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Abstract

The search for conditions for the consistency of maximum likelihood estimators in non-
linear mixed effects models is difficult due to the fact that, in general, the likelihood can
only be expressed as an integral over the random effects. For repeated measurements or
clustered data, we focus on asymptotic theory for the maximum likelihood estimator for
the case where the cluster sizes go to infinity, which is a minimum assumption required to
validate most of the available methods of inference in nonlinear mixed-effects models. In
particular, we establish sufficient conditions for the (strong) consistency of the maximum
likelihood estimator of the fixed effects. Our results extend the results of Jennrich (1969)
and Wu (1981) for nonlinear fixed-effects models to nonlinear mixed-effects models.
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1 Introduction

Nonlinear mixed models are increasingly used in studies of complex phenomena. Applications
include biological growth studies and pharmacokinetics. For instance, tumor growth as a func-
tion of time is often nonlinear in the fixed effects parameters, as well as the random effects
which would have to be included in order to accommodate the variations among subjects in
the study. Davidian and Giltinan (1993) gives two examples. One is a study of the growth
pattern differences between two soybean genotypes, while the other is a dose-response study for
standard concentrations of a bioassay for the therapeutic protein relaxin. Other examples in
pharmacokinetics are available in Mentré and Gomeli (1995), Pinheiro and Bates (1995), Roe
(1997), Vonesh and Chinchilli (1997), Wolfinger and Lin (1997), and Vonesh, Wang, Nie, and
Majumdar (2002).

Data for these experiments may be typically partitioned into n clusters, where the ith cluster
consists of pi observations,

yi = (yi1, ..., yipi)
T .

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Missouri: MOspace

https://core.ac.uk/display/62767934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


For instance, all observations on a subject would constitute a cluster. We consider the following
model for the observations,

yi = fi(θ, bi) + εi, (1)

where fi(θ, bi) = (fi1(θ, bi), · · · , fipi(θ, bi))T is a vector of pi (possibly nonlinear) functions,
εi = (εi1, · · · , εipi)

T is a vector of pi random errors, and bi = (bi1, · · · , biv)T is a vector of
random effects.

Although the problem can be framed in general terms, due to the complexity of the com-
putations involved, we will focus on a particular setup that would cover many real world ex-
periments where the measurements are on a continuous scale. Given bi, we assume that the
random errors εi1, · · · , εipi are distributed as i.i.d normal with mean 0 and variance σ2, for
i = 1, · · · , n. Also, the random vectors ε1, ..., εn are independent. To complete the specification
of the model, we assume that the unobservable random-effect vectors b1, ..., bn are i.i.d. with
cumulative distribution F (b).

In this paper we investigate conditions for the consistency of the Maximum Likelihood
Estimator (MLE) of θ in model (1) as min(pi) →∞ while n is fixed. Our results can be viewed
as an extension of the results of Jennrich (1969) and Wu (1981) for nonlinear fixed-effects
models to nonlinear mixed-effects models. Jennrich (1969) established the consistency of the
least squares estimator for the nonlinear regression model,

yi = fi(θ) + εi, i = 1, ..., p, (2)

where fi(θ) = f(xi, θ), the x1, . . . , xp are known values of covariates, θ is an unknown (fixed)
parameter, fi(θ) is continuous in θ ∈ Θ, where Θ ⊂ Rq is compact and ε1, . . . , εp are i.i.d. errors
with mean zero and common variance σ2 > 0. In general, fi(θ) is nonlinear in θ. Jennrich (1969)

showed that, under certain conditions, the least squares estimator, i.e., θ̂p that minimizes
p∑

i=1

(yi − fi(θ))2, is strongly consistent, in other words, θ̂p → θ almost surely. The main condition
imposed by Jennrich was,

p−1Dp(θ, θ′) −→ D(θ, θ′), uniformly, for a continuous D(θ, θ′),

where Dp(θ, θ′) =
p∑

i=1
(fi(θ) − fi(θ′))2. This condition has been weakened by Wu (1981). We

refer the reader to Wu (1981) for the exact set of conditions that he imposed, and also for
further literature on this topic. Note that, if the random errors in model (2) are normally
distributed, then the results of Jennrich (1969) and Wu (1981) establish the consistency of the
MLE of θ. Wu (1981) provides one of the best strong consistency result for model (2). Bose and
Sengupta (2003) is the another article which provides one of the best strong consistency result
for model (2). Please refer to Sen and Sengupta (2003) for comparisons of these two excellent
works. In this paper, we shall follow Wu (1981)’s assumptions and proofs. In the discussion
section, we will comments on the usefulness of Bose and Sengupta (2003) to future work in this
area.
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The study of the consistency of the MLE of θ in model (1) is important for two reasons.
The first one is obvious - in order to apply the MLE, we need to specify conditions under
which its asymptotic properties hold. The second reason is more subtle. For models of the
type (1) where fi(θ, bi) is nonlinear in bi, the likelihood for θ is obtained only as an integral
over the bi’s. Hence, computation of the MLE is generally difficult. While the latest version
of SAS has a procedure to do this, it works well only when the dimension of bi is no more
than 2 due to computational complexity. As a result, θ is generally estimated using one of
several alternative estimators proposed in the literature. For a general description of many
such available estimators, the reader is referred to Davidian and Giltinan (1995a) and Vonesh
and Chinchilli (1997). In essence, these estimators seek to approximate the MLE. Consistency
of these estimators are generally established under two sets of conditions that allow (A) the
proposed estimator to be a good approximation of the MLE, and (B) the MLE itself to be
consistent, as in Vonesh (1996), Vonesh, Wang, Nie, and Majumdar (2002) and Nie (2002). It
is the step (B) that is our concern here.

The consistency of the MLE may be studied under three different situations: (I) n → ∞;
(II) min1≤i≤n(pi) →∞; (III) n →∞ and min1≤i≤n(pi) →∞. The situation (I), n →∞ while
pi are bounded, has been considered in Nie (2004). While the situation (III) in which both
n and pi are allowed to grow, is technically the most difficult. This will be considered in the
future. In this paper, we consider situation (II), i.e., n is finite, but min(pi) → ∞. It should
note that the focus and proof here are completely different than that in Nie (2004). Nie (2004)
follows closely classical approach such as Cramer (1946), Wald (1949), Bradley and Gart (1962),
and Hoadley (1971). The consistency as n → ∞ is considered in all of these articles. In this
paper, since n is fixed, we consider the consistency as p →∞.

Note that one approach to developing alternatives to the MLE is the use of the Laplace
approximation to evaluate the integrated likelihood, as in Breslow and Clayton (1993), Vonesh
(1996), Vonesh, Wang, Nie, and Majumdar (2002) and Nie (2002). It is interesting to note
that the validity of the Laplace approximation depends on the assumption: min1≤i≤n(pi) →∞.
Thus it is theoretically of interest to consider situation (II).

