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Abstract— In variable-bit-rate (VBR) video coding, the video is
pre-processed to collect sequence-level statistics, which are used
for global bit allocation in the actual encoding stage to obtain
a smoothed video presentation quality. However, in real-time
video recording and network streaming, this type of two-pass
encoding scheme is not allowed because the access to future
frames and global statistics is not available. To address this
issue, we introduce the concept of low-pass filtering of rate-
distortion (R-D) functions and develop a smoothed rate control
(SRC) framework for real-time video recording and streaming.
Theoretically, we prove that, using a geometric averaging filter,
the SRC algorithm is able to maintain a smoothed video presen-
tation quality while achieving the target bit rate automatically.
We also analyze the buffer requirement of the SRC algorithm in
real-time video streaming, and propose a scheme to seamlessly
integrate robust buffer control into the SRC framework. The
proposed SRC algorithm has very low computational complexity
and implementation cost. Our extensive experimental results
demonstrate that the SRC algorithm significantly reduces the
picture quality variation in the encoded video clips.

Index Terms— Quality smoothing, variable bit rate, real-time
video coding, bit allocation.

I. I NTRODUCTION

I N digital video recording and compression, the encoding
bit rate needs to be controlled so that the video storage

size or transmission bandwidth constraint is satisfied. Fora
given bit budget, the ultimate goal of the rate control algorithm
is to optimize the video presentation quality. To achieve a
visually pleasing video presentation, not only does each video
frame need to be encoded at the highest quality level, but
also the frame-to-frame perceptual quality changes need to
be smooth enough so that temporal artifacts, such as quality
flicker and motion jerkiness, are minimized. In [1], video
quality smoothing is formulated as a Lagrange minimization
problem, where the quality smoothness is measured by the
frame-to-frame variation of picture quality. To optimize the
video quality under the bit rate constraint, a two-pass encod-
ing scheme is often used by rate control algorithms. More
specifically, in the first pass of pre-processing, the encoder
collects coding complexity information of the entire video

Manuscript received September 30th, 2003; revised March 22nd, 2004.
Z. He is with the Department of Electrical and Computer Engi-

neering, University of Missouri, Columbia, MO 65211, USA (e-mail:
HeZhi@missouri.edu).

W. Zeng is with the Department of Computer Sciences, University of
Missouri, Columbia, MO 65211, USA (e-mail: zengw@missouri.edu).

C. W. Chen is with the Department of Electrical and Computer Engineer-
ing, Florida Institute of Technology, Melbourne, FL 32901,USA (e-mail:
cchen@fit.edu).

clip. During the second pass of actual encoding, based on
this complexity information, the encoder performs global bit
allocation to determine the encoding parameters, such as
quantization parameter (QP) of each frame, so as to optimize
the overall picture quality [1], [2], [3].

Such type of two-pass encoding scheme is not applicable to
real-time video recording and streaming applications, includ-
ing Personal Video Recording (PVR), digital camcorder, live
video streaming and video conferencing, because the access
to future frames and global statistics is not available. In other
words, real-time video applications require one-pass video
encoding. Within the one-pass encoding framework, without
access to the coding characteristics of future frames, it isvery
difficult to maintain a smoothed video presentation quality
while meeting the target encoding bit rate, because the encoder
has no idea about how complicated the future scenes might
be [4]. In low-delay constant-bit-rate (CBR) video coding,
it is easy for the encoder to match the network bandwidth
or total storage space by simply setting the bit rate target
of each frame to be the instantaneous network bandwidth
or the average storage space per frame [14]. However, the
picture quality varies significantly from frame to frame due
to the changes in scene activity. In this case, there is no
control in temporal quality fluctuation at all. To optimize
video presentation quality, especially the temporal quality
smoothness, one typical approach is to perform frame-levelbit
allocation, as in the standard TM5 rate control [5]. The encoder
sets the bit rate target for each GOP (group of pictures) to be
the average available number of bits per GOP and allocates the
bits among the frames within the GOP. TM5 assumes that the
future frames have similar statistics as their previous frames
and uses the previous statistics for bit allocation to optimize
the picture quality, including temporal quality smoothness [5].
This type of approach has several disadvantages. First, the
assumption of similar statistics itself may not hold, especially
for videos with high motion and frequent scene changes.
The bit allocation based on this assumption will lead to
significant quality fluctuation within the GOP. Second, there
is no mechanism available to guarantee the smoothness of
GOP-to-GOP quality change, because each GOP carries out
the bit allocation and quality optimization independently[5].
In [4], a different approach is proposed that uses a square-
root formula to predict the coding bit rate from mean absolute
difference (MAD). The ratio between the MAD value of the
current frame and the average MAD value of all its previous
encoded frames is then used to determine the target bit rate
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for the current frame. Although the scheme reduces the picture
quality fluctuation, it does not provide an explicit and analytic
way to maintain a smooth video presentation quality while
meeting the overall bit rate target.

