
The Swarm Computer, an Analog Cellular-Swarm
Hybrid Architecture

Ryanne Dolan, Guilherme DeSouza, and Dan Caputo
University of Missouri

Vision-Guided and Intelligent Robotics Lab
CS, ECE, and Physics Departments

Abstract—The “killer apps” of cellular and swarm computing
are image processing and optimization, respectively; however,
applying these platforms to general-purpose computing remains
impractical. Designing systems within the restrictive framework
of cellular automata is extremely difficult, though often very
efficient and scalable. On the other hand, swarm networks are
very powerful but difficult to implement in hardware. Here we
introduce a hybrid model, the Swarm Computer, which is both
practical to program and efficient to implement. Applications in
astrophysics and image processing are considered.

I. INTRODUCTION

Recently, there has been an increasing reliance on nature
as a source of inspiration for new algorithms in computer
science. Evolution has solved many problems in order to
sustain life; it makes sense to study the solutions evolved
over billions of years if they work well in nature. Two areas
of research in computer science that have spawned out of
this biological influence recently are cellular computing (e.g.
membrane computing) and swarm computing (e.g. ant colony
optimization). The field of cellular computing seeks to apply
the simple dynamics and massive parallelism found in arrays
of immovable biological cells and their artificial analogues.
By contrast, swarm computing applies the collective behavior
of groups of moving agents (e.g. ants) to solve a problem.

Research in these areas has produced some very inter-
esting algorithms, especially in the fields of computational
intelligence and image processing. However, neither cells nor
swarms have proven thus far to be a practical platform for
general-purpose computation. In this paper, we introduce a
novel model of computation which is a hybrid of cellular and
swarm models. The model is universal, scalable, and often
efficient, as it inherits the best features of both stationary
cells and swarming organisms. The model is theoretically
universally applicable to general-purpose computing, but we
discuss some applications for which the model is especially
well suited.

II. BACKGROUND

A. Cellular Computing

The first cellular computers were the classic cellular au-
tomata pioneered by von Neumann, Wolfram, and Conway
over the past several decades [4], [22], [26]. All cellular
computers are characterized by a regular lattice of simple
cells locally connected in a fixed network. Each cell maintains

a state which evolves through time based on a function of
the previous state and the previous states in the local neigh-
borhood. Often this function is specified with simple pattern
matching rules, fuzzy logic [28], or differential equations [3].

Cellular computing is often applied to image processing
[27], [28], [25], [15], [14], [11], [7]. This requires that each
cell in a rectangular grid be associated with a pixel in an
image. Typically, the cell is initialized with color data from
an input image. After the grid evolves to a steady state, the
resulting output state represents a processed image.

Some cellular automata are universal in the Turing sense,
e.g. Conway’s Game of Life [23] and the Celluran Neural
Network Universal Machine [19], [6], [5]; however, program-
ming such automata to perform general-purpose computing
tasks remains exceedingly complex. Image processing is a
common application of cellular computation due to the fact
that many image processing tasks are space invariant. Since
cellular computing performs the same function at each cell
(pixel), it is difficult to implement global operations, though
not impossible. Cellular automata must propagate information
through the network over time for this effect. Wave computing
is one sub-field of cellular computing which relies on con-
trolled information propagation in cellular networks [18].

B. Swarm Computing

Swarms as seen in nature have evoked the curiosity of
many scientists throughout history and have recently inspired
several important algorithms in the fields of computational
intelligence and artificial intelligence. Swarm networks use a
paradigm similar to that of cellular automata: a network of
agents communicate locally and evolve due to some function.
The difference is that swarm networks allow for dynamic
neighborhoods, wherein agents are able to move in space.
Swarm agents maintain a state but also a position. Rather
than finite, static neighborhoods, swarm networks involve pair-
wise distance calculations to determine which agents are close
enough to communicate.

The most famous algorithm in computer science to be
inspired by swarm behavior in nature is the Particle Swarm
Optimizer (PSO) [13]. Interestingly, this algorithm is not
swarm computing but a complex cellular automata due to
the fact that the particles are arranged in a grid with static
neighborhoods; however, the algorithm still stands as a typical
application of swarm-like behavior in engineered systems. It

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Missouri: MOspace

https://core.ac.uk/display/62767938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1. agents traveling in cellular medium, with arrows indicating state
vectors

also demonstrates a major efficiency hurdle associated with
swarm computation. PSO uses static neighborhoods rather
than suffer the computational complexity of pair-wise distance
calculations to determine proximity. It is assumed that agents
nearby in the static network will end up nearby in state-space
as well, so PSO can be said to approximate swarm behavior
in this sense.

