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SUPPORT POINTS OF LOCALLY OPTIMAL DESIGNS FOR
NONLINEAR MODELS WITH TWO PARAMETERS

BY MIN YANG1 AND JOHN STUFKEN2

University of Missouri–Columbia and University of Georgia

We propose a new approach for identifying the support points of a locally
optimal design when the model is a nonlinear model. In contrast to the com-
monly used geometric approach, we use an approach based on algebraic tools.
Considerations are restricted to models with two parameters, and the gen-
eral results are applied to often used special cases, including logistic, probit,
double exponential and double reciprocal models for binary data, a loglinear
Poisson regression model for count data, and the Michaelis–Menten model.
The approach, which is also of value for multi-stage experiments, works both
with constrained and unconstrained design regions and is relatively easy to
implement.

1. Introduction. Generalized linear models (GLMs) and other nonlinear
models have found broad applicability during the last decades. Methods of analy-
sis and inference for these models are well established [for GLMs, see, e.g.,
McCullagh and Nelder (1989), McCulloch and Searle (2001) and Agresti (2002)],
but results on optimal designs are more sparse.

In contrast to very general results on optimal designs for linear models with
normal errors, many optimality results for nonlinear models are for specific opti-
mality criteria and for specific cases in terms of the model, the design region and
the parameters of interest. The significance of our results is their broad applica-
bility, as will be demonstrated in the next sections. As in much of the past work,
our method focuses on locally optimal designs. With nonlinear models, informa-
tion matrices and optimal designs depend on the unknown model parameters, and
one way to deal with this is to identify locally optimal designs based on the best
guess of the parameters. There are other ways to address this issue, for example,
by using a Bayesian approach [see, e.g., Agin and Chaloner (1999), Chaloner and
Larntz (1989) and Chaloner and Verdinelli (1995)]. There is also some interesting
work on finding designs that are robust to the best guess of the parameters [see,
e.g., Dror and Steinberg (2006)], in which case it would still be useful to know
locally optimal designs. As pointed out by Ford, Torsney and Wu (1992), locally
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optimal designs are important if good initial parameters are available from previ-
ous experiments, but can also function as a benchmark for designs chosen to satisfy
experimental constraints. Hereafter, we omit the word “locally” for simplicity.

We focus on nonlinear models with two regression parameters. These are the
most studied nonlinear models, and our results will unify and generalize many of
the available results. We will provide selected relevant references in later sections,
and refer the reader to Khuri et al. (2006) for an authoritative recent review on
design issues for GLMs.

There can be many design questions that lead to different optimal designs. For
example, a design, that is, D-optimal for a certain problem may not be A-optimal.
As another example, a design, that is, optimal for the two parameters may not be
optimal for some function of the parameters. Moreover, optimality is a function of
the design space, which is in many problems a constrained space. For example, in
a toxicity study, a high dose level that exceeds safety limits is not acceptable. All
these issues, coupled with the dependence of a locally optimal design on a guess
of the parameters, complicate the optimal design problem tremendously. There
are consequently very few general results on this topic. Among the exceptions
is Biedermann, Dette and Zhu (2006), who obtained a series of excellent results
for a specific function of the parameters under a constrained design space and for
various models and optimality criteria.

Our strategy will be to identify a class of relatively simple designs so that for
any design d that does not belong to this class, there is a design in the class that
has an information matrix that dominates that of d in the Loewner ordering. Such
a design will then also be no worse than d for most of the common optimality
criteria and for many functions of the parameters. The class of designs will depend
on the design region—which can be constrained—and the model, and whether
a design belongs to the class or not will depend on its support points. With these
results, identifying an optimal design for a specific optimality criterion will then
either reduce to a simple optimization problem or be solved by using the results of
Pukelsheim and Torsney (1991). For further discussion we refer to Biedermann,
Dette and Zhu (2006). In Section 6 we will observe that our approach is also
useful in the context of multi-stage designs, which is especially helpful in cases
where no good initial guess of the parameters is available. We refer to Sitter and
Forbes (1997) for further details.

This article is inspired by the work of Mathew and Sinha (2001), who devel-
oped a unified approach to tackle optimality problems for the logistic regression
model. Our approach successfully characterizes optimal designs under many com-
monly studied models. Moreover, the results apply for any functions of the original
parameters and any commonly used optimality criteria. The results make finding
optimal designs for nonlinear models with two parameters a simple task.

For the layout of the remainder of the paper, we will introduce commonly used
GLMs and the Michaelis–Menten model in Section 2. In Section 3 we will de-
velop the main tools, which will then be applied to the introduced models in Sec-
tions 4 and 5. Section 6 concludes with a brief discussion.
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2. Statistical models and information matrices. All the models that we will
consider have two parameters, which we denote by α and β , and an explanatory
variable x. For a given model, the exact optimal design problem consists of se-
lecting distinct values for x, say x1, . . . , xk , and values for the number of observa-
tions ni at xi so that the resulting design is best with respect to some optimality
criterion for a fixed number of observations n = ∑k

i=1 ni . The xi ’s are the support
points of the design. This is a difficult and often intractable optimization problem,
which has led to the use of approximate designs in which the ni’s are replaced
by ωi’s that satisfy ωi > 0 and

∑k
i=1 ωi = 1. Thus a design can now be written

as ξ = {(xi,ωi), i = 1, . . . , k}, and the problem of finding an optimal design be-
comes, once the support points have been determined, a continuous optimization
problem rather than a discrete optimization problem. Identifying support points for
an optimal design is therefore extremely important, and the methodology that we
develop accomplishes precisely that for optimal designs with a small support size.

For a given design ξ and a two-parameter model for independent observations,
the Fisher information matrix for the parameters (α,β) can be written as

Iξ (α,β) = AT (α,β)Cξ (α,β)A(α,β).(2.1)

Here,

Cξ(α,β) =

⎛⎜⎜⎜⎜⎝
k∑

i=1

ωi�1(ci)

k∑
i=1

ωi�2(ci)

k∑
i=1

ωi�2(ci)

k∑
i=1

ωi�3(ci)

⎞⎟⎟⎟⎟⎠(2.2)

is a matrix that depends on (α,β) (through the ci ’s) and on design ξ (through
the ωi’s and ci’s), while A(α,β) is a matrix that depends only on (α,β). The func-
tions �j will differ depending on the model. The following examples introduce
popular models to illustrate the notation in (2.1) and (2.2).