In this work, we introduce the concept of low-pass filtering
of rate-distortion (R-D) functions and develop a smoothed
rate control (SRC) framework for real-time video recording.
Theoretically, we prove that, using a geometric averaging
filter, the SRC algorithm is able to maintain a smoothed
video presentation quality while achieving the target bit rate
automatically. We also analyze the buffer size requirementof
the SRC algorithm in real-time video streaming, and propose
a scheme to seamlessly integrate robust buffer control into
the SRC framework. We then conduct extensive simulations
over various TV programs and movie clips to demonstrate the
efficiency of the SRC algorithm. The proposed SRC algorithm
has very low computational complexity and implementation
cost.

The rest of this paper is organized as follows. In Section
II, we explain the basic ideas of low-pass filtering of R-D
functions and SRC. In Section III, we prove theoretically that
SRC is able to achieve the target bit rate using a geometric
averaging filter. Section IV explains how to construct the
CBR R-D functions which are used for SRC. In Section V,
we analyze the buffer requirement of the SRC algorithm in
real-time video streaming and develop a buffer-constrained
SRC algorithm. Section VI summarizes the major steps in
the SRC algorithm and analyzes the computational complexity
and implementation cost. Experimental results are presented in
Section VII and some concluding remarks are given in Section
VIII.

II. L OWPASSFILTERING OF R-D FUNCTIONS

In CBR video coding, the picture quality varies significantly
from frame to frame, especially for videos with active scenes.
Fig. 1-(A) shows the distortion of each frame, denoted byDC(n), of the “NBA” CIF (352� 288) video coded at 1.8
M bits per second (bps). Here, the frame target is set to be
the average encoding bit rate, denoted byRT . In other words,RC(n) = RT . It can be seen that there is a very large frame-
to-frame quality fluctuation.

From the human visual system (HVS) point of view,
smoothed video quality yields visually pleasing human per-
ception, while quality flicker and temporal noise are very
annoying in video presentation [17]. The basic idea of the
proposed quality smoothing algorithm is to design a rate
control scheme such that the output video quality changes very
smoothly from frame to frame. We refer to this type of rate
control algorithm as smoothed rate control (SRC). In signal
processing, a common approach to obtain smoothness is to use
lowpass filtering. In this work, we indeed apply the lowpass
filtering approach to design an efficient SRC algorithm. Fig.1-
(B) (in solid line) shows the lowpass filtering output of the
CBR distortion profilefDC(n)g of Fig. 1-(A). It can be seen
that the output distortion profile, denoted byfDS(n)g, is
quite smooth. Let the corresponding encoding bit rate of each
frame beRS(n). Obviously,RS(n) is not constant any more,

as shown in Fig. 1-(C), and depends on the design of the
lowpass filter. In video recording application, it is required that
the average encoding bit rate matches exactly the available
storage space or transmission bandwidth. This brings up an
interesting issue: how to design a lowpass filter such that the
run-time average ofRS(n) is equal toRT? This question will
be answered in Section III. Furthermore, the SRC algorithm
also needs to consider buffer compliance for real-time video
streaming, which is to be discussed in Section V.
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Fig. 1. Illustration of the basic idea for quality smoothingin the SRC
algorithm.

