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Abstract—in this paper, we first develop a rate-distortion errors. Two effective approaches for error resilience and pro-
(R-D) model for DCT-based video coding incorporating the tection are: 1) error control and 2) intra update of macroblocks
macroblock (MB) intra refreshing rate. For any given bit rate (MBs) [3]-[6]. Error control, such as forward error correction
and intra refreshing rate, this model is capable of estimating the . '
corresponding coding distortion even before a video frame is (FEC) and aL-Jtomanc.repeat request (ARQ)’ are often Useo_' to
coded. We then present a theoretical analysis of the picture dis- Correct the bit errors in the compressed video data by adding
tortion caused by channel errors and the subsequent inter-frame controlled redundancy information. Due to stringent delay con-
propagation. Based on this analysis, we develop a statistical straint for real-time video transmission, it is often considered
model to estimate such channel errors induced distortion for .~.o peneficial to use FEC than to apply ARQ. The second

different channel conditions and encoder settings. The proposed h of MB int dat | led int freshi .
analytic model mathematically describes the complex behavior approach o intra tpaate, aiso called inira reiresning, 1S

of channel errors in a video coding and transmission system. & fairly efficient way to stop error propagation, because the
Unlike other experimental approaches for distortion estimation decoding of an intra MB does not need the information from its

reported .in the Iiteratu_re, thiS. analytic mpdel has very low previous frames which may have already been “corrupted” by
computational complexity and implementation cost, which are  cannel errors. In contrast, for an intercoded MB, even if its bit

highly desirable in wireless video applications. Simulation results t has b fl ived and d ded. the ch |
show that this model is able to accurately estimate the channel stream has been correéclly receéived and decoded, ine channe

errors induced distortion with a minimum delay in processing. €rrors introduced in previous frames may still propagate to the
Based on the proposed source coding R-D model and the analytic current frame along the motion-compensation path [4], [5], [7].
channel-distortion estimation, we derive an analytic solution

for adaptive intra mode selection and joint source-channel rate A. Problem Formulation

control under time-varying wireless channel conditions. Extensive . .
experimental results demonstrate that this scheme significantly ~ Increased error resilience often comes at the cost of higher

improves the end-to-end video quality in wireless video coding bandwidth consumption. For example, intra coding of a MB
and transmission. or a frame often requires much more bits than inter coding.
Index Terms—End-to-end distortion, error propagation, joint This is because motion compensation in the inter coding
source-channel coding, rate-distortion analysis, wireless video.  mode can largely remove the temporal redundancy between
two neighboring video frames. However, the inter coding of
I. INTRODUCTION MB;, although having much better R-D performance than
the intra mode, enables channel error propagation along the
W'TH the increasing bandwidth in the next-generatiopotion-compensation path, which has significant impact on
mobile network and rapidly growing demand for visuajne video quality. Therefore, a tradeoff needs to be made when
communication, wireless video transmission has become PQ&tecting the MB coding mode. Lék be the intra refreshing
sible and received much attention during the last few years. Didfe, the percentage of MBs coded with intra mode. The
to the limited bandwidth of the wireless channels, video signalg,qeoff problem can then be formalized as follows: given the
have to be highly compressed by efficient coding algorithmgansmission channel conditions, such as bandwidth and bit
such as H.263 [1] and MPEG-4 [2]. On the other hand, undgfyor rate (BER)., how to determine the optimal such that
the error-prone wireless environments, highly compressggh overall picture quality at the receiver end is maximized.
video data becomes extremely vulnerable [3], [4]. A single bit |y video coding and transmission over noisy channels,
error may cause severe degradation in video quality. Therefofged—Solomon (RS) code is one of the widely used FEC
it is necessary for the video encoder to provide adequate ergghemes [8]. AnN, K) RS code with lengthV and dimen-
resilience features to protect the video data from the chang@dn K encodesk information bits with /N bits. Clearly, the