EXAMPLE 1. In dose-response studies and growth studies, a subject receives
a stimulus at a certain level x to study the relationship between the level of the
stimulus and a binary response. The dose level in a dose-response study or the
level of dilution in a growth study [see McCulloch and Searle (2001), Chapter 5]
can be controlled by the experimenter, and a judicious selection of the levels must
be made prior to the experiment. With Yi and xi as the binary response and the
stimulus for the ith subject, a basic generalized linear regression model for this
situation is of the form

Prob(Yi = 1) = P(α + βxi).(2.3)

Here, α and β are the intercept and slope parameters, and P(x) is a cumulative
distribution function. Commonly used models of this form are the logistic, pro-
bit, double exponential and double reciprocal models. Most results in the optimal
design literature for GLMs are for (2.3).
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The information matrix for (α,β) for (2.3) is of the form given in (2.1)
and (2.2), where we may take A(α,β) = (1 −α/β

0 1/β

)
, ci = α + βxi , �1(ci) =

{P ′(ci)}2/[P(ci){1 − P(ci)}], �2(ci) = ci�1(ci), and �3(ci) = c2
i �1(ci).

EXAMPLE 2. Generalized linear regression models, such as loglinear regres-
sion models [Agresti (2002), Chapter 9], can be useful for count data. For exam-
ple, in a cancer colony-formation assay [Minkin (1993)], the capacity of a drug
to reduce the formation of cell colonies is studied. The number of cell colonies
observed at a certain concentrate level xi of the drug is assumed to be a Poisson
variable with mean θi and a loglinear model is used to describe the relationship
between θi and the concentrate level of the drug xi . Minkin (1993) describes the
model as

log θi = α + βxi.(2.4)

Compared to (2.3), the optimal design literature contains fewer results for this
model. Nevertheless, the information matrix for (α,β) for (2.4) is also of the form
given in (2.1) and (2.2) with the same choices as in Example 1, except that now
�1(ci) = exp(ci).

EXAMPLE 3. The Michaelis–Menten model is a nonlinear model that is
widely used in the biological sciences. It is given by

Yi = αxi

β + xi

+ εi, εi ∼ N(0, σ 2),(2.5)

where α and β are positive and the explanatory variable xi can take values in
(0, x0] for some x0. Some results on optimal designs [e.g., Dette and Wong (1999)]
are available for this model. The information matrix for (α,β) is again of the
form given in (2.1) and (2.2), this time with the choices A(α,β) = (1/α −1/β

0 1/αβ

)
,

ci = αxi/(β + xi), �1(ci) = c2
i , �2(ci) = c3

i and �3(ci) = c4
i .

Our strategy is to identify a class of designs so that for any design ξ , and for
given α and β , there is a design ξ∗ in the class with Cξ∗(α,β) ≥ Cξ(α,β). This
inequality in the Loewner ordering implies the same inequality for the correspond-
ing information matrices in (2.1), and ξ∗ is, for these (α,β), locally better than ξ

under commonly used optimality criteria, such as 
p-optimality, which includes
D-, A- and E-optimality. Moreover, if the interest is not in (α,β) but in some
one-to-one transformation of these parameters, say (τ1, τ2), then ξ∗ is also bet-
ter than ξ in the Loewner ordering for (τ1, τ2). This follows easily by observ-
ing that the information matrix for (τ1, τ2), say Jξ (τ1, τ2), can be expressed as
Jξ (τ1, τ2) = (BT (α,β))−1Iξ (α,β)B−1(α,β), where Iξ (α,β) is as defined in (2.1)
and

B(α,β) =
⎛⎜⎝

∂τ1

∂α

∂τ1

∂β
∂τ2

∂α

∂τ2

∂β

⎞⎟⎠ .
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Observe that this also implies that ξ∗ is better than ξ for τ1 if that is the only
parameter function of interest. For this strategy to be useful, the class of designs
that we identify must, of course, be a relatively small class consisting of designs
that have a small support size.

3. The main tools. The main algebraic tools are derived in this section assum-
ing certain properties for the �j ’s in (2.2). Applications to specific models will be
considered in Sections 4 and 5. We start with the following lemma. In Lemma 1,
as well as in Proposition A.1 in the Appendix, B could be +∞, but A and the c’s
must be finite.

LEMMA 1. Assume that �1(c), �2(c) and �3(c) are continuous functions on
[A,B], that they are three times differentiable on (A,B] and that they satisfy the
following conditions on the latter interval:

(a) � ′
1(c) < 0;

(b) (
� ′

2(c)

� ′
1(c)

)′ > 0;

(c) ((
� ′

3(c)

� ′
1(c)

)′/(� ′
2(c)

� ′
1(c)

)′)′ > 0;

(d) limc↓A
� ′

2(c)

� ′
1(c)

(�1(A) − �1(c)) = 0.

Then, for any c1 and c2 with A < c1 < c2 ≤ B and 0 < ω < 1, there exists a unique
pair cx,ωx , where cx ∈ (c1, c2) and 0 < ωx < 1, such that

ω�1(c1) + (1 − ω)�1(c2) = ωx�1(A) + (1 − ωx)�1(cx),(3.1)

ω�2(c1) + (1 − ω)�2(c2) = ωx�2(A) + (1 − ωx)�2(cx)(3.2)

and

ω�3(c1) + (1 − ω)�3(c2) < ωx�3(A) + (1 − ωx)�3(cx).(3.3)

For ω = 0 or 1, for cx ∈ [c1, c2], the unique pair that gives equality in (3.1)
and (3.2) is cx = c2 or c1, respectively, and ωx = 0. This solution also gives equal-
ity in (3.3). Furthermore, cx is a strictly decreasing function of ω.

PROOF. If ω = 0 or 1, then it follows from (A.1) and condition (a) that cx = c2
or c1, respectively, and ωx = 0. This obviously also gives equality in (3.3).

Next, let 0 < ω < 1. We will first show that there is a unique pair cx ∈ (c1, c2)

and ωx ∈ (0,1) that satisfies (3.1) and (3.2). For c ∈ (c1, c2), define

ωA(c) = ω�1(c1) + (1 − ω)�1(c2) − �1(c)

�1(A) − �1(c)
.(3.4)

Notice that ωA(c) is an increasing function of c by observing that 1 − ωA(c) is a
decreasing function of c. For any c ∈ (c1, c2), (3.1) holds for (cx,ωx) = (c,ωA(c))
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[although ωx may not be in (0,1)]. Define

F1(c) = ωA(c)�2(A) + (
1 − ωA(c)

)
�2(c) − ω�2(c1) − (1 − ω)�2(c2)

= ω�1(c1) + (1 − ω)�1(c2) − �1(c)

�1(A) − �1(c)

(
�2(A) − �2(c)

)
+ �2(c) − ω�2(c1) − (1 − ω)�2(c2).