III. T HEORETICAL ANALYSIS

In our SRC design, we apply the following lowpass filter
to smooth out the CBR distortion profilefDC(n)g,DS(n) = L[DC(n)℄= MYi=1[DC(n� i)℄ai (1)

whereM is the filter length,
MPi=1 ai = 1, andai > 0. Here,faig are weighting factors, controlling the relative importance

of previous frames to the quality of the current frame. By
default, we can setai = 1M . It can be seen thatL[�℄ is basically
a non-linear geometric averaging filter. From the theoretical
analysis in the following, we will see that using this lowpass
filter, the target bit rate can be achieved automatically.

In our SRC scheme, the distortion level of the current frame
is set to be the geometric average of the CBR distortion values
of previousM frames. LetRS(n) be the encoding bit rate of
framen in the SRC mode, whose run-time average is defined
as �RS [N ℄ = 1N NXn=1RS(n); (2)

whereN is the total number of encoded video frames. We
need to show that when the encoded video clip is sufficiently
long, i.e., whenN is sufficiently large, the asymptotic value
of �RS [N ℄ approaches the target encoding bit rateRT . In other
words, limN!+1 �RS [N ℄ = RT : (3)
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From Shannon’s source coding theorem [10], [11], the R-D
distortion function of a Gaussian source is given byR(D) = 12 log2 �2D ; or D(R) = �22�2R; (4)

where�2 is the picture variance. Due to scene activity fluc-
tuations,�2 changes from frame to frame. Let�2(n) be the
variance of framen, where1 � n � N . In CBR video coding,
the coding bit rateRC(n) is set to beRT . Therefore,DC(n) = �2(n)2�2RT : (5)

From (1), we haveDS(n) = MYi=1[DC(n� i)℄ai (6)= MYi=1[�2(n� i)2�2RT ℄ai : (7)

According to (4), the corresponding coding bit rate is given
by RS(n) = 12 log2 �2(n)DS(n) : (8)

Thus, we have�RS [N ℄= 1N NXn=1RS(n)= 1N NXn=1 12 log2 �2(n)DS(n)= 1N NXn=1 12 log2 �2(n)MQi=1[�2(n� i)2�2RT ℄ai (9)= RT + 1N NXn=1 12 log2 �2(n)MQi=1[�2(n� i)℄ai= RT + 1N NXn=1 12 "log2 �2(n)� MXi=1 ai log2 �2(n� i)# :
Note that�2(n) is bounded andlimN!+1 1N NXn=1[ log2 �2(n)� log2 �2(n� i) ℄ = 0; (10)

for 0 � i �M . Therefore, we havelimN!+1 1N NXn=1 12 " log2 �2(n)� MXi=1 ai log2 �2(n� i)# = 0;
and limN!+1 �RS [N ℄ = RT : (11)

This result tells us that if we use the geometric averaging filterL[�℄ to smooth out the CBR distortion profile and determine
the distortion level of the current video frame, the average
encoding bit rate matches the target bit rate.

Notice that the R-D function in (4) and the above mathe-
matical derivation is based on the Gaussian distribution. If we
assume the input has a Laplacian distributionp(x) = �2 e��jxj; (12)

and the corresponding R-D function becomes,R(D) = log2 1�D = log2 �22D: (13)

where� = 2�2 , and�2 is the input variance [11]. If we replace
(4) with (13) and follow the same procedure, we can show that
the geometric averaging filter also automatically achievesthe
bit rate target for Laplacian sources.

