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Abstract—We propose a robust and accurate method for
multi-target geo-localization from airborne video. The difference
between our approach and other approaches in the literature
is fourfold: 1) it does not require gimbal control of the camera
or any particular path planning control for the UAV; 2) it can
instantaneously geolocate multiple targets even if they were not
previously observed by the camera; 3) it does not require a geo-
referenced terrain database nor an altimeter for estimating the
UAV’s and the target’s altitudes; and 4) it requires only one
camera, but it employs a multi-stereo technique using the image
sequence for increased accuracy in target geo-location. The only
requirements for our approach are: that the intrinsic parameters
of the camera be known; that the on board camera be equipped
with global positioning system (GPS) and inertial measurement
unit (IMU); and that enough feature points can be extracted from
the surroundings of the target. Since the first two constraints are
easily satisfied, the only real requirement is regarding the feature
points. However, as we explain later, this last constraint can also
be alleviated if the ground is approximately planar. The result
is a method that can reach a few meters of accuracy for an
UAV flying at a few hundred meters above the ground. Such
performance is demonstrated by computer simulation, in-scale
data using a model city, and real airborne video with ground
truth.

Keywords: Unmanned aerial vehicle, geo-location, air-
borne video, multiple target.:

I. INTRODUCTION

Current research on target geo-location using passive sen-
sors – e.g. monocular airborne camera – has achieved re-
markable results [14], [3], [13], [4], [17], [16], [7]. In some
cases, the uncertainty in the estimation is under 10 meters,
with the UAV flying at an altitude of a few hundred meters.
Unfortunately, these same achievements have been possible
only by imposing some severe constraints to the systems.

In [16], [7], for example, the proposed system could track
a moving target on the ground while controlling the vehicle
and its gimbal camera. At the same time, the system could
estimate the target geo-location within just 5m, when flying at
an altitude of over 300m. However, such results were possible
only if the velocity – magnitude and heading – of the target
was constant. Also, in order to estimate the target altitude
accurately, this and other systems in the literature had to
rely on an equally accurate geo-referenced terrain database, a
Geospatial Information System (GIS), or the Perspective View
Nascent Technologies system (PVNT) [18].

In another system found in the literature [14], the authors
proposed the use of a Recursive Least Squares filter to reduce
the error in geo-location. However, this type of filter imposes
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an even stronger constraint on the target: it had to remain
stationary. Still, in the same work, the authors provided a quite
useful analysis of the error, they determined its main sources
and presented a study on the sensitivity and propagation of
uncertainties in their method. Despite that, the errors reported
were still quite large – 15m for a UAV at 60m high. Later, in a
continuation of their previous work, [3], the authors extended
even further their analysis of the error, they identified the
sources of zero-mean noise versus constant bias, and derived
an expression for the optimum altitude of the vehicle as a
function of the path radius and the pixel area of the target
object on the image plane. All that reduced the error to less
than 10m at an optimum altitude slightly lower than 100m.
However, the target still had to be stationary and the error
in instantaneous estimates, i.e. without the RLS filter, could
reach more than 40m, especially for non-optimum altitudes of
the UAV.

In most cases, multiple frames were also required: whether
they were used to estimate the target velocity [14], to reduce
error using a RLS filter [3], Kalman filter [13], or to guarantee
convergence and controllability of the gimbal cameras or the
vehicle itself [16], [7]. In other cases, [15], even a specific path
planning strategy for the UAV had to be outlined in order for
the system to achieve good results.

In this work, we propose an efficient and accurate method
to calculate the geo-location of multiple targets. Our method
does away with most of the above constraints (e.g. elevation
maps, stationary targets, etc.), while it provides a robust
and instantaneous estimate of the target geo-location. By not
employing camera gimbal control – where only one object
can occupy the center of the image – we can handle multiple
targets at the same time. Also, as in [14], we provide an
analysis of the error in our method and a similar discussion
regarding sensitivity and error propagation. Finally, to avoid
the need for geo-referenced terrain databases or expensive
altimeters, which can be impractical due to limitations in
weight and power consumptions, we propose an algorithm to
estimate the altitude of the UAV based on the detection of
multiple feature points around each target object. At the end
of the paper, we present the results of our method in three
different testing scenarios: simulation, in-scale test using a
model city, and real airborne data with ground truth.

