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Abstract—In this paper, we first develop a rate-distortion
(R-D) model for DCT-based video coding incorporating the
macroblock (MB) intra refreshing rate. For any given bit rate
and intra refreshing rate, this model is capable of estimating the
corresponding coding distortion even before a video frame is
coded. We then present a theoretical analysis of the picture dis-
tortion caused by channel errors and the subsequent inter-frame
propagation. Based on this analysis, we develop a statistical
model to estimate such channel errors induced distortion for
different channel conditions and encoder settings. The proposed
analytic model mathematically describes the complex behavior
of channel errors in a video coding and transmission system.
Unlike other experimental approaches for distortion estimation
reported in the literature, this analytic model has very low
computational complexity and implementation cost, which are
highly desirable in wireless video applications. Simulation results
show that this model is able to accurately estimate the channel
errors induced distortion with a minimum delay in processing.
Based on the proposed source coding R-D model and the analytic
channel-distortion estimation, we derive an analytic solution
for adaptive intra mode selection and joint source-channel rate
control under time-varying wireless channel conditions. Extensive
experimental results demonstrate that this scheme significantly
improves the end-to-end video quality in wireless video coding
and transmission.

Index Terms—End-to-end distortion, error propagation, joint
source-channel coding, rate-distortion analysis, wireless video.

I. INTRODUCTION

W ITH the increasing bandwidth in the next-generation
mobile network and rapidly growing demand for visual

communication, wireless video transmission has become pos-
sible and received much attention during the last few years. Due
to the limited bandwidth of the wireless channels, video signals
have to be highly compressed by efficient coding algorithms,
such as H.263 [1] and MPEG-4 [2]. On the other hand, under
the error-prone wireless environments, highly compressed
video data becomes extremely vulnerable [3], [4]. A single bit
error may cause severe degradation in video quality. Therefore,
it is necessary for the video encoder to provide adequate error
resilience features to protect the video data from the channel
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errors. Two effective approaches for error resilience and pro-
tection are: 1) error control and 2) intra update of macroblocks
(MBs) [3]–[6]. Error control, such as forward error correction
(FEC) and automatic repeat request (ARQ), are often used to
correct the bit errors in the compressed video data by adding
controlled redundancy information. Due to stringent delay con-
straint for real-time video transmission, it is often considered
more beneficial to use FEC than to apply ARQ. The second
approach of MB intra update, also called intra refreshing, is
a fairly efficient way to stop error propagation, because the
decoding of an intra MB does not need the information from its
previous frames which may have already been “corrupted” by
channel errors. In contrast, for an intercoded MB, even if its bit
stream has been correctly received and decoded, the channel
errors introduced in previous frames may still propagate to the
current frame along the motion-compensation path [4], [5], [7].

A. Problem Formulation

Increased error resilience often comes at the cost of higher
bandwidth consumption. For example, intra coding of a MB
or a frame often requires much more bits than inter coding.
This is because motion compensation in the inter coding
mode can largely remove the temporal redundancy between
two neighboring video frames. However, the inter coding of
MBs, although having much better R-D performance than
the intra mode, enables channel error propagation along the
motion-compensation path, which has significant impact on
the video quality. Therefore, a tradeoff needs to be made when
selecting the MB coding mode. Let be the intra refreshing
rate, the percentage of MBs coded with intra mode. The
tradeoff problem can then be formalized as follows: given the
transmission channel conditions, such as bandwidth and bit
error rate (BER) , how to determine the optimal such that
the overall picture quality at the receiver end is maximized.

In video coding and transmission over noisy channels,
Reed–Solomon (RS) code is one of the widely used FEC
schemes [8]. An RS code with length and dimen-
sion encodes information bits with bits. Clearly, the

bits are the FEC overhead that consume a portion of
the total bandwidth. However, with this overhead redundancy,
the RS decoder can correct certain amount of channel errors,
which in turn would significantly reduce the picture distortion
induced by channel errors. It is true that if we assign more bits
to the RS code, the RS decoder can correct more bit errors.
However, because of the limited overall channel bit rate, fewer
bits will be assigned to the source encoder which results in
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increased source coding distortion. Therefore, in a FEC-based
video coding and transmission system, one of the key problems
is the joint source-channel bit allocation and rate control. To
be more specific, given the transmission channel conditions,
such as bandwidth and BER, the encoder needs to find the
optimal bit allocation between source coding and channel
coding such that the overall picture distortion at the receiving
end is minimized. This is the second tradeoff problem to be
examined by this work.