Another interesting point to note is that if we use the
following FIR lowpass filterL(z) = MXi=1 aiz�i; (14)

which is the arithmetic average of previousM samples,
following similar mathematical procedures, we can get�RS [N ℄ = RT+ 1N NXn=1 12 "log2 �2(n)� log2 MXi=1 ai�2(n� i)# :

(15)
Clearly, the arithmetic average FIR filter is conceptually sim-
pler than the geometric one. LetÆ[N ℄ be the difference of�RS [N ℄ between (9) and (15). We haveÆ[N ℄ = 1N NXn=1 12H(n); (16)

whereH(n) = log2 MXi=1 ai�2(n� i)� MXi=1 ai log2 �2(n� i): (17)

From Jensen’s inequality, we knowH(n) � 0, which implies
that the average encoding bit rate with the FIR filterL(z) is
always lower than the targetRT . However, our experimental
results show that the differenceH(n) is often very small.
Fig. 2-(A) plots the picture variance of a typical sports video
clip with very high motion coded at 30 fps with a GOP size of
60. In Fig. 2-(B) we plot the relative difference in percentageE(n) defined as follows:E(n) = H(n)log2 MPi=1 ai�2(n� i) � 100% (18)

It can be seen that the relative difference is very small, mostly
less than 3%. This suggests that, in practice, we may also use
the FIR arithmetic averaging filter for distortion smoothing,
which is conceptually simpler and has lower implementation
cost.
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Fig. 2. Analysis of SRC bit rate error: (A) picture variance of each video
frame; (B) plot ofE(n).

IV. CONSTRUCTION OF THECBR R-D PROFILE

In our SRC scheme, the video is encoded in a VBR fashion
with a smoothed picture quality profile. More specifically, the
video encoding is following the VBR R-D profile indicated
by the solid lines in Fig. 1. Note that the video coding is one-
pass. After a frame is encoded, what we can get is an R-D
point [RS(n); DS(n)℄ on the VBR profile, indicating the actual
encoding bits and picture distortion. From (1), we can see that,
in order to implement our idea of SRC, we need the CBR R-D
profile. This implies that we need to construct the CBR R-D
profile from the VBR one[RS(n); DS(n)℄. To achieve such
a goal, we introduce a linear rate model and explain how the
CBR picture distortion can be estimated with this model.

A. Linear Rate Model

We use the simple and accurate linear rate model developed
in our previous work [8], [15] to estimate the CBR R-D points.
For the integrity of this paper, here, we give a brief review of
the linear rate model. In conventional R-D studies [13], [14],
the encoding bit rate and distortion, denoted byR andD, is
considered as functions of the quantization parameterq, i.e.,R(q) and D(q), respectively. In [15], it has been observed
that the percentage of zeros among the quantized transform
coefficients, denoted by�, plays a very important role in
transform coding. Note that� monotonically increases withq, which implies that there is a one-to-one mapping between
them. Therefore, mathematically,R andD are also functions
of �, denoted byR(�) and D(�), respectively. It has been
demonstrated both theoretically and experimentally that,in
standard video coding systems, such as MPEG-2 [16], H.263
[6], and MPEG-4 [7], there is a linear relationship between
the actual coding bit rateR and�, i.e.,R(�) = � � (1� �); (19)

where� is a frame constant. The one-to-one mapping betweenq and � can be computed from the distribution of the DCT
coefficients. Let us take the H.263 quantization for an example.
SupposeD0(x) andD1(x) are the distributions of the DCT
coefficients in the intra and inter macroblocks (MBs). For a
given quantization parameterq, the corresponding percentage

of zeros� can be computed as follows,�(q) = 1K Xjxj�qD0(x) + 1K Xjxj�1:25qD1(x); (20)

whereK is the number of coefficients in the current video
frame. In SRC, when framen is encoded, we know the actual
encoding bit rateRS(n) and the percentage of zeros produced
by the encoder,�S(n). According to (19), to achieve the
encoding bit rate ofRT in CBR coding, the encoder needs
to generate the following percentage of zeros�C(n) = 1� RTRS(n) [1� �S(n)℄: (21)

Using the one-to-one mapping in (20), we can compute the
quantization parameterqC such that�(qC) = �C(n): (22)

In other words, if the quantization parameterqC is used, the
encoder should be able to achieve the CBR coding bit rateRT .

