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UNIVERSAL OPTIMALITY OF BALANCED UNIFORM
CROSSOVER DESIGNS1

BY A. S. HEDAYAT AND MIN YANG
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Kunert [Ann. Statist. 12 (1984) 1006–1017] proved that, in the class
of repeated measurement designs based on t treatments, p = t periods and
n = λt experimental units, a balanced uniform design is universally optimal
for direct treatment effects if t ≥ 3 and λ = 1, or if t ≥ 6 and λ = 2. This
result is generalized to t ≥ 3 as long as λ ≤ (t − 1)/2.

1. Introduction. Repeated measurements designs under the name “crossover
designs” have been used in diverse areas of scientific research for many years.
A prominent example is the class of studies associated with phase I and phase II
clinical trials, in which patients are randomized to sequences of treatments with
the intention of studying differences between individual treatments or subsets of
treatments.

The notation RM(t, n,p) designates a repeated measurements design based on
n experimental units, each being used for p periods, to test and evaluate the effects
of t treatments. The class of all such designs is designated by �t,n,p . Identifying
and constructing optimal and efficient designs in �t,n,p , or in a selected subset
of �t,n,p, was initiated by Hedayat and Afsarinejad (1975, 1978). Since then, many
exciting results in this area have been obtained by other researchers, including
Cheng and Wu (1980), Kunert (1983, 1984), Stufken (1991), Hedayat and Zhao
(1990), Carrière and Reinsel (1993), Matthews (1994) and Kushner (1998). We
refer the readers to the excellent expository review paper by Stufken (1996) for
additional references.

Under the traditional model (see Section 2), Kunert (1984), generalizing a result
of Hedayat and Afsarinejad (1978), proved that, when p = t ≥ 3 and n = t then
a balanced uniform design in �t,n,p is universally optimal for direct treatment
effects. Unfortunately, a balanced uniform design can lose its universal optimality
when n is relatively large compared to t . Counterexamples can be found in Kunert
(1984) and Stufken (1991). A natural and intriguing question is: For given t
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and p = t , how far can we increase n without losing the universal optimality
of balanced uniform designs? For studying this question, we always assume that
n = λt , for integral λ, since this is a necessary condition for a balanced uniform
design.

Higham (1998) proved that when t is a composite number, the class �t,t,t

contains a balanced uniform design. However, when t is a prime number the class
may lack a balanced uniform design. For example, �3,3,3, �5,5,5 and �7,7,7 do
not contain a balanced uniform design. When �t,t,t does not contain a balanced
uniform design, it is most unlikely that it contains a universally optimal design. If
n = 2t , another result of Kunert (1984) states that if t ≥ 6 then a balanced uniform
design in �t,2t,t is universally optimal. It is known that this class contains balanced
uniform designs [see, e.g., Stufken (1996)]. Surprisingly, it is not known whether
balanced uniform designs in �3,6,3 and �4,8,4 are universally optimal, although
Street, Eccleston and Wilson (1990) showed, by a computer search, that a balanced
uniform design in �3,6,3 is A-optimal.

The main purpose of this paper is to show that a balanced uniform design
in �t,λt,t retains its universal optimality as long as λ ≤ (t − 1)/2. Note that for
λ = 1, our result is that of Kunert (1984) and for λ = 2, our result extends the
result of Kunert (1984) to t ≥ 5.

2. Response model. The model we assume throughout this paper is the
traditional homoscedastic, additive, fixed effects model, which in the notation of
Hedayat and Afsarinejad (1975) is

Ydku = µ + ζk + ηu + τd(k,u) + ρd(k−1,u) + eku, 1 ≤ k ≤ p, 1 ≤ u ≤ n,(1)

where Ydku denotes the response from unit u in period k to which treatment d(k,u)

is assigned. In this model, µ is the general mean, ζk is the effect due to period k,
ηu is the effect due to unit u, τd(k,u) is the direct treatment effect, ρd(k−1,u) is the
carryover (or residual) effect of treatment d(k − 1, u) on the response observed
on unit u in period k (by convention, ρd(0,u) = 0), and the eku’s are independently
normally distributed errors with mean 0 and variance σ 2.