Let and be the source and channel coding bit rates. Let
be the overall picture distortion at the receiver end, defined as

the mean square error (MSE) between the decoded video frame
and the original one. In an end-to-end wireless video coding and
transmission system, there are two major types of picture dis-
tortion. The first one is the quantization distortion introduced
in source encoding. The second type of distortion is caused by
channel errors. For the convenience of our presentation, in this
work, we call these two types of distortion as “source distortion”
and “channel distortion,” denoted by and , respectively.
More precisely, source distortion refers to the MSE between the
reconstructed video frame at the encoder (used for motion es-
timation and compensation of the next frame) and the original
one. Channel distortion refers to the MSE between the decoded
video frame at the receiver and the reconstructed frame at the
encoder. Note that if no bit errors occur, the two reconstruction
frames at the encoder and decoder should be exactly the same.
Note that, is a function of and , denoted by ,
and is a function of code rate and , denoted by

. Obviously, in order to perform optimal bit allocation
between source and channel coding and to select the optimal
intra refreshing rate , we need first to analyze the R-D behav-
iors of video encoder and decoder and estimate the functions

and .

B. Analysis of Source-Coding Distortion

For a given source-coding bit rate , to estimate the
corresponding source distortion , we need to model and
analyze the R-D behavior of the video encoder. Due to the
varying characteristics of the input videos and the sophisticated
data representation scheme employed by the coding algorithm,
accurate analytic estimation of the R-D behavior of the video
encoder remains a challenging problem [12]. Because of this,
operative R-D estimation is often adopted, in which the R-D
functions are assumed to follow some mathematical model. The
coding algorithm is then run over the input video several times to
generate several R-D measurements, which are used to estimate
the model parameters [11], [12]. To reduce the computational
complexity, MPEG-4 TM7 [17] and H.263 TMN8 [18] rate
control algorithms use the coding statistics of previous frames
or MBs to estimate the model parameters for the current frame
or MB.

With adaptive intra refreshing, it is even more difficult to
analyze the R-D behavior of the video encoder. This is because
the input data to the quantizer and the entropy encoder also
changes as different coding modes are applied to the MBs.
Very little research has been done in the literature to investigate
the impact of the intra refreshing rate on the R-D performance
of the video encoder. In our previous work [9], [10], we have

developed accurate and robust R-D model for DCT-based video
coding by introducing the so-called “-domain” R-D analysis
methodology. In this work, we extend this model to incorporate
the intra refreshing rate. Our experimental results show that
the extended R-D model can accurately estimate the source
coding distortion function .

C. Analysis of Channel Distortion

Standard video coding schemes, such as H.263 and MPEG-4,
employ a motion-compensation based discrete cosine transform
(MC-DCT) coding scheme. As indicated earlier, while motion
compensation significantly improves the coding efficiency, it
also causes inter-frame propagation of channel errors, and
significantly degrades the picture quality at the receiver end. For
this reason, the complex error propagation in the video decoding
loop has to be accurately modeled in channel-distortion analysis.
Obviously, the modeling process needs to consider the specific
source/channel encoding and decoding schemes, packetization
method, patterns of the channel errors, error concealment, and
so on. Several approaches for channel-distortion estimation
have been proposed in the literature [3], [4]. To analyze the
video transmission over lossy channels, a heuristic approach
is introduced in [3], where the channel-distortion formula is
derived through a leaking filter model. This distortion formula
has several control parameters. To estimate these parameters,
one needs to run the codec over the video a few times to
generate some measurement points and match the model to the
experimental data. Obviously, this type of estimation scheme
is not desired in real time video coding and communication.
A statistical simulation of the video decoder is employed in
[4] to estimate the channel distortion with error concealment
at the decoder. Using this decoder simulation, the encoder
understands how much the picture at decoder is “corrupted” by
the random channel errors. Such estimation scheme involves
potentially high computational complexity and implementation
cost. In addition, this type of simulation approach does not
allow further analysis for global optimization.