There are also real life experiments where n is small, but p′is are large. For example,
an animal experiment with n animals that receive a treatment at a specific time each day is
restricted by the condition that to eliminate bias the same technician should administer the
treatment to all animals at approximately the same time. This means that n cannot be very
large, but pi, the number of days, is not necessarily restricted. One such experiment, with two
groups of n = 5 animals each treated at pi = 12 time periods, is reported in Yamada et al.
(2002). Another examples is the soybean growth model, (Davidian and Giltinan 1995b). 8 plots
of lands were planted with soybean seeds. Each plant were randomly sampled 10 times. At
each time, 6 plants were randomly selected and their weights are recorded as observations. In
this example, n = 8 and p = 60. Other examples can be found in Lindstrom and Bates (1990)
and (Nielsen, Ritz, and Streibig 2004).

The main technical difficulty in establishing the consistency of the MLE for situation n
is finite, but pi → ∞ arises from the fact that we have to handle a likelihood function that
is expressed as an integral over the bi’s. The proof in this paper provides a method to deal
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with the integrated likelihood and we expect this method will become a tool to overcome the
difficulty due to the integrated likelihood.

If there are no random effects bi in model (1) then no integration is involved. If n = 1, then
the problem reduces to the problem considered by Jennrich (1969) and Wu (1981). Before we
consider the case of a general (finite) n, we first extend the results of Jennrich (1969) and Wu
(1981) to the nonlinear mixed-effects model (1) with n = 1. This model may be written as,

yi = fi(θ, b) + εi, i = 1, ..., p, (3)

where θ ∈ Θ ⊂ Rq is compact, b is a random variable with distribution function F (b), ε1, . . . , εp

are i.i.d N(0, 1) and they are independent of b. The function fi(θ, b) is possibly nonlinear in θ
and b. For i = 1, . . . , p, fi(θ, b) = f(θ, b, xi), where x1, . . . , xp are known values of covariates.

For this model we establish the strong consistency of the MLE of θ under certain conditions.
In particular, we establish the Wald consistency of θ. Note that this is stronger than Cramer
consistency (see Le Cam (1979), Jiang (1997)). Our result is proved separately for the cases:
(a) the random effect b is discrete with finite support, (b) the random effect b is discrete with
countable support and (c) the random effect b is continuous. For case (a), our main condition
is similar to the main condition in Theorem 3 of Wu (1981). For cases (b) and (c), our main
condition is similar to the main condition of Jennrich (1969) that we stated earlier. The
consistency in the more general setup where the variance of εi is σ2 will be briefly discussed in
Remark 2 at the end of Section 2.

The results for model (3) are stated in Section 2. In Section 3 we apply the result to an
example. In Section 4 we consider extensions to repeated measurements model (1). In Section
5 we conducted a simulation study. All proofs are relegated to the Appendix.

2 Consistency Results for Model (3)

In this section we investigate the consistency of the MLE of θ in model (3). We will do this
separately for the case where the random effect b is discrete with finite support and the case
where b is continuous or discrete with countable support. For each case a theorem is established
that gives sufficient conditions for the consistency of the MLE.

Throughout we assume that the parameter space Θ ∈ Rq is a compact set, and θ0, the true
value of θ, is an interior point of Θ. The support of b will be denoted by Ωb, i.e. F (Ωb) = 1.

In the first theorem b is a discrete random variable with finite support, i.e. Ωb = {b0, b1, . . . , bK}.
Theorem 1. Consider model (3). Let θ0 denote the true value of the fixed-effects parameter
θ. Suppose b has a discrete distribution with finite support: P (b = bj) = wj , wj ≥ 0, j =
0, 1, . . . , K, K < ∞.

∑K
j=0 wj = 1. Suppose the following conditions hold:

(i) For any θ (θ 6= θ0), bj , bl, there exist a neighborhood of θ, O(θ), such that:
(a) For some c > 0,

lim sup
p→∞

{∑p
i=1 supθ′∈O(θ)(fi(θ′, bj)− fi(θ0, bl))2}

1+c
2

infθ′∈O(θ)

∑p
i=1(fi(θ′, bj)− fi(θ0, bl))2

< ∞. (4)
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(b) fi(θ, bj) is a Lipschitz function on O(θ) and

sup
θ′,θ′′∈O(θ)

|fi(θ′, bj)− fi(θ′′, bj)|
|θ′ − θ′′| ≤ M sup

θ′∈O(θ)
|fi(θ′, bj)|, (5)

where M is independent of i, but may depend on O(θ).
(ii) For any θ (θ 6= θ0), bj , bl,

lim
p→∞

p∑

i=1

[fi(θ0, bj)− fi(θ, bl)]2 = +∞. (6)

Then θ̂p → θ0 a.e.

In the second theorem, b is a continuous random variable.

Theorem 2. Consider model (3). Let θ0 denote the true value of the fixed-effects parameter θ.
Suppose b has a continuous distribution function F (b). Suppose that for any given b0 ∈ Ωb, and
a fixed θ ∈ Θ, θ 6= θ0, and ε > 0, there exists a neighborhood of θ, O(θ), such that the following
conditions hold:

(i)The support of b can be written as, Ωb = ∪K
l=1Bl, where K is finite and Bl has either of

the following two properties:
(a)There exist bl, such that for b ∈ Bl,

sup
i

sup
θ′∈O(θ)

sup
b∈Bl

|fi(θ′, b)− fi(θ, bl)| < ε. (7)

(b)For b ∈ Bl, one of the following inequalities is satisfied for each i = 1, . . . , p,

inf
i

inf
θ′∈O(θ)

inf
b∈Bl

fi(θ′, b) > fi(θ0, b0) + 2, (8)

sup
i

sup
θ′∈O(θ)

sup
b∈Bl

fi(θ′, b) < fi(θ0, b0)− 2. (9)

(ii)There exists a neighborhood of b0, O(b0), such that,

sup
i

sup
b∈O(b0)

|fi(θ0, b)− fi(θ0, b0)| < ε. (10)

(iii)There exists a nonnegative continuous function D(θ0, θ, b0), which is 0 if and only if θ = θ0,
such that,

inf
b∈Ωb

lim
p→+∞ p−1

p∑

i=1

[fi(θ0, b0)− fi(θ, b)]2 → D(θ0, θ, b0). (11)

Then θ̂p → θ0 a.e.
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The case of a discrete b with countable support, Ωb = {b0, b1, . . .}, maybe treated along the
same lines as a continuous b. This is stated (without proof) in the following Corollary.