(N — K) bits are the FEC overhead that consume a portion of
Manuscript received August 15, 2001; revised April 15, 2002. the total bandwidth. However, with this overhead redundancy,
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increased source coding distortion. Therefore, in a FEC-basteVeloped accurate and robust R-D model for DCT-based video
video coding and transmission system, one of the key problenwding by introducing the so-calleg-domain” R-D analysis
is the joint source-channel bit allocation and rate control. Taethodology. In this work, we extend this model to incorporate
be more specific, given the transmission channel conditioribge intra refreshing ratg. Our experimental results show that
such as bandwidth and BER, the encoder needs to find the extended R-D model can accurately estimate the source
optimal bit allocation between source coding and channebding distortion functionD,(R;, 3).
coding such that the overall picture distortion at the receivin ] ) )
end is minimized. This is the second tradeoff problem to e Analysis of Channel Distortion
examined by this work. Standard video coding schemes, such as H.263 and MPEG-4,
Let R, andR, be the source and channel coding bit rates. Lemploy a motion-compensation based discrete cosine transform
D be the overall picture distortion at the receiver end, defined @dC-DCT) coding scheme. As indicated earlier, while motion
the mean square error (MSE) between the decoded video fragnepensation significantly improves the coding efficiency, it
and the original one. In an end-to-end wireless video coding adlgo causes inter-frame propagation of channel errors, and
transmission system, there are two major types of picture d@ggnificantly degrades the picture quality at the receiver end. For
tortion. The first one is the quantization distortion introducethis reason, the complex error propagation in the video decoding
in source encoding. The second type of distortion is caused lp@p has to be accurately modeled in channel-distortion analysis.
channel errors. For the convenience of our presentation, in tRiBviously, the modeling process needs to consider the specific
work, we call these two types of distortion as “source distortiorource/channel encoding and decoding schemes, packetization
and “channel distortion,” denoted Wy, and D,, respectively. method, patterns of the channel errors, error concealment, and
More precisely, source distortion refers to the MSE between th@ on. Several approaches for channel-distortion estimation
reconstructed video frame at the encoder (used for motion 88ve been proposed in the literature [3], [4]. To analyze the
timation and compensation of the next frame) and the origindf€o transmission over lossy channels, a heuristic approach
one. Channel distortion refers to the MSE between the decodeédntroduced in [3], where the channel-distortion formula is
video frame at the receiver and the reconstructed frame at figfived through a leaking filter model. This distortion formula
encoder. Note that if no bit errors occur, the two reconstructi$l®S several control parameters. To estimate these parameters,

frames at the encoder and decoder should be exactly the sa@f¢ needs to run the codec over the video a few times to
Note that,D, is a function ofR, ands3, denoted byD, (R., ), generate some measurement points and match the model to the

andD, is a function of code rate = R, /R andp., denoted by experimental data. Obviously, this type of estimation scheme

D.(r, p.). Obviously, in order to perform optimal bit allocation!S not 'de.sired. in regl time videg coding and (.:ommunicatio'n.
between source and channel coding and to select the optifigftatistical simulation of the video decoder is employed in
intra refreshing ratg, we need first to analyze the R-D behav[4] to estimate the channel distortion with error concealment

iors of video encoder and decoder and estimate the functidlisthe decoder. Using this plecoder simulatiqn‘,‘ the encc'J’der
D.(R,, B) andD.(r, p.). understands how much the picture at decoder is “corrupted” by

the random channel errors. Such estimation scheme involves
potentially high computational complexity and implementation
cost. In addition, this type of simulation approach does not
For a given source-coding bit rat&., to estimate the allow further analysis for global optimization.
corresponding source distortial?,, we need to model and In this paper, based on the statistical analysis of the error
analyze the R-D behavior of the video encoder. Due to tipeopagation, error concealment, and channel decoding, we
varying characteristics of the input videos and the sophisticatéelvelop a theoretical framework to estimate the channel dis-
data representation scheme employed by the coding algorittiortion. Our extensive experimental results demonstrate that
accurate analytic estimation of the R-D behavior of the vidghe proposed statistical model can estimate the channel dis-
encoder remains a challenging problem [12]. Because of thigftion very accurately and robustly. Coupled with the R-D
operative R-D estimation is often adopted, in which the R-Bhodel for source coding, an adaptive mode selection and rate
functions are assumed to follow some mathematical model. Téentrol algorithm is proposed for wireless video coding and
coding algorithm is then run over the input video several timest@nsmission. This end-to-end R-D analysis framework can be
generate several R-D measurements, which are used to estimpdied to any standard video coding system and any video
the model parameters [11], [12]. To reduce the computatiorsdquence. Our simulations show that the optimal mode se-
complexity, MPEG-4 TM7 [17] and H.263 TMNS8 [18] ratelection and joint source-channel rate control can achieve up
control algorithms use the coding statistics of previous framés a 2—3-dB PSNR gain in picture quality, comparing with
or MBs to estimate the model parameters for the current frartiee other methods reported in the literature [20], [21].
or MB. The rest of the paper is organized as follows. Section Il
With adaptive intra refreshing, it is even more difficult topresents the extension of the source coding R-D model and
analyze the R-D behavior of the video encoder. This is becausée control algorithm developed in [9], [10] by incorporating
the input data to the quantizer and the entropy encoder atke MB intra refreshing rate. The extended R-D model is able
changes as different coding modes are applied to the MBs. estimate the source distortion functidn,(R;, 5). The
Very little research has been done in the literature to investigateannel-distortion model and the corresponding estimation
the impact of the intra refreshing rate on the R-D performanseheme are described in Section Ill. Theoretical analysis of
of the video encoder. In our previous work [9], [10], we havéhe asymptotic behavior of channel distortion is also given in

B. Analysis of Source-Coding Distortion
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Fig. 1. Linear relationship between the source coding bit Ratend the percentage of zerpsThe test frames are from the “Foreman” QCIF video.