In this paper, based on the statistical analysis of the error
propagation, error concealment, and channel decoding, we
develop a theoretical framework to estimate the channel dis-
tortion. Our extensive experimental results demonstrate that
the proposed statistical model can estimate the channel dis-
tortion very accurately and robustly. Coupled with the R-D
model for source coding, an adaptive mode selection and rate
control algorithm is proposed for wireless video coding and
transmission. This end-to-end R-D analysis framework can be
applied to any standard video coding system and any video
sequence. Our simulations show that the optimal mode se-
lection and joint source-channel rate control can achieve up
to a 2–3-dB PSNR gain in picture quality, comparing with
the other methods reported in the literature [20], [21].

The rest of the paper is organized as follows. Section II
presents the extension of the source coding R-D model and
rate control algorithm developed in [9], [10] by incorporating
the MB intra refreshing rate. The extended R-D model is able
to estimate the source distortion function . The
channel-distortion model and the corresponding estimation
scheme are described in Section III. Theoretical analysis of
the asymptotic behavior of channel distortion is also given in
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Fig. 1. Linear relationship between the source coding bit rateR and the percentage of zeros�. The test frames are from the “Foreman” QCIF video.

Section III. In Section IV, based on the source and channel
R-D models, we propose an adaptive mode selection scheme
and show the corresponding simulation results. Section V
presents the optimal joint source-channel bit allocation and rate
control algorithm and the corresponding simulation results.
Concluding remarks are given in Section VI.

II. R-D ANALYSIS FOR SOURCECODING

In this section, we first review the-domain R-D model de-
veloped in [9], [10]. By incorporating the MB intra refreshing
rate , we extend this R-D model for DCT video coding with
adaptive mode selection.

A. -Domain R-D Model

In the previous work [9], [10], a robust and accurate R-D
model is developed for DCT-based video coding. Specifically,
in this model, we consider the source coding bit rateand dis-
tortion as functions of , which is the percentage of zeros
among the quantized DCT coefficients. This consideration is
based on the following observation. In the classical R-D anal-
ysis [13]–[15], and are treated as functions of the quan-
tization parameter (or step size). Notice that in standard video
coding, such as H.263 and MPEG-4,monotonically increases
with . This implies that there is a one-to-one mapping between
them. Therefore, mathematically, and are also functions
of . A study of and as functions of is termed -domain
analysis. We observe that, in the domain, the R-D functions

and have unique behaviors. Specifically, has a
linear relationship with ; i.e.,

(1)

where is a constant and refers to the number of bits for
header information and motion vectors. Note thatdoes not
depend on the quantization. To better understand this linear rate

model and for the integrity of our presentation, we reproduce the
simulation results in [10]. With the MPEG-4 video codec [16],
we encode the test video sequence at a series of quantization
step sizes. In Fig. 1, we plot for several frames from the
“Foreman” QCIF video sequence. It can be seen that there is a
clear linear relationship between and . We have performed
this test over a wide range of video sequences and with different
coding algorithms, this linear rate model has been found to hold
[9], [10]. Within the -domain, we also have developed the fol-
lowing distortion model for source coding:

(2)

where is the variance of the source data andis a constant.
The extensive experimental results in [9] have shown that the
above R-D model is very accurate. Based on the rate model (1),
a linear rate control algorithm has also been developed, with
which we can control the video encoder to achieve the target bit
rate accurately and robustly. A detailed treatment of the above
R-D model and rate control algorithm can be found in [9], [10].

B. R-D Functions With MB Intra Refreshing

For a given input picture, using the R-D model presented in
Section II-A, we can estimate its R-D function before quanti-
zation and coding. In video coding with adaptive intra mode
selection, if we change the coding mode of each MB or the
intra refreshing rate of the video frame, the input to the video
coding algorithm is also changed. For example, if a MB is intra
coded, the input video data is just a MB in the original video
frame. If it is inter coded, the input video data is then the mo-
tion-compensation difference. Therefore, in the R-D analysis
for video coding with adaptive mode selection, we also need
to consider the impact of on the R-D behavior of the video
encoder. In general, asincreases and more MBs are forced to
be intra coded, the average coding bit rate becomes higher. In
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(a)

(b)

Fig. 2. Source coding distortion as a function of� for (a) Frame 2 and
(b) Frame 45 of “Carphone” QCIF video at different bit rates. In each plot,
different curves correspond to different coding bit ratesR .

other words, for a given coding bit rate , the source distortion
also increases with. In Fig. 2, we plot the for