Corollary 1. Consider model (3). Let θ0 denote the true value of the fixed-effects parameter
θ. Suppose b has a discrete distribution with countable support. For a given b0, a fixed θ ∈ Θ,
θ 6= θ0, and ε > 0, suppose there exist a neighborhood of θ, O(θ), such that the following
conditions hold:

(i)The support set of b can be written as: Ωb = ∪K
l=1Bl, K < ∞, where Bl is either a finite

or an infinite set.
(a)If Bl is finite, then for each b ∈ Bl,

sup
i

sup
θ′∈O(θ)

|fi(θ′, b)− fi(θ, b)| < ε.

(b)If Bl is infinite, then either there exists a bl ∈ Bl, such that,

sup
i

sup
θ′∈O(θ)

sup
b∈Bl

|fi(θ′, b)− fi(θ, bl)| < ε,

or one of the following inequalities is satisfied,

inf
i

inf
θ′∈O(θ)

inf
b∈Bl

fi(θ′, b) > fi(θ0, b0) + 2,

sup
i

sup
θ′∈O(θ)

sup
b∈Bl

fi(θ′, b) < fi(θ0, b0)− 2.

(ii)There exists a nonnegative continuous function D(θ0, θ, b0), which is 0 if and only if
θ = θ0, such that,

inf
b∈Ωb

lim
p→+∞ p−1

p∑

i=1

[fi(θ0, b0)− fi(θ, b)]2 → D(θ0, θ, b0).

Then θ̂p → θ0 a.e.

Remark 1 : Among the conditions of the theorem, (11) is the most demanding. This is akin
to a strong identifiability condition. While this condition may not be necessary in general, there
are examples where consistency fails when the condition is not satisfied. For instance, let

yi = θ + xib + εi, i = 1, . . . , p,

where b is a random effect with distribution N(0, 1), ε = (εi, . . . , εp)′ is Np(0, I), b and ε are
independent, and x1, . . . , xp are known values of covariates. Clearly, conditions (7), (8), (9)
and (10) hold. Condition (11) holds, unless x1 = . . . = xp, thus our theorem can be applied
whenever there are at least two distinct xi’s. In fact, it is easy to verify that the MLE of θ is
not consistent for this special case x1 = . . . = xp. Intuitively, θ and b are confounded.

The conditions of Theorem 2 can be simplified considerably when fi(θ, b) is continuous in θ
and b uniformly in i. This is stated in the following corollary.
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Corollary 2. Consider model (3). Let θ0 denote the true value of the fixed-effect parameter
θ. Suppose the random effect b has a continuous distribution function F (b) and fi(θ, b) is
continuous in θ and b uniformly in i. For b0 ∈ Ωb, for any θ ∈ Θ, θ 6= θ0, and ε > 0, suppose
there exist a neighborhood of θ, O′(θ), such that the following conditions hold:

(i)The support set of b can be written as, Ωb = ∪K
l=1Bl , K is finite, and Bl is either compact

or open. If Bl is open, it satisfies either condition (a) or condition (b) in Theorem 2.
(ii)There exists a nonnegative continuous function D(θ0, θ, b0), which is 0 if and only if

θ = θ0, such that,

inf
b∈Ωb

lim
p→+∞ p−1

p∑

i=1

[fi(θ0, b0)− fi(θ, b)]2 → D(θ0, θ, b0).

Then θ̂p → θ0 a.e.

It follows from Corollary 2 that when fi(θ, b) is continuous in θ and b uniformly in i, we
only need to check the tail of the distribution of b in order to verify whether condition (i) of
Corollary 2 holds. For example, when Ωb = (−∞, +∞), the condition is satisfied if we can show
that limb→∞ fi(θ, b) exists (may be ∞), for i = 1, . . . , p.

Remark 2 : For the case, V (ε) = σ2I, σ2 6= 1, we can transform yi → yi/σ, fi(θ, b) →
fi(θ, b)/σ, εi → εi/σ and use the same approach. All conditions in the theorems and corollaries
of this section hold as long as σ2 > 0.

3 Examples

Jennrich (1969) studied the model yi = θ1e
θ2xi + εi, where θ1 and θ2 are fixed effects, as an

example. Wu (1981) also examined this model. We consider the same model with the exception
that θ1 will be taken to be a positive random effect. In effect, we consider the model,

yi = eθxi+b + εi,

where θ is a fixed effect which ranges over a compact set Θ and b is random effect with support
R1. Following Jennrich (1969), we assume x1, x2, . . . is a bounded sequence of real numbers
whose sample distribution function Gn approaches a distribution function G which is not degen-
erate. We assume that ε1, ε2, . . . are i.i.d. N(0, σ2). It is easy to check that eθxi+b is continuous
in θ and b uniformly in i. Also eθxi+b → +∞ uniformly in i when b → +∞ and eθxi+b → 0
uniformly in i when b → −∞, since x1, x2, . . . are bounded. Hence condition (i) in Corollary 2
is satisfied. Let

Q(θ0, b0, θ, b) = lim
n→+∞n−1

n∑

i=1

[eθxi+b − eθ0xi+b0 ]2.

In order to verify condition (ii) in Corollary 2, we need to show that infb Q(θ0, b0, θ, b) > 0.
Let R1 = (−∞,−M) ∪ [−M,M ] ∪ (M,∞), where M > 0 is chosen such that for each i,

|eθxi+b − eθ0xi+b0 | > 1 for b > M and |eθxi+b − eθ0xi+b0 | > 1
2eθ0xi+b0 for b < −M .
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If b ∈ (−∞,−M) ∪ (M,∞), it is clear that infb Q(θ0, b0, θ, b) > 0. Now suppose that
b ∈ [−M, M ]. Since Q(θ0, b0, θ, b) is continuous in b, there exist a b∗ ∈ [−M, M ], such that
Q(θ0, b0, θ, b

∗) = infb∈[−M,M ] Q(θ0, b0, θ, b). Hence, it is sufficient to show that Q(θ0, b0, θ, b
∗) >

0.
As in Jennrich (1969) we write,

Q(θ0, b0, θ, b
∗) =

∫
[eθx+b∗ − eθ0x+b0 ]2dG(x)

This expression is zero if and only if θx+ b∗ = θ0x+ b0 on a set of x with G-measure one. Since
θ 6= θ0, this can happen only when G is degenerate. By the Corollary 2, the strong consistency
of the MLE of θ follows.

It is not difficult to see that this result can be generalized to the model:

yi = f(xiθ + zib) + εi, i = 1, . . . , p.

Under general conditions on f , xi, and zi, the MLE of the fixed effects θ will be strongly
consistent. A necessary condition on f is that f(α) is either convergent or f(α) → ±∞ as
α → ∞. Examples are the random coefficient models (see, for example, Fahrmeir and Tutz
(1994)).