Section 1ll. In Section IV, based on the source and chanmabdel and for the integrity of our presentation, we reproduce the
R-D models, we propose an adaptive mode selection schesimaulation results in [10]. With the MPEG-4 video codec [16],
and show the corresponding simulation results. Section we encode the test video sequence at a series of quantization
presents the optimal joint source-channel bit allocation and ratep sizes. In Fig. 1, we pldt.(p) for several frames from the
control algorithm and the corresponding simulation resultd~oreman” QCIF video sequence. It can be seen that there is a

Concluding remarks are given in Section VI. clear linear relationship betwedt, andp. We have performed
this test over a wide range of video sequences and with different
II. R-D ANALYSIS FOR SOURCE CODING coding algorithms, this linear rate model has been found to hold

In this section, we first review the-domain R-D model de- [9],_[10]._W|th!n the p-domain, we also hav.e developed the fol-
Jowing distortion model for source coding:

veloped in [9], [10]. By incorporating the MB intra refreshing
rateﬁz we extend this_ R-D model for DCT video coding with D,(p) = o2e—1=p) 2)
adaptive mode selection.
whereq? is the variance of the source data an a constant.
A. p-Domain R-D Model The extensive experimental results in [9] have shown that the
In the previous work [9], [10], a robust and accurate R-Bbove R-D model is very accurate. Based on the rate model (1),
model is developed for DCT-based video coding. Specificallg, linear rate control algorithm has also been developed, with
in this model, we consider the source coding bit #teand dis- which we can control the video encoder to achieve the target bit
tortion D, as functions ofp, which is the percentage of zerogate accurately and robustly. A detailed treatment of the above
among the quantized DCT coefficients. This consideration RsD model and rate control algorithm can be found in [9], [10].
based on the following observation. In the classical R-D anal-
ysis [13]-[15],R, and D, are treated as functions of the quanB. R-D Functions With MB Intra Refreshing
tization parameter (or step sizg)Notice that in standard video  For a given input picture, using the R-D model presented in
coding, such as H.263 and MPEGgAnonotonically increases Section II-A, we can estimate its R-D function before quanti-
with ¢. This implies that there is a one-to-one mapping betweeation and coding. In video coding with adaptive intra mode
them. Therefore, mathematicallil,, and D, are also functions selection, if we change the coding mode of each MB or the
of p. Astudy of 2, andD, as functions of is termedp-domain  intra refreshing ratg of the video frame, the input to the video
analysis We observe that, in the domain, the R-D functions coding algorithm is also changed. For example, if a MB is intra
R, (p) andD,(p) have unique behaviors. Specifically, has a coded, the input video data is just a MB in the original video
linear relationship wittp; i.e., frame. If it is inter coded, the input video data is then the mo-
_ tion-compensation difference. Therefore, in the R-D analysis
Ro(p) =0-(1=p)+Cu (@) for video coding with adaptive mode selection, we also need
wheref is a constant and’;, refers to the number of bits for to consider the impact gf on the R-D behavior of the video
header information and motion vectors. Note thgtdoes not encoder. In general, g@sincreases and more MBs are forced to
depend on the quantization. To better understand this linear rageintra coded, the average coding bit rate becomes higher. In
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Fig.3. Source coding distortion estimation results for “Carphone” QCIF video
coded with MPEG-4 at 96 kbps.

Frame 45

10} at two extreme modes: all intra mode and all inter mode. In
the case of all intra mode, the input data is exactly the orig-

inal video frame. While the case of all inter mode and no MB

or is forced to be intra coded, the input data is the original mo-
tion-compensation difference picture. Note that both types of
i input data are available at the encoder before R-D modeling.
Therefore, for each mode, the R-D estimation can be carried

out with (1) and (2). The distortion function for adaptive intra
refreshing is then obtained by (3). It should be mentioned that
the model parametefsand« are determined from the coding
statistics of previous frame, as explained in [9].

Distortion (Square root of MSE)
=

C. Experimental Results

% o 0z 03 04 05 06 o7 To test the accuracy of the proposed R-D model for source
inra MB rate coding with adaptive intra refreshing, we run the MPEG-4 codec
() [16] on “Carphone” and “Flowergarden” QCIF videos at dif-

Fig. 2. Source coding distortion as a function @ffor (a) Frame 2 and ferent bit rates and different values 8f and estimate the dis-

(b) Frame 45 of “Carphone” QCIF video at different bit rates. In each plofortion functionD (R /3) before quantization and coding. In

different curves correspond to different coding bit rafas . SATTE . . . .
Fig. 3, we plot the actual distortion and the estimation for “Car-

_ _ _ _ ~ phone” coded at 96 kbps with = 0.2 and 0.6. The estimation
other words, for a given coding bit raf&,, the source distortion result for “Flowergarden” at 256 kbps is shown in Fig. 4. In this
D, also increases with. In Fig. 2, we plot theD,(R,, 3) for  case, the test values gfare 0.2 and 0.8. It can be seen that the
Frames 2 and 45 of “Carphone” QCIF video at different valuggoposed R-D model gives a very accurate and robust estima-
of R,. Our extensive simulations over various additional videgon of the source coding distortion. Our tests over other video

sequences show similar behaviordf (£, 3). Two extreme sequences and encoder settings yield similar results.