B. Computing the CBR Distortion

Using the linear rate model and VBR coding R-D statistics,
we can determine the encoder quantization parameterqC that
is able to achieve the target bit rate in the CBR coding mode.
From qC , we can compute the corresponding CBR distortionDC(n) Again, let us now take the H.263 quantization for an
example. LetS0(n) andS1(n) be the sets of coefficients in
Intra and Inter MB’s in framen, andD0(n; x) andD1(n; x)
be their distributions, respectively. For a given quantization
parameterq, the corresponding distortion is given byD(n; q) = Xx2S0(n)D0(n; x)[x �Q0(x; q)℄2+ Xx2S1(n)D0(n; x)[x �Q1(x; q)℄2; (23)

whereQ0(x; q) andQ1(x; q) are the reconstruction levels ofx in Intra and Inter quantization modes, respectively [6]. The
CBR distortionDC(n) is then given byDC(n) = D(n; qC): (24)

With these estimated rate and distortion parameters, we can
construct the CBR R-D profile. Note that there is no ap-
proximation in the distortion model in (23), therefore, the
reconstruction error of the CBR R-D profile comes only from
the linear rate model. According to the extensive simulation
results in [15], the linear rate model in (19) is accurate, with a
relative estimation error less than 5%. In this work, according
to our simulations on various video sequences, the relative
reconstruction error of the CBR R-D profile is about 5-8%.

V. SRCWITH BUFFERCONSTRAINTS FORV IDEO

STREAMING

A. Buffer Constraints in VBR Video Streaming

As we have indicated, using the linear rate model and the
distortion formula developed in Section IV, we can construct
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the CBR R-D functions and perform the lowpass smoothing
of the distortion profile as discussed in Section II. Note that
there is no constraint on the rate profilefRS(n)g during the
distortion smoothing. In other words,fRS(n)g could have
arbitrarily large fluctuation when the scene activity changes
significantly. In video recording for offline local playback,
such as movie compression, Personal Video Recording (PVR),
and TV program replay, the compressed video data is saved in
a local storage. Large frame-to-frame rate fluctuation for the
purpose of quality smoothness is allowed. The only constraint
on fRS(n)g is that sum offRS(n)g is equal to the available
storage space, which has been already guaranteed by our
theoretical analysis in Section III.

In real-time video streaming, each input frame is com-
pressed by the video encoder. The compressed bit stream
flows into an encoder buffer which is drained by the network
channel. After traveling through the network transmission
channel, the bit stream arrives at a decoder buffer. The video
decoder fetches the bit stream, decodes and displays the video
frame. In such a real-time system, the video server (or encoder)
and receiver operates in a synchronized fashion. The end-
to-end delay, or the overall travel time of each video frame
between the moment of its entry into the encoder and its
display time at the receiver, needs to be a constant, denoted
by �. In general, we have� = �en +�eb +�t +�de +�db; (25)

where�en and�de are the frame encoding and decoding
time;�eb and�db are the encoder and decoder buffer delays,
and�t represents the network transmission time [9]. In video
streaming, especially one-way streaming, such as video-on-
demand, the buffer delays are significantly larger than the
frame encoding, decoding and network transmission time.
Therefore, the end-to-end delay is mainly affected by the
buffer delays, which are determined by the encoder and
decoder buffer sizes, denoted byWe and Wd, respectively.
Let L = �eb +�db� ; (26)

where � is the frame interval. LetC(i) be the channel
transmission rate at frame timei. The encoder and decoder
buffer occupancies at frame timen, denoted byBe(n) andBd(n) are given byBe(n) = nXi=1 RS(i)� nXi=1 C(i) (27)Bd(n) = 8>><>>: nPi=1C(i)� n�LPi=1 RS(i); when i � LnPi=1C(i); when i < L:(28)

When Be(n) > We or Bd(n) > Wd, the buffer overflows
and the additional video data will be dropped. The dropped
data will cause decoding failure or picture reconstructionerror
at the receiving end. WhenBe(n) � 0 the encoder buffer
underflows and the network channel is under utilized since
there are no bits to transmit. WhenBd(n) < 0, the decoder
buffer underflows. The decoder has to pause the decoding

process and waits for the bit stream to arrive, which may
cause jerkiness in the video presentation. Therefore, in our
SRC design, we need to avoid buffer overflow and underflow
at both encoder and decoder sides. From (27) and (28), we
observe thatBd(n+ L) = n+LXi=1 C(i)� nXi=1 RS(i)= n+LXi=n+1C(i)� [ nXi=1 RS(i)� nXi=1 C(i)℄= n+LXi=n+1C(i)�Be(n): (29)

This is the so-called mirror effect of buffer occupancy between
the encoder and decoder. This implies that we only need to
control the encoder buffer.

