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Abstract—Global motion estimation (GME) is the enabling
step for many important video exploitation tasks. In this work,
we focus on indirect GME methods which have low computa-
tional complexity. Typically, an indirect GME method has two
major steps. The first step is to find point correspondence between
frames through local motion search or feature matching. Then, the
second step determines global motion parameters using optimal
model fitting, such as least mean-squared error (LMSE) fitting or
RANSAC. However, due to image noise and inherent ambiguity
in point correspondence, local motion estimation often suffers
from relatively large errors, which degrade the performance
and reliability of GME. In this work, we propose a method to
characterize the reliability of local motion estimation results and
use this reliability measure as a weighting factor to determine the
importance level of each local motion estimation result during
global motion estimation. Our simulation results demonstrate that
the proposed scheme is able to significantly improve the accuracy
and robustness of global motion estimation with a very small
computational overhead.

Index Terms—Motion estimation, reliability analysis, RANSAC,
video registration.

1. INTRODUCTION

LOBAL motion estimation (GME) is the enabling step
G for many important motion imagery data exploitation
tasks, including video registration, moving object detection,
tracking, geo-location, and scene understanding [1], [2]. Global
camera motion estimation and compensation has also been
used in video coding to stabilize images and improve coding
efficiency [3], [7].

In a video sequence which experiences global camera motion,
two video frames are related by a perspective transform. More
specifically, let (x,y) be the pixel position of a point object in
frame I,,, where n is the frame index. With global camera mo-
tion, this point object moves to a new pixel location in frame
1,41, denoted by (X,Y"). The relationship between (x,y) and
(X,Y) is given by the following global motion equations:
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The objective of global camera motion estimation is to deter-
mine the camera model parameters {a, b, ¢, d, e, f, g, h}.

There are two basic approaches to global motion estimation
(GME), direct and indirect GME. Direct GME methods deter-
mine the global motion parameters by minimizing the predic-
tion error between corresponding pair of pixels in two frames
using gradient search or other iterative methods [4]-[6]. For
example, in [4], Dufaux and Konrad compute a coarse esti-
mate of the translation component by an -step matching, and
then iterate a gradient descent to obtain and refine the eight
parameters of a perspective model. Realizing that global mo-
tion estimation based on gradient search is too computationally
intensive [6], Keller and Averbuch [5] propose to perform the
estimation only on a small selective subset of image pixels
(called dominant pixels) using an interpolation-free compu-
tation of global motion. In [3], Su et al. attempt to mini-
mize the fitting error between input motion vectors and mo-
tion vectors generated by the estimated motion model using
a Newton-Raphson method. Indirect GME methods typically
consist of two stages. In the first stage, local motion esti-
mation is performed to find point or feature correspondence
between two neighboring frames [2], [8]. The second stage
determines the global camera motion parameters based on this
local point correspondence using model-based fitting [7] or
consensus methods (e.g., RANSAC) [9], [10].

Direct GME methods often have high computational com-
plexity. This is because iterative optimization and frequent
image warping needed in direction GME are computationally
intensive operations [6]. Indirect GME approaches have rela-
tively low computational complexity and implementation cost.
It has been extensively used in various global camera motion
estimation, image stabilization, and registration schemes [2].
However, indirect GME approaches often suffer from relatively
large estimation errors (or robustness) because the local motion
estimation in their first stage is often unreliable due to the
inherent ambiguity in local motion matching [10].

To address this large error and unreliability issue in local
motion matching, indirect GME approaches often resort to
optimal model fitting or consensus methods, such as LMSE
(least mean squared error) or RANSAC. Here, they assume
that a majority of local matching results are close to their
true values and they differ by some additive noise. In this
case, noise is suppressed during model fitting and outliers
are removed by consensus. However, this assumption may
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Fig. 1. Aerial image of a building.

not hold in practice. For example, when the video scene is
lack of distinctive image features, a majority of local matching
results are noisy and unreliable. In this case, the model fitting
and consensus approaches may lead to incorrect estimation
of global motion parameters. To see this, let us consider the
example shown in Fig. 1, an aerial video of a building. If we
perform block-based local motion estimation on this video,
blocks in these flat image regions and on straight edges will be
matched to many blocks in its neighborhood. Therefore, their
local motion matching results will be noisy and unreliable.
Only those blocks with distinctive features (such as corners and
texture patterns) can have reliable local matching. However,
the fraction of this type of blocks with reliable local motion
estimation is very small. If we apply conventional model fitting
and consensus methods, such as LMSE or RANSAC, on these
local motion matching results, we will obtain incorrect global
motion parameters.