cases here ar8 = 0 and 1 when all the MBs are inter and

intra coded, respectively. The corresponding dist_ortion values . ANALYSIS OF CHANNEL DISTORTION

are denoted byD.(R,, 1) and D,(R,, 0). From Fig. 2, we ) ] . o _
can see that ag increases from 0 to 1D, (R,, ) increases In wireless video coding and transmission, channel coding
from D,(R,, 0) to D,(R,, 1). During our simulations, we find such as RS code is often used to correct bit errors in the coded

out that the following quadratic approximation is Sufﬁcienﬂy/ideo data stream. Due to the limited error correction capacity

accurate: of the channel decoder, residual bit errors often still exist after
error correction. When a corrupted codeword in the bit stream
D;(Rs, ) = Ds(Rs, 0) + 3(1 — A+ A3) cannot be properly decoded, the video encoder will jump to the

[Dy(R,, 1) — D,(R,, 0)] (3) next packet starting with a resynchronization mark and skip all
the intermediate bits. This introduces visible picture distortion
where) is a constant which depends on the specific charactet-the receiver end. Note that at the decoder the current recon-
istics of the video sequence. Therefore, to estiniateR,, 3), struction frame “corrupted” by bit errors will still be used as the
we only need to estimate the R-D functions of the current franmeotion-compensation reference for the next frame. In this way,
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statistical process that needs sufficiently large amount of data
to achieve reasonable estimation accuracy. Using an inaccurate
R-D model for source coding, the MB-level optimization actu-
ally can not achieve truly optimized and robust picture quality.
In this work, we try to develop a statistical model to describe

1 the overall behavior of the channel distortion. This analytic
statistical model allows global optimization of picture quality

4+ through joint source-channel coding and adaptive selection of
error-resilience parameters, such as intra refreshing rate, syn-

s ——  PB=02 Actual |] chronization frequency, etc. [5]. Such analysis also provides
R R B=0.2, Estimate very useful information for resource allocation and Quality of
e —— B=0.8, Actual | ] . . .
B=0.8, Estimate Service (QoS) control in network transmission [19].

31

1 A. End-to-End Distortion

I , , , , , , , We denote the packet-loss ratiga#f we assume each packet
0 2 40 L O 120 140 % contains the same number of MBs (or pixels), then the loss ratio
of a pixel is alsqv [4]. Let F'(n, ) be the original value of pixel
Fig. 4. Source-coding distortion estimation results for “Flowergarden” QCIF; ; i ; ; _
video coded with MPEG-4 at 256 kbps, Fin thent_h video frgme, and'(n, ¢) be the corresponding re
construction value in the feedback loop at the encoder. We de-

. . . note the reconstruction value at the receiver enH(s ). For
the channel distortion propagates along the motlon-compenﬁﬁ\ér coded MBS, let(n, ) be the motion-compensation differ-

tion path, which often severely degrades the video presentatg)&e atthe encoder. Létn, i) andé(n, 1) be the corresponding

q.l:ia“ti'r'] Theref?re, the channel—?sto_rtmrj dmogel nggds t30 CY%construction values at the encoder and decoder, respectively.
sider the complex error propagation in video decoding [SJ-{3}), ¢ 14 the randomness of bit errofdn, <) andé(n, ¢) are ac-

Furthermore, the channel-distortion model also needs to c Hélly random variables. Therefore, we can only model and an-

sider the varying characteristics of the input _\/ldeo data, speci ze the expected picture distortion at the receiver end which
channel conditions such as channel bandwidth and BER, col given by

plex data representation and coding scheme employed bylt

video encoder, sophisticated error resilience and concealment D(n) = E{[F(n, i) — F(n, )]*}. 4)
methods, as well as the operating mechanism of the video de-
coder. Most important of all, the channel-distortion model hasshould be noted that{z(n, i)} here represents the average
to deal with the random nature of the bit errors. Therefore, a@ver all pixels) expected value of the random variat(e, 7).
curate and robust modeling of the channel distortion remaing®acording to their definitions, the source-coding distortion
challenging problem. D,(n, 1) and channel distortio®,.(n) are given by

In an end-to-end video coding and communication system, .
the channel-distortion analysis and optimization can operate E{[F(n, i) — F(n, i)]*}, (5)
at different levels. The decoder simulation approach in [4] es- - . - 12
timates the average channel distortion at the pixel level, and De(n) = B{[(n, 1) = F'(n, DI} ©)
performs bit allocation and control at the MB level. In [6], alespectively. In this paper, we assume hgn) andD.(n) are
empirical error-sensitivity metric is used to select the coding,-orelated with each other. That is to éay ‘
mode for each MB. Despite its simplicity, the maximization of
the overall picture quality is not guaranteed. The channel-dis- D(n) = Dy(n) + D.(n). 7)
tortion analysis in [3] operates at the video sequence level. In
general, channel-distortion analysis at low levels, such as fhejustify this assumption, we code the “Foreman” QCIF video
pixel and MB levels, is able to capture the local behavior @t 96 kbps and 15 fps with MPEG-4 and simulate the transmis-
bit errors, especially when the channel BER is very small asibn with random packet loss at a loss ratio of 2%. In Fig. 5,
very few MBs are corrupted. Special treatment of these MBg plot theD(n) and D.(n) + D.(n) for each frame. It can
may be beneficial [6]. It should be noted that this approadie seen thaD(n) is approximately equal t®;(n) + D.(n).
often needs an immediate transmission feedback from the &milar test has been performed over other video sequences and
coder. Otherwise, after a relatively large feedback delay, teacoding settings. The average relative differenceetween
random bit errors have already propagated to many other MB® D(n) andD,(n) + D.(n), defined by
and may spread over the whole video frame. In this way, the
channel distortion exhibits a frame-level statistical behavior. 1 & [[Ds(n) + Dc(n)] — D(n)|
In this case, there is no need to perform the MB-specific anal- D= Z D(n)
ysis and optimization, which often involves potentially high n=t
computational complexity. In addition, accurate modeling arfdr each test is listed in Table |. Her&, is the total number
estimation of the R-D behavior of one MB is often very difof video frames. It can be seen that is very small. This im-
ficult. This is because the R-D analysis of source coding ispdies that it is quite reasonable to assume that source distortion