II. PROPOSED METHOD

As Figure 1 illustrates, our method can be divided into three
major steps, which are executed concurrently: object tracking;
target geo-location; and altitude estimation. In the first step,
object tracking, multiple objects can be tracked simultaneously
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Figure 1. Modules in our framework

using a combination of differential optical flow and the KLT
feature tracker [12], [2]. Due to space limitation, we will not
describe this step of our framework. It should suffice to say
that for each object detected and tracked by this algorithm,
their pixel coordinates are made available to the other modules
of the system.

In the second step, target geo-location, we start the discus-
sion assuming that the altitude of the UAV with respect to
the target is known. As in most systems today, [3], [14], [16],
[7], [13], this information is required in order to calculate
the distance and angle between the camera and the target.
However, unlike those same systems, our method does not
require the assumption of a flat terrain [13], a geo-registered
terrain map [16], [7], or any other constraint on how the target
is allowed move [3], [14].

In the final step of the method, that same altitude that
was assumed to be known in the second step is actually
estimated and fed back into the previous step. Since each
tracked object may be on a different ground plane, various
estimates are in fact computed: each one representing the
height of the camera/UAV with respect to an specific tracked
object. Together with the pixel coordinates of the targets, this
information is also made available to the other modules of
the system. Without loss of generality, in the next sections
we will explain the method assuming that one single object is
being tracked. The extension of the method for multiple targets
can be easily inferred from such explanation. As we will also
explain later, the only constraint for the method to work is
the existence of enough feature points around the object –
i.e. on the same ground plane surrounding the object. If that
constraint is not satisfied, the system can assume that all targets
are on the same plane and estimate a single altitude for all
targets. But before we explain our method in more detail, we
need first to establish some notations.

A. Coordinate System Convention

In order to determine the geo-location of an object, we must
assume the existence of a world reference frame. Conceptually,
however, it is not really important what reference frame is
used. That is, let the coordinate frames with subscripts I,
C, and U represent, respectively, the inertial (or world), the
camera, and the UAV coordinate frames. Now, if the 3D pose
(position and orientation) of an object can be determined
with respect to, say, the camera coordinate frame, then the
same object pose with respect to the inertial reference frame
(that is, its geo-location) can be easily derived by a simple
transformation from the camera coordinate frame to the inertial
coordinate frame – which is given by the GPS/IMU data. In
other words, since the relative pose of the camera frame with
respect to inertial frame can be expressed by a homogeneous
transformation matrix:

IHC =
[ IRC

ITC
01×3 1

]
(1)

where IRC represents the 3x3 rotational component, and ITC
is the 3x1 translational vector. Then, the pose of an object
with respect to the camera coordinate frame can be converted
into its pose with respect to the inertial frame by a simple
multiplication:

IP = IHC ∗CP

Actually, the transformation from the camera frame into the
inertial frame can be further specified by

IHC = IHU ∗U HC

where U is the UAV coordinate frame standing between the
camera and the inertial frames.

Once again, the first transformation, IHU , represents the
pose of UAV coordinate frame, and it can be obtained from
the GPS/IMU on-board the UAV. Similarly, the second matrix,
U HC, represents the pose of the camera inside the UAV, which
is some times controlled by a gimbal device. However, whether
a gimbal device is present or not, the challenges in determining
the above homogeneous transformations are quite similar to
those known in the robotics circles by hand-eye and head-eye
calibration. In this paper, we will assume that such calibration
was carried out by an accurate procedure similar to the one
developed in [5], [9].

B. Target Geo-Location

The first step of our algorithm consists of estimating the
target geo-location using a single image. This process becomes
quite straightforward, if we assume that the altitude (or height)
of the camera with respect to the target is known. Figure
2 illustrates this idea, which we further detail next. Unless
specified otherwise, all 3D coordinates below (points P and
p) are with respect to the inertial coordinate frame. Also, as
we mentioned earlier, the transformation between camera and
inertial coordinate frames can be achieved by a simple matrix
multiplication using IHC (or its inverse CHI).
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Figure 2. Estimation of the target pose from a single image.