4 Consistency Results for Model (1)

In this section we consider the nonlinear mixed-effects model for clustered data, or the model
(1) in the introduction. This model may be written as,

yij = fij(θ, bi) + εij , i = 1, . . . , n, j = 1, . . . , pi. (12)

Here, b1, . . . , bn are random. The vector εi = (εi1, . . . , εipi)
′ is Npi(0, σ2I), and ε1, . . . , εn are

independent. Moreover, for each i = 1, . . . , n, the random effect bi has the distribution function
Fi(b). Corollary 2, applied to model (12) for each i = 1, . . . , n, gives the following result. Here,
Ωb

i denotes the support of bi, i = 1, . . . , n.

Corollary 3. Consider model (12), for a finite n. Let θ0 denote the true value of the fixed-
effects parameter θ. For given bi0 ∈ Ωb

i and any fixed θ ∈ Θ, θ 6= θ0, and ε > 0, there exist a
neighborhood of θ, O(θ), such that the following conditions hold:

(1) Suppose for each i, bi is a continuous random variable and fij(θ, bi) are continuous in
bi and θ uniformly in j. Furthermore they satisfy condition (i) in Corollary 2.

(2)There exists a nonnegative continuous function D(θ0, θ, b10, . . . , bn0), which is 0 if and
only if θ0 = θ, such that,

inf
bi∈Ωb

i

lim
p→+∞ p−1

n∑

i

pi∑

j=1

[fij(θ0, bi0)− fij(θ, bi)]2 → D(θ0, θ, b10, . . . , bn0) > 0,

where, p =
∑n

i=1 pi. Then the MLE of θ, θ̂p is strongly consistent, i.e., θ̂p → θ0 a.e.
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Our first example is the growth curve model, see for example Lindstrom and Bates (1990)
and Davidian and Giltinan (1993),

yij =
bi

1 + exp(β1xij + β2)
+ εij , i = 1, · · · , n, j = 1, · · · , p

where bi ∼ N(µ, ψ), and εij ∼ N(0, σ2). It is easy to prove in a similar way as in Section 3
that β1 and β2 are consistent if x′ijs is a random variable with sample distribution function
Gn approaches a distribution function G which is not degenerate. Our second example is the
following pharmacokinetic model considered by Roe (1997) and Wolfinger and Lin (1997):

yij = log[
10ka[exp(−kitij)− exp(−katij)]

vi(ka − ki)
] + eij ,

where yij is the concentration of the drug in the bloodstream of subject i at time tij . The
parameter ka is the absorbtion rate constant, ki is the subject-specific elimination rate constant,
and vi is the volume of distribution. If we consider ki and vi as random effects, then the MLE
of the fixed effect ka can be shown to be strongly consistent by verifying the conditions of
Corollary 3. This verification involves substantial computations that will not be shown here.

Please note that, although β1 and β2 can be consistently estimated, other parameters such
as µ and ψ in the growth curve model may not be consistently estimated. We would like to
explain this phenomena through a simple balanced one way ANOVA model,

yij = bi + εij ,

i = 1, · · · , n and j = 1, · · · , p with b′is independent N(µ, ψ) and ε′ijs independent N(0, σ2). It
can be shown that,

µ̂MLE = ȳ.., var(µ̂MLE) =
σ2

pn
+

σ2
b

n
= O(n−1)

ψ̂MLE =
(1− 1/n)MST −MSE

p
, var(ψ̂MLE) =

2σ4

n(p− 1)p2
+

2(σ2 + pψ)2

(n− 1)p2
= O(n−1)

where MSE and MST are the mean square error and mean square of treatments, respectively,
µ̂MLE , σ̂2

MLE and σ̂2
bMLE are MLE’s of parameters µ, σ2 and σ2

b . It can be seen,

µ̂MLE − µ0 = Op(n−1/2), ψ̂MLE − ψ0 = Op(n−1/2).

In other word, in this simple example neither MLE of µ and σ2
b is consistent.

5 A simulation study

We conducted a simulation study for two models: one is the model given in Section 3; the other
one is the first example given in Section 4, with reparametrization.
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Table 1: Simulation results for decay model
Estimates

Parameter True Value n=1, p=50 n=1, p=100 n=1, p=200
α1 -2.5 mean -2.22 -2.40 -2.43

std 0.92 0.71 0.61
σ2 1 mean 1.0 0.992 0.995

std 0.21 0.14 0.10
ψ 1 mean 100.3 6.75 1.39

std 1159 54.3 2.18

5.1 The simple exponential model

The model for yij is given by,

yij = exp(θxij + bi) + εij , i = 1, · · · , n, j = 1, · · · , p,

where bi ∼ N(β1, ψ), and εij ∼ N(0, σ2). Let

x10 = (−0.5,−0.4,−0.3,−0.2,−0.1, 0.1, 0.2, 0.3, 0.4, 0.5)T ,

x50 = {x10T , x10T , x10T , x10T , x10T }T ,

x100 = {x50T , x50T }T ,

x200 = {x100T , x100T }T .

We simulated three cases. For each case, 200 data sets were created and parameters are α =
−2.5, σ2 = 1, and ψ = 1. These parameters values are similar to values in the first example in
(Vonesh, Wang, Nie, and Majumdar 2002). Covariates xi = (xi1, · · · , xip) are as follows:

1 n=1, p=50, xi = x50;

2 n=1, p=100, xi = x100;

3 n=1, p=200, xi = x200;

The results are given on Table 1. According to Corollary 3, α̂MLE , the maximum likelihood of
α is consistent; on the other hand, as explained in the last paragraph in Section 4, ψ may not
be consistent. We can see that the bias of α̂ and variation are small, and they become smaller
as the sample size p increases. On the other hand, the estimation of ψ are not very good in
general.

5.2 The Soybean growth model

Let yij denote the weight of the soybean plant at time xij , measured in weeks, i = 1, · · · , n,
j = 1, · · · , p. The model is given by,

yij =
bi

1 + exp{β3(xij − β2)} + εij , i = 1, · · · , n, j = 1, · · · , p

10



Table 2: Simulation results for growth model
Estimates

Parameter True Value n=2,p=10 n=2, p=20 n=2, p=50
β1 15 mean 15.00 15.00 14.99

std 0.58 0.56 0.52
β2 50 mean 50.03 50.02 49.99

std 0.43 0.31 0.21
β3 -0.1 mean -0.1 -0.1 -0.1

std 0.0030 0.0022 0.0014
σ2 0.04 mean 0.036 0.039 0.039

std 0.013 0.009 0.006
ψ 4 mean 0.285 0.276 0.287

std 0.41 0.40 0.42

Note*: these values are all very close to 0.

where bi ∼ N(β1, ψ), and εij ∼ N(0, σ2).
Let

x10 = (14, 21, 28, 35, 42, 49, 56, 63, 70, 77)T ,

x50 = {x10T , x10T , x10T , x10T , x10T }T ,

x100 = {x50T , x50T }T ,

x200 = {x100T , x100T }T .