>

w

2
[

x 100%  (8)
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—on of pixel i is F'(n — 1, 1), which is copied from the previous de-
+ D00 coded frame. Therefore, the expected channel distortion is
il | Di(n) = E{[F(n, i) — F(n, )]’}
=p- E{[F'(n, i) - F(n— 1, )]’}
8" | —p E{[F(n, i)~ F(n—1,i) + F(n— 1,4
g —F(n— 1,9}
Zao- 1 =p-E{[F'(n, i) - F(n -1, )"}
+ +p E{[F(n—1,i) = F(n—1, )P}
35r 4 ] =p-RFD(n,n—1)+p-D.(n—1) 9)
whereRF D(n, n— 1) represents the mean square error (MSE)
30, 10 2 % yrS = pes 2, between the reconstructed framesind» — 1. It should be

Frame No noted that the fourth identity in (9) is based on assumption that
Fig. 5. Comparison between the overalldistortdw) andD.(n) + D. () th.e frame difference and the c_hgnnel distortion are qncorrela_lted
for :‘Fbreman” QCIF video coded at 96 kbps and 15 fps andsa loss raite of 2‘%\."th ?aCh other. NOte thatthe lomt source-channel bit allogatlc_)n
and intra refreshing rate selection operate before quantization
and coding of the current frame. At this stad&, ) is not
available. However, we do know the MSE between the original

TABLE | .
RELATIVE DIFFERENCE€e, BETWEEN THE END-TO-END DISTORTION framesn andn — 1, defined as
D(n) AND THE SUM OF SOURCE DISTORTION D, (1) AND

CHANNEL DISTORTION D (1) Faln,n —1) = E{[F(n, i) — F(n — 1, L)]2} (10)
Video || Coding bit | Packet | Relative difference If we assume
sequence || rate loss ratio | ep
Foreman || 150 kbps | 2% 0.9% RFDn,n—1)=a- -Fyg(n,n—1) (11)
Foreman || 96 kbps 5% 1.2%
News 96 kbps 2% 1.9% whereq is a constant, (9) then becomes
News 96 kbps 5% 1.5% I

D =ap- -1 -D.(n—1). 12

Salesman || 96 kbps 2% 1.2% c(n) = ap - Fa(n, n )+ -(n ) (12)
Salesman || 96 kbps | 5% 1.3% If we regard the video encoder as low-pass filter [3], then the
Carphone || 128 kbps | 2% 1.1% reconstruction frame is the filter output of the original frame.
Carphone || 128 kbps | 5% 1.0% Note that a low-pass filter removes the energy in the original

signal. From this point of view, the constantan be regarded

as the energy loss ratio of the encoder filter. It mainly depends
and channel distortion are uncorrelated with each other and tRg¥ much information is discarded by the coding algorithm. In
D(n) = D,(n) + D.(n). Using the R-D model presented inother \(vords, |t.depends on t.he y|deo qqallty level of the cur-
Section I, we can accurately estimdig(n). Therefore, to es- "ent wireless video communication session. More prgmsely, it
timate the end-to-end distortiaB(n), the only thing left is to 1S relgted to the_ average quantization step size. In this work, it
estimateD,(n), which is explained in the following. is estimated using the statistics from previous frames.

For a pixel in inter MBs, in case of no channel errors, its re-

construction value ig(n, i) + F(n — 1, j) where pixel; is

B. Statistical Analysis of Channel Distortion the motion prediction of pixel. (If the half-pel motion estima-

. . ion is used,j could point to a half-pel position.) If the MB is
At the decoder side, we employ the following error conceaﬁ(—)St the recl{)nstructpi)on value of pigelspﬁ(n B i ), which

ment scheme: if a MB is skipped by the decoder, both the mg- . . i
. : . IS copied from the previous decoded frame. Therefore, the ex
tion vectors and the texture information are supposed to be lo%tcted channel distortion is
if the data partition syntax option is turned off [2]. In this caseP,

the decoder simply copies the MB at the same location fronbp(n) :E{[ﬁ(n Q) — ﬁ(n 2}
the previous decoded frame. With this simple and efficient error ° ’ ’

concealment scheme, we develop a statistical analysis of the =(1—p)-E{[F(n, i) —é&(n, i) — F(n—1, )*}
channel distortion. In standard video coding, such as H.263 and +p- E{[F(n, i) — ﬁ(n -1, 9%}

MPEG-4, there are two basic types of MBs: intra and inter. For . .

a pixel in intra MBs, in case of no channel errors, its reconstruc- =(1-p)-E{F(n-1,5) - F(n-1, )%}

tion value isF'(n, 4). If the MB is lost, the reconstruction value +p-RFD(n,n—1)+p-D.(n—1). (13)
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Fig. 6. Channel-distortion estimation results for “Salesman” QCIF video coded at 64 kbps.