Let us call Pc the focal point of the camera – which is
also the origin of the camera coordinate frame. Since the 3D
coordinate of this point is obtained from the camera hand-eye
calibration and the GPS/IMU readings, we can calculate the
homogeneous coordinates of the closest point on the ground
Pg by simply adding h to the z-coordinate of Pc, i.e. Pg =
Pc +[0,0,h,0]t .

Also, the homogeneous coordinate of a point in space and
its projected pixel coordinates are related by the following
expression [8]:

 s.u
s.v
s

= Aint ∗CHI ∗


Ix
Iy
Iz
1

= Aint ∗


Cx
Cy
Cz
1

 (2)

where, CHI is usually referred to as the extrinsic parameters
of the camera, while Aint contains its intrinsic parameters and
is given by:

Aint =

 αu γ u0 0
0 αv v0 0
0 0 1 0

 (3)

Where, αu and αv are associated with the focal length of
the lens; γ is the axes skew factor; and (u0,v0) represents the
principle point in the image coordinate frame. Now, since Pt ,
the target point, is on the same plane as Pg, its z coordinate
with respect to the inertial coordinate frame is also h. Also,
since the point pt represents the target as observed by the
camera, its pixel coordinates are provided by the tracking
algorithm. Using eq. (2) and the information above, we can
solve for the remaining two coordinates of Pt with respect to
the inertial frame, i.e. the Ixt and Iyt coordinates. In order to
do that, let:

C = Aint ∗C HI

then,

pt = C ∗Pt

or

 sut
svt
s

 = C ∗


Ix
Iy
h
1


which, after multiplying out, becomes,

[
(uc31− c11) (uc32− c12)
(vc31− c21) (vc32− c22)

][ Ix
Iy

]
=

=
[

hc13 + c14−uhc33−uc34
hc23 + c24−hvc33− vc34

]
and the solution for Ixt and Iyt is given by:

[ Ix
Iy

]
=

[
(uc31− c11) (uc32− c12)
(vc31− c21) (vc32− c22)

]−1

∗

∗
[

hc13 + c14−uhc33−uc34
hc23 + c24−hvc33− vc34

]
In summary, Pt is given by

[ Ix, Iy, h
]t as above.

C. Altitude Estimation

In Section II-B, we assumed that the height of the UAV
– and therefore, the height of the camera – was known.
In fact, many systems reported to date ([14], [13]) use an
altimeter of some sort (passive or active) to provide this
information. However, passive altimeters – relying for example
on barometric sensor – are neither accurate nor reliable.
Usually, they provide 20ft accuracy; they require adjustment
before taking off; and their readings vary considerably under
different weather conditions [1]. On the other hand, active
sensors consume more power from the UAV and can be
easily detected. Therefore, in this work we propose the use
of computer vision to estimate the altitude of the UAV.

In order to estimate the altitude of the UAV, we assume that
at every instant t, the system stores an image frame as well as
the current pose of the UAV and camera – that is, GPS/INS
data and gimbal control, if one is present. Those images are
processed by a feature detection algorithm (SIFT) [11][10]
and salient feature points Ps are extracted from the images.
Whenever the altitude of the UAV needs to be estimated, a
pair of images taken at the current instant t and at a previous
instant t−d are selected for the altitude estimation algorithm.

First, salient points from the two images are matched and
the 3D coordinates, XYZ, of these points are reconstructed.
Figure 3 illustrates this idea. Points in the vicinity of the
target are regarded as being on the same plane, and therefore,
having the same height as the target. Those points are used to
estimate the altitude of the UAV with respect to that particular
target, and consequently, the geo-location of the same target
as explained in sec. II-B.
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Figure 3. Overlap of the camera FOVs at two time instants

As it is well known [8], the longer the baseline (the
distance between stereo cameras) the more accurate is the 3D
reconstruction from the stereo vision. However, in our case,
since the longer the baseline, the more likely for a feature
point to disappear from the second frames, we must select a
size of baseline that maximizes both constraints. That is: it
maximizes the accuracy in 3D reconstruction, while it keeps
a reasonably large overlap between two frames (Figure 3).