Besides this accuracy and reliability issue, existing methods
based on model fitting and consensus treat all local motion
matching results to be equally important and do not consider
the specific characteristics of each local motion matching. As
we know, images are nonstationary data and image charac-
teristics may change dramatically from one region to another.
Local motion matching within different image regions may
have different level of accuracy and reliability. Therefore, there
is a need to develop a model to characterize the local motion
matching process and measure its reliability so as to modu-
late their importance levels during the overall global motion
estimation.

To address the above issues, we propose a method to char-
acterize the reliability of local motion estimation results. This
reliability measure is then used as a weighting factor to deter-
mine the importance level of each local motion estimation result
during global camera motion estimation. Our simulation results
demonstrate that the proposed reliability analysis and weighting
scheme significantly improves the GME performance at a very
small computational cost.

The rest of the paper is organized as follows. The reliability
analysis of local motion matching is presented in Section II. In
Section III, we apply the reliability analysis results to improve
the accuracy and robustness of global motion estimation. Exper-
imental results are presented in Section IV. Section V concludes
the paper.
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Fig. 2. Illustration of reliability.

II. RELIABILITY ANALYSIS OF LOCAL MOTION MATCHING

In this section, we develop a method to characterize the reli-
ability of local motion estimation. Let us consider block-based
local motion matching and let { B™|1 < m < M} be a set of
image blocks. For each block, during local motion estimation,
we find L best matches in the previous frame, denoted by

A={(V"df)lL<j<L}

where V™ = (&7, 9]") represents the corresponding motion
vector and the dj" corresponding matching distance. In this
work, we use SAD (sum of absolute difference) as our distance
metric. Let V™ be the motion vector determined by the local
motion estimation which has the minimum matching distance.
Note that V™ might not be the true motion vector due to image
noise and inherent ambiguity in local motion matching. We
define

d” = mind}",

! " = mean (d;n) .

Let
dgt = d™ + o - (d7 — d7)

where « is a threshold value between 0 and 1. By default, we
set « = 0.1. Here, « can be considered as the level of image
noise and degree of ambiguity. Fig. 2 shows two cases of local
motion estimation within a neighborhood where a minimum dis-
tance is found. In case (A), the distance at the minimum location
is distinctively smaller than those in its neighborhood. While in
case (B), the minimum distance is not distinctively smaller or
there might be multiple minimum locations. This implies that
this minimum location or the estimated motion vector is not
reliable because there are many other locations or motion vec-
tors with similar matching performance. For the image in Fig. 1,
those blocks with corner or texture patterns belong to case (A)
while those blocks in flat image regions belong to case (B).
We now define

A=V di) |dy < di'}

which is a set of motion vectors whose distance measurements
are very close to the minimum d™. If « is properly chosen or
matches the image noise level, then the true motion vector will
fall in the set A_ - a also determines the computational cost due
to the number of motion candidates. Smaller alpha trades off
less computational cost. Nevertheless, large a is redundant to
characterize the motion field with drastic electronic noise. Let’s
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Fig. 3. Reliability analysis results of local motion estimation.

relabel the elements in by I'_ index k,1 < k < k,, < L. We
define the reliability measure as

1
Y= r— . (3)
1+n2k=1||vk =V

Here, 7 is a positive penalty rate and ||-|| represents the Lo-norm.
We can see that 0 < v < 1. The major motivation for the
proposed reliability formulation in (3) is as follows: 1) K, is
total number of local motion matches whose distance is very
close to the minimum one. A smaller value of K, implies a
higher probability or less ambiguity for be the true optimum
motion vector, even with the existence of image noise and 2)
if the variance of the motion vectors in set A_ is small, these
motion vectors are close to each other, which means that the
estimated motion V™ will be close to the true value. Therefore,
the overall reliability is also high.