Frames 2 and 45 of “Carphone” QCIF video at different values
of . Our extensive simulations over various additional video
sequences show similar behavior of . Two extreme
cases here are 0 and 1 when all the MBs are inter and
intra coded, respectively. The corresponding distortion values
are denoted by and . From Fig. 2, we
can see that as increases from 0 to 1, increases
from to . During our simulations, we find
out that the following quadratic approximation is sufficiently
accurate:

(3)

where is a constant which depends on the specific character-
istics of the video sequence. Therefore, to estimate ,
we only need to estimate the R-D functions of the current frame

Fig. 3. Source coding distortion estimation results for “Carphone” QCIF video
coded with MPEG-4 at 96 kbps.

at two extreme modes: all intra mode and all inter mode. In
the case of all intra mode, the input data is exactly the orig-
inal video frame. While the case of all inter mode and no MB
is forced to be intra coded, the input data is the original mo-
tion-compensation difference picture. Note that both types of
input data are available at the encoder before R-D modeling.
Therefore, for each mode, the R-D estimation can be carried
out with (1) and (2). The distortion function for adaptive intra
refreshing is then obtained by (3). It should be mentioned that
the model parametersand are determined from the coding
statistics of previous frame, as explained in [9].

C. Experimental Results

To test the accuracy of the proposed R-D model for source
coding with adaptive intra refreshing, we run the MPEG-4 codec
[16] on “Carphone” and “Flowergarden” QCIF videos at dif-
ferent bit rates and different values of, and estimate the dis-
tortion function before quantization and coding. In
Fig. 3, we plot the actual distortion and the estimation for “Car-
phone” coded at 96 kbps with 0.2 and 0.6. The estimation
result for “Flowergarden” at 256 kbps is shown in Fig. 4. In this
case, the test values ofare 0.2 and 0.8. It can be seen that the
proposed R-D model gives a very accurate and robust estima-
tion of the source coding distortion. Our tests over other video
sequences and encoder settings yield similar results.

III. A NALYSIS OF CHANNEL DISTORTION

In wireless video coding and transmission, channel coding
such as RS code is often used to correct bit errors in the coded
video data stream. Due to the limited error correction capacity
of the channel decoder, residual bit errors often still exist after
error correction. When a corrupted codeword in the bit stream
cannot be properly decoded, the video encoder will jump to the
next packet starting with a resynchronization mark and skip all
the intermediate bits. This introduces visible picture distortion
at the receiver end. Note that at the decoder the current recon-
struction frame “corrupted” by bit errors will still be used as the
motion-compensation reference for the next frame. In this way,
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Fig. 4. Source-coding distortion estimation results for “Flowergarden” QCIF
video coded with MPEG-4 at 256 kbps.

the channel distortion propagates along the motion-compensa-
tion path, which often severely degrades the video presentation
quality. Therefore, the channel-distortion model needs to con-
sider the complex error propagation in video decoding [3]–[5].
Furthermore, the channel-distortion model also needs to con-
sider the varying characteristics of the input video data, specific
channel conditions such as channel bandwidth and BER, com-
plex data representation and coding scheme employed by the
video encoder, sophisticated error resilience and concealment
methods, as well as the operating mechanism of the video de-
coder. Most important of all, the channel-distortion model has
to deal with the random nature of the bit errors. Therefore, ac-
curate and robust modeling of the channel distortion remains a
challenging problem.

In an end-to-end video coding and communication system,
the channel-distortion analysis and optimization can operate
at different levels. The decoder simulation approach in [4] es-
timates the average channel distortion at the pixel level, and
performs bit allocation and control at the MB level. In [6], an
empirical error-sensitivity metric is used to select the coding
mode for each MB. Despite its simplicity, the maximization of
the overall picture quality is not guaranteed. The channel-dis-
tortion analysis in [3] operates at the video sequence level. In
general, channel-distortion analysis at low levels, such as the
pixel and MB levels, is able to capture the local behavior of
bit errors, especially when the channel BER is very small and
very few MBs are corrupted. Special treatment of these MBs
may be beneficial [6]. It should be noted that this approach
often needs an immediate transmission feedback from the de-
coder. Otherwise, after a relatively large feedback delay, the
random bit errors have already propagated to many other MBs
and may spread over the whole video frame. In this way, the
channel distortion exhibits a frame-level statistical behavior.
In this case, there is no need to perform the MB-specific anal-
ysis and optimization, which often involves potentially high
computational complexity. In addition, accurate modeling and
estimation of the R-D behavior of one MB is often very dif-
ficult. This is because the R-D analysis of source coding is a