B. Maximum Buffer Size in SRC

In live video streaming, the available network transmission
rateC(i) is often varying due to other network traffic [9]. We
can often set the encoder bit rate targetRT to be the average

network transmission rate. In other words, we let
nPi=1C(i) =nRT . From (9) and (27), we haveBe(n) = nXi=1 RS(i)� nXi=1 C(i) (30)= nXi=1 12 24 log2 �2(i)� MXj=1 aj log2 �2(i� j)35= 12 MXj=1 aj  nXi=1 [log2 �2(i)� log2 �2(i� j)℄!= 12 MXj=1 aj  j�1Xk=0[log2 �2(n� k)� log2 �2(1)℄! :

Here we assumelog2 �2(i) = log2 �2(1) for i < 1. Note thatf�2(i)g is bounded, and there exists a constant� such thatj log2 �2(i)j � �. Therefore,jBe(n)j � 12� MXj=1 aj � j: (31)

Let Wmax = � MXj=1 aj � j: (32)

It can be seen thatWmax is the maximum encoder buffer
size that is needed for video streaming with SRC, because we
can let the encoder buffer accumulate bits to the buffer level
of Wmax2 during the initial buffering stage and then start the
network transmission. From (31), we knowjBe(n)j � Wmax2 .
Therefore, the encoder will never experience buffer overflow
and underflow. If an equally weighted geometric averaging
filter is used in distortion smoothing, in other words,ai = 1M ,
we have Wmax = M + 12 �; (33)
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which suggests that larger smoothing window (M ) and larger
variation in scene activity (�) require a larger encoder buffer.
The above analysis of maximum buffer size can also be applied
to the decoder buffer.

C. Adaptive Buffer Regulation for SRC

In Section V-B, we have derived the maximum encoder and
decoder buffer size for video streaming with SRC. From (33)
we can see that the buffer size linearly increases with the
smoothing window size. In practice, the acceptable buffer size,
or buffer delay, is determined by the application requirement,
which is often much smaller than the maximum buffer size
obtained from theoretical analysis. In this case, we need to
develop a buffer regulation scheme which guarantees neither
buffer overflow nor buffer underflow occurs. Note that buffer
regulation and quality smoothing are two conflicting factors.
In robust buffer regulation, the encoding bit rate has to be well
controlled within some range specified by the buffer overflow
and underflow criteria, in spite of dramatic scene change and
quality variation. However, in quality smoothing rate control,
the encoder has to maintain a smoothed quality change from
frame to frame, in spite of large bit rate fluctuation. In this
section, we propose a buffer-constrained SRC scheme which
finds a good trade-off between buffer regulation and quality
smoothing.

The proposed robust buffer control operates as follows:
During the initial stage of transmission, let the bits in the
buffer accumulate to a safe or desired buffer level, denotedbyW0. For example, one can setW0 to be 0:5 �W where �W is
the buffer size. Once the buffer level, denoted byW , reachesW0, the network channel starts to drain the encoder buffer and
transmit the bits. WhenW is above or below the safe levelW0, the encoder has to decrease or increase the coding bit
rate according to some policy. Obviously this policy needs to
consider how “urgent” the current buffer situation is and act
accordingly by setting the rate change amount and speed. In
addition, this policy needs to negotiate with the SRC module
and try to maintain the video presentation quality as smooth
as possible. LetWres = W �W0. If Wres > 0, we need to
adjust the encoder to reduce the output bits byWres during
the next short period of time such that the buffer level goes
back to the desired level. Specifically, we set the “short period
of time” to be0:5M (after being rounded to integer) frames
whereM is the SRC window size. LetR0T = RT � Wres0:5M : (34)

TheRT in (21) is replaced byR0T . The quantization parameterqC and the CBR distortion levelDC obtained withR0T are
then used for SRC. This procedure implies that the encoder is
trying to produceWres less bits during the next0:5M frames.
Since the buffer control is designed as an integrated part of
the SRC algorithm, the encoder will still be able to maintaina
smoothed picture distortion profile with the lowpass filtering
mechanism.

