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Lowpass Filtering of Rate-Distortion Functions for
Quality Smoothing in Real-Time Video
Communication
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Abstract— In variable-bit-rate (VBR) video coding, the video is  clip. During the second pass of actual encoding, based on
pre-processed to collect sequence-level statistics, whiare used this complexity information, the encoder performs global b
for global bit allocation in the actual encoding stage to obdain allocation to determine the encoding parameters, such as

a smoothed video presentation quality. However, in real-the o L
video recording and network streaming, this type of two-pas guantization parameter (QP) of each frame, so as to optimize

encoding scheme is not allowed because the access to futurdéhe overall picture quality [1], [2], [3].

frames and global statistics is not available. To address th Such type of two-pass encoding scheme is not applicable to
issue, we introduce the concept of low-pass filtering of rate real-time video recording and streaming applicationsluitic
distortion (R-D) functions and develop a smoothed rate comol .4 personal Video Recording (PVR), digital camcordet liv
(SRC) framework for real-time video recording and streaming. . . . .

Theoretically, we prove that, using a geometric averaging lter, video streaming and video con_ferenc_:lng, becguse the access
the SRC algorithm is able to maintain a smoothed video presen 0 future frames and global statistics is not available. treo
tation quality while achieving the target bit rate automatically. words, real-time video applications require one-pass oside
We also analyze the buffer requirement of the SRC algorithmm  encoding. Within the one-pass encoding framework, without
real-time video streaming, and propose a scheme to seamlBss 4ccess to the coding characteristics of future frames vieiig
integrate robust buffer control into the SRC framework. The o o . . .
proposed SRC algorithm has very low computational complexy dlff!cult to _mamtaln a smoothgd v!deo presentation quality
and implementation cost. Our extensive experimental rests While meeting the target encoding bit rate, because thedamco

demonstrate that the SRC algorithm significantly reduces te has no idea about how complicated the future scenes might

picture quality variation in the encoded video clips. be [4]. In low-delay constant-bit-rate (CBR) video coding,
Index Terms— Quality smoothing, variable bit rate, real-time it is easy for the encoder to match the network bandwidth
video coding, bit allocation. or total storage space by simply setting the bit rate target
of each frame to be the instantaneous network bandwidth
|. INTRODUCTION or the average storage space per frame [14]. However, the

N digital video recording and compression, the encodi C?ﬁre q#ahty varies 5|gn|f|ca;_nt_lty frlomtr:‘_rame to t[r;;lme _due
bit rate needs to be controlled so that the video storage telq atnges |n|scen|§t a<f:l 'V'ty‘ t'n '? Cﬁls?li ertgz IS no
size or transmission bandwidth constraint is satisfied. aor 0 10! 1N temporal quality fluctuation at all. 10 optimiz€

given bit budget, the ultimate goal of the rate control ailtpon video presentation quality, especially the temporal guali

is to optimize the video presentation quality. To achieve S%Pootthness, anhtypicaldapgl:ls)l\a/llgh 'St to petrfolrrr51 fr??eﬂel
visually pleasing video presentation, not only does eadbwi aflocation, as In the stancar rate control [5]. The 0

frame need to be encoded at the highest quality level, ts the bit rate target for each GOP (group of pictures) to be

also the frame-to-frame perceptual quality changes need i average available number of bits per GOP and allocages th

be smooth enough so that temporal artifacts, such as qua {? among the frame_s V.V'th'n the .GOP' TMS. assumes that the
flicker and motion jerkiness, are minimized. In [1], vide uture frames have similar statistics as their previousmés

quality smoothing is formulated as a Lagrange minimizatio%nd Uses the previous S'_[at'St'CS for bit allpcaﬂon to opzeem
problem, where the quality smoothness is measured by & picture quality, including temporal quality smootimEs).
’ is type of approach has several disadvantages. First, the

frame-to-frame variation of picture quality. To optimizeet . t similar statistics itself t hold. o4
video quality under the bit rate constraint, a two-pass dncctooumption of simiiar statistics 11Set may not hold, eslec
videos with high motion and frequent scene changes.