In order to find the best compromise between these two
constraints, we tested the performance of the localization by
changing the time interval d between the pair of images,
and therefore, changing the length of the baseline. Figure 4
shows the error in reconstruction as a function of the baseline.
The test was performed assuming typical uncertainties of the
sensors, i.e. 1 meter in the GPS reading, 1 degree in IMU
reading, and 5 pixels in target detection and tracking. In the
next section, we will explain these uncertainties in more detail.

At this point, the reader may be wondering why the system
does not use the same stereo-vision approach to directly
calculate the position of the target. In many applications
involving airborne surveillance, target detection, etc., an object
of interest must be geolocated as soon as it appears in front
of the camera. A typical GPS sensor has a update frequency
of only 4Hz, which means that the two stereo images have
to be at least that same time apart (i.e. 250ms). As proposed,
our system can instantaneously geolocate any target without
the need to wait for the next frame to be acquired. Besides,
as we explained above, in order to increase the accuracy of
the system, the “distance” between the two images used for
3D reconstruction must be maximized – usually requiring a
longer distance than what would correspond a 250ms interval.
Moreover, our method allows for instantaneous geolocation of
the target even if the target itself is not present in one of the
images.

III. RESULTS

The proposed algorithm has been tested for three types of
data: synthetic data; in-scale data; and airborne video taken
from a helicopter. As for the synthetic data, we performed
a computer simulation using a typical scenario, where noise

Figure 4. effect of base line distance on the 3D reconstruction (Blue line
represents the reconstruction error of salient point, and red line represents the
resultant localization error of the target)

was added to all steps of the method: image processing, sensor
reading, etc. Next, the algorithm was tested with real images
obtained by moving an industrial robot arm over a in-scale
model city. Finally, we tested the method using an airborne
image sequence, where a GPS/IMU device was attached to
the camera as if on a real UAV, and another GPS device was
attached to a vehicle (target) to provide ground truth for our
test.

A. Simulation data and Error Analysis

In order to validate our method, we first calculated the error
sensitivity to each parameter measured or calculated by the
algorithm. The testing conditions were set up as in [16], [7].
That is, we assumed an UAV flying on a circular trajectory
with a 100m radius, while the altitude of UAV was kept at
60 m from the ground target. In addition, as discussed in
Section II-C, the camera baseline was set to 15m, or 25%
of the altitude of the UAV. Finally, we added noise to each
simulated reading from the sensors – the noise was made equal
to the maximum nominal error of each device according to the
manufacturer’s specifications. The importance in this step of
the analysis of our method is to establish to which sensor
reading or which parameter of the method the estimated geo-
location is most sensitive. That will allow us to identify which
part of the algorithm should be further improved in the future.

Table I shows the localization error at the nominal flying
conditions described earlier when a certain amount of noise –
indicated by “Uncertainty” in the third column of the table –
is added to each of the parameters separately. In other words,
each row under column D ji represents the total error in target
geo-location as a function of the uncertainty of the ith sensor
alone. By doing so, we contrasted the sensitivity to parameter
ith in our method, D2i, with the one reported in [14] – shown
in column D1i. As one would expect, our method is mostly
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i Parameter Uncertainty D1i D2i

1 Azimuthαaz .5◦ 0.55m N/A
2 Elevationαel .5◦ 0.85m N/A
3 yawuav 5◦ 4m 2.635m
4 pitchuav 5◦ 5.5m 7.472m
5 rolluav 5◦ 8.5m 7.228m
6 Xuav 5m 5m 5.016m
7 Y uav 5m 5m 5.001m
8 huav 5m 6.4m 3.575m
9 u 5 pix 0.75m 0.388m
10 v 5 pix 0.95m 0.374m
11

√
∑(Di)2 14.9m 13.351m

Table I
ERROR SENSITIVITY OF THE ALGORITHM IN [14], D1i , AND THE

PROPOSED METHOD, D2i

Figure 5. Model city used for simulation

sensitive to pitch and roll of the UAV as these parameters affect
the most the calculation of the relative altitude with respect to
the target, as explained in section II-C.

B. Model City Data

Before the validation with real data, the algorithm was also
tested on a scaled model city by having a toy train moving on
a regular path. Figure 5 shows a top view of the settings used
for this test. We attached two cameras to the end effector of
a KAWASAKI UX-150 industrial robot and programmed the
robot to follow a certain trajectory on top of the model city,
simulating an UAV flying over the target.