C. Cellular-Swarm Computing

The previous sections highlight two major problems with
both cellular and swarm computing: it is hard to formulate
algorithms in terms of spatially invariant rules in cellular
automata; on the other hand, it is computationally expensive
to allow swarm agents to form dynamic neighborhoods.

To ameliorate these problems, we propose a hybrid model of
computation, called cellular-swarm computation, which is both
practical to program and implement. We will define cellular-
swarm computation as the use of a system with the following
characteristics:

• a static network of cells (called the medium) arranged in
a regular lattice

• a swarm of agents that are free to move about the medium
and interact with the medium locally (see Figure 1)

The medium is exactly a Generalized Cellular Automata
[2], and is described with a vector function F (typically a
differential equation). Each cell evolves due to F , influenced
only by the previous states in its local neighborhood (including
itself).

The agents do not form a swarm network in the usual
sense, since they are not allowed to communicate between
themselves directly. Thus, there is no neighborhood to find

input output
F neighborhood states cell state
G agent state and position agent position
H agent state and position agent state
Y agent state and position cell state

Figure 2. cellular-swarm programmable functions

and no pairwise distances to calculate. Instead, the position of
an agent is mapped to a single cell in the medium, and the
agent may only interact locally with that cell. Specifically, an
agent may at each timestep:

• detect the state of the current cell and the states of the
cell’s immediate neighbors

• modify the state of the current cell (according to an output
function Y )

• move to an adjacent cell (according to a position function
G)

• modify its own state variable (according to an agent state
function H).

The functions F , G, H , and Y fully specify a cellular-
swarm computation (“program”, see Figure 2). The dimen-
sions of the medium and the number of agents are considered
arbitrary and may be implementation specific. Given the
initial state of all cells in the medium, a swarm computation
continues until a steady-state output emerges.

The cellular-swarm model of computation is universal in the
Turing sense, as it inherits universality from the generalized
cellular automata; however, it is more practical in many ways,
as the following sections illustrate.

D. Related Topics

Other recent papers have proposed cellular-swarm hybrid
architectures with good results. In particular, [10], [21] both
use cellular automata to augment the particle swarm optimizer,
making it more robust to local optima and dynamic environ-
ments. Additionally, [12] shows that swarm networks can be
used for general-purpose computing. The current paper is the
first to propose a hybrid cellular-swarm computer for general-
purpose computing.

III. THE SWARM COMPUTER

Here we describe one possible hardware platform which
implements cellular-swarm computation. The "Swarm Com-
puter" is an analog architecture capable of universal compu-
tation within the cellular-swarm paradigm (see Figure 3). The
computer comprises the following components:

• a grid of identical circuits implementing the cell update
function F

• an array of identical circuits implementing the agent
position function G

• an array of identical circuits implementing the agent state
function H

• an array of identical circuits implementing the agent
output function Y



Figure 3. swarm computer architecture

• an array of filters and gating devices, which select one
cell per agent

The agent position circuits expose two signals (in the form
of voltages across a pair of terminals) corresponding to the
horizontal and vertical position of an agent. Likewise, the
agent output circuits expose a single output signal per agent.

The filter bank requires more explanation. For each pair
of agent position and output circuits, the corresponding filter
selects one cell circuit from the grid based on the horizontal
and vertical position signals. A gating mechanism sinks the
output associated circuit to the target output cell, which in
turn feeds back to the corresponding agent position and state
circuits. The filter bank is designed to select only one cell per
agent and to prevent an agent from interacting with nonlocal
cells.

Each cell in the grid has an input and output signal in the
form of a light sensor and lamp, for example. The state of each
cell can be initialized prior to computation by exposing the
grid to an image. After steady-state, the lamps at each cell will
indicate via their intensity the final state of the corresponding
cell.

By fabricating this sort of "vision chip" with custom cir-
cuitry for functions F , G, H , and Y , any image processing
algorithm can be realized. In the case of spatially invariant
algorithms, the agent circuits (G, H , and Y ) can be ignored
or grounded, since only the function F is needed. For spatially
variant algorithms, the function F can be designed to cause
information to propagate through the network of cells, or else
functions G, H , and Y can be designed to transport packets
of information along a trajectory through the network.