ing scheme is often used by rate control algorithms. MO[S:e bit allocation based on this assumption will lead to
ifically, in the first f - ing, th de ~ . . . I
spectricaly, In e 1Irst pass of pre-processing, e enco nificant quality fluctuation within the GOP. Second, ther

collects coding complexity information of the entire videg'9 . .
IS no mechanism available to guarantee the smoothness of
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Z. He is with the Department of Electrical and Computer Engithe bit allocation and quality optimization independerj8y.
neering, University of Missouri, Columbia, MO 65211, USA-rtail:

HeZhi@missouri.edu). In [4], a different approach is proposed that uses a square-
W. Zeng is with the Department of Computer Sciences, Uniersf  root formula to predict the coding bit rate from mean absolut
Missouri, Columbia, MO 65211, USA (e-mail: zengw@miss@du). difference (MAD). The ratio between the MAD value of the

C. W. Chen is with the Department of Electrical and Computegigeer- f d th MAD val falli .
ing, Florida Institute of Technology, Melbourne, FL 32901SA (e-mail: Cufreént frame and the average value ot all its previous

cchen@fit.edu). encoded frames is then used to determine the target bit rate


https://core.ac.uk/display/62768186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHN@GY, VOL. XX, NO. X, XXX 2004 2

for the current frame. Although the scheme reduces thengictas shown in Fig. 1-(C), and depends on the design of the
quality fluctuation, it does not provide an explicit and atial lowpass filter. In video recording application, it is recadithat
way to maintain a smooth video presentation quality whildne average encoding bit rate matches exactly the available
meeting the overall bit rate target. storage space or transmission bandwidth. This brings up an
In this work, we introduce the concept of low-pass filteringnteresting issue: how to design a lowpass filter such that th
of rate-distortion (R-D) functions and develop a smoothedin-time average oRs(n) is equal toR,? This question will
rate control (SRC) framework for real-time video recordingoe answered in Section Ill. Furthermore, the SRC algorithm
Theoretically, we prove that, using a geometric averagi@so needs to consider buffer compliance for real-time wide
filter, the SRC algorithm is able to maintain a smoothestreaming, which is to be discussed in Section V.
video presentation quality while achieving the target hiier
automatically. We also analyze the buffer size requirenoént s
the SRC algorithm in real-time video streaming, and propose,, ot .
a scheme to seamlessly integrate robust buffer control intc® sf g
the SRC framework. We then conduct extensive simulations o
over various TV programs and movie clips to demonstrate the :s
efficiency of the SRC algorithm. The proposed SRC algorithm ,, | ]
has very low computational complexity and implementation ~ 5W
cost. °
The rest of this paper is organized as follows. In Section ,* ‘ ‘
II, we explain the basic ideas of low-pass filtering of R-D £*[ N
functions and SRC. In Section lll, we prove theoreticallgitth °r ’
SRC is able to achieve the target bit rate using a geometric 2 @ @ s 0 w0 w0 10 w0 w0
averaging filter. Section IV explains how to construct the
CBR R-D functions which are used for SRC. In Section \f’ig. 1 lllustration of the basic idea for quality smoothiig the SRC
we analyze the buffer requirement of the SRC algorithm ﬁ%gor'thm'
real-time video streaming and develop a buffer-constrhine
SRC algorithm. Section VI summarizes the major steps in
the SRC algorithm and analyzes the computational complexit [Il. THEORETICAL ANALYSIS

and implementation cost. Experimental results are pregént |, our SRC design, we apply the following lowpass filter

Section VII and some concluding remarks are given in Sectig) smooth out the CBR distortion profileDc (n)}
VIIL. o

(A) Distortion Profile De(npf CBR Coding

(B) Distortion Profile Ds(njfter Smoothing (Slide Line)

% 10" (C) Rate Profile Rs(njfter Smoothing

Bits Per Frame

Ds(n) = L[Dc(n)]
[l. LOWPASSFILTERING OF R-D FUNCTIONS ﬁ[D (n — )] 1)
= C ) —
In CBR video coding, the picture quality varies significgntl i=1

from frame to frame, especially for videos with active scene v

Fig. 1-(A) shows the distortion of each frame, denoted hyhere M is the filter length,Y" a; = 1, anda; > 0. Here,
D¢ (n), of the “NBA” CIF (352x 288) video coded at 1.8 '
M bits per second (bps). Here, the frame target is set to ﬁ)%’
the average encoding bit rate, denotediy. In other words, °