For c = �−1
1 (ω�1(c1) + (1 − ω)�1(c2)) [�−1

1 exists and c ∈ (c1, c2) since �1(c)

is a monotone function by condition (a)],

F1(c) = �2(c) − ω�2(c1) − (1 − ω)�2(c2) > 0,(3.5)

where we have used (A.1). On the other hand, for c = c2, we have

F1(c) = ω(�1(c1) − �1(c2))

�1(A) − �1(c2)

(
�2(A) − �2(c2)

) − ω
(
�2(c1) − �2(c2)

)
= ω

[
�1(c1) − �1(c2)

�1(A) − �1(c2)
�2(A)(3.6)

+ �1(A) − �1(c1)

�1(A) − �1(c2)
�2(c2) − �2(c1)

]
< 0,

where we have again used (A.1) in the last step. Since F1(c) is a continuous func-
tion, by (3.5) and (3.6) there must be a cx ∈ (�−1

1 (ω�1(c1) + (1 − ω)�1(c2)), c2)

so that F1(cx) = 0. Then cx and ωA(cx), which we will abbreviate to ωx , sat-
isfy (3.1) and (3.2). Note that ωx ∈ (0,1) for this choice.

We will now show that the pair (cx,ωx) is unique. Assume that (cy,ωA(cy) =
ωy) is another pair that satisfies (3.1) and (3.2). Without loss of generality we may
take cx < cy . By (3.4), this implies ωx < ωy , so that 0 <

ωy−ωx

1−ωx
< 1. Since both

(cx,ωx) and (cy,ωy) satisfy (3.1), we have that

�1(cx) = ωy − ωx

1 − ωx

�1(A) + 1 − ωy

1 − ωx

�1(cy).(3.7)

By (A.1) this implies

�2(cx) >
ωy − ωx

1 − ωx

�2(A) + 1 − ωy

1 − ωx

�2(cy).(3.8)

But since both (cx,ωx) and (cy,ωy) satisfy (3.2), we also have

�2(cx) = ωy − ωx

1 − ωx

�2(A) + 1 − ωy

1 − ωx

�2(cy),(3.9)

which contradicts (3.8).



524 M. YANG AND J. STUFKEN

The next step consists of showing that the unique pair (cx,ωx) also satisfies
inequality (3.3). From (3.1) and (3.2), we obtain

ω = ((
�1(cx) − �1(c2)

)(
�2(cx) − �2(A)

) − (
�2(cx) − �2(c2)

)
× (

�1(cx) − �1(A)
))

× [(
�1(c1) − �1(c2)

)(
�2(cx) − �2(A)

)
− (

�2(c1) − �2(c2)
)(

�1(cx) − �1(A)
)]−1 and

(3.10)
ωx = ((

�1(c1) − �1(c2)
)(

�2(cx) − �2(c2)
)

− (
�2(c1) − �2(c2)

)(
�1(cx) − �1(c2)

))
× [(

�1(c1) − �1(c2)
)(

�2(cx) − �2(A)
)

− (
�2(c1) − �2(c2)

)(
�1(cx) − �1(A)

)]−1
.

Note that the common denominator in these expressions is positive by (A.3). Then
inequality (3.3) is equivalent to (A.4), and the conclusion follows.

For the final step of the proof we establish that cx is a strictly decreasing func-
tion of ω. For fixed c1 and c2, we have just established that for every ω ∈ (0,1)

there exists a unique cx , such that (3.1), (3.2) and (3.3) are satisfied. As seen
in (3.10), we can express ω as a function of cx . This expression also appears
in (A.5), and we conclude from (v) of Proposition A.1 that ω is a strictly de-
creasing function of cx , which implies also that cx is a strictly decreasing function
of ω. �

The assumptions in Lemma 1 are sufficient to reach the conclusions of the
lemma, but certain modifications of the assumptions, which are useful for later ap-
plications, can yield the same or similar conclusions. The next two lemmas present
variations on Lemma 1. Before we formulate these lemmas we first introduce new
terminology. We say that (�1(c), �2(c), �3(c)) are functions of type I on [A,B]
if

(i) �1(c), �2(c) and �3(c) are continuous functions on [A,B] that are three
times differentiable on (A,B];

(ii) � ′
1(c)(

� ′
2(c)

� ′
1(c)

)′((� ′
3(c)

� ′
1(c)

)′/(� ′
2(c)

� ′
1(c)

)′)′ < 0 for c ∈ (A,B]; and

(iii) limc↓A
� ′

2(c)

� ′
1(c)

(�1(A) − �1(c)) = 0.

Here B could be +∞, but A must be finite. We say that (�1(c), �2(c), �3(c)) are
functions of type II on [A,B] if

(i) �1(c), �2(c) and �3(c) are continuous functions on [A,B] that are three
times differentiable on [A,B);

(ii) � ′
1(c)(

� ′
2(c)

� ′
1(c)

)′((� ′
3(c)

� ′
1(c)

)′/(� ′
2(c)

� ′
1(c)

)′)′ > 0 for c ∈ [A,B);
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(iii) limc↑B
� ′

2(c)

� ′
1(c)

(�1(B) − �1(c)) = 0.

In this case A could be −∞, but B must be finite. The conditions for functions of
type I and type II can generally be verified easily; for example, by using symbolic
computational software, such as Maple.

Suppose conditions (c) and (d) of Lemma 1 are met, but � ′
1(c) > 0 and

(
� ′

2(c)

� ′
1(c)

)′ < 0. It is easily seen that −�1(c), �2(c) and �3(c) satisfy all conditions

of the lemma, so that Lemma 1 holds for −�1(c), �2(c) and �3(c). But since (3.1)
is an equality, this means that the conclusions of Lemma 1 hold for �1(c), �2(c)

and �3(c). Application of Lemma 1 with ±�1(c) or ±�2(c) yields the following
conclusion:

LEMMA 2. If (�1(c), �2(c), �3(c)) are functions of type I on [A,B], then the
conclusions of Lemma 1 still hold.

If (�1(c), �2(c), �3(c)) are functions of type II on [A,B], define �̃1(c) =
�1(−c), �̃2(c) = �2(−c) and �̃3(c) = �3(−c). It can be verified that (�̃1(c),
�̃2(c), �̃3(c)) are now functions of type I on [−B,−A]. For any A ≤ c < B ,
�1(c) = �̃1(c̃), where c̃ = −c ∈ (−B,−A]. Thus, by applying Lemma 2, we have
the following result:

LEMMA 3. Suppose (�1(c), �2(c), �3(c)) are functions of type II on [A,B].
For any given A ≤ c1 < c2 < B and 0 < ω < 1, there exists a unique pair cx,ωx ,
where cx ∈ (c1, c2) and ωx ∈ (0,1), such that (3.1), (3.2) and (3.3) hold with A

being replaced by B .

Lemmas 2 and 3 are the basis of this algebraic method. The following two corol-
laries will be used in our main results. The first one can be derived immediately
from Lemma 2.