A. Runtime Complexity and Scalability Considerations

Unlike traditional processors, the swarm computer does not
perform one instruction at a time. Instead, there is only one
"program" that continuously applies the same functions to the
entire state vector. For this reason, the runtime complexity
of algorithms implemented on the swarm computer is hard
to define. However, we can compare the runtimes of exist-
ing cellular and swarm algorithms with their corresponding
implementations on the swarm computer, clearly illustrating
improvements in many cases.

First, we might consider the simulation of Cellular Neural
Networks (CNNs) on the swarm computer. A CNN is a special
case of the generalized cellular automata which forms the com-
munication medium of the swarm computer [3]. Therefore, it
is not surprising that CNNs are easily implemented on the
swarm computer. In particular, the Chua circuit is used for each
cell update circuit, and all agent circuits are ignored (since no
agents are required for this simulation).

Now it is easy to see the speed improvement of implement-
ing CNNs on the swarm computer compared to traditional
computers. A software simulation of CNNs would involve an
O(KMT ) runtime, where K is the number of neighbors to
each cell, M is the number of cells, and T is the settling
time. Typically, the neighborhood is small (9 neighbors) and
the settling time is short, so we may write this as O(M), or
linear with the size of the network.

By comparison, the swarm computer performs all M cell
updates in parallel. Ignoring settling time again, the same
simulation takes constant time O(1). Not surprisingly, the M
cells of the swarm computer offer a speedup of a factor of
M for CNN simulation and some similar massively parallel
operations. This improvement is comparable to GPU-based
CNN simulation [7].

Next, we consider the simulation of any swarm algorithm on
the swarm computer. All swarm algorithms involve pair-wise
distance calculations among agents of the system in order to
find which agents are near enough to communicate; therefore,
a naive algorithm would have O(N2T ) complexity, where N
is the number of agents and T is the settling time. Search trees
such as KD-Trees or R-Trees or approximate methods like
Approximate Nearest Neighbors can speed up query time to
O(lgN), reducing the overall complexity of swarm algorithms
to O(KNlgN) where K is the number of neighbors queried
(K-nearest neighbors) if we ignore settling time [9], [20], [1].

Since the swarm computer has N agents, we might expect
the swarm computer to improve simulation time by a factor
of N to O(KlgN); however, this does not consider the fact
that agents cannot directly communicate as required by the
swarm algorithm. Instead, agents must communicate via waves
propagated through the medium, which never happens instan-
taneously. Luckily, we can measure the speed of propagation
of such waves, and with constant "speed of information" the
time is proportional only to the size of the medium. Thus,
we have a total runtime complexity ofO(M1/d) where d is
the dimensions of the medium. Notice that we have removed



Figure 4. GPU simulation of agents leaving trails in large cellular medium

the dependence on the number of agents (and the number
of neighbors) entirely from the computational complexity;
indeed, the swarm computer can simulate any number of
agents without affecting runtime. So long as M1/d is less than
N (the dimensions of the network are small compared to the
number of agents), the swarm computer is much more efficient
than even the fastest swarm algorithms.

Of course, this discussion so far ignores the settling time
of cellular-swarm computation compared to swarm or cellular
computation methods. It is very possible that the runtime of a
swarm simulation on the swarm computer would take longer
than a traditional implementation if the settling time is much
larger, e.g. due to the more complicated dynamics required by
the wave-based inter-agent communication. However, this set-
tling time is generally constant or nearly constant for a given
algorithm, so it does not factor into runtime complexity analy-
sis. Furthermore, it is always possible to change the number of
agents in a particular swarm computer-based implementation
without affecting the runtime complexity, since the number
of agents never figures into the complexity. The settling time
may be affected by the number of agents, however; in general,
adding more agents will reduce settling time and shorten the
runtime of any algorithm. For this reason, we can consider
the swarm computer to be an extremely scalable platform for
massively parallel computation. If a given "program" is slow to
compute, it should always be possible to increase the number
of agents and reduce settling time accordingly.

B. Simulation on GPUs

In addition to being relatively simple to fabricate in hard-
ware, it is straightforward to simulate the swarm computer
architecture using existing processors. Here we discuss soft-
ware considerations.

Modern general-purpose graphics processing units (GP-
GPUs) offer a powerful SIMD computing platform which
are relatively inexpensive and readily available to consumers.
GPUs of this sort are implemented as a grid of multiprocessors
with local memory, shared (global) memory, and a hardware

scheduler to coordinate work among the processors. Each
multiprocessor (often there are 16 or more) can be pro-
grammed with a separate kernel function, which is applied to a
region of the shared memory. Each multiprocessor is typically
capable of performing multiple instances of the kernel con-
currently (stream processing). With multiple multiprocessors
and multiple "cores" within each multiprocessor, thousands of
simultaneous kernel computations are possible with incredible
speed.