=1
} are weighting factors, controlling the relative importanc
previous frames to the quality of the current frame. By
R Ji i
R (n) = Ry. It can be seen that there is a very large fram(g,‘j-e‘c"’luIt’.We can set; oM It can be seen that[ ] is baS|caIIy_
to-frame quality fluctuation a non-linear geometric averaging filter. From the theoaétic
' analysis in the following, we will see that using this lowpas

From the human visual system (HVS) point of Vlewfilter, the target bit rate can be achieved automatically.

smopthed v!deo qu_allty _y|elds visually pleasmg human per- In our SRC scheme, the distortion level of the current frame
ception, while quality flicker and temporal noise are very

annoying in video presentation [17]. The basic idea of th%set to be the geometric average of the CBR distortion galue

proposed quality smoothing algorithm is to design a rafﬁapr:gv'qujstﬁ/‘; fSraRnéersn'ol‘dZtRS%)Sg? tgi.;lcgdgg b;t.;aéeefc.’r]:e q
control scheme such that the output video quality changes v nl r W un-t verage | '

smoothly from frame to frame. We refer to this type of rat N
control algorithm as smoothed rate control (SRC). In signal Rs[N] = 1 Z Rs(n), 2)
processing, a common approach to obtain smoothness is to use N el

lowpass filtering. In this work, we indeed apply the lowpass

filtering approach to design an efficient SRC algorithm. Eig. Where IV is the total number of encod(_ed V|d(_eo _frame_s: we
(B) (in solid line) shows the lowpass filtering output of th need to show that when the encoded video clip is sufficiently

. . ' . ong, i.e., whenN is sufficiently large, the asymptotic value
CBR distortion profile{ D (n)} of Fig. 1-(A). It can be seen | = : .
that the output distortion profile, denoted HyDs(n)}, is of Rs[N] approaches the target encoding bit r&te. In other

quite smooth. Let the corresponding encoding bit rate oh ea\(/:vords, . _
lim Rg[N]=Rr

frame beRg(n). Obviously,Rs(n) is not constant any more, N5t oo : ©)
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From Shannon’s source coding theorem [10], [11], the R-D Notice that the R-D function in (4) and the above mathe-

distortion function of a Gaussian source is given by

1 o?

R(D) = §log25, or D(R) =o%27%E, 4)

where¢? is the picture variance. Due to scene activity fluc-
tuations,o? changes from frame to frame. Let(n) be the
variance of framen, wherel < n < N. In CBR video coding,

the coding bit rateR«(n) is set to beRy. Therefore,
De¢(n) = 02 (n)2 287, (5)

From (1), we have

-

Ds(n) = [Do(n —i))" (6)

-
Il
-

[02(n — i)2~2Br]a:, @)

I
Uzi

Q
Il
-

According to (4), the corresponding coding bit rate is given

by ‘
Rs(n) = 5 log, %(”)) (8)
Thus, we have
Rs[N]
1 N
= ¥ Z] Rs(n)
N 2
- % n; %logQ 1(;5((7;))
a*(n)

9)

1 1 o*(n
= RT—FNZQlogZM (n)
= (T
i=1
1 o1
= RT—i—NnZlQ [10g20 ZazlogZU n—z)].

Note thato?(n) is bounded and

N

. 1 )
Wl 37 21108 0% () = log o*(n = )] =

(10)

for 0 < i < M. Therefore, we have

N
. 1 1
NLIIEOON”%12 [logzo E a; log, o n—z)] =0,
and
N—+o00

matical derivation is based on the Gaussian distributibwel
assume the input has a Laplacian distribution

A 7)\\1\.

p(z) = 5¢ (12)
and the corresponding R-D function becomes,
1 o2

where\ = 2, ando? is the input variance [11]. If we replace
(4) with (13) and follow the same procedure, we can show that
the geometric averaging filter also automatically achighes
bit rate target for Laplacian sources.