COROLLARY 1. Let (�1(c), �2(c), �3(c)) be functions of type I on [A,B].
For any given A < c1 < c2 ≤ B , ω1 > 0, and ω2 > 0, there exists a unique pair
cx,ωx , where cx ∈ (c1, c2) and ωx ∈ (0,ω1 + ω2), such that

ω1�1(c1) + ω2�1(c2) = ωx�1(A) + (ω1 + ω2 − ωx)�1(cx),

ω1�2(c1) + ω2�2(c2) = ωx�2(A) + (ω1 + ω2 − ωx)�2(cx)

and

ω1�3(c1) + ω2�3(c2) < ωx�3(A) + (ω1 + ω2 − ωx)�3(cx).

Applying Corollary 1 repeatedly, we obtain the following result:



526 M. YANG AND J. STUFKEN

COROLLARY 2. Let (�1(c), �2(c), �3(c)) be functions of type I on [A,B].
Let ci ∈ (A,B] and ωi > 0, i = 1, . . . , k, k ≥ 2. Then there exists a unique pair
cx,ωx , where cx ∈ (A,B) and ωx ∈ (0,

∑k
i=1 ωi), such that

k∑
i=1

ωi�1(ci) = ωx�1(A) +
(

k∑
i=1

ωi − ωx

)
�1(cx),(3.11)

k∑
i=1

ωi�2(ci) = ωx�2(A) +
( k∑

i=1

ωi − ωx

)
�2(cx)(3.12)

and

k∑
i=1

ωi�3(ci) < ωx�3(A) +
(

k∑
i=1

ωi − ωx

)
�3(cx).(3.13)

Similarly, Lemma 3 yields the following result:

COROLLARY 3. Let (�1(c), �2(c), �3(c)) be functions of type II on [A,B].
Let ci ∈ [A,B) and ωi > 0, i = 1, . . . , k, k ≥ 2. Then there exists a unique pair
cx,ωx , where cx ∈ (A,B) and ωx ∈ (0,

∑k
i=1 ωi), such that

k∑
i=1

ωi�1(ci) = ωx�1(B) +
(

k∑
i=1

ωi − ωx

)
�1(cx),

k∑
i=1

ωi�2(ci) = ωx�2(B) +
(

k∑
i=1

ωi − ωx

)
�2(cx)

and

k∑
i=1

ωi�3(ci) < ωx�3(B) +
(

k∑
i=1

ωi − ωx

)
�3(cx).

4. Application to (2.3). For (2.3) we have that �1(c) = �(c), �2(c) = c�(c)

and �3(c) = c2�(c), where �(c) = ec

(1+ec)2 for the logistic model, �(c) =
φ2(c)


(c)(1−
(c))
for the probit model, �(c) = 1

2e|c|−1
for the double exponential model

and �(c) = 1
(1+|c|)2(2|c|+1)

for the double reciprocal model. Here, 
(c) and φ(c)

are the c.d.f. and p.d.f. for the standard normal distribution. We observe that all
four �(c)’s are even and positive functions. By routine algebra, it can be shown
that in each case (�1(c), �2(c), �3(c)) are type I functions on [A,B] whenever
0 ≤ A < B , including [0,∞). In addition, for the logistic and probit models, for
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c > 0 it also holds that (
� ′

3(c)

� ′
1(c)

)′
> 0.(4.1)

We will use these properties in the derivations of the key results in this section.
We will distinguish between two possible types of constraints on the values of

the ci’s. For a symmetric constraint we will assume that ci ∈ [−D,D] for some
D > 0, while ci ∈ [D1,D2], where |D1| �= |D2|, for a nonsymmetric constraint.
For the special case that D = ∞, there is no constraint at all on the ci ’s; if either
D1 = −∞ or D2 = ∞, then there is only a one-sided constraint. We need the
following lemma:

LEMMA 4. Consider (2.3) for the logistic, probit, double exponential or
double reciprocal model. Assume ci ∈ [D1,D2] where D1 < 0 < D2. For
an arbitrary design ξ = {(ci,ωi), i = 1, . . . , k}, there exists a design ξ̃ =
{(c+,ω+), (c−,ω−), (0,1 − ω+ − ω−)}, such that Cξ ≤ Cξ̃ under the Loewner
ordering. Here, 0 < c+ ≤ D2 and D1 ≤ c− < 0.

PROOF. Consider all positive ci ’s. If there are none, take c+ as any point with
0 < c+ ≤ D2 and ω+ = 0. If there is one such ci , take this as c+ and take ω+ to
be the corresponding ωi . For two or more positive ci ’s, by Corollary 2 there exist
(c+,ω+) and ω10, such that∑

ci>0

ωi�(ci) = ω10�(0) + ω+�(c+),

∑
ci>0

ωici�(ci) = ω+c+�(c+),

∑
ci>0

ωic
2
i �(ci) < ω+[c+]2�(c+).

Here, 0 < c+ ≤ D2 and ω10 +ω+ = ∑
ci>0 ωi . Since �(c) is even, a similar result

holds for negative ci’s, if any. Let the corresponding values be (c−,ω−), where
D1 ≤ c− < 0. Let ξ̃ = (c+,ω+), (c−,ω−), (0,1 − ω+ − ω−). Comparing the two
information matrices Cξ and Cξ̃ , we can see that all elements are the same except
that the last diagonal element of the latter exceeds that of the former unless ξ = ξ̃ .
The conclusion follows. �

THEOREM 1. Let ξ = {(ci,ωi), i = 1, . . . , k} with k ≥ 2 and with ci ∈
[−D,D] for some D > 0. Then, for the logistic or probit model in (2.3), there
is a design ξ∗ based on two symmetric points with Cξ ≤ Cξ∗ . For the double expo-
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nential and double reciprocal model, the same conclusion holds except that a third
point, namely 0, may have to be included in the support of ξ∗.

PROOF. We first prove the result for the double exponential and double recip-
rocal models. With ξ̃ as defined in Lemma 4, it is sufficient to show that there
exists a design ξ∗ with a support that is based on two symmetric points plus the
point 0 and with Cξ̃ ≤ Cξ∗ . Since ci ∈ [−D,D], we have c+ ≤ D and −c− ≤ D.
If c+ = −c−, then we take ξ∗ = ξ̃ and the conclusion follows. Otherwise, con-
sider the pair {(c+,ω+), (−c−,ω−)} and recall that �(c−) = �(−c−). Applying
Corollary 1, there exists (cx,ωx), with cx between −c− and c+, such that

ω−�(−c−) + ω+�(c+) = (ω− + ω+ − ωx)�(0)

+ ωx�(cx),
(4.2)

−ω−c−�(−c−) + ω+c+�(c+) = ωxcx�(cx),

ω−[−c−]2�(−c−) + ω+[c+]2�(c+) < ωxc
2
x�(cx).

It is clear that cx ≤ D. Define

2p = ω−c−�(c−) + ω+c+�(c+)

−ω−c−�(−c−) + ω+c+�(c+)
+ 1.