statistical process that needs sufficiently large amount of data
to achieve reasonable estimation accuracy. Using an inaccurate
R-D model for source coding, the MB-level optimization actu-
ally can not achieve truly optimized and robust picture quality.
In this work, we try to develop a statistical model to describe
the overall behavior of the channel distortion. This analytic
statistical model allows global optimization of picture quality
through joint source-channel coding and adaptive selection of
error-resilience parameters, such as intra refreshing rate, syn-
chronization frequency, etc. [5]. Such analysis also provides
very useful information for resource allocation and Quality of
Service (QoS) control in network transmission [19].

A. End-to-End Distortion

We denote the packet-loss ratio as. If we assume each packet
contains the same number of MBs (or pixels), then the loss ratio
of a pixel is also [4]. Let be the original value of pixel

in the th video frame, and be the corresponding re-
construction value in the feedback loop at the encoder. We de-
note the reconstruction value at the receiver end as . For
inter coded MBs, let be the motion-compensation differ-
ence at the encoder. Let and be the corresponding
reconstruction values at the encoder and decoder, respectively.
Due to the randomness of bit errors, and are ac-
tually random variables. Therefore, we can only model and an-
alyze the expected picture distortion at the receiver end which
is given by

(4)

It should be noted that here represents the average
(over all pixels) expected value of the random variable .
According to their definitions, the source-coding distortion

and channel distortion are given by

(5)

(6)

respectively. In this paper, we assume the and are
uncorrelated with each other. That is to say

(7)

To justify this assumption, we code the “Foreman” QCIF video
at 96 kbps and 15 fps with MPEG-4 and simulate the transmis-
sion with random packet loss at a loss ratio of 2%. In Fig. 5,
we plot the and for each frame. It can
be seen that is approximately equal to .
Similar test has been performed over other video sequences and
encoding settings. The average relative differencebetween
the and , defined by

(8)

for each test is listed in Table I. Here, is the total number
of video frames. It can be seen that is very small. This im-
plies that it is quite reasonable to assume that source distortion
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Fig. 5. Comparison between the overall distortionD(n) andD (n)+D (n)
for “Foreman” QCIF video coded at 96 kbps and 15 fps and a loss rate of 2%.

TABLE I
RELATIVE DIFFERENCEe BETWEEN THE END-TO-END DISTORTION

D(n) AND THE SUM OF SOURCE DISTORTION D (n) AND

CHANNEL DISTORTIOND (n)

and channel distortion are uncorrelated with each other and that
. Using the R-D model presented in

Section II, we can accurately estimate . Therefore, to es-
timate the end-to-end distortion , the only thing left is to
estimate , which is explained in the following.

B. Statistical Analysis of Channel Distortion

At the decoder side, we employ the following error conceal-
ment scheme: if a MB is skipped by the decoder, both the mo-
tion vectors and the texture information are supposed to be lost
if the data partition syntax option is turned off [2]. In this case,
the decoder simply copies the MB at the same location from
the previous decoded frame. With this simple and efficient error
concealment scheme, we develop a statistical analysis of the
channel distortion. In standard video coding, such as H.263 and
MPEG-4, there are two basic types of MBs: intra and inter. For
a pixel in intra MBs, in case of no channel errors, its reconstruc-
tion value is . If the MB is lost, the reconstruction value

of pixel is , which is copied from the previous de-
coded frame. Therefore, the expected channel distortion is

(9)

where represents the mean square error (MSE)
between the reconstructed framesand . It should be
noted that the fourth identity in (9) is based on assumption that
the frame difference and the channel distortion are uncorrelated
with each other. Note that the joint source-channel bit allocation
and intra refreshing rate selection operate before quantization
and coding of the current frame. At this stage, is not
available. However, we do know the MSE between the original
frames and , defined as

(10)

If we assume

(11)

where is a constant, (9) then becomes

(12)

If we regard the video encoder as low-pass filter [3], then the
reconstruction frame is the filter output of the original frame.
Note that a low-pass filter removes the energy in the original
signal. From this point of view, the constantcan be regarded
as the energy loss ratio of the encoder filter. It mainly depends
how much information is discarded by the coding algorithm. In
other words, it depends on the video quality level of the cur-
rent wireless video communication session. More precisely, it
is related to the average quantization step size. In this work, it
is estimated using the statistics from previous frames.