Another interesting point to note is that if we use the
following FIR lowpass filter

M
=> aiz
i=1

which is the arithmetic average of previoud samples,
following similar mathematical procedures, we can get
7’L — Z

— log, Z a;o
(a5

Clearly, the arithmetic average FIR filter is conceptuaiiy-s
pler than the geometric one. Lé{N] be the difference of
Rs[N] between (9) and (15). We have

1 <1
N =5 2 3H®m)

n=1

(14)

1 &K1
RS[N]:RT-FNZE IOgQU

n=1

(16)

where

M
n) = log, Z aio?(n —i) —
i=1

From Jensen’s inequality, we knolf(n) > 0, which implies
that the average encoding bit rate with the FIR filfgr) is
always lower than the targdtr. However, our experimental
results show that the differencH (n) is often very small.
Fig. 2-(A) plots the picture variance of a typical sportsead
clip with very high motion coded at 30 fps with a GOP size of
60. In Fig. 2-(B) we plot the relative difference in perceydga
&(n) defined as follows:

M
Z a;log, o®(n —1i). (17)
i=1

En) = ——
log, > a;o?(n — i)
i=1

x 100%

(18)

It can be seen that the relative difference is very small.tipos

This result tells us that if we use the geometric averagitegrfil less than 3%. This suggests that, in practice, we may also use
L[-] to smooth out the CBR distortion profile and determinthe FIR arithmetic averaging filter for distortion smoofpin
the distortion level of the current video frame, the averagehich is conceptually simpler and has lower implementation

encoding bit rate matches the target bit rate.

cost.
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cook ‘ ‘ ‘ ‘ ‘ ] of zerosp can be computed as follows,
1 1
iy pla) = e Z Do(x) + T Z Dy (z), (20)
Ejoo— |z|<g |z|<1.25¢q
% S 0 o 200 7o where K is the number of coefficients in the current video

frame. In SRC, when frame is encoded, we know the actual
encoding bit rateRs(n) and the percentage of zeros produced
® 1 by the encoderps(n). According to (19), to achieve the

1 encoding bit rate ofRr in CBR coding, the encoder needs
to generate the following percentage of zeros

IS

@©
T

b
T

Relative SRC bit rate error (%)
N

C‘0 5‘0 150 1,"":0 2(‘)0 250 300 RT
Frame cn)=1— —=——[1 - ps(n)]. 21
| | | C | po(n) =1 11 = ps(n)] (21)
Elagmg (B??)?cl))tlscl)?go(fn)s.Rc bit rate error: (A) picture varianceeach video Using the one-to-one mapping in (20), we can compute the
guantization parameteg: such that
plgo) = po(n). (22)

IV. CONSTRUCTION OF THECBR R-D RROFILE

In our SRC scheme, the video is encoded in a VBR fashitln?l other words, if the quantization parameter is used, the

with a smoothed picture quality profile. More specificallyet encoder should be able to achieve the CBR coding bit rate
video encoding is following the VBR R-D profile indicatedRT'
by the solid lines in Fig. 1. Note that the video coding is one-
pass. After a frame is encoded, what we can get is an RE> Computing the CBR Distortion
point[Rs(n), Ds(n)] on the VBR profile, indicating the actual ~ Using the linear rate model and VBR coding R-D statistics,
encoding bits and picture distortion. From (1), we can sag thwe can determine the encoder quantization parametehat
in order to implement our idea of SRC, we need the CBR R-i9 able to achieve the target bit rate in the CBR coding mode.
profile. This implies that we need to construct the CBR R-Brom ¢, we can compute the corresponding CBR distortion
profile from the VBR on€[Rs(n), Ds(n)]. To achieve such Dq(n) Again, let us now take the H.263 quantization for an
a goal, we introduce a linear rate model and explain how tegample. LetSy(n) and S; (n) be the sets of coefficients in
CBR picture distortion can be estimated with this model. Intra and Inter MB's in frame:, and Dy (n, z) and Dy (n, z)

be their distributions, respectively. For a given quartiizra

A Linear Rate Model parametey, the corresponding distortion is given by

We use the simple and accurate linear rate model developed P(mia) = Y Do(n,z)[z — Qo(,q)]*
in our previous work [8], [15] to estimate the CBR R-D points. z€So(n)
For the integrity of this paper, here, we give a brief revidw o + Z Do(n,2)[z — Qi (z,q)]?, (23)

the linear rate model. In conventional R-D studies [13],]]14

the encoding bit rate and distortion, denoted ®yand D, is .
g w where Qy(z,q) and Q1 (z,q) are the reconstruction levels of

considered as functions of the quantization paramgtée., . 1/ < )
R(q) and D(q), respectively. In [15], it has been observed in Intra and Inter quantization modes, respectively [6]eTh
' i BR distortionDc (n) is then given by

that the percentage of zeros among the quantized transfoq
coefficients, denoted by, plays a very important role in D¢ (n) = D(n,qc). (24)
transform coding. Note that monotonically increases with . ) ]