Exploiting this parallelism to simulate the swarm computer
is straightforward. Simulating the medium involves Newton’s
method or similar numerical integration techniques to ap-
proximate the state evolution of the analog system. Both the
medium (cells) and agents can be implemented in this way on
the GPU.

Other research has already pioneered the application of
GPUs to the simulation of cellular media [7], [8], [11]. A
simplified approach is mentioned here. Each multiprocessor
is responsible for a region of cells in the medium and is
programmed to continuously update per-cell state vectors in
shared memory.

To simulate the agents, one multiprocessor is reserved to
implement the G, H , and Y functions. Agent state and
position is stored in local memory (only accessible to the one
multiprocessor) to prevent unnecessary reads and writes to the
shared memory. Within the agent kernel function, each agent’s
position is hashed to an index into shared memory. In this way,
each agent can query the state of the current cell in constant
time.

Several optimizations to this approach are possible; how-
ever, even this simplistic implementation is capable of updat-
ing millions of cells a second on consumer hardware [7].

IV. APPLICATIONS

A. Image Processing

The swarm computer inherits many applications from the
generalized cellular automata and cellular neural network such
as image processing, image compression, and optimization
[17], [15], [16], [28], [27]. In particular, the medium alone
is sufficient for computing space invariant image processing
operations and, like the cellular neural network, global oper-
ations are possible via the propagation of waves through the
medium.

More interestingly, the swarm computer’s agents allow
information "packets" to travel to different parts of an image,
extending lines, following gradients, smoothing contours etc
along their trajectories. This makes the cellular-swarm hybrid
model a much more attractive platform for high-level image
processing, whereas cellular automata have so far been mainly
used for low-level processing.

B. Astrophysics

Perhaps less obvious is the application of the swarm com-
puter to N-Body Simulation in astrophysics [24]. To simulate
the interaction of forces between stars, planets, etc in space,
these simulators require pairwise distance calculations among



Figure 5. force due to gravity after propagation through the medium

the N "bodies". The problem with these simulations is the
explosive computational complexity of computing pairwise
distances among millions of bodies in a galaxy, for example.

N-body simulation can be viewed as a form of swarm
computation; therefore, the swarm computer should offer an
efficient and scalable platform for n-body simulators. It is
rather straightforward to implement n-body simulations on
the swarm computer, in fact. Just as with other swarm com-
putations, the n-body simulation requires that information be
propagated through the cellular medium via waves, thus elimi-
nating the pairwise distance calculations and reducing runtime
complexity. In the case of astrophysics simulations, the waves
may represent "gravity waves", wherein a flux diffuses through
the medium, affecting nearby bodies in proportion to the
distance between them. The farther two bodies are apart, the
less magnitude of the force of gravity, as expected. Strangely,
the increased distance also causes a delay, since the gravity
wave must propagate further through the medium. If the waves
propagate quickly compared to the speed of the agents, the
delay can be negligable. This is related to the "speed of
gravity" compared to the speed of planetary motion in physical
space.

The dynamics of the cells needed to support this sort of
wave propagation can be described as a network of masses
connected with springs. This mass-spring lattice allows dis-
placements to spread into basins of attraction (gravity wells).
As the agents (bodies) travel through the medium, they follow
a straight line in the warped "space-time" medium.

V. CONCLUSIONS

We have presented a new hybrid model of computation
based on both cellular automata and swarms as found in
nature, as well as a corresponding analog hardware platform
called the Swarm Computer. The architecture is practical to
implement in hardware and easily simulated using modern
general purpose GPUs. Application of the swarm computer
to image processing, cellular computation, and swarm compu-
tation is straightforward and more efficient than corresponding

Figure 6. 1-D mass-spring medium showing propagation of "gravity wave"
into gravity well
a) initial displacement due to presence of agent
b) gravity well after propagation through the network

implementations on typical processors or the traditional Turing
machine. Moreover, algorithms implemented on the swarm
computer scale gracefully when increasing the number of
agent circuits, without affecting the runtime negatively.

REFERENCES

[1] J.L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):517, 1975.

[2] L.O. Chua. CNN: A paradigm for complexity. World Scientific Pub Co
Inc, 1998.