For a pixel in inter MBs, in case of no channel errors, its re-
construction value is where pixel is
the motion prediction of pixel. (If the half-pel motion estima-
tion is used, could point to a half-pel position.) If the MB is
lost, the reconstruction value of pixelis , which
is copied from the previous decoded frame. Therefore, the ex-
pected channel distortion is

(13)
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Fig. 6. Channel-distortion estimation results for “Salesman” QCIF video coded at 64 kbps.

Note that is the motion-compensation reference
frame. If we assume

(14)

where is a constant, we have

(15)

Note that is a constant describing the motion randomness of
the video scene. In frame, let be the total number of MBs
and be the number of intracoded MBs. is then the
intra refreshing rate. The overall channel distortion is then given
by

where

(16)
We can see that this model reveals the inherent relationship be-
tween the channel distortion and the characteristics of the input
video data.

C. Asymptotic Behavior of Channel Distortion

Let be the total number of coded video frames. The average
channel distortion of all frames, denoted by , is given by

(17)
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Fig. 7. Channel-distortion estimation results for “Foreman” QCIF video coded at 96 kbps and 15 fps.

It can be seen from (10) that is upper bounded, at
least by 255 255. Therefore

(18)

We then have

(19)

(20)

where is the average value of the frame
difference over the whole video scene. From
(20), we observe that, asymptotically, the average channel
distortion caused by packet loss is proportional to the mean
frame difference.

D. Fast Channel-Distortion Estimation

In wireless video communication over noisy channels, with
the feedback information on the channel condition and trans-
mission status, the encoder can determine the decoded picture
quality of frame and its previous frames, whereis the

feedback delay (in the unit of frame interval) andis the cur-
rent frame number. In other words,
are available at the encoder through channel feedback. With

, we can apply the channel model in (16)
recursively to compute the channel distortion for the cur-
rent frame as follows:

(21)

E. Experimental Results

To test the performance of the proposed fast channel-distor-
tion estimation scheme, we simulate packet loss in MPEG-4
video coding and use this scheme to estimate the channel dis-
tortion for different videos at different encoding settings and
channel conditions. The configuration of each test is shown in
Table II. The packet size is 96 bytes. In each test, the video se-
quence is simulated 20 times and the average channel distor-
tion is computed. The estimation results for “Salesman” with
channel feedback delay 1, 5, 9, and 20 frames are shown
in Fig. 6. The estimation results for “Foreman” and “Carphone”
are shown in Figs. 7 and 8, respectively. From these extensive
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Fig. 8. Channel-distortion estimation results for “Carphone” QCIF video coded at 96 kbps and 15 fps.

TABLE II
EXPERIMENT CONFIGURATION FORPERFORMANCETEST OF THE

FAST CHANNEL DISTORTION ESTIMATION SCHEME

simulation results we can see that the channel-distortion model
is very accurate. More importantly, when the channel feedback
delay is significantly increased, the model estimation accuracy
is largely maintained. This implies that the model is also very
robust.

Another way to understand the channel-distortion model and
the above experimental results is as follows. If we know the
channel distortion of the current frame, we can accu-
rately predict the channel distortion of many frames ahead (as
many as frames). Note that during the prediction process, the
model only needs the frame differences of the original sequence,

which is easily available at the encoder. Based on the predicted
channel-distortion behavior, we can achieve better resource al-
location and video quality at the receiver end. The accuracy and
robustness of experimental results also suggest that the proposed
channel-distortion model reveals the close relationship between
the channel distortion and the characteristics of the input video
data (the frame difference information). This statistical model
has provided helpful insight on the behavior of channel distor-
tion, as well as its impact on the end-to-end video quality.