Observe that 0 ≤ p ≤ 1. Let ξ∗ = {(cx,pωx), (−cx, (1 − p)ωx), (0,1 − ωx)}. Us-
ing (4.2) and that � is even, it follows that the corresponding elements of Cξ̃

and Cξ∗ are equal, except that the last diagonal element of Cξ∗ could be larger
than that of Cξ̃ . Therefore Cξ̃ ≤ Cξ∗ , and the conclusion follows for the double
exponential and double reciprocal models.

These arguments are also valid for the logistic and probit models. Therefore,
with ξ∗ as the design just constructed, for these models it suffices to show that
there exists a design ξ0 based on two symmetric points only such that Cξ∗ ≤ Cξ0 .
Since (4.1) holds for the logistic and probit models, by Proposition A.2 there is
a unique cx0 such that

�(cx0) = (1 − ωx)�(0) + ωx�(cx),
(4.3)

[cx0]2�(cx0) > ωx[cx]2�(cx).

Moreover, from (A.1) it follows that

cx0�(cx0) > ωxcx�(cx).(4.4)

Define

2ωx0 = ωx(2p − 1)cx�(cx)

cx0�(cx0)
+ 1.

Observe that ωx0 ∈ (0,1). Let ξ0 = {(cx0,ωx0), (−cx0,1 − ωx0)}. The conclusion
follows now as before. �
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Almost all results on optimal designs for (2.3) that are currently available in
the literature are for the situation that there is no restriction on the design space.
For example, for (α/β,β), optimal designs are found in Abdelbasit and Plack-
ett (1983) and Minkin (1987) (D-optimality); Ford, Torsney and Wu (1992) (c-
and D-optimality); Sitter and Wu (1993a, 1993b) (A- and F -optimality) and Sitter
and Forbes (1997) (optimal two-stage designs). Mathew and Sinha (2001) pro-
vided a unified algebraic approach for the logistic model for deriving A-, D- and
E-optimal designs. For (α,β), Dette and Haines (1994) investigate E-optimal de-
signs, while Mathew and Sinha (2001) obtained A-optimal designs for the logistic
model under the restriction of symmetry, which was removed by Yang (2006). All
these results show that optimal designs are based on two symmetric support points
for the logistic and probit models, with 0 as a possible additional support point
for the double exponential and double reciprocal models. Theorem 1 unifies and
extends these results. For example, from Theorem 1 it follows that such results
hold as long as the design space is symmetric, for other functions of α and β ,
and under more general optimality criteria. We note that Yang (2006) showed that
an A-optimal design for (α,β) for the double exponential and double reciprocal
models could be based on two symmetric points only; this does not contradict The-
orem 1, but simply shows that the weight at the point 0 could sometimes be 0 for
an optimal design.

The next result shows that for all four models, we can restrict attention to de-
signs with only two support points if the design region is entirely at one side of the
origin.

THEOREM 2. Let ξ = {(ci,ωi), i = 1, . . . , k} with k ≥ 2 and with ci ∈
[D1,D2] where either D1 ≥ 0 or D2 ≤ 0. Then, for the logistic, probit, double
exponential or double reciprocal model in (2.3), there is a design ξ∗ based on two
points with Cξ ≤ Cξ∗ , and one of the two support points can be taken as D1 if
D1 ≥ 0 or as D2 if D2 ≤ 0.

We skip the proof since the arguments are similar to those resulting in Lemma 4.
The next result covers the design regions not covered by Theorems 1 and 2.

THEOREM 3. Let ξ = {(ci,ωi), i = 1, . . . , k} with k ≥ 2 and with ci ∈
[D1,D2], where D1 < 0 < D2 and −D1 �= D2. Then for the logistic or probit
model in (2.3), there is a design ξ∗ based on two support points with Cξ ≤ Cξ∗ .
Moreover, the support points of ξ∗ are either two symmetric points; or, if −D1 <

D2, D1 and a point in (−D1,D2]; or, if −D1 > D2, D2 and a point in [D1,−D2).
The same conclusion holds for the double exponential or double reciprocal model,
except that 0 may have to be used as a third support point.

The strategy for a proof of Theorem 3 is not unlike that for Theorem 1, but the
details are more onerous and are presented in the Appendix.
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While optimal designs for a constrained design space are of great practi-
cal value, there are few published papers on this topic. Biedermann, Dette and
Zhu (2006) studied 
p-optimal designs for (

√
λα/β,

√
1 − λβ) for 0 < λ < 1

under (2.3). They showed that when the constrained design space is symmetric
about 0, then, for the logistic and probit models, the support for an optimal de-
sign consists of two symmetric points. For a design space that is not symmetric,
depending on the values of D1 and D2, the support points could consist either of
two symmetric points or of two points with the one with a smaller absolute value
being D1 or D2. Theorem 3 confirms this. Biedermann, Dette and Zhu (2006) fur-
ther showed that one or both of the support points are end points when the end
points are within a certain range. This also could be done using our approach. On
the other hand, Biedermann, Dette and Zhu’s (2006) approach worked for comple-
mentary log-log and skewed logit models, while our approach can handle double
exponential and double reciprocal models.

For complementary log-log and skewed logit models, the corresponding �(c)

is not an even function. The arguments in Theorems 1 and 3 can therefore not be
applied for these two models. However, Corollaries 2 or 3 can be applied for certain
design spaces. For example, using �(c) = exp 2c

exp(exp(c))−1 for the complementary log-

log model, with Maple we find that (�(c), c�(c), c2�(c)) are type II functions for
c ∈ (−∞, c0) and type I functions for c ∈ (c0, c1] or c ∈ (c1,∞). Here c0, which

is around 0.0491, is the point at which (( (c2�(c))′
� ′(c) )′/( (c�(c))′

� ′(c) )′)′ = 0 and c1, which
is around 0.4660, is the point at which � ′(c) = 0. From Corollary 2 or 3, it follows
that for any constrained design region within one of the intervals above, all optimal
designs are based on two points and one of them is either the lower or upper end-
point. (Note that ( (c�(c))′

� ′(c) )′ does not exist when c = c1, so that we must separate
the two intervals (c0, c1] and (c1,∞).)

5. Application to (2.4), (2.5) and other models. For (2.4) we have that
�1(c) = ec, �2(c) = cec and �3(c) = c2ec. It is easy to show that (�1(c), �2(c),
�3(c)) are type II functions on [D1,D2] for any D1 < D2. By Corollary 3, we
immediately have the following result:

THEOREM 4. For (2.4), suppose that ξ is a design with support in the design
region [D1,D2] for some D1 < D2 < ∞. Then there is a design ξ∗ with its support
based on two points, one of which is D2, so that Cξ ≤ Cξ∗ .