We simulated three cases. For each case, 200 data sets were created and parameters are β1 = 15,
β2 = 50, β3 = −0.1, σ2 = 0.04, ψ = 4. These parameters were chosen in a similar way as they
were in (Davidian and Giltinan 1993). Covariates xi = (xi1, · · · , xip) are as follows:

1 n=2, p=10, xi = x10;

2 n=2, p=20, xi = x20;

3 n=2, p=50, xi = x50;

The results are given on Table 2. According to Corollary 3, β̂2MLE and β̂3MLE , the maximum
likelihood of β2 and β3 are consistent and β1 and ψ may not be consistent. From Table 2, the
biases of the β̂2MLE and β̂3MLE are very small, and variances of β̂2MLE and β̂3MLE reduce
quickly when the sample size p increase. On the other hand, the variance of β̂1 decrease very
slow; the estimation of ψ̂ is poor and this is expected. The simulation results roughly support
the theorems developed in this paper.
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6 Discussion

In this article, we extended the results by Wu (1981) to nonlinear mixed-effects models. Our
assumptions are related to those assumptions in Wu (1981). However, it is interesting to
prove the strong consistency following the approach in Bose and Sengupta (2003), which could
possible reduce some assumptions assumed in this paper. Furthermore, Bose and Sengupta
(2003) provides an possibility to establish strong consistency of MLE for both nonlinear mixed-
effects models and generalized linear mixed-effects models, using the unified approach proposed
in Bose and Sengupta (2003). As we know, generalized linear mixed-effects models are equally
important as nonlinear mixed effects models, which have been used extensively in literature.

Since the likelihood function of the nonlinear mixed-effects model is presented through the
integration, existing approaches cannot be applied directly to prove the consistency of the
MLE. We break the likelihood function into a finite number of components, then consider the
corresponding aymptotic properties of each individual component. Consequently, conditions in
Theorem 1 and 2 are quite complicated. They are sufficient conditions for consistency of the
MLEs, while they may not be the necessary conditions.

Theorem 1 considers the case when the support of distribution of random effect is finite.
The likelihood function is already the finite summation of some likelihood functions. Therefore,
conditions on fi(θ, b) and proofs are similar to those of the nonlinear model (1.1), Wu (1981).
The condition (i) in Theorem 1 is similar to the assumption A′, Page 506, Wu (1981). Precisely,
(a) likes (3.5)′ and (b) likes (3.6)′. The condition (ii) is similar to another condition (other than
A or A′) of Theorem 3 in Wu (1981).

Theorem 2 considers the case when the support of distribution of random effect is not
finite. For example the random effect has the standard normal distribution, where the support
of the random effect is [−∞,∞]. Therefore, conditions on fi(θ, b) are different from those of
the nonlinear models, Jennrich (1969) and Wu (1981). Precisely, we decompose the support
of the random effect into a union of sets. e.g [−∞,∞] can be decomposed into a union of
some compact sets, [−∞, B], and [C, +∞]. Condition (i)(a) is used to handle the compact sets
and Condition (i)(b) is used to handle the open sets [−∞, B], and [C, +∞]. Both conditions
guarantee that we can get ride of the integration without losing much information. Condition
(ii) is similar to Condition (i)(a). It also makes sure that we can get rid of the integration by
approximation without losing much information. As it was stated in Corollary 2, Condition (ii)
and Condition (i) (a) are implied by the uniform continuous conditions of fi(θ, b), i = 1, · · · , p.
The condition (iii) is similar to but stronger than the corresponding condition of Theorem 3 in
Wu (1981). Please refer to Remark 1, for further comments on this condition.

There are special features for the asymptotic normality of the MLE for this type of models.
For one of these features, MLEs for some parameters may not be consistent. As a consequence,
asymptotic normality may only be considered for some parameters. Another special feature
is that classical tools are not directly applicable for establishing asymptotic normality for the
models we considered. Precisely, the law of large number theory and the central limit theorem
can not be used directly here since the first and second derivatives of the loglikelihood functions
are integrated functions in our cases. Further, the conditions for establishing the asymptotic

12



normality will be complicated and the proof are quite involved. We are currently working on
it and wish to fully explore it in our future work.

Appendix

Lemma 1. Let {Xi} be a sequence of independent random variables, with
∑p

i=1 E(Xi) → −∞,
∑p

i=1 V (Xi) → ∞ and limp→∞
[
Pp

i=1 V (Xi)]
1
2+δ

|Pp
i=1 E(Xi)| = 0, for some δ > 0. Then for any constant C,

we have:

P ( lim
p→∞

p∑

i=1

Xi ≤ C) = 1.

Proof. Since
∑p

i=1 V (Xi) →∞, following Chung (1974) page 126, we have,

P ( lim
p→∞

∑p
i=1(Xi −E(Xi))

[
∑p

i=1 V (Xi)]
1
2
+δ

= 0) = 1.

Observe that if

lim
p→∞

∑p
i=1(Xi − E(Xi))

[
∑p

i=1 V (Xi)]
1
2
+δ

< 1,

then ∃ N such that for p > N ,

p∑

i=1

Xi <

p∑

i=1

E(Xi) + 2[
p∑

i=1

V (Xi)]
1
2
+δ.

It follows from the conditions of lemma that, given any C < 0, ∃ M such that ∀ p > M ,

p∑

i=1

E(Xi) < 2C < 0,

[
∑p

i=1 V (Xi)]
1
2
+δ

|∑p
i=1 E(Xi)| <

1
4
.

So we have:
p∑

i=1

E(Xi) + 2[
p∑

i=1

V (Xi)]
1
2
+δ <

1
2

p∑

i=1

E(Xi) < C.

It follows that, for p > max(N, M),

p∑

i=1

Xi < C,
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and

P ( lim
p→∞

p∑

i=1

Xi ≤ C) ≥ P ( lim
p→∞

∑p
i=1(Xi − E(Xi))

[
∑p

i=1 V (Xi)]
1
2
+δ

= 0) = 1.

Thus,

P ( lim
p→∞

p∑

i=1

Xi ≤ C) = 1.

It also follows that this conclusion remains valid for any C > 0.

Lemma 2. For random variables Ujp > 0, Vjp > 0, if P (limp→+∞
Vjp

Ujp
≤ 1

2) = 1, j = 0, 1, . . . , K,
then

P ( lim
p→+∞

∑K
j=0 Vjp∑K
j=0 Ujp

< 1) = 1.

Proof. For each j = 0, 1, . . . , K, if limp→+∞
Vjp

Ujp
≤ 1

2 , then ∃Mj , such that ∀ p > Mj ,
Vjp

Ujp
< 1.