¢, which implies that there is a one-to-one mapping betwed}ith these estimated rate and distortion parameters, we can
them. Therefore, mathematicall, and D are also functions construct the CBR R-D profile. Note that there is no ap-
of p, denoted byR(p) and D(p), respectively. It has been prOX|mat|on_ in the distortion model in (_23), therefore, the
demonstrated both theoretically and experimentally tirat, reconstruction error of the CBR R-D profile comes only from
standard video coding systems, such as MPEG-2 [16], H.2#§ linear rate model. According to the extensive simufatio
[6], and MPEG-4 [7], there is a linear relationship betweeigsults in [15], the linear rate model in (19) is accuratehvai

z€S1(n)

the actual coding bit rat&® and p, i.e. relative estimation error less than 5%. In this work, acoayd
to our simulations on various video sequences, the relative
R(p)=0-(1—p), (19) reconstruction error of the CBR R-D profile is about 5-8%.

whered is a frame constant. The one-to-one mapping between
g and p can be computed from the distribution of the DCT
coefficients. Let us take the H.263 quantization for an examp o _
SupposeDy () and D, (z) are the distributions of the DCT A Buffer Constraints in VBR Video Streaming

coefficients in the intra and inter macroblocks (MBs). For a As we have indicated, using the linear rate model and the
given quantization parametey the corresponding percentagalistortion formula developed in Section 1V, we can construc

V. SRCWITH BUFFERCONSTRAINTS FORVIDEO
STREAMING
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the CBR R-D functions and perform the lowpass smoothirgrocess and waits for the bit stream to arrive, which may
of the distortion profile as discussed in Section Il. Notet thaause jerkiness in the video presentation. Therefore, m ou
there is no constraint on the rate profi&s(n)} during the SRC design, we need to avoid buffer overflow and underflow
distortion smoothing. In other wordg,Rs(n)} could have at both encoder and decoder sides. From (27) and (28), we
arbitrarily large fluctuation when the scene activity chesmig observe that

significantly. In video recording for offline local playback n+L n

such as movie compression, Personal Video Recording (PVR), By(n + L) = Z C(i) — Z Rs(i)

and TV program replay, the compressed video data is saved in j

a local storage. Large frame-to-frame rate fluctuation fiar t ntL n n

purpose of quality smoothness is allowed. The only constrai = ) CH)—[)_Rs(i)—>_ C(i)]

on {Rs(n)} is that sum of{ Rs(n)} is equal to the available i=n+1 i=1 i=1

storage space, which has been already guaranteed by our ntl

theoretical analysis in Section II. = ) C(i) = Bc(n). (29)
In real-time video streaming, each input frame is com- i=n+1

pressed by the video encoder. The compressed bit stre@his is the so-called mirror effect of buffer occupancy bedw
flows into an encoder buffer which is drained by the netwoitke encoder and decoder. This implies that we only need to
channel. After traveling through the network transmissiozontrol the encoder buffer.

channel, the bit stream arrives at a decoder buffer. Theovide

decoder fetches the bit stream, decodes and displays the viB. Maximum Buffer Sze in SRC

frame. In such areal-time system, the video server (or &god |, |ive video streaming, the available network transmissio
and receiver operates in a synchronized fashion. The erpgtec( ) is often varying due to other network traffic [9]. We

to-end delay, or the overall travel time of each video frameyn often set the encoder bit rate targt to be the average
between the moment of its entry into the encoder and its
work transmission rate. In other words, we EIC( ) =

display time at the receiver, needs to be a constant, denotéd =

by A. In general, we have nRp. From (9) and (27), we have

A= Aenc + Aeb + At + Adec + Adba (25) B, (n) = Z RS Z C (30)
where A, and A, are the frame encoding and decoding
time; A., and Ay, are the encoder and decoder buffer delays, [ -‘
and A, represents the network transmission time [9]. In video = [10g2 o Z ajlog, o®(i — j) J
streaming, especially one-way streaming, such as video-on

demand, the buffer delays are significantly larger than the 1M n
frame encoding, decoding and network transmission time. = 5203 (Z [log, o® (i) — log, o (Z—J)]>
Therefore, the end-to-end delay is mainly affected by the J=1 =1
buffer delays, which are determined by the encoder and 1M il ) )
decoder buffer sizes, denoted by. and IW,, respectively. 3 Zfl] (Z log, 0°(n — k) —log, o (1)]> :
Let =1 _