VI. A LGORITHM

In this section, we summarize the algorithm for SRC and
analyze its computation and implementation complexity. The

proposed SRC algorithm has the following major steps:
Step 1 Initialization. The first M frames of the video se-

quence are encoded in CBR mode. For each frame, the
coding distortion is stored asfDC(n)g. The following
SRC procedure then starts from frameM + 1.

Step 2 Determine the target distortion level. Suppose the
current frame number isn. Its target distortion levelDS(n) is obtained with (1). After motion compen-
sation and DCT, the distribution information of the
DCT coefficients are collected. Using the formula in
(23), we can find the quantization parameter, denoted
by qS , such thatDS(n) = D(n; qS).

Step 3 Encoding. qS is used to quantize the DCT coefficients.
After entropy encoding, the actual bit rate is recorded
asRS(n).

Step 4 Estimate CBR distortion. Using the method discussed
in Sections IV-A and IV-B, specifically, (21)-(24), we
can estimate the picture distortion in CBR coding
modeDC(n).

Step 5 Loop Repeat Steps 2 to 4 until all frames are encoded.
It can be seen that, in the proposed SRC algorithm, the major
computation is just to collect the distributions of the DCT coef-
ficients. The rest of the algorithm involves only a few number
of addition, multiplication, and power operations. Therefore,
the algorithm has very low computational complexity and
implementation cost.

VII. E XPERIMENTAL RESULTS

We have implemented the proposed quality smoothing rate
control algorithm in MPEG-4 video encoding [12], and tested
its performance in real-time video recording and streaming.
We used several TV news, movie, and sports clips for the
test. In order to allow other researchers to reproduce the
experimental results presented in this paper, we also used
the standard MPEG video sequences, including “Football”,
“Flower garden”, “Table tennis”, “Foreman”, “Coastguard”
and “NBA”, all short video clips. To demonstrate the per-
formance of the SRC algorithm more efficiently, we cascade
these short video clips to generate one long video clip of 1200
frames (40 seconds). All the test videos are in CIF size (352� 288) at 30 fps (frame per second). Only I and P frames are
used, and the GOP size is 601. In the following experiments,
we use the TM5 bit allocation algorithm [16] for performance
comparison. TM5 uses an efficient frame-level bit allocation
algorithm to find the target bit rate for each video frame such
that frame-to-frame quality change is smooth and the overall
quality is optimized. Three algorithms to be evaluated are:
TM5 bit allocation which is labeled as “without SRC”; the
proposed SRC algorithm which is labeled as “with SRC”;
and the buffer-constrained SRC algorithm which is labeled
as “constrained SRC”.

In Fig. 3, we plot the PSNR (peak signal-to-noise ratio)
values of each frame encoded without SRC (dotted line) and
with SRC (solid line) for the long standard video clip. It canbe
seen that, with the SRC algorithm, the frame-to-frame quality

1In case of sudden scene changes, I-frames could be used by theencoder,
and therefore the actual GOP size could be dynamic and less than 60 frames.
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variation has been significantly reduced, and the output video
has a smoothed quality profile. Fig. 4 plots the encoding bits
of each frame. As expected, the SRC algorithm has a larger
variation in bit rate. As mentioned before, this is allowed in
many offline and real-time video recording applications so
long as the total video data storage size is met, which has
been guaranteed by our theoretical analysis in Section III.
However, in real-time video streaming, the buffer size has to be
limited and the buffer delay has to be kept as small as possible.
Using the constrained SRC algorithm discussed in Section V-
C, we can achieve both robust buffer regulation and quality
smoothing. Fig. 5 plots the encoder buffer level for a buffer
size of 30 frames, which corresponds to 1 second of delay. It
can be seen that the buffer control is very robust without buffer
overflow and underflow problems. Also, the SRC algorithm is
trying to take full advantage of the buffer resource to maximize
the video presentation quality. Fig. 6 plots the PSNR values
of each frame encoded without SRC and with the constrained
SRC algorithm. We can see that the constrained SRC algorithm
is still able to maintain smoothed video quality across frames
while satisfying the buffer constraint. Figs. 7-10 show the
results for a typical TV news clip and demonstrate a similar
performance of the proposed SRC algorithm.