If p > Max{M0,M1, . . . ,MK}, then
∑K

j=1 Vjp <
∑K

j=1 Ujp. We note that
∑K

j=1 Ujp > 0. So,

P ( lim
p→+∞

∑K
j=0 Vjp∑K
j=0 Ujp

< 1) ≥ P (∩K
j=0{ lim

p→+∞
Vjp

Ujp
≤ 1

2
}) = 1.

Lemma 3. For any b ∈ Ωb, θ 6= θ0, suppose there exist a neighborhood of θ, O(θ, b), which does
not contain θ0, such that:

Py|b;θ0
( lim
p→∞

supθ′∈O(θ,b) Mp(y; θ′)
Mp(y; θ0)

< 1) = 1.

Then θ̂p → θ0 a.e.

Proof. For any ε > 0, Θ1 = {θ ∈ Θ : |θ − θ0| ≥ ε} is a compact set. So there exist a finite
number of points θ(1), . . . , θ(h) in Θ1, such that ∪h

i=1O(θ(i), b) ⊃ Θ1. Furthermore,

Py|b;θ0
( lim
p→∞

supθ′∈O(θ(i),b) Mp(y; θ′)
Mp(y; θ0)

< 1) = 1,

and

Py|b;θ0
( lim
p→∞

sup|θ−θ0|≥ε Mp(y; θ)
Mp(y; θ0)

< 1) ≥ Py|b;θ0
(∩h

i=1 lim
p→∞

supθ′∈O(θ(i),b) Mp(y; θ′)
Mp(y; θ0)

< 1) = 1.
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Since it is true for any b ∈ Ωb, we obtain,

Py;θ0( lim
p→∞

sup|θ−θ0|≥ε Mp(y; θ)
Mp(y; θ0)

< 1) = EbPy|b;θ0
( lim
p→∞

sup|θ−θ0|≥ε Mp(y; θ)
Mp(y; θ0)

< 1) = 1.

Suppose θ̂p → θ0 a.e. is not true. Then there exist δ > 0, such that Py;θ0(lim supp→∞ |θ̂p−θ0| ≥
δ) > 0, which implies that,

Py;θ0(lim sup
p→∞

sup|θ−θ0|≥δ Mp(y; θ)
Mp(y; θ0)

≥ 1) > 0.

This contradicts (13), which completes the proof.

Proof of Theorem 1. By the Lemma 3, it is sufficient to show that for any θ 6= θ0, for any bj ,
there exist a neighborhood of θ, O(θ), such that,

Py|bj ;θ0
( lim
p→∞

supθ′∈O(θ) Mp(y; θ′)
Mp(y; θ0)

< 1) = 1.

Without loss of generality, we establish this statement for bj = b0. Since b has discrete
distribution with finite support, Mp(y; θ) = (2π)−p/2

∑K
j=0 wj exp{−1

2

∑p
i=1(yi − fi(θ, bj))2},

observe that,

Mp(y; θ0) = (2π)−p/2
K∑

j=0

wjexp{−1
2

p∑

i=1

(yi − fi(θ0, bj))2}

≥ w0(2π)−p/2exp{−1
2

p∑

i=1

(yi − fi(θ0, b0))2}

= (2π)−p/2
K∑

j=0

w0wjexp{−1
2

p∑

i=1

(yi − fi(θ0, b0))2}.

We note that,

Py|b0;θ0
( lim
p→∞

supθ′∈O(θ) Mp(y; θ′)
Mp(y; θ0)

< 1)

≥ Py|b0;θ0
( lim
p→∞

supθ′∈O(θ)

∑K
j=0 wjexp{−1

2

∑p
i=1(yi − fi(θ′, bj))2}∑K

j=1 w0wjexp{−1
2

∑p
i=1(yi − fi(θ0, b0))2}

< 1)

≥ Py|b0;θ0
( lim
p→∞

∑K
j=0 wj supθ′∈O(θ) exp{−1

2

∑p
i=1(yi − fi(θ′, bj))2}∑K

j=1 w0wjexp{−1
2

∑p
i=1(yi − fi(θ0, b0))2}

< 1).

Let,

Aj = {y : lim
p→∞

supθ′∈O(θ) wjexp{−1
2

∑p
i=1(yi − fi(θ′, bj))2}

w0wjexp{−1
2

∑p
i=1(yi − fi(θ0, b0))2}

≤ 1
2
}.
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By Lemma 2, it is sufficient to show that P (Aj) = 1, for j = 0, 1, . . . ,K. Observe that,

Py|b0,θ0
(Aj)

= Py|θ0,b0( lim
p→∞ sup

θ′∈O(θ)
exp{−1

2

p∑

i=1

(yi − fi(θ′, bj))2 +
1
2

p∑

i=1

(yi − fi(θ0, b0))2} ≤ w0

2
)

= Py|b0,θ0
( lim
p→∞ sup

θ′∈O(θ)
−1

2

p∑

i=1

[(yi − fi(θ′, bj))2 − (yi − fi(θ0, b0))2] ≤ ln
w0

2
)

= Py|b0,θ0
( lim
p→∞ inf

θ′∈O(θ)

p∑

i=1

[(fi(θ0, b0)− fi(θ′, bj))2 + 2(yi − fi(θ0, b0))(fi(θ0, b0)− fi(θ′, bj))] ≥ −2 ln
w0

2
).

We note that,

inf
θ′∈O(θ)

p∑

i=1

[(fi(θ0, b0)− fi(θ′, bj))2 + 2(yi − fi(θ0, b0))(fi(θ0, b0)− fi(θ′, bj))]

≥ inf
θ′∈O(θ)

p∑

i=1

(fi(θ0, b0)− fi(θ′, bj))2 − sup
θ′∈O(θ)

|
p∑

i=1

2(yi − fi(θ0, b0))(fi(θ0, b0)− fi(θ′, bj))|

≥ inf
θ′∈O(θ)

{
p∑

i=1

(fi(θ0, b0)− fi(θ′, bj))2}(1− A(θ, y)
B(θ, y)

),

where

A(θ, y) = sup
θ′∈O(θ)

|
p∑

i=1

2(yi − fi(θ0, b0))(fi(θ0, b0)− fi(θ′, bj))|,

B(θ, y) = inf
θ′∈O(θ)

p∑

i=1

(fi(θ0, b0)− fi(θ′, bj))2.