By using the geometric approach, Ford, Torsney and Wu (1992) identified c-
and D-optimal designs under (2.4). They showed that an optimal design has two
support points and that one of them is D2. Minkin (1993) studied optimal designs
for 1/β under the same model. In our notation, he assumed β < 0 and used the de-
sign space (−∞, α]. He concluded that the optimal design has two support points,
and that one of them is α. Theorem 4 confirms and extends these results.
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For (2.5) it is easily seen that �1(c) = c2, �2(c) = c3 and �3(c) = c4. It can be
shown that (�1(c), �2(c), �3(c)) are functions of type II on [D1,D2] if 0 < D1 <

D2. By Corollary 3, we obtain the following result:

THEOREM 5. For (2.5), suppose that ξ is a design with support in the design
region [D1,D2], 0 < D1 < D2 < ∞. Then there is a design ξ∗ with its support
based on two points, one of which is D2, so that Cξ ≤ Cξ∗ .

In our notation, with the design space (0, αx0/(β +x0)], Dette and Wong (1999)
identified D- and E-optimal designs for (α,β) under (2.5) that are two-point de-
signs, with one of them being αx0/(β + x0). Therefore, Theorem 5 confirms and
generalizes these results. Other work on this model can be found in Dette and
Biedermann (2003).

Our approach can also be applied to other models. Each time we need to check
whether (�1(c),�2(c),�3(c)) are functions of type I or type II on an appropriate
interval. We will illustrate this for a few examples here. For all of these examples,
the information matrix for (α,β) can be written as in (2.1) with �1(c) = �(c),
�2(c) = c�(c) and �3(c) = c2�(c) for some function �(c).

Ford, Torsney and Wu (1992) also studied c- and D-optimal designs for the
case �(c) = cm and the design region [D1,D2] for 0 < D1 < D2 < ∞. They con-
sidered the cases (i) m > 0; (ii) −2 ≤ m ≤ 0; and (iii) m < −2. For cases (i) and
(ii), except for m = 0,−1, and −2, it is easily seen that (�1(c),�2(c),�3(c)) are
functions of type II, while they are of type I for case (iii). Thus, based on our re-
sults, we find that optimal designs for cases (i) and (ii), except m = 0,−1, and −2,
can be based on two support points, one of them being D2; for case (iii) the same
conclusion holds, except that D1 is now one of the support points. We can further
show that, for case (ii), except for m = 0,−1, and −2, the two support points can

be taken as D1 and D2. This can be done by verifying that � ′
2(c)(

� ′
1(c)

� ′
2(c)

)′ > 0 and

� ′
2(c)(

� ′
3(c)

� ′
2(c)

)′ > 0 and applying (A.16) of Proposition A.3. When m = 0,−1, or

−2, then one of �1(c), �2(c), or �3(c) is constant. The problem becomes sim-
pler in that case, and by applying (A.16) of Proposition A.3 we can show that an
optimal design can be based on D1 and D2. Thus this conclusion holds for all m

in case (ii). This confirms and extends the conclusions of Ford, Torsney and Wu
(1992) for c- and D-optimal designs (their Tables 2 and 3).

Hedayat, Yan and Pezzuto (2002) identified c-optimal designs based on two
symmetric points for a nonlinear model with �(c) = exp(2c)

(1+exp(c))4 . Hedayat, Zhong
and Nie (2004) showed that D-optimal designs can be based on two symmetric
points for a class of two-parameter nonlinear models that includes the following
three examples: (i) �(c) = (1 + c2)−m, m > 1; (ii) �(c) = e−c2

; and (iii) �(c) =
(s + tc2)me−lc2

, s, t, l ≥ 0, and m = 0 or m ≤ −1. All of these �(c)’s are even
functions that satisfy the conditions of Lemma 1 as well as (4.1). Thus they have
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the same properties as the functions for the logistic and probit models, and the
conclusions of Theorems 1, 2 and 3 also hold for all of these models. This confirms
and extends the results of Hedayat, Yan and Pezzuto (2002) and Hedayat, Zhong
and Nie (2004).

For any nonlinear model, if the corresponding functions �1(c), �2(c) and
�3(c) are three times differentiable (which is a condition that is often met), then
we may be able to identify intervals so that in each interval (�1(c), �2(c), �3(c))
are functions of either type I or type II. If the constrained design space falls en-
tirely within one of the intervals, then either Corollary 2 or 3 can be applied to
conclude that an optimal design can be based on two points, with one of them
either the lower or upper endpoint of the design region. For example, Hedayat,
Yan and Pezzuto (1997) studied D-optimal designs for a nonlinear model with
�(c) = exp(2rc)

(1+exp(c))2r+2 for r > 0. If, as an example, we take r = 0.5, then it can be

shown that (�(c), c�(c), c2�(c)) are functions of type II for c ∈ (−∞, c0) and
that they are functions of type I when c ∈ (c0, c1] and c ∈ (c1,∞). Here c0, which

is around −0.9131, is the solution to (( (c2�(c))′
� ′(c) )′/( (c�(c))′

� ′(c) )′)′ = 0 and c1, which is
around −0.6931, is the solution to � ′(c) = 0.

6. Discussion. By Carathéodory’s theorem [cf. Silvey (1980)], for a nonlin-
ear model with two parameters, there is an optimal design that is based on at most
three support points. However, identifying such points is very challenging. Most
studies in this direction are based on the geometric approach, following the semi-
nal work by Elfving (1952), or, especially for D-optimal designs, variations on the
equivalence theorem by Kiefer and Wolfowitz (1960). Unlike many of these stud-
ies, our approach yields very general results that go beyond solving problems on
a case by case basis. It helps to identify the support of locally optimal designs for
many of the commonly studied models and can be applied for all of the common
optimality criteria based on information matrices. It works both with a constrained
and unconstrained design region and the conditions needed to reach the conclu-
sions formulated in this paper can be easily verified using symbolic computational
software packages.

It is also worthwhile to note that this approach is of value for multi-stage ex-
periments, where an initial experiment may be used to get a better idea about the
unknown parameters. At a second or later stage, the question then becomes how to
add more design points in an optimal fashion. If d1 denotes the design used so far
and d2 the design to be used at the next stage, then the total information matrix is
Cd1 + Cd2 . Since the first matrix is fixed, an optimal choice for the second matrix
(in the Loewner ordering) is equivalent to making an optimal selection if there had
been no prior information through design d1. Therefore, the results in this paper
can be used to select d2 by simply ignoring d1.

While the results of this paper are far reaching, we believe that there is potential
to extend the approach to nonlinear models with more than two parameters. There
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are currently very few results on this important practical problem. For example, in
a dose-response study, in addition to an explanatory variable x, the subjects might
be grouped according to race, age, gender, etc. A better model would use these
factors to account for heterogeneity in the response between the different groups.
We are working on developing tools and results for such problems.