In matrix notation, we can write model (1) as

Yd = µ1 + Pζ + Uη + Tdτd + Fdρd + e,(2)

where Yd = (Yd11, Yd21, . . . , Ydpn)
′, ζ = (ζ1, . . . , ζp)′, η = (η1, . . . , ηn)

′, τd =
(τ1, . . . , τt )

′, ρd = (ρ1, . . . , ρt )
′, e = (e11, e21, . . . , epn)

′, P = 1n ⊗ Ip, U =
In ⊗ 1p, Td = (T ′

d1, . . . , T
′
dn)

′ and Fd = (F ′
d1, . . . ,F

′
dn)

′. Here Tdu stands for
the p × t period-treatment incidence matrix for subject u under design d and
Fdu = LTdu with the p × p matrix L defined as



0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


 .
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The information matrix for direct effects, Cd , may then be written as

Cd = T ′
dpr⊥(P |U |Fd)Td,(3)

where pr⊥(X) denotes the orthogonal projection matrix I − X(X′X)−X′.
As in Cheng and Wu (1980), the notations ndiu and ñdiu denote, respectively,

the number of times that treatment i is assigned to unit u and the number of times
this happens in the first p−1 periods. In the whole design, the quantities ldik , mdij ,
rdi and r̃di are, respectively, the number of times that treatment i is assigned to
period k, the number of times treatment i is immediately preceded by treatment j ,
the total replication of treatment i and the total replication of treatment i limited
to the first p − 1 periods. Let z be the sum of all positive xdiu = ndiu − 1. We also
associate with unit u the integer n∗

d(u) = ndxu if treatment x is assigned to u in the
last period.

3. Universally optimal designs for direct treatment effects. From the tool
introduced by Kiefer (1975), a design d in �t,n,p is universally optimal, if the trace
of Cd is maximal and if in addition Cd is completely symmetric. The main purpose
of this paper is to show that a balanced uniform design d∗ in �t,λt,t is universally
optimal when λ ≤ (t − 1)/2. Before we present a proof of this result we need
the following lemma which can be concluded from inequalities (5.6) and (5.7) in
Kushner (1997).

LEMMA 1. For any design d ∈ �t,n,p , we have the following inequality:

Tr(Cd) ≤ q11(d) − q2
12(d)

q22(d)
.

Here,

q11(d) = Tr
(
BtT

′
dpr⊥(U)TdBt

)
,

q12(d) = Tr
(
BtT

′
dpr⊥(U)FdBt

)
,

q22(d) = Tr
(
BtF

′
dpr⊥(U)FdBt

)
,

where Bt = I − 1
t
Jt .

We shall now present our main result.

THEOREM 1. Assume that t = p > 2, λ ≤ (t − 1)/2. A balanced uniform
design d∗ ∈ �t,λt,t is universally optimal.

PROOF. It is easy to see that Cd∗ is completely symmetric. Therefore, if we
show that Tr(Cd) ≤ Tr(Cd∗) for each d in �t,λt,t , then the claim is established.
From Cheng and Wu (1980), we know that Tr(Cd∗) = n(t − 1) − n(t−1)

t2−t−1
. When
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z ≥ n, by Proposition 4.3 in Kunert (1984), we have Tr(Cd) ≤ Tr(Cd∗). When
z < n, if we can show that

Tr(Cd) ≤ n(t − 1) − n(t − 1)

t2 − t − 1
,

then we have established our result.
It can be shown that for any design d ∈ �t,n,p ,

q11(d) = np − 1

p

n∑
u=1

t∑
i=1

n2
diu,

q12(d) =
t∑

i=1

mdii − 1

p

n∑
u=1

t∑
i=1

ndiuñdiu,

q22(d) = n(p − 1)

(
1 − 1

tp

)
− 1

p

n∑
u=1

t∑
i=1

ñ2
diu.