By (6),
∑p

i=1 supθ′∈O(θ)(fi(θ′, bj) − fi(θ0, b0))2 → ∞ as p → ∞, and by (4), B(θ, y) → ∞ as
p →∞. Observe that,

A(θ, y)
B(θ, y)

=
A(θ, y)
C(θ, y)

C(θ, y)
B(θ, y)

,

where

C(θ, y) = {
p∑

i=1

sup
θ′∈O(θ)

(fi(θ0, b0)− fi(θ′, bj))2}
1+c
2

It follows from (4) that, for the strong consistency of θ̂p, it is sufficient to establish:

A(θ, y
2C(θ, y)

→ 0 a.s.

for some c > 0. Using condition (5), this follows from Corollary A from the Appendix of Wu
(1981).
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Proof of Theorem 2. By Lemma 3, it is sufficient to show that for any θ 6= θ0, b0 ∈ Ωb, there
exists a neighborhood of θ, O(θ), such that,

Py|b0;θ0
( lim
p→∞

supθ′∈O(θ) Mp(y; θ′)
Mp(y; θ0)

< 1) = 1.

We notice that when θ0, θ and b0 are given, we can always find 0 < ε1 < 1
2 and 0 < ε2 < 1

2
satisfying the following inequality:

ε21 + 2ε1

√
2
π

+ ε2(2

√
2
π

+ 1) <
1
4
D(θ0, θ, b0). (13)

Since ε1 and ε2 are determined by θ0, θ and b0 only, they can be treated as constants.
In condition (i), since K is a finite number, we can assume, without loss of generality, that

the sets {Bl} are disjoint, i.e., ∃ {B′
l, l = 1, . . . , K ′ < ∞}, such that B′

l ∩B′
l′ = ∅, ∪K′

l=1B
′
l = Ωb,

and {B′
l} satisfies condition (i).

We note that:

Mp(y; θ) = (2π)−n/2

∫

Ωb

exp(−1
2

p∑

i=1

[yi − fi(θ, b)]2)dF (b)

=
K′∑

l=1

(2π)−n/2

∫

B′l

exp(−1
2

p∑

i=1

[yi − fi(θ, b)]2)dF (b).

Mp(y; θ0) = (2π)−n/2

∫

Ωb

exp(−1
2

p∑

i=1

[yi − fi(θ0, b)]2)dF (b)

≥ (2π)−n/2

∫

O(b0)
exp(−1

2

p∑

i=1

[yi − fi(θ0, b)]2)dF (b),

where O(b0) is defined in condition (ii), O(b0) ⊂ Ωb.
Note that, as in the proof of Theorem 1,

Py|b0;θ0
( lim
p→∞

supθ′∈O(θ) Mp(y; θ′)
Mp(y; θ0)

< 1)

≥ Py|b0;θ0
( lim
p→∞

∑K′
j=1 supθ′∈O(θ)

∫
B′l

exp(−1
2

∑p
i=1[yi − fi(θ′, b)]2)dF (b)

∑K′
j=1 F (B′

l)
∫
O(b0) exp(−1

2

∑p
i=1[yi − fi(θ0, b)]2)dF (b)

< 1).

Define sets A1, A2, . . . , AK′ as:

Al = { lim
p→+∞

supθ′∈O(θ)

∫
B′l

exp(−1
2

∑p
i=1[yi − fi(θ′, b)]2)dF (b)

F (B′
l)

∫
O(b0) exp(−1

2

∑p
i=1[yi − fi(θ0, b)]2)dF (b)

≤ 1
2
}.

By Lemma 2, it suffices to show that,

Py|b0;θ0
(Al) = 1, l = 1, . . . , K ′.
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We consider separately the numerator and denominator of the expression in the definition of
Al. First consider the denominator. By condition (10) with ε = ε1, we obtain ∀b ∈ O(b0),

p∑

i=1

[yi − fi(θ0, b)]2 =
p∑

i=1

[yi − fi(θ0, b0) + fi(θ0, b0)− fi(θ0, b)]2

≤
p∑

i=1

{[yi − fi(θ0, b0)]2 + ε21 + 2ε1|yi − fi(θ0, b0)|}.

So we have the following inequality:
∫

O(b0)
exp(−1

2

p∑

i=1

[yi − fi(θ0, b)]2)dF (b)

≥ F (O(b0)) exp

(
−1

2

p∑

i=1

{[yi − fi(θ0, b0)]2 + ε21 + 2ε1|yi − fi(θ0, b0)|}
)

. (14)

Now, consider the numerator of the expression in the definition of Al. Since B′
l satisfies

condition (i), it satisfies either (a) or (b). We examine these cases separately.
Case 1. B′

l satisfies (a).
For b ∈ B′

l and θ′ ∈ O(θ), we obtain from condition (7) with ε = ε2,
p∑

i=1

[yi − fi(θ′, b)]2 >

p∑

i=1

{[yi − fi(θ, bl)]2 − 2ε2|yi − fi(θ, bl)|}.

Then,

sup
θ′∈O(θ)

∫

B′l

exp(−1
2

p∑

i=1

[yi − fi(θ′, b)]2)dF (b)

≤ F (B′
l)exp

(
−1

2

p∑

i=1

{[yi − fi(θ, bl)]2 − 2ε2|yi − fi(θ, bl)|}
)

. (15)

By the definition of Al, and the inequalities (14) and (15), we have,

Py|b0;θ0
(Al) ≥ Py|b0;θ0

( lim
p→+∞

p∑

i=1

{[yi − fi(θ0, b0)]2 + ε21 + 2ε1|yi − fi(θ0, b0)|} − 2 ln(
F (O(b0))

2
)

−
p∑

i=1

{[yi − fi(θ, bl)]2 − 2ε2|yi − fi(θ, bl)|} < 0)

= Py|b0;θ0
( lim
p→+∞

p∑

i=1

{[yi − fi(θ0, b0)]2 − [yi − fi(θ, bl)]2 + 2ε2|yi − fi(θ, bl)|

+2ε1|yi − fi(θ0, b0)|+ ε21} < 2 ln(
F (O(b0))

2
)

= Py|b0;θ0

(
lim

p→+∞

p∑

i=1

Xi < 2 ln(
F (O(b0))

2
)

)
, (16)
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where,

Xi = f2
i (θ0, b0)− f2

i (θ, bl)− 2yi[fi(θ0, b0)− fi(θ, bl)]
+2ε2|yi − fi(θ, bl)|+ 2ε1|yi − fi(θ0, b0)|+ ε21.

We note that when the parameter is θ0, given b = b0, yi ∼ N(fi(θ0, b0), 1). Hence, it can be
verified that,

Ey|b0;θ0
(

p∑

i=1

Xi) < −(1− ε2)
p∑

i=1

[fi(θ0, b0)− fi(θ, bl)]2 + ε2(2

√
2
π

+ 1)p + pε21 + 2ε1p

√
2
π

.

Hence by (13),

Ey|b0;θ0
(

p∑

i=1

Xi) < −1
4

p∑

i=1

[fi(θ0, b0)− fi(θ, bl)]2.