Note that{ £(n — 1, 5)} is the motion-compensation referencavhere
frame. If we assume NHh=0-810-pb+p

Iy =pa. (16)
(14) " We can see that this model reveals the inherent relationship be-

tween the channel distortion and the characteristics of the input
whereb is a constant, we have video data.

E{[F(n—1,5)—F(n—1, )} =b- De(n —1)

D(I;(n) = [(1=p)b+p|- De(n—1)+pa- Fa(n, n—1). (15) C. Asymptotic Behavior of Channel Distortion

LetT be the total number of coded video frames. The average
Note thatb is a constant describing the motion randomness efannel distor'ﬂon of all frames, denotedBy(T'), is given by
the video scene. In frame let M be the total number of MBs DT) = 1 Z De(n)
andL be the number of intracoded MB8.= L/M is then the ¢ T ¢
intra refreshing rate. The overall channel distortion is then given =t
by 1 d n FQ d i ..

:TZFI .DC(0)+?Z T8 Fui,i— 1)

De(n) =BD(n) +(1 = HDL (n) T

=[(1 = B)(A ~ p)b+p] - Deln — 1) PO T T
+pa-Fyln, n—1)

:Fl 'DC(TL— 1) +F2 'Fd(TL, n — 1)

T
Y Fali i = 1)1 =TT, 17)

i=1
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Fig. 7. Channel-distortion estimation results for “Foreman” QCIF video coded at 96 kbps and 15 fps.

It can be seen from (10) th&,;(n, n — 1) is upper bounded, at feedback delay (in the unit of frame interval) ands the cur-

least byC = 255 x 255. Therefore rent frame number. In other word&D.(n — A — m)|m > 0}
T are available at the encoder through channel feedback. With
Z]:d(i’ i-)1-TT"<C 1 (18) {De(n — A —m)}, we can apply the channel model in (16)
P 1-1, recursively to compute the channel distortiop(r) for the cur-

rent framen as follows:
We then have

A-1
De = lim D(T) = 1 F"’F E[Fu(n,n—1)] (19) De(n) =ITD(n-A)+I2 Y It -Fy(n—1, n—1-1). (21)
— -1 =0
- a p _

E. Experimental Results

where E[Fq(n, n —1)] is the average value of the frame To test the performance of the proposed fast channel-distor-
difference Fq(n, n — 1) over the whole video scene. Fromjon estimation scheme, we simulate packet loss in MPEG-4
(20), we observe that, asymptotically, the average chani@deo coding and use this scheme to estimate the channel dis-
distortion caused by packet loss is proportional to the megsttion for different videos at different encoding settings and
frame difference. channel conditions. The configuration of each test is shown in
Table 1. The packet size is 96 bytes. In each test, the video se-
guence is simulated 20 times and the average channel distor-
In wireless video communication over noisy channels, witfion is computed. The estimation results for “Salesman” with
the feedback information on the channel condition and transhannel feedback delayk = 1, 5, 9, and 20 frames are shown
mission status, the encoder can determine the decoded pictarig. 6. The estimation results for “Foreman” and “Carphone”
quality of framen — A and its previous frames, whereis the are shown in Figs. 7 and 8, respectively. From these extensive

D. Fast Channel-Distortion Estimation
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Fig. 8. Channel-distortion estimation results for “Carphone” QCIF video coded at 96 kbps and 15 fps.

TABLE I which is easily available at the encoder. Based on the predicted
EXPERIMENT CONFIGURATION FOR PERFORMANCE TEST OF THE channel-distortion behavior, we can achieve better resource al-

FAST CHANNEL DISTORTION ESTIMATION SCHEME . . . .
location and video quality at the receiver end. The accuracy and

Video Source Frame robustness of experimental results also suggest that the proposed
Name Coding Rate | Rate p B channel-distortion model reveals the close relationship between
Salesman 64 kbps 15 fps | 0.15 | 0.1 the channel distortion and the characteristics of the input video
Foreman 96 kbps 15 fps | 0.15 | 0.1 data (the frame difference information). This statistical model
' ' i insight on the behavior of channel distor-
Carphone | 96 kbps | 15 fps | 0.05 | 0.02 has provided helpful insig

tion, as well as its impact on the end-to-end video quality.

simulation results we can see that the channel-distortion mogelgstimate Packet-Loss Ratio

is very accurate. More importantly, when the channel feedback

delay is significantly increased, the model estimation accuracyNote that in the proposed channel-distortion mogdekfers

is largely maintained. This implies that the model is also vety the probability of packet loss. In wireless video communica-

robust. tion over a noisy channel, the parameter BER, denoted as
Another way to understand the channel-distortion model aigloften used to describe the channel error condition. Therefore,

the above experimental results is as follows. If we know thge need to find the relationship betweenandp. In this paper,

channel distortionD.(n) of the current frame, we can accu-we consider a random binary symmetric channel (BSC) model.