F. Estimate Packet-Loss Ratio

Note that in the proposed channel-distortion model,refers
to the probability of packet loss. In wireless video communica-
tion over a noisy channel, the parameter BER, denoted as,
is often used to describe the channel error condition. Therefore,
we need to find the relationship betweenand . In this paper,
we consider a random binary symmetric channel (BSC) model.
In many cases, bursty errors can be converted into random er-
rors with pre-interleaving [22]. The RS block code with
8 bits per symbol is used for channel coding. The code rate
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Fig. 9. PSNR performance of the proposed AIR algorithm for three test videos: (a) “Foreman” at 250 kbps; (b) “News” at 150 kbps; and (c) “Carphone” at
150 kbps.

is determined by the joint source-channel bit allo-
cation scheme proposed in Section V. Note that in the RS code,
any error pattern with no more than

(22)

symbol errors can be corrected. We denote the symbol error rate
(SER) as . The decoded symbol error rate is then given by

(23)
where

if

otherwise.
(24)

Once a symbol cannot be corrected by the RS decoder, it will
be detected by the video encoder. In this case, the decoder will
jump to the next packet starting with a re-synchronization mark

and skips all the intermediate symbols. Suppose the packet has
symbols. The packet-loss ratio is determined by

(25)

which is used by the channel-distortion model (16). Typical
plots of as a function of the channel BER can be found
in [5].

IV. A DAPTIVE INTRA MODE SELECTION

Intra MB refreshing can significantly improve the error re-
silience capability of the coded video data. This can be observed
from (9), (13), and (16). Note that is always larger than

. Their difference is which is ex-
actly the portion of channel distortion in the previous frames
propagated to the current frame through motion compensation.
If the intra refreshing rate is increased from to , the cor-
responding channel distortion will be reduced by the amount of

. However, from (3), we can
see that the source distortion increases. This leads to a tradeoff
in selecting the value of . Clearly, the optimal tradeoff point
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corresponds to the value ofwhich minimizes the overall dis-
tortion .

A. Adaptive Intra Refreshing Algorithm

With source and channel-distortion models developed in
Sections II and III, we can estimate the distortion for any
given and . We then find the value of which minimizes
the distortion function . Once the optimal intra refreshing
rate is determined, we need to select MBs to be
intra coded. The simplest way is just to use random selection.
Statistically, this random selection scheme will achieve the
minimum average channel distortion. In some intra mode
selection algorithms reported in the literature [4], [5], [20], the
intra/inter mode decision is made individually for each MB.
However, we notice that at the decoder the previous frame is
a random variable due to the randomness of channel errors.
All the R-D computations and optimization should be handled
in a statistical sense. This statistical procedure considers only
the overall R-D behavior of the whole frame/video, instead
of the specific characteristics of each individual MB. Based
on this observation, we believe that on average, it is sufficient
to randomly select the intra-coded MBs, since the overall
optimization is already guaranteed at the frame level. This will
be demonstrated by our experimental results in the following
section. Another advantage of the random selection is its signif-
icantly reduced computational complexity and implementation
cost. For convenience, we refer to the proposed Adaptive Intra
Refreshing algorithm as “AIR.”

B. Experimental Results

We implement the AIR algorithm in the MPEG-4 codec
and compare its performance with the Scattered-Block Intra
Update (SBIU) algorithm [20]. The three test QCIF video
sequences are “Foreman” at 250 kbps, “News” at 150 kbps,
and “Carphone” at 150 kbps. The frame rate is 15 fps. The
packet size is set to be 96 bytes. It should be noted that, for
fair comparison, in this simulation no RS channel coding is
applied, and all the available bit rate is assigned for source
coding. Using the AIR algorithm, the encoder can adjust intra
refreshing rate according to the channel conditions and the
characteristics of the input video data. The average PSNR
results for different packet-loss ratiosare depicted in Fig. 9.
The average PSNR is computed over 20 different channel
realizations. It can be seen that the proposed AIR algorithm
significantly improves the video quality, especially for high
motion video sequences. For example, for the “Foreman” video
sequence, the quality improvement is about 3.2 dB. The PSNR
improvement for each coded frame from the “Carphone” video
is depicted in Fig. 10. From the experimental results reported in
[4], we can see that the proposed frame-level AIR algorithm has
almost similar performance to the MB-level adaptive intra mode
selection scheme. However, the channel-distortion estimation
in [4] is based on a statistical simulation of the decoder at the
encoder side, which involves potentially high computational
complexityand implementationcost,and therefore isnotsuitable
for real-time video coding and communication over wireless
devices. Next, we test the performance of the AIR algorithm

Fig. 10. Intra-mode selection results for “Carphone.”

