ matrices involved corresponding to

the two slabs, viz., so that for the case of normal incidence, TE and TM modes

are degenerate.
Cc0s5;  isindy/y; The photonic band structure obtained by solving the tran-
M i y,5in5, coss, | (37) sgendental Eq.39) is plotted in Fig. 4. For normal incidence

(k=0), the TE and the TM modes are degenerate, as might

be expected, while for slanted incidendé‘{&O), they are
not. The results shown in Fig. 4 agree completely with earlier
. results for the same structure obtained by using the plane-
" ( cos;  isind,/ 72) wave-expansion methdd.

and

i y,Sind, €0, (38

which are obtained from Ed27). Multiplying the two ma- V. CONCLUSION

trices and taking the trace of the resulting matti= M, In conclusion, we have obtained a transcendental equation

X M, we get the photonic band equation for the photonic band structure for a one-dimensional photo-
nic crystal in terms of the reflection and the transmission
coefficients, analogous to the solution of the Kronig-Penney
model in the electronic structure problem. The photonic band

(399  equation allows us to extract several general features of the
photonic band structure and illustrates the origin of the band

The gammas and the deltas for the two slabs are defined gaps. The case of the Kronig-Penney dielectric structure,

Eqg. (27) and note that they are different for the TE and thewith slabs of refractive inder, alternating with slabs af,,

TM modes, leading to two different equations for the twowas solved as an illustration of the method.

1

2

n, v

sind; Sind, + c0s9;€c0s59, = COg kgA).
Y2 M
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ikXX _ E:eikyyx(ALeikxX+ BLe—ikxX)%, X—s — 0,
€ . ikyX
. te
—ikyX —

re el E=ekyx (AReiE"ﬁL BRe‘”(_xX)E, X— 00, (A3)

where w?n3/c?=k2+kZ, w?n3/c?=k;+k3, and we have
iRy chosen they direction anngIZH (fixed throughout the struc-
ture owing to the translational symmetry along directions
parallel to the slaband the direction of polarization & to
be alongz.

Since these expressions are asymptotic forms of the same
solution of a linear differential equation, there must be a
linear relation between the coefficients, which defines the

scattering matrix:
S11 S12
S21 S22

We acknowledge support of this work by the U. S. De-Itis clear from Eq(A1) that if E is a solution, then so i§* .
partment of EnergyGrant Nos. DE-FG02-00ER4581L8 In addition, it also follows from Eq(A1) that if E=e"Y
xf(x)z is a solution, then so is the functioB=e ™"y

x f(x)z. The asymptotic forms, obtained by taking the com-
plex conjugate of EqtA3) and changing the sign &,

FIG. 5. Reflection and transmission coefficients for light inci-
dent from the left and the right. The coefficients are defined with

reference to the plane-wave solutions in the asymptotic regions
— F oo,

AR
Br

AL
BL

. (A4)
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APPENDIX: REFLECTION AND TRANSMISSION
COEFFICIENTS

In this Appendix, we outline the relationship between the

o . - =_ ik —ik ikeX) 5
transmission and reflection coefficients for the electromag- E=e"x(Afe "+ Bl e")z,
netic waves incident on a dielectric. Consider the dielectric o _ P
medium with the dielctric constant and the magnetic perme- E=e X (Ake X+ BXel¥)z, (A5)

ability varying alongx: e(x) andu(x) varying from one set )

of constants,e;,u; as X— —o, to another,e,,u, as x  differ from Eq.(A3) only in the nomenclature of the constant
—o, as in Fig. 5. In the absence of any free charge ofcoefficients. We therefore have

current, the electric field obeys the Maxwell wave equation

in the asymptotic regionx(— = «): Bk si Si2| [ Bi
2n2 A’F\—( = 321 822 At ) (A6)
— w —
V?’E=-—E, (A1)
c

Taking the complex conjugate and comparing with &),

L we obtain the relations between tBematrix elements:
where we have assumed a harmonic time dependence

E(r,t)=E(r)e”'“!, with c the vacuum speed of light, amd S;,= 55,
the refractive indexn= \/ueXc. Not just in the asymptotic
region, but in all space one can in fact write down the above 1= Y. (A7)

equation forE, provided one divides the givee(x), w(X)
into piecewise segments of constaatand u.

A similar wave equation for the magnetic field can be 2. TE mode: Reflection and transmission coefficients.

written, viz., Meanwhile, let the reflection and transmission coefficients
for a wave incident from the left be denoted bgndt, while
- w’n?_ be letr’ andt’ denote the corresponding quantites for a
V2B=— B. (A2)

wave incident from the right as indicated in Fig. 5. For the
wave incident from the left, the asymptotic form of the elec-
With our geometry, the TE and TM modes don’t mix and it is tric field is given by

convenient to work with the wave equation ferfor the TE . " o
) N — aikyy iky X —ikyx
mode and the wave equation fBrfor the TM mode. E=eTx(e™+re” ™z,

->_ k k_ ~
1. TE mode: Asymptotic forms and the scattering matrix. E=e"X (te")z. (A8)