L= M (26) Here we assumivg, o 2(i) = log, 0*(1) for i < 1. Note that

T o’ (i )} is bounded, and there exists a const@nsuch that
where 7 is the frame interval. LetC'(i) be the channel ‘10g 02(i)| < ©. Therefore,

transmission rate at frame time The encoder and decoder

M
. . 1 .
buffer occupancies at frame time denoted byB.(n) and Bo(n)| < =0 Z“J’ . (31)
By(n) are given by
Be(n) = iRs(i) - EH:C(Z') (27) et M
i=1 i=1 Winae =0 Y a; - j. (32)
n n—L j=1
i), wh i > L
Ba(n) = Z; C) - Z; Rs(i), when i > (28) It can be seen thalW,,., is the maximum encoder buffer
2 . size that is needed for video streaming with SRC, because we
> C(i), when i < L. '
i=1 can let the encoder buffer accumulate bits to the bufferlleve

When B,(n) > W, or By(n) > W4, the buffer overflows of m‘” during the initial buffering stage and then start the

W
and the additional video data will be dropped. The dropp twofrk tranhsmlssmg. Fro_r|r|1 (31), we knaw. (n )b|%f -
data will cause decoding failure or picture reconstrucemor | nerefore, the encoder will never experience buiter overflo
at the receiving end. Whei. (n) < 0 the encoder buffer and underflow. If an equally weighted geometric averagmg

underflows and the network channel is under utilized sméjger is used in distortion smoothing, in other words,= M’

there are no bits to transmit. Whey(n) < 0, the decoder V€ have M+1

buffer underflows. The decoder has to pause the decoding Winae = —5—06, (33)
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which suggests that larger smoothing windaW)(and larger proposed SRC algorithm has the following major steps:

variation in scene activitytf) require a larger encoder buffer. Step 1 Initialization. The first M frames of the video se-

The above analysis of maximum buffer size can also be applied quence are encoded in CBR mode. For each frame, the

to the decoder buffer. coding distortion is stored gD (n)}. The following
SRC procedure then starts from framé + 1.

C. Adaptive Buffer Regulation for SRC Step 2 Determine the target distortion level. Suppose the

In Section V-B, we have derived the maximum encoder and current frame number is. Its target distortion level
decoder buffer size for video streaming with SRC. From (33) Dg(n) is obtained with (1). After motion compen-
we can see that the buffer size linearly increases with the sation and DCT, the distribution information of the
smoothing window size. In practice, the acceptable buffe,s DCT coefficients are collected. Using the formula in
or buffer delay, is determined by the application requirete (23), we can find the quantization parameter, denoted
which is often much smaller than the maximum buffer size by g¢s, such thatDs(n) = D(n;qs).
obtained from theoretical analysis. In this case, we need Step 3 Encoding. ¢s is used to quantize the DCT coefficients.
develop a buffer regulation scheme which guarantees meithe After entropy encoding, the actual bit rate is recorded
buffer overflow nor buffer underflow occurs. Note that buffer asRs(n).
regulation and quality smoothing are two conflicting fastor Step 4 Estimate CBR distortion. Using the method discussed
In robust buffer regulation, the encoding bit rate has to bé w in Sections IV-A and IV-B, specifically, (21)-(24), we
controlled within some range specified by the buffer overflow can estimate the picture distortion in CBR coding
and underflow criteria, in spite of dramatic scene change and mode D¢ (n).

quality variation. However, in quality smoothing rate amt  Step 5 Loop Repeat Steps 2 to 4 until all frames are encoded.

the encoder has to maintain a smoothed quality change frgnaan pe seen that, in the proposed SRC algorithm, the major
frame to frame, in spite of large bit rate fluctuation. In thigomputation is just to collect the distributions of the DGRt
section, we propose a buffer-constrained SRC scheme whighents The rest of the algorithm involves only a few number
finds a good trade-off between buffer regulation and qualigt 5qgition, multiplication, and power operations. Theref

smoothing. the algorithm has very low computational complexity and
The proposed robust buffer control operates as fo”OWFﬁﬁplementation cost.