Also,

Vy|b0;θ0
(

p∑

i=1

Xi) < (8 + 16ε22)
p∑

i=1

[fi(θ0, b0)− fi(θ, bl)]2 + 16ε22p + 16ε21p

By (11), limp→+∞Ey|b0;θ0
(
∑p

i=1 Xi) = −∞ and limp→+∞ Vy|b0;θ0
(
∑p

i=1 Xi) = ∞. Furthermore,

lim
p→+∞

[Vy|b0;θ0
(
∑p

i=1 Xi)]
3
4

|Ey|b0;θ0
(
∑p

i=1 Xi)| = 0.

Hence by Lemma 1, we have Py|b0;θ0
(Al) = 1 for all sets B′

l that satisfy (a).
Case 2. B′

l satisfies (b).
It follows from condition (b) that we can partition {1, . . . , p} into two sets G1 and G2, such

that b ∈ B′
l satisfies (8) if i ∈ G1, and satisfies (9) if i ∈ G2. So for b ∈ B′

l and θ′ ∈ O(θ), we
have the following inequalities:
∑

i∈G1

[yi − fi(θ′, b)]2 >
∑

i∈G1

{[yi − fi(θ′, b)]2I{yi ≤ fi(θ0, b0) + 2}+ [yi − fi(θ′, b)]2I{yi > fi(θ0, b0) + 2}}

>
∑

i∈G1

[yi − fi(θ0, b0)− 2]2I{yi ≤ fi(θ0, b0) + 2}.
∑

i∈G2

[yi − fi(θ′, b)]2 >
∑

i∈G2

{[yi − fi(θ′, b)]2I{yi < fi(θ0, b0)− 2}+ [yi − fi(θ′, b)]2I{yi ≥ fi(θ0, b0)− 2}

>
∑

i∈G2

[yi − fi(θ0, b0) + 2]2I{yi ≥ fi(θ0, b0)− 2}.

19



So we have
p∑

i=1

[yi − fi(θ′, b)]2 =
∑

i∈G1

[yi − fi(θ′, b)]2 +
∑

i∈G2

[yi − fi(θ′, b)]2

>
∑

i∈G1

(
[yi − fi(θ0, b0)− 2]2 − [yi − fi(θ0, b0)− 2]2I{yi > fi(θ0, b0) + 2})

+
∑

i∈G2

(
[yi − fi(θ0, b0) + 2]2 − [yi − fi(θ0, b0)− 2]2I{yi < fi(θ0, b0)− 2})

>

p∑

i=1

[yi − fi(θ0, b0)]2 − 4
∑

i∈G1

[yi − fi(θ0, b0)] + 4
∑

i∈G2

[yi − fi(θ0, b0)] + 4p

−
∑

i∈G1

X1i −
∑

i∈G2

X2i, (17)

where

X1i = [yi − fi(θ0, b0)− 2]2I{yi > fi(θ0, b0) + 2},
X2i = [yi − fi(θ0, b0) + 2]2I{yi < fi(θ0, b0)− 2}.

Then

sup
θ′∈O(θ)

∫

B′l

exp(−1
2

p∑

i=1

[yi − fi(θ′, b)]2)dF (b)

≤ F (B′
l)exp{−1

2

p∑

i=1

[yi − fi(θ0, b0)]2 + 2
∑

i∈G1

[yi − fi(θ0, b0)]− 2
∑

i∈G2

[yi − fi(θ0, b0)]− 2p

+
1
2

∑

i∈G1

X1i +
1
2

∑

i∈G2

X2i}. (18)

By the definition of Al, and the inequalities (14) and (18), we have,

Py|b0;θ0
(Aj) ≥ Py|θ0,b0( lim

p→+∞

p∑

i=1

{[yi − fi(θ0, b0)]2 + ε21 + 2ε1|yi − fi(θ0, b0)|} − 2 ln(
F (O(b0))

2
)−

p∑

i=1

[yi − fi(θ0, b0)]2 + 4
∑

i∈G1

[yi − fi(θ0, b0)]− 4
∑

i∈G2

[yi − fi(θ0, b0)]− 4p

+
∑

i∈G1

X1i +
∑

i∈G2

X2i < 0)

= Py|b0;θ0
( lim
p→+∞X3i < 2 ln(

F (O(b0))
2

)).
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Here

X3i = 4
∑

i∈G1

[yi − fi(θ0, b0)]− 4
∑

i∈G2

[yi − fi(θ0, b0)] + 2ε1
p∑

i=1

|yi − fi(θ0, b0)|

+
∑

i∈G1

X1i +
∑

i∈G2

X2i − 4p + pε21.

We note that when the parameter is θ0, given b = b0, yi ∼ N(fi(θ0, b0), 1). Hence, it can be
verified that,

Ey|b0;θ0
X1i < 1, Ey|b0;θ0

X2i < 1, Vy|b0;θ0
X1i < 2, Vy|b0;θ0

X2i < 2.

So

Ey|b0;θ0
(

p∑

i=1

X3i) < pε21 + 2ε1

√
2
π
− 3p,

and,

Vy|b0;θ0
(

p∑

i=1

X3i) < 44p + 16ε21.

Since ε1 < 1
2 , limp→+∞Ey|θ0,b0

∑p
i=1 X3i = −∞ and limp→+∞ Vy|b0;θ0

(
∑p

i=1 X3i) = +∞. Fur-
thermore,

lim
p→+∞

[Vy|b0;θ0
(
∑p

i=1 X3i)]
3
4

|Ey|b0;θ0
(
∑p

i=1 X3i)| = 0.

Hence by Lemma 1, we have Py|b0;θ0
(Al) = 1 for all sets B′

l that satisfy (b). The theorem now
follows from Lemma 3.

Proof of Corollary 2. Since fi(θ, b) is continuous in b and θ uniformly in i, condition (10) in
Theorem 2 is satisfied. Furthermore for any ε > 0, for any compact set Bl, for each b ∈ Bl,
there exist O(b), a neighborhood of b, and O(θb), a neighborhood of θ, such that,

sup
i

sup
θ′∈O(θb)

sup
b′∈O(b)

|fi(θ′, b′)− fi(θ, b)| < ε.

Since Bl is compact, we can find O(bl1), . . . , O(blnl
), such that ∪nl

j=1O(blj ) ⊃ Bl. So there exists
sets {B′

h} such that B′
h = O(Blj ) for some lj , and ∪M

l=1B
′
l ⊃ Ωb, for a finite M . It follows that

for each B′
l, there exist a neighborhood of θ, O(θl), such that B′

l satisfies one of (7), (8) and
(9). Let O(θ) = ∩M

l=1O(θl), then each B′
l satisfies condition (a) or condition (b) in Theorem 2.

Corollary 2 now follows from Theorem 2.
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