We then took more than 200 stereo snapshots of the moving
target, whose left and right image coordinates were identified
manually and used to reconstruct the precise location of the
target in space. Since accurate camera and hand-eye calibra-
tions [19], [9], [6] together with simple 3D reconstruction can
be used to establish the position of the target within less than
a millimeter, this data was used as ground truth for our tests. It
would be very hard to scale up the results from this test to the
sizes of real objects since we cannot proportionally scale the
optics involved. However, just as a point of reference, for the
1:160 scale model used in this tests, we employed a baseline,
according to Section II-C, of 1.6cm and a simulated altitude
of the UAV (robot) of 1.2m. This is equivalent to a real UAV
flying at 192m of altitude and using a baseline of 2.5m.

Error mean Error std
5.66 cm 4.78 cm

Table II
MEAN AND STANDARD DEVIATION IN GEO-LOCATION USING THE MODEL

CITY SEQUENCE

(a)

(b)

Figure 6. a) targets located by the tracking module; and b) SIFT features
matched between two images, 60 frames apart

Finally, we applied our complete algorithm (image tracking
and geo-location) to all images and compared our estimates
for the target location with the ground truth obtained as above.
Table II shows the results from this test: an average error in
target localization of 5.66cm and standard deviation of 4.78cm.
Once again, if the real errors could be inferred by simply
applying the scale factor, that corresponds to an error in geo-
location of under 8m, or a little over 4.5% of the altitude of
the UAV.

C. Real Data - Airborne Video

In our last test, a person flew with a camera and GPS/IMU
device installed in a helicopter. Meanwhile, another GPS
device was set up on a ground vehicle. We estimated the GPS
position of the ground vehicle captured using the helicopter
video, and this positions were compared with the real GPS
positions of the ground vehicle. This image sequence consti-
tutes, as far as we know, the only database of airborne video
that contains not only metadata concerning the air-vehicle, but
also the target on the ground.

As a result of this experiment, the mean localization error
and the standard deviation were found to be 25m and 11m,
and the target distance from the observer was approximately
115m. It turned out that the performance of the proposed

5331



Experiment
Distance
to Target

(m)

Baseline
(m)

Error
mean
(m)

Error std
(m)

Helicopter 115 53 25 11
Airplane 2297 900 68 35
Airplane 2174 1410 26 8

Table III
MEAN AND STANDARD DEVIATION IN GEO-LOCATION USING THE

HELICOPTER AND AIRPLANE EXPERIMENTS

algorithm with real data was well below our expectations.
After further investigations of the possible causes, we noticed
that the roll angle from the IMU presented a much larger (2-5
times) uncertainty than the specifications by the manufacturer.
So, we run the algorithm against another dataset, this time
from an airplane at an altitude of over 1000m. Since the
IMU sensor inside the airplane had a much better sensor, with
specifications well within our expectations, the error in geo-
location and the standard deviation were also much better:
26m and 8m respectively. Those values were achieved for a
distance between two images of about 840 frames (at 30fps),
which for the velocity of the airplane represented 1410m of
baseline. Table III summarizes these and other results obtained
with real data.

IV. CONCLUSION AND FUTURE WORK

A novel algorithm capable of estimating target geo-location
was developed. Not only the proposed method does away
with most usual constraints – geo-referenced terrain database,
altimeter, arbitrary path planning or gimbal control – but it
also outperforms some other current methods in the literature,
e.g. [13], [14]. We have also shown that the sensitivity of
our algorithm to the various parameters is comparable, if not
a little better than in [14]. As the same sensitivity analysis
predicted, a key element of estimating the target position
is the correct measurement of camera pose and orientation
with respect to the inertial frame, in special the orientation
(IMU). Another advantage of our method is in the possibility
of adjusting the accuracy of the geolocation by adjusting the
distance between the two images used by the algorihtm, as the
last two rows in Table III demonstrate.

In the future, we plan to combine the proposed method
with a Bayesian estimator, such as particle filter, to reduce
the uncertainty in sensor readings and improve even further
the geo-location.
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