During the initial stage of transmission, let the bits in the
buffer accumulate to a safe or desired buffer level, denbyed VI

Wy. For example, one can s&k, to be 0.5 where W is h impl dth q i hi
the buffer size. Once the buffer level, denotediby reaches We have implemented the proposed quality smoothing rate

W, the network channel starts to drain the encoder buffer aﬁantrol algorlthmlln MPE,G'4 V|_deo encodmg [12], and tes'Fed
transmit the bits. Wher’ is above or below the safe level''S performance in real-time V'd69 recording and .streamlng
W,, the encoder has to decrease or increase the coding ‘¥ UISEd sdeveral TI\I/ new?], movie, aT1d sports cllpz for tr;]e
rate according to some policy. Obviously this policy neesls fest. In order to allow other researchers to reproduce the
consider how “urgent” the current buffer situation is and aExperimental results p_resented in this baper, we also used
accordingly by setting the rate change amount and speed.E fi standard MPEG video sequences, '”C!,Uofjgg Footbg!,l '
addition, this policy needs to negotiate with the SRC modul oastguar

glower garden”, “Table tennis”, “Foreman”,
and try to maintain the video presentation quality as smoofid NBA’, all short video clips. To demonstrate the per-
as possible. LeW,., = W — Wy. If W,.., > 0, we need to

formance of the SRC algorithm more efficiently, we cascade
adjust the encoder to reduce the output bitsiBy.s during these short video ghps t(l)l ghenerate (_)dne long v!deo chp_ 0D120
the next short period of time such that the buffer level goé@mes (40 seconds). All the test videos are in CIF size (352
back to the desired level. Specifically, we set the “shorioger

x 288) at 30 fps (frame per second). Only | and P frames are
of time” to be 0.5M (after being rounded to integer) frameéJsed, and the GOP size is 60In the following experiments,
where M is the SRC window size. Let

we use the TM5 bit allocation algorithm [16] for performance
R}, =Ry —

. EXPERIMENTAL RESULTS

W comparison. TM5 uses an efficient frame-level bit allogatio
0 57;\2 (34) algorithm to find the target bit rate for each video frame such

: . o that frame-to-frame quality change is smooth and the oleral
The Ry in (21) is replaced byr/,.. The quantization parameter L A ; )
) . . . ality is optimized. Three algorithms to be evaluated are:

gc and the CBR distortion leveD obtained withR’. are qualily 1S optimiz gorl vau

th d for SRC. Thi dure implies that th d TM5 bit allocation which is labeled as “without SRC”; the
en used for - [NIs procedure implies that the enco e'b‘%posed SRC algorithm which is labeled as “with SRC”;
trying to producdV,.., less bits during the next5M frames.

Si the buff trol is desianed it ted tazd the buffer-constrained SRC algorithm which is labeled
ince the buffer control is designed as an integrated part of .. 0o SRC”.

the SI;}C;Ig_oilthmaf[hte ?_ncoderf\_/lwll Stt':: kt)r? alble o maf|_nhm_n In Fig. 3, we plot the PSNR (peak signal-to-noise ratio)
smoothed picture distortion profile wi e lowpass fikeri values of each frame encoded without SRC (dotted line) and

mechanism. with SRC (solid line) for the long standard video clip. It dam
VI. ALGORITHM seen that, with the SRC algorithm, the frame-to-frame ¢yali

In thiS. section, we Summa_rize the algqrithm for SR_C anduj, case of sudden scene changes, I-frames could be used kydhder,
analyze its computation and implementation complexitye Thand therefore the actual GOP size could be dynamic and lasséh frames.
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TABLE |

variation has been significantly reduced, and the outpwgorid
COMPARISON OF VIDEO QUALITY VARIATION.

has a smoothed quality profile. Fig. 4 plots the encoding bits

of each frame. As expected, the SRC algorithm has a large Video Quality variationS({D(n)})
variation in bit rate. As mentioned before, this is allowed i Clips | Without SRC | With SRC | Constrained SRQ
many offline and real-time video recording applications so |Standard clip 3.23 0.33 0.37