Fig. 3(b) shows the reliability analysis results of local motion
estimation on the image in Fig. 3(a). We can see that the blocks
in the top-right region are almost flat and their reliability values
are very small. Those blocks in the center-left region have very
high reliability because they do have distinctive image features.
It is interesting to see that blocks in the parking lot (top-center)
area have medium reliability because they look similar to each
other and cause some ambiguity during local motion estimation.

III. GLOBAL MOTION ESTIMATION BASED ON
RELIABILITY ANALYSIS

The reliability measure characterizes how accurate and reli-
able each block motion estimation is. In this work, we use this
reliability as a weighting factor to modulate the importance level
of each block during global motion parameter estimation. Let
{B™|1 < m < M} be the set of image blocks in frame 7,,. Let
(Zm, yn) be the center position of block B,,. We apply local
motion estimation to each block and find the correspondence of
(Zm, Ym) in frame l,, 11 which is denoted by (X,,, Y,,). Ac-
cording to the global motion equation in (2), we have
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It can be rewritten into the following form:

Pr-G=Qm “
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Fig. 4. Example frames of test videos.

where
po_|Tm Ym 1 0 0 0 —xm- X —Ym-Xm
G =la,b,¢c,d,e, f,g,h]" (6)
Qm = [Xon  Yiul'. @)

In this work, we use a least mean-square error (LMSE) proce-
dure to determine the global motion parameters G which aims
to minimize the following square error:

M
E= Z_l[PmG — Qumlt - [PnG — Qul. ®)

Note that the reliability of block B™ is ™. If we use as a weight,
the square error becomes

M
E=3 7"[PnG = Qu]" [PuG = Qu].
m=1
Write P, 0,
po| ] =] (10)
Py Qu
Define
W = diag{y",7", 7% ~%, ... 4M, M} (11)
The solution to the LMSE problem in (9) is given by
G = (P'WP) 'P'WQ. (12)

It can be seen that the computational overhead of the proposed
reliability analysis is very small. The major computation lies
in determining the set A_, which has very low computational
complexity.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
GME algorithm based on reliability analysis. Fig. 4 shows the
example frames of our eight test airborne surveillance videos, all
at the resolution of 640 x 480 with 30 frames per second (fps).
We use the average Euclidean distance (in pixels) between orig-
inal and warped pixels [2] to measure accuracy of global mo-
tion estimation. We compare our method with the LMSE-based
method in [7] and the RANSAC-based global motion estimation
method in [10]. Fig. 5 shows the average registration errors (in
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Fig. 5. Average registration errors in pixels of each video frame.

TABLE I
PERFORMANCE COMPARISON WITH RANSAC-BASED GME METHOD

Test Average Registration Errors Variance of Registration
Videos (pixels) Errors
LMSE | RANSA This LMSE | RANSA This
C Work C Work
1 347 1.04 0.85 0.878 0.077 0.050
2 0.86 0.56 0.53 0.003 0.010 0.006
3 1.02 0.56 0.53 0.006 0.010 0.057
4 1.10 0.55 0.52 0.040 0.010 0.007
5 1.09 0.63 0.53 0.037 0.016 0.011
6 1.42 0.63 0.54 0.051 0.039 0.008
7 0.99 0.51 0.50 0.034 0.010 0.009
8 0.70 0.44 0.41 0.029 0.036 0.003

pixels) of each frame from Videos 1 and 5 when the RANSAC
method and ours are applied. Table I shows the average registra-
tion errors for all eight test videos when these three algorithms
are applied. It also shows the variance of registration errors. We
can see that, compared to the LMSE and RANSAC-based algo-
rithms, the proposed GME scheme achieve significantly smaller
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registration errors. The major performance improvement comes
from the reliability analysis which effectively characterizes the
local motion search process of image blocks and models their
importance levels in global motion estimation.

V. CONCLUSION

In this work, we have developed a simple yet efficient method
to characterize the reliability of local motion estimation results
and use this reliability measure as a weighting factor to deter-
mine the importance level of each local motion estimation result
during global camera motion estimation. Our simulation results
demonstrate that the proposed scheme is able to significantly
improve the accuracy and robustness of global motion estima-
tion with a very small computational overhead.
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