rately predict the channel distortion of many frames ahead (@smany cases, bursty errors can be converted into random er-

many asA frames). Note that during the prediction process, thers with pre-interleaving [22]. Th@V, K) RS block code with

model only needs the frame differences of the original sequen8ebits per symbol is used for channel coding. The code rate
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Fig. 9. PSNR performance of the proposed AIR algorithm for three test videos: (a) “Foreman” at 250 kbps; (b) “News” at 150 kbps; and (c) “Carphone” at
150 kbps.

r = K/N is determined by the joint source-channel bit alloand skips all the intermediate symbols. Suppose the packet has
cation scheme proposed in Section V. Note that in the RS codsymbols. The packet-loss ratio is determined by
any error pattern with no more than

p=1-(1-¢&) (25)
T = {N - KJ (22) which is used by the channel-distortion model (16). Typical
2 plots of p as a function of the channel BER can be found

symbol errors can be corrected. We denote the symbol error r':’!ﬁé‘r’]'

(SER) as£. The decoded symbol error rate is then given by IV ADAPTIVE INTRA MODE SELECTION

KA VKN (N - K\ .. . i Intra MB refreshing can significantly improve the error re-
Ca=1- Z Z < i ) < j )5 A= 0 5)  silience capability of the coded video data. This can be observed
=0 j=0 (23) from (9), (13), and (16). Note tha?” (n) is always larger than
Where DI(n). Their difference ig1 — p)b - D.(n — 1) which is ex-
actly the portion of channel distortion in the previous frames
o 1, ifi+j<T propagated to the current frame through motion compensation.
(e, J) = { (K —i)/K, otherwise. (24) It the intra refreshing rat is increased from, to 3, the cor-

responding channel distortion will be reduced by the amount of
Once a symbol cannot be corrected by the RS decoder, it Wity — 5o) (1 — p)b - D.(n — 1). However, from (3), we can
be detected by the video encoder. In this case, the decoder wde that the source distortion increases. This leads to a tradeoff
jump to the next packet starting with a re-synchronization maik selecting the value o8. Clearly, the optimal tradeoff point
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36

corresponds to the value gfwhich minimizes the overall dis-
tortion D(n) = Ds(n) + D.(n). s

34+

A. Adaptive Intra Refreshing Algorithm

33F
With source and channel-distortion models developed in

Sections Il and I, we can estimate the distortiofn) forany  _
given R, and 3. We then find the value of which minimizes 531 .
the distortion functiorD(r). Once the optimal intra refreshing 2
rate 3 is determined, we need to seldct= /3 - M MBs to be
intra coded. The simplest way is just to use random selection 2
Statistically, this random selection scheme will achieve the ,
minimum average channel distortion. In some intra mode
selection algorithms reported in the literature [4], [5], [20], the =7+
intra/inter mode decision is made individually for each MB. , , , ‘ ' , ,
However, we notice that at the decoder the previous frame i¢ ° 2 40 0 e 120 140 180
a random variable due to the randomness of channel errors.
All the R-D computations and optimization should be handldd?- 10-
in a statistical sense. This statistical procedure considers only
the overall R-D behavior of the whole frame/video, instear 4o— .
of the specific characteristics of each individual MB. Base: | - Egrr%me |
on this observation, we believe that on average, it is sufficiel

to randomly select the intra-coded MBs, since the overa
optimization is already guaranteed at the frame level. This wi s} .
be demonstrated by our experimental results in the followin .
section. Another advantage of the random selection is its signg
icantly reduced computational complexity and implementatio ; ]
cost. For convenience, we refer to the proposed Adaptive Int§34, i
Refreshing algorithm as “AIR.” 2

Intra-mode selection results for “Carphone.”

38~ b

Avei

33 b

B. Experimental Results s2r B\e\a\g 1

We implement the AIR algorithm in the MPEG-4 codec *'f ]
and compare its performance with the Scattered-Block Inti 4| i
Update (SBIU) algorithm [20]. The three test QCIF videc . . ‘ ‘
sequences are “Foreman” at 250 kbps, “News” at 150 kbp B O oscback delay s (rames) 20
and “Carphone” at 150 kbps. The frame rate is 15 fps. The ’
packet size is set to be 96 bytes. It should be noted that, fag. 11. PSNR performance of the AIR algorithm with different channel
fair comparison, in this simulation no RS channel coding fggdb_ack delay. The videos are coded at 250 kbps and 15 fps. The packet-loss