To evaluate the distortion smoothing performance more
systematically, we use the following measure for video quality
variation [1],S(fD(n)g) = 1N � 1 NXn=1 jD(n)�D(n� 1)j; (35)

wherefD(n)g is the distortion profile of the encoded video,
andN is the length of the video clip. Table I lists the values
of S(fD(n)g) for the above two test videos, as well as for
several other video clips, such as movie and TV sports clips.
Here, the picture distortionD(n) refers to the mean square
error between the original and the reconstructed pictures2.
We can see that SRC has dramatically reduced the picture
quality variation in the encoded videos, by up to 10 times.
With the buffer constraint, the quality variation measure has
only been increased slightly. In our simulations, we observe
that the SRC algorithm doesn’t improve the average PSNR
of the video sequence, and maintains similar average PSNR
values as the video encoding without SRC. This is because of
the low-pass filtering nature of the SRC algorithm.

A. Further Discussion

From the experimental results presented in the above, we
can see that using the geometric lowpass filtering of R-
D functions, the encoder is able to smooth out the local
picture quality fluctuation while meeting the target bit rate
automatically. However, the long-term quality variation still
exists. This is inevitable in real-time video processing where
the access of global statistics is not available. Certainly, we
can increase the window size of the geometric lowpass filter

2For a better evaluation of video quality, some perceptual video quality
measures, such as the JND measure [17], could be considered.However, these
perceptual measures are often very complicated and not as mathematically
tractable as the PSNR formulation

TABLE I

COMPARISON OF VIDEO QUALITY VARIATION.

Video Quality variationS(fD(n)g)
Clips Without SRC With SRC Constrained SRC

Standard clip 3.23 0.33 0.37
TV news 4.59 0.47 0.54

Movie clip 3.89 0.39 0.44
TV sports clip 5.10 0.55 0.60

to smooth out even larger scale quality fluctuation at the cost
of longer buffer delay. However, from the theoretical analysis
in Section III, we cannot increase the window size to be too
large, otherwise, the bit rate matching will be a problem. This
is because in (11), it is required thatN should be sufficiently
large when compared to the window sizeM . According to
our simulation experience, suppose the length of the video
sequence isT , a good choice of the window size should be
less thanT15 .

During the past few years, a number of algorithms have
been developed for constant-quality video encoding and com-
munication [2], [4], [18]. In non-realtime offline video encod-
ing, two-pass bit allocation and rate control schemes can be
used [2]. In real-time video encoding, the quality smoothing
problem becomes more challenging because the encoder has
to match its average bit rate to the available bandwidth or
storage space. The quality smoothing algorithms proposed in
[4], [18], unlike the geometric low-pass filtering in our SRC
algorithm, do not provide an analytic model-level mechanism
to guarantee the bit rate target. The major contribution of this
work is the development of a quality smoothing framework
using low-pass filtering of R-D functions, which achieves
quality smoothing and bit rate matching simultaneously.

VIII. C ONCLUSION

We have introduced the concept of low-pass filtering of rate-
distortion (R-D) functions and developed the SRC algorithm
for real-time video recording and streaming applications.Both
the theoretical analysis and experimental results have shown
that the SRC algorithm is able to meet the target bit rate
accurately while maintaining a smoothed video presentation
quality. For real-time network video streaming, we have also
integrated the buffer control into the SRC framework. Our
experimental results show that the robust buffer regulation can
be achieved with negligible degradation in quality smoothing
performance of the SRC algorithm. The proposed SRC algo-
rithm has direct application in quality control and performance
optimization in real-time video encoding and streaming system
design.
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