[3] LO Chua and L. Yang. Cellular neural networks: theory. Circuits and
Systems, IEEE Transactions on, 35(10):1257–1272, 1988.

[4] J. Conway. The game of life. Scientific American, 223:120–123, 1970.
[5] KR Crounse and LO Chua. The CNN Universal Machine is as universal

as a Turing Machine. Circuits and Systems I: Fundamental Theory and
Applications, IEEE Transactions on [see also Circuits and Systems I:
Regular Papers, IEEE Transactions on], 43(4):353–355, 1996.

[6] R. Dogaru. Universality and emergent computation in cellular neural
networks. World Scientific River Edge, NJ, 2003.

[7] Ryanne Dolan and Guilherme DeSouza. Gpu-based simulation of
cellular neural networks for image processing. Neural Networks, IEEE
- INNS - ENNS International Joint Conference on, 0:730–735, 2009.

[8] A. Fernandez, R. San Martin, E. Farguell, and G.E. Pazienza. Cellular
neural networks simulation on a parallel graphics processing unit.
Cellular Neural Networks and Their Applications, 2008. CNNA 2008.
11th International Workshop on, pages 208–212, July 2008.

[9] P. Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1):21–27, 1967.

[10] A. Hashemi and M. Meybodi. Cellular Pso: A Pso for Dynamic
Environments. Advances in Computation and Intelligence, pages 422–
433, 2009.

[11] T.Y. Ho, P.M. Lam, and C.S. Leung. Parallelization of cellular neural
networks on GPU. Pattern Recognition, 2008.

[12] T. Isokawa, F. Peper, M. Mitsui, J.Q. Liu, K. Morita, H. Umeo,
N. Kamiura, and N. Matsui. Computing by Swarm Networks. Cellular
Automata, pages 50–59, 2010.

[13] J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE Inter-
national Conference on Neural Networks, 1995. Proceedings., volume 4,
1995.

[14] P. Kinget and MSJ Steyaert. A programmable analog cellular neural
network CMOS chip for highspeed image processing. Solid-State
Circuits, IEEE Journal of, 30(3):235–243, 1995.

[15] C.C. Lee and JP de Gyvez. Color image processing in a cellular
neural-network environment. Neural Networks, IEEE Transactions on,
7(5):1086–1098, 1996.

[16] O. Moreira-Tamayor and J.P. de Gyvez. Subband coding and image
compression using cnn. Int. J. Circ. Theor. Appl, 27:135–151, 1999.

[17] T. Nishio and Y. Nishio. Image processing using periodic pattern
formation in cellular neural networks. Circuit Theory and Design, 2005.
Proceedings of the 2005 European Conference on, 3:III/85–III/88 vol.
3, Aug.-2 Sept. 2005.



[18] T. Roska. Cellular wave computers for brain-like spatial-temporal
sensory computing. IEEE Circuits and Systems Magazine, 5(2):5–19,
2005.

[19] T. Roska and LO Chua. The CNN universal machine: an analogic
array computer. Circuits and Systems II: Analog and Digital Signal
Processing, IEEE Transactions on [see also Circuits and Systems II:
Express Briefs, IEEE Transactions on], 40(3):163–173, 1993.

[20] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R-tree: A dynamic
index for multi-dimensional objects. The VLDB Journal, pages 507–518,
1987.

[21] Y. Shi, H. Liu, L. Gao, and G. Zhang. Cellular Particle Swarm
Optimization. Information Sciences, 2010.

[22] J. Von Neumann. Von Neumann’s self-reproducing automata. Essays
on Cellular Automata, pages 4–65.

[23] R.T. Wainwright. Life is universal! In Proceedings of the 7th conference
on Winter simulation-Volume 2, pages 449–459. ACM New York, NY,
USA, 1974.

[24] S. Warren. Astrophysical N-body simulations using hierarchical tree
data structures. 1992.

[25] T. Weishaupl and E. Schikuta. Parallelization of cellular neural networks
for image processing on cluster architectures. Parallel Processing
Workshops, 2003. Proceedings. 2003 International Conference on, pages
191–196, 2003.

[26] S. Wolfram. Theory and applications of cellular automata. 1986.
[27] T. Yang. Cellular Neural Networks and Image Processing. Nova Science

Publishers, 2002.
[28] T. Yang and L.B. Yang. Fuzzy cellular neural network: A new paradigm

for image processing. International Journal of Circuit Theory and
Applications, 25(6):469–481, 1998.