Once the support points for an optimal design have been narrowed down by
the methods of this paper, finding an optimal design is a relatively easy problem
since we need to consider only the simple structure stated in our results. At worst,
a numerical search will now be feasible, but in many cases an analytical solution
can be obtained. For example, for the logistic model under (2.3) with a symmetric
design region, Mathew and Sinha (2001) conjectured that there is an A-optimal
design for (α,β) that has two symmetric points as its support. Yang (2006) proved
this conjecture using a complicated and tedious algebraic approach. However, by
our new approach, this result follows immediately and we can easily find such an
A-optimal design.

For the results with (2.3) and a design region that includes the origin in its inte-
rior, we relied on the �(c)’s being even functions. We have indicated in Section 4
how partial results can be obtained for the complementary loglog and skewed logit
models. Whether our approach can be used to provide complete answers for such
models remains an open question.

APPENDIX

PROPOSITION A.1. Let �1(c), �2(c) and �3(c) be functions that satisfy the
assumptions and conditions formulated in Lemma 1. Then, for fixed c1 and c2 with
A < c1 < c2 ≤ B and any c ∈ (A,B] and cx ∈ (c1, c2), the following properties
hold:

(i) For any ω ∈ (0,1), if �1(c) = ω�1(c1) + (1 − ω)�1(c2), then

�2(c) > ω�2(c1) + (1 − ω)�2(c2).(A.1)

This statement remains valid if we allow c1 = A.
(ii)

� ′
2(c)

� ′
1(c)

>
�2(A) − �2(c)

�1(A) − �1(c)
.(A.2)

(iii) (
�1(c1) − �1(c2)

)(
�2(cx) − �2(A)

)
(A.3)

− (
�2(c1) − �2(c2)

)(
�1(cx) − �1(A)

)
> 0.
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(iv)

F2(A, c1, cx, c2)

:= [�3(c1) − �3(c2)][(�1(cx) − �1(c2)
)(

�2(cx) − �2(A)
)

− (
�2(cx) − �2(c2)

)(
�1(cx) − �1(A)

)]
− [�3(A) − �3(cx)][(�1(c1) − �1(c2)

)(
�2(cx) − �2(c2)

)
(A.4)

− (
�2(c1) − �2(c2)

)(
�1(cx) − �1(c2)

)]
+ [�3(c2) − �3(cx)][(�1(c1) − �1(c2)

)(
�2(cx) − �2(A)

)
− (

�2(c1) − �2(c2)
)(

�1(cx) − �1(A)
)]

< 0.

(v) ((
�1(cx) − �1(c2)

)(
�2(cx) − �2(A)

)
− (

�2(cx) − �2(c2)
)(

�1(cx) − �1(A)
))

(A.5)
× [(

�1(c1) − �1(c2)
)(

�2(cx) − �2(A)
)

− (
�2(c1) − �2(c2)

)(
�1(cx) − �1(A)

)]−1

is a strictly decreasing function of cx .

PROOF. (i) Fixing c1 ∈ [A,B) and ω ∈ (0,1), from condition (a) it follows
that for every c2 ∈ (c1,B] there is a unique c ∈ (c1, c2) so that �1(c) = ω�1(c1)+
(1 − ω)�1(c2). Thus, keeping c1 and ω fixed, we can view c as a function of c2.
We have

� ′
1(c)

dc

dc2
= (1 − ω)� ′

1(c2).(A.6)

Define

G1(c2) = �2(c) − ω�2(c1) − (1 − ω)�2(c2).

Using (A.6), we obtain

G′
1(c2) = � ′

2(c)
dc

dc2
− (1 − ω)� ′

2(c2)

(A.7)

= (1 − ω)� ′
1(c2)

(
� ′

2(c)

� ′
1(c)

− � ′
2(c2)

� ′
1(c2)

)
.

Since c < c2, from conditions (a) and (b) we conclude that G′
1(c2) > 0 for c2 > c1.

The result follows by observing that limc2↓c1 G1(c2) = 0.
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(ii) Define

G2(c) = � ′
2(c)

� ′
1(c)

(
�1(A) − �1(c)

) − (
�2(A) − �2(c)

)
.

Then G′
2(c) = (

� ′
2(c)

� ′
1(c)

)′(�1(A) − �1(c)), so that G′
2(c) > 0 by (a) and (b). Since

limc↓A G2(c) = 0 by (d), it follows that G2(c) > 0, which is equivalent to (A.2).
(iii) Define

G3(c1, cx, c2) = (
�1(c1) − �1(c2)

)(
�2(cx) − �2(A)

)
− (

�2(c1) − �2(c2)
)(

�1(cx) − �1(A)
)
.

For c2 > cx we have that

∂G3(c1, cx, c2)

∂c2
= � ′

1(c2)
(
�1(cx) − �1(A)

)
(A.8)

×
(

� ′
2(c2)

� ′
1(c2)

− �2(A) − �2(cx)

�1(A) − �1(cx)

)
> 0.

The inequality in (A.8) follows from conditions (a) and (b) and (ii) of this propo-
sition. The result follows if we show that G4(c1, cx) := G3(c1, cx, cx) > 0 for
cx > c1. It is easily seen that G4(c1, c1) = 0 and

∂G4(c1, cx)

∂cx

= � ′
1(cx)

(
�1(c1) − �1(A)

)(� ′
2(cx)

� ′
1(cx)

− �2(A) − �2(c1)

�1(A) − �1(c1)

)
.

By the same argument as for (A.8), we conclude that ∂G4(c1, cx)/∂cx > 0, which
implies that G4(c1, cx) > 0 and yields the desired result.

(iv) Since F2(A, c1, cx, cx) = 0, it suffices to show that ∂F2(A,c1,cx ,c2)
∂c2

< 0. But

∂F2(A, c1, cx, c2)

∂c2
= � ′

3(c2)
[(

�2(c1) − �2(cx)
)(

�1(A) − �1(cx)
)

+ (
�2(cx) − �2(A)

)(
�1(c1) − �1(cx)

)]
+ � ′

2(c2)
[(

�3(c1) − �3(cx)
)(

�1(cx) − �1(A)
)

+ (
�3(cx) − �3(A)

)(
�1(cx) − �1(c1)

)]
+ � ′

1(c2)
[(

�3(c1) − �3(cx)
)(

�2(A) − �2(cx)
)

+ (
�3(cx) − �3(A)

)(
�2(c1) − �2(cx)

)]
.

This expression is 0 when cx = c1, so that it suffices to show that ∂2F2(A,c1,cx ,c2)
∂c2∂cx

<
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0. But

∂2F2(A, c1, cx, c2)

∂c2 ∂cx

= � ′
3(c2)

[
� ′

2(cx)
(
�1(c1) − �1(A)

) + � ′
1(cx)

(
�2(A) − �2(c1)

)]
+ � ′

2(c2)
[
� ′

3(cx)
(
�1(A) − �1(c1)

) + � ′
1(cx)

(
�3(c1) − �3(A)

)]
+ � ′

1(c2)
[
� ′

3(cx)
(
�2(c1) − �2(A)

) + � ′
2(cx)

(
�3(A) − �3(c1)

)]
.