) s ! TV news 459 0.47 0.54
long as the total video data storage size is met, wh|_ch has—wovie cip 389 0.39 0.42
been guaranteed by our theoretical analysis in Section Ill.[ TV sports clip 5.10 0.55 0.60

However, in real-time video streaming, the buffer size lodsat
limited and the buffer delay has to be kept as small as passibl

Using the constrained SRC algorithm discussed in Section § smooth out even larger scale quality fluctuation at the cos
C, we can achieve both robust buffer regulation and qualigf jonger buffer delay. However, from the theoretical asily
smoothing. Fig. 5 plots the encoder buffer level for a buffp section 111, we cannot increase the window size to be too

size of 30 frames, which corresponds to 1 second of delayjdtge otherwise, the bit rate matching will be a problemisTh
can be seen that the buffer control is very robust withouebuf js hecause in (11), it is required that should be sufficiently

overflow and underflow problems. Also, the SRC algorithm i%rge when compared to the window si3é. According to
trying to take full advantage of the buffer resource to maxen ; simulation experience, suppose the length of the video

the video presentation quality. Fig. 6 plots the PSNR Val“%équence ig", a good choice of the window size should be
of each frame encoded without SRC and with the constraingdg thank.

SRC algorithm. We can see that the constrained SRC algorithrrburing the past few years, a number of algorithms have
is still able to maintain smoothed video quality across ®ampegen developed for constant-quality video encoding and-com
while satisfying the buffer constraint. Figs. 7-10 show thgyynication [2], [4], [18]. In non-realtime offline video eo-
results for a typical TV news clip and demonstrate a similgfg, two-pass bit allocation and rate control schemes can be
performance of the proposed SRC algorithm. used [2]. In real-time video encoding, the quality smooghin

To evaluate the distortion smoothing performance Mofgoplem becomes more challenging because the encoder has
systematically, we use the following measure for video yal o match its average bit rate to the available bandwidth or

variation [1], storage space. The quality smoothing algorithms propased i
1 N [4], [18], unlike the geometric low-pass filtering in our SRC

S({D(n)}) = N1 Z |D(n) — D(n —1)|, (35) algorithm, do not provide an analytic model-level mechamis

n=1 to guarantee the bit rate target. The major contributiorhisf t

where{D(n)} is the distortion profile of the encoded videoWork is the development of a quality smoothing framework
and NV is the length of the video clip. Table I lists the value$'sing low-pass filtering of R-D functions, which achieves
of S({D(n)}) for the above two test videos, as well as fofluality smoothing and bit rate matching simultaneously.
several other video clips, such as movie and TV sports clips.
Here, the picture distortioD (n) refers to the mean square VIII. ConcLusioN

error between the original and the reconstructed pictdres We have introduced the concept of low-pass filtering of rate-
We can see that SRC has dramatically reduced the pictgigtortion (R-D) functions and developed the SRC algorithm
quality variation in the encoded videos, by up to 10 time$or real-time video recording and streaming applicati@ath
With the buffer constraint, the quality variation measuges h the theoretical analysis and experimental results havarrsho
only been increased slightly. In our simulations, we obser¥hat the SRC algorithm is able to meet the target bit rate
that the SRC algorithm doesn’t improve the average PSNRRcurately while maintaining a smoothed video presentatio
of the video sequence, and maintains similar average PSNElity. For real-time network video streaming, we have als
values as the video encoding without SRC. This is becauseiegrated the buffer control into the SRC framework. Our
the low-pass filtering nature of the SRC algorithm. experimental results show that the robust buffer reguiatin

be achieved with negligible degradation in quality smawnghi
performance of the SRC algorithm. The proposed SRC algo-
rithm has direct application in quality control and perfamae

From the experimental results presented in the above, Wstimization in real-time video encoding and streamingesys
can see that using the geometric lowpass filtering of %‘esign.

D functions, the encoder is able to smooth out the local
picture quality fluctuation while meeting the target biterat ACKNOWLEDGMENT

automatically. However, the long-term quality variatiolills ¢ 5,thors would like to thank the anonymous reviewers
exists. This is inevitable in real-time video processingeveh ¢ io\~1uable comments and suggestions
the access of global statistics is not available. Certainly '

can increase the window size of the geometric lowpass filter
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