Fig. 11. PSNR performance of the AIR algorithm with different channel
feedback delay. The videos are coded at 250 kbps and 15 fps. The packet-loss
ratio isp = 0:05.

at different channel feedback delays. In Fig. 11 we plot the
average PSNR for “Foreman” and “Carphone” both coded at
250 kbps and 15 fps. The packet-loss ratio is 0.05. We
can see that the performance of the AIR algorithm degrades
little as the feedback delay increases. Experiments over other
video sequences and coding settings yield similar results.

V. JOINT SOURCECHANNEL RATE CONTROL

A. Algorithm Description

Intra MB refreshing is an effective way to stop the channel-
distortion propagation at the decoder. To reduce the amount
of channel distortion introduced to the video data stream, we
need to resort to channel coding to correct the bit errors using
channel coding. In this case, the overall bit rate is divided into
two parts: source coding bit rate and channel coding bit rate

. One important parameter of the RS coder is its code rate
. To minimize the overall picture distortion at the
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Fig. 12. Decoded picture quality comparison when the proposed joint
source-channel bit allocation scheme and the threshold-base scheme are
applied. The video sequence is “Foreman” coded at 96 kbps and 15 fps. The
threshold SER is 0.1%.

receiver end, we need to adjust the parameters of the video en-
coder and the RS channel codes for different input video se-
quences and different channel conditions. Specifically, given a
target bit rate which is determined by the available channel
bandwidth, we need to perform optimal bit allocation between
source and channel coding. In addition, we need to adjust the en-
coder settings to achieve the allocated bit budget. From (16), we
can see that the channel distortion is a function of , which
is in turn a function of the channel coding rate. Therefore, the
optimal joint source-channel bit allocation can be formulated as
follows:

(26)

In Sections II and III, we have explicitly estimated the source
and channel-distortion functions. Based on the estimation, we
only need to find the values of (, ) which minimize the ob-
jective function in (26). Once is determined, we can use the
linear rate control algorithm proposed in our previous work [10]
to select the quantization parameters to achieve the target bit rate

at the video encoder.

B. Experimental Results

We implement the above joint source-channel rate control
(JSCRC) algorithm with optimal MB intra refreshing in the
MPEG-4 codec [16]. The compressed video data stream is
further coded by RS codes. At the receiver end, the corrupted
bit stream is first RS decoded to correct the bit errors. For
different input video sequences and channel conditions, we
test the proposed joint source-channel bit allocation and rate
control algorithm, and compare its performance with the
conventional threshold-based bit allocation scheme [21]. In the
threshold-based scheme, no joint source-channel bit allocation
is performed. A fixed portion of the channel bit rate is assigned
to the RS coder such that its error correction capacity is above
some given threshold. In this way, the video encoder and RS
codes do not consider the varying characteristics of the input
video data and the transmission channel.

TABLE III
PICTURE QUALITY COMPARISON FORDIFFERENT

VIDEO SEQUENCES ANDSER THRESHOLDS

In Fig. 12, we plot the decoded picture quality for “Foreman”
QCIF video coded at 96 kbps and 15 fps when the JSCRC algo-
rithm and the conventional threshold-based bit allocation algo-
rithm are applied. In this case, for the threshold-based scheme,
the SER threshold is set to 0.1%. In Table III, we summarize the
PSNR results for different input video sequences and different
SER threshold settings. It can be seen that with adaptive rate
allocation and control, the video encoder always chooses ap-
propriate source/channel coding bit rates and encoder settings,
which yields significantly improved picture quality at the re-
ceiver end.

VI. CONCLUSION

There are three major contributions in this work. First, we
have developed an R-D model for DCT-based video coding
which incorporates the MB intra refreshing rate. This model
can accurately estimate the R-D function for any given intra
refreshing rate before a video frame is coded. Second, we have
developed a theoretical analysis of the channel distortion caused
by channel errors and inter-frame propagation. Our statistical
channel-distortion model reveals the inherent relationship
between the channel distortion and input video characteris-
tics. This model has very low computational complexity and
implementation cost and is therefore suitable for wireless ap-
plications. Experimental results show that it is able to estimate
the channel distortion accurately and robustly with a minimum
delay in processing. Finally, based on the proposed source and
channel-distortion models, we have developed a scheme for
adaptive intra mode selection and joint source-channel rate
control. Extensive experimental results have demonstrated that
this scheme significantly improves the end-to-end video quality
for wireless video coding and transmission.
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