. . . . . ratio isp = 0.05.
applied, and all the available bit rate is assigned for source
coding. Using the AIR algorithm, the encoder can adjust intra
refreshing ratg3 according to the channel conditions and that different channel feedback delays. In Fig. 11 we plot the
characteristics of the input video data. The average PSNRerage PSNR for “Foreman” and “Carphone” both coded at
results for different packet-loss ratipsare depicted in Fig. 9. 250 kbps and 15 fps. The packet-loss ratipis= 0.05. We
The average PSNR is computed over 20 different chanmain see that the performance of the AIR algorithm degrades
realizations. It can be seen that the proposed AIR algorithitile as the feedback delay increases. Experiments over other
significantly improves the video quality, especially for higlvideo sequences and coding settings yield similar results.
motion video sequences. For example, for the “Foreman” video
sequence, the quallty improvement is about 3.2 dB. The PSNR V. JOINT SOURCE CHANNEL RATE CONTROL
improvement for each coded frame from the “Carphone” video ) o
is depicted in Fig. 10. From the experimental results reportedih Algorithm Description
[4], we can see that the proposed frame-level AIR algorithm hasintra MB refreshing is an effective way to stop the channel-
almost similar performance to the MB-level adaptive intra mod#istortion propagation at the decoder. To reduce the amount
selection scheme. However, the channel-distortion estimatiohchannel distortion introduced to the video data stream, we
in [4] is based on a statistical simulation of the decoder at tineed to resort to channel coding to correct the bit errors using
encoder side, which involves potentially high computationghannel coding. In this case, the overall bit rate is divided into
complexity andimplementation cost, and therefore is not suitatileo parts: source coding bit rafé, and channel coding bit rate
for real-time video coding and communication over wirelesB.. One important parameter of the RS coder is its code rate
devices. Next, we test the performance of the AIR algorithm = R,/R. To minimize the overall picture distortion at the
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35 T T T T T T T

——  This work TABLE I
Threshold-based PICTURE QUALITY COMPARISON FOR DIFFERENT
VIDEO SEQUENCES ANDSER THRESHOLDS
Video || Channel | PSNR | PSNR Threshold-Base
Name Bit rate | This work { 0.05% | 0.1% | 0.2%
R Foreman 96 31.40 30.23 | 30.71 | 29.81
% Flowergarden 256 30.20 29.02 | 29.26 | 27.60
? Salesman 96 3440 | 3421 | 33.28 | 33.52
Akiyo 64 36.98 36.75 | 36.24 | 36.56

In Fig. 12, we plot the decoded picture quality for “Foreman”
QCIF video coded at 96 kbps and 15 fps when the JSCRC algo-
28 ‘ - : ‘ : : ‘ : rithm and the conventional threshold-based bit allocation algo-
[} 20 40 60 80 100 120 140 160 180 . . .
Frame no. rithm are applied. In this case, for the threshold-based scheme,
Fig. 12. Decoded picture quality comparison when the proposed joime SER threshold I,S setto ,0'1%' I_n Table lIl, we summar'lze the
source-channel bit allocation scheme and the threshold-base scheme PARNR results for different input video sequences and different
applied. The video sequence is “Foreman” coded at 96 kbps and 15 fos. ®ER threshold settings. It can be seen that with adaptive rate
threshold SER is 0.1%. allocation and control, the video encoder always chooses ap-

propriate source/channel coding bit rates and encoder settings,

receiver end, we need to adjust the parameters of the video giich, yields significantly improved picture quality at the re-
coder and the RS channel codes for different input video S&sier end.

guences and different channel conditions. Specifically, given a

target bit rateR which is determined by the available channel

bandwidth, we need to perform optimal bit allocation between VI. CONCLUSION

source and channel coding. In addition, we need to adjust the enthere are three major contributions in this work. First, we

coder settings to achieve the allocated bit budget. From (16), W&/e developed an R-D model for DCT-based video coding
can see that the channel distortiph is a function ofp, which  \hich incorporates the MB intra refreshing rate. This model
is in turn a function of the channel coding rateTherefore, the ¢gn accurately estimate the R-D function for any given intra
Optlmal jOint source-channel bit allocation can be formulated ?éfreshing rate before a video frame is coded. Second, we have

follows: developed a theoretical analysis of the channel distortion caused
min D(r, B) = Do([L — 7]+ R, B) + D,(r - R, ). (26) by channe_l errors and inter-frame propagation. Our stgtistic_al
0<r, 81 channel-distortion model reveals the inherent relationship

In Sections Il and IlI, we have explicitly estimated the sourcdeétween the channel distortion and input video characteris-
and channel-distortion functions. Based on the estimation, #€s- This model has very low computational complexity and
only need to find the values of-(3) which minimize the ob- implementation cost and is therefore suitable for wireless ap-
jective function in (26). Once is determined, we can use thePlications. Experimental results show that it is a_ble to e_s'_cimate
linear rate control algorithm proposed in our previous work [13'€ channel distortion accurately and robustly with a minimum
to select the quantization parameters to achieve the target bit (&Y in processing. Finally, based on the proposed source and

R, = r - R at the video encoder. channel-distortion models, we have developed a scheme for
adaptive intra mode selection and joint source-channel rate
B. Experimental Results control. Extensive experimental results have demonstrated that

We implement the above joint source-channel rate Contrt(g\lis scheme significantly improves the end-to-end video quality

(JSCRC) algorithm with optimal MB intra refreshing in thefor wireless video coding and transmission.
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