Next, for p = t , we will find the maximum value of q11(d), the minimum value
of q2

12(d), and the maximum value of q22(d) for a given value z ∈ [0, n).
We notice that since the sum of all positive xdiu = ndiu − 1 is z, and∑n
u=1

∑t
i=1 ndiu = nt , so the sum of all negative xdiu = ndiu − 1 is −z, which

means that z of the ndiu’s are 0 and the remaining ndiu’s must be greater than 0.
Thus,

∑n
u=1

∑t
i=1 n2

diu is equivalent to
∑nt−z

j=1 a2
j subject to

∑nt−z
j=1 aj = nt , where

aj is a positive integer, j = 1, . . . , nt −z. It can be verified that the minimum value
of

∑nt−z
j=1 a2

j is nt + 2z. Thus, q11(d) ≤ n(t − 1) − 2z/t .

For q2
12(d), we notice that

∑n
u=1

∑t
i=1 ndiuñdiu = ∑n

u=1
∑t

i=1 n2
diu −∑n

u=1 n∗
d(u). Since z of the ndiu’s are 0, therefore

∑n
u=1

∑t
i=1 n2

diu − ∑n
u=1 n∗

d(u)

is equivalent to
∑nt−z

j=1 a2
j − ∑n

j=1 aj subject to
∑nt−z

j=1 aj = nt , where 1 ≤ aj is

an integer, j = 1, . . . , nt − z. We claim that the minimum value of
∑nt−z

j=1 a2
j −∑n

j=1 aj is reached when aj is either 1 or 2, j = 1, . . . , n, and the remaining
aj ’s are all 1. Otherwise, there are only two competing alternatives: (1) Suppose
some of aj ’s are not 1 when j = n + 1, . . . , nt − z, say, an+1 > 1. Then one or
more of aj ’s must be 1, j = 1, . . . , n, say, a1 = 1, because

∑nt−z
j=1 aj = nt . By

exchanging the values of an+1 and a1 and keeping the others unchanged we can
obtain a smaller value for

∑nt−z
j=1 a2

j − ∑n
j=1 aj . (2) Suppose that all aj ’s are 1,

j = n + 1, . . . , nt − z, and there exists an aj which is not 1 or 2, j = 1, . . . , n.
Without loss of generality, we assume that a1 = 1 and a2 = δ > 2. By changing
a1 to 2 and a2 to δ − 1, and keeping the remaining ai’s unchanged, it can be eas-
ily verified that the latter case produces a smaller value for

∑nt−z
j=1 a2

j − ∑n
j=1 aj .

So, the minimum value of
∑nt−z

j=1 a2
j − ∑n

j=1 aj is nt − n + z. On the other hand,∑t
i=1 mdii ≤ z. So, 1

t

∑n
u=1

∑t
i=1 ndiuñdiu − ∑t

i=1 mdii ≥ (t − 1)(n − z)/t > 0,
consequently, q2

12(d) ≥ (t − 1)2(n − z)2/t2.
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Since
n∑

u=1

t∑
i=1

ñdiu = n(t − 1),

at least n of the ñdiu are 0. Thus,
∑n

u=1
∑t

i=1 ñ2
diu is equivalent to

∑nt−n
j=1 a2

j subject

to
∑nt−n

j=1 aj = nt − n, where aj is a nonnegative integer, j = 1, . . . , nt − n. The

minimum value of
∑nt−t

j=1 a2
j is nt − n. So q22(d) ≤ n(t − 1)(1 − 1/t − 1/t2).

Therefore, by Lemma 1, we have

Tr(Cd) ≤ q11(d) − q2
12(d)

q22(d)

≤ n(t − 1) − 2z

t
− (t − 1)2(n − z)2/t2

n(t − 1)(1 − 1/t − 1/t2)

= n(t − 1) − 2z

t
− (t − 1)(n − z)2

n(t2 − t − 1)
.(4)

The right-hand side of (4) can be maximized when z = λ
t−1 , but notice that

λ ≤ (t − 1)/2 and z must be nonnegative integers, so the maximum value of the
right-hand side of (4) is n(t − 1) − n(t−1)

t2−t−1
. Therefore we have established the

theorem. �
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