Considering first the TE mode, the asymptotic form of theThis is a special case of the general asymptotic soly#®)
electric field is given, both fok— —« and forx— +o, by  with A =1, B =r, Ag=t, andBg=0. Putting these values
a sum of two plane-wave components into Eq. (A4), the S matrix can be written as
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1 t —tr* 1h'* '/t Substituting the right coefficientAg, Bg in terms of
S= 1——|r|2 TP cEIe |- A, B., and theS matix, we find
A9 ke K
| W X syl [sud?), (A16)
The second equality comes from an alternative form ofShe M1 M2

matrix expressed in terms of andt’, by considering an em \which in turn leads to the relation
wave incident from the right. Equating the two alternative

forms of theS matrix [Eq. (A9)] element by element, we Kyt
obtain |r|2+k—|t|2:1. (A17)
X2
2 _ 441
1—|r[*=tt"*, Using the analogous equation forandt’, plus the fact that
. [r|=]|r’| [which follows from Eq.(A10)], we find that
—-r r'
=—, (A10) M
Ik d , M1
vt I LU (A18)
X

3. TE mode: Conservation of energy
4. TE mode: Relationship between the left and the right

Consider now the conservation of energy current. In a . L
transport coefficients: r,t and r’,t

lossless and source-free medium, the conservation of energy
implies that Consider em waves of equal amplitude incident from both
sides of the dielectric. Applying the energy conservation

f ReS.dA=0, (A11) (A14), we find that

L k K,
whereS= } (ExXH*) is the Poynting vector and the integral Z(A—r+t' D) =—(|r +t|2-1), (A19)
has been taken on a closed surface. #1 2
The Poynting vector can be easily computed for thewhich leads to the condition

asymptotic forms of the em fields. For example, for the

A k
field in Eq.(A3), we have Re(_x""Zrtr*Hrt*) —0.

Kyt 1

The most general form of the transport coefficients satisfying
all relations between them is that

(A20)
.1 |
S=2M—w{|kX[|AL|2—|BL|2—(ALBer'kXX—c.c.)]

+ik,[JAL[2+ B2+ (A B e®**+c.c)]}. (AL2)

r=|rle'’,
This form is valid everywhere and not just in the asymptotic I
region, provided that we make the segmentation into regions t=|t|e'”
of constante and u. Inspection of Eq(A12) shows that '
r— _Iylai(29—6)
#(Res, = ire
x 0 Ko
J(ReS,) v %ﬁui) lef”. e

) ) ] 5. TE mode: Symmetric dielectric
Applying the conservation relatiofA11) to a rectangular

box, with faces normal to the Cartesian coordinates, and us- |ne a@bove equations are valid for both a symmetric and

ing the relation(A13), we find that nonsymmetric dielectric. Consider now the symmetric di-
’ electric, e(—x) = e(x) and u(—x) = u(x), on which an em
7. ReS= const (A14) ~Wave is incident from both the left and right with equal am-

plitudes. From symmetry, the energy current is zero every-
in all space. This is easily shown to be true for the TM modewhere. Computing the current in the asymptotic region

as well. —o, we obtain
The conservation relatiofA14) applied to the asymptotic
solution (A3) and the resulting expressigAl12) for S leads 2 oA Kx “lr+t'[2)=
to the condition that I-ReS Z,ulw(l r+t'1%=0, (A22)

- which leads to the condition that

Ky Kx
(1A 12=1B, 12 =—Z(|Anl?— Bl ?). Al5
M1(| L*=[BL*) Mz(l rI“—[Br[%) (A15) Re(rt*)=0, (A23)
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i.e.,rt* =purely imaginary, where we have used the relations

t=t’ [Eq. (A21)] and [r|?+]t|>=1 [Eq. (A17)]. Equation

(A23) together with Eq(A21) leads to the result
r=r'=x=ilrle'”,

t=t'=|t|e'”, (A24)

for the symmetric case. In addition, from E&17), we also
have

Ir]2+]t]*=1, (A25)

PHYSICAL REVIEW B 68, 045121 (2003

6. TM mode

For the TM mode, we choose to work with tigefield.
The Maxwell's wave equation is

(A26)

With B along z, this equation is exactly the same as the

corresponding Eq(A1) for the E field with E along z.
Therefore all asymptotic properties of the differential equa-

Note that if the dielectric structure is symmetric but only tion are identical. Therefore, all relations between the trans-

about the poinx=x, [i.e., €(Xo—X) = €(X—Xp) and simi-
larly for ], then the em waves™™ incident from the left

port coefficientsr,t andr’,t’ derived for the TE case also
hold true for the TM case. Note, however, that sigcandB

ande™ ' incident from the right do not produce a zero cur- satisfy different boundary conditions at the interface between
rent, because the two incident waves approach the structute/o dielectric media, the numerical values of the reflection

with different phases. Therefore, Eq#&24) and (A25) are
not valid in that case.

and transmission coefficients and tBenatrix will be differ-
ent in general.
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