This expression is 0 for c1 = A, so that it suffices to show that ∂3F2(A,c1,cx,c2)
∂c2∂cx∂c1

< 0.
Simple computation gives

∂3F2(A, c1, cx, c2)

∂c2∂cx∂c1
= � ′

3(c2)[� ′
2(cx)�

′
1(c1) − � ′

1(cx)�
′
2(c1)]

+ � ′
2(c2)[� ′

1(cx)�
′
3(c1) − � ′

3(cx)�
′
1(c1)]

+ � ′
1(c2)[� ′

3(cx)�
′
2(c1) − � ′

2(cx)�
′
3(c1)]

= � ′
1(c1)�

′
1(cx)�

′
1(c2)F3(c1, cx, c2),

where

F3(c1, cx, c2) = � ′
3(c2)

� ′
1(c2)

(
� ′

2(cx)

� ′
1(cx)

− � ′
2(c1)

� ′
1(c1)

)
+ � ′

2(c2)

� ′
1(c2)

(
� ′

3(c1)

� ′
1(c1)

− � ′
3(cx)

� ′
1(cx)

)

+ � ′
3(cx)�

′
2(c1)

� ′
1(cx)�

′
1(c1)

− � ′
2(cx)�

′
3(c1)

� ′
1(cx)�

′
1(c1)

.

By condition (a), � ′
1(c1)�

′
1(cx)�

′
1(c2) < 0. Thus we need to show that F3(c1, cx,

c2) > 0. Since F3(c1, cx, cx) = 0, it suffices to show that ∂F3(c1,cx ,c2)
∂c2

> 0. But

∂F3(c1, cx, c2)

∂c2
=

(
� ′

2(c2)

� ′
1(c2)

)′
F4(c1, cx, c2),

where

F4(c1, cx, c2) = ((� ′
3(c2))/(�

′
1(c2)))

′

((� ′
2(c2))/(�

′
1(c2)))′

(
� ′

2(cx)

� ′
1(cx)

− � ′
2(c1)

� ′
1(c1)

)

+
(

� ′
3(c1)

� ′
1(c1)

− � ′
3(cx)

� ′
1(cx)

)
.

Using condition (b), it suffices to show that F4(c1, cx, c2) > 0. But using that c1 <

cx < c2 and conditions (b) and (c), we obtain that

F4(c1, cx, c2) >
((� ′

3(cx))/(�
′
1(cx)))

′

((� ′
2(cx))/(�

′
1(cx)))′

(
� ′

2(cx)

� ′
1(cx)

− � ′
2(c1)

� ′
1(c1)

)

+
(

� ′
3(c1)

� ′
1(c1)

− � ′
3(cx)

� ′
1(cx)

)
.
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The latter expression is 0 when cx = c1, and by using (b) and (c) we can see that its
partial derivative with respect to cx is positive. This yields the desired conclusion.

(v) The expression in (A.5) is precisely ω as defined in (3.10). It suf-
fices, therefore, to show that ∂ω/∂cx < 0, which is equivalent to showing that
∂( ω

1−ω
)/∂cx < 0. But ω

1−ω
= G5(c1,cx,c2)

G4(c1,cx)
, where G4(c1, cx) is defined as in the

proof of (iii) and

G5(c1, cx, c2) = (
�1(cx) − �1(c2)

)(
�2(cx) − �2(A)

)
− (

�2(cx) − �2(c2)
)(

�1(cx) − �1(A)
)
.

Clearly ∂(
G5(c1,cx ,c2)
G4(c1,cx)

)/∂cx < 0 is equivalent to

∂G5(c1, cx, c2)

∂cx

G4(c1, cx) − G5(c1, cx, c2)
∂G4(c1, cx)

∂cx

< 0.(A.9)

Observing that

∂G5(c1, cx, c2)

∂cx

= � ′
2(cx)

(
�1(A) − �1(c2)

) − � ′
1(cx)

(
�2(A) − �2(c2)

)
and using (A.2) and condition (a), we see that ∂G5(c1,cx ,c2)

∂cx
< 0 when c2 = cx . Since

G5(c1, cx, cx) = 0 and G4(c1, cx) > 0, we see that (A.9) holds when c2 = cx .
Hence, the result follows if we can show that the left-hand side of (A.9) is a de-
creasing function of c2. Simple algebra shows that the partial derivative of the
left-hand side of (A.9) with respect to c2 is

� ′
1(cx)

(
�1(cx) − �1(A)

)(� ′
2(cx)

� ′
1(cx)

− �2(A) − �2(cx)

�1(A) − �1(cx)

)
(A.10)

� ′
1(c2)

(
�1(A) − �1(c1)

)(� ′
2(c2)

� ′
1(c2)

− �2(A) − �2(c1)

�1(A) − �1(c1)

)
.

In (A.10), � ′
1(cx), �1(cx) − �1(A) and � ′

1(c2) are negative while other terms
are positive [by (A.2) and conditions (a) and (b)]. Thus (A.10) is negative, which
completes the proof. �

PROPOSITION A.2. Suppose that �1(c) and �3(c) are continuous functions

on [A,B] and that, for c ∈ (A,B], they satisfy � ′
1(c) < 0 and (

� ′
3(c)

� ′
1(c)

)′ > 0. Then,

for any A ≤ c1 < c2 ≤ B and ω ∈ (0,1), there exists a unique c ∈ (c1, c2) such that

�1(c) = ω�1(c1) + (1 − ω)�1(c2) and
(A.11)

�3(c) > ω�3(c1) + (1 − ω)�3(c2).

Furthermore, c is a strictly decreasing function of ω.
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PROOF. Since �1 is a strictly decreasing function, �−1
1 exists. Let c =

�−1
1 (ω�1(c1) + (1 − ω)�1(c2)), then clearly c ∈ (c1, c2) and the first equation

of (A.11) holds. By the same argument as for (A.1), the inequality in (A.11) holds.
The uniqueness of c follows since �1 is strictly decreasing. That c is a strictly
decreasing function of ω is a consequence of c1 < c2 and the fact that both �1
and �−1

1 are strictly decreasing functions. �

We will now present a proof for Theorem 3.

PROOF OF THEOREM 3. Since the �’s are even, it suffices to consider
the case −D1 < D2. We will first prove the result for the double exponential
and double reciprocal models. It suffices to show that there exists a design as
in the statement of the theorem, say ξ∗, that satisfies Cξ̃ ≤ Cξ∗ , where ξ̃ =
{(c+,ω+), (c−,ω−), (0,1 − ω+ − ω−)}, 0 < c+ ≤ D2 is the design in Lemma 4.
With D = max{−c−, c+}, we obtain a design ξ∗

0 from Theorem 1 with Cξ̃ ≤ Cξ∗
0
.

However, ξ∗
0 may not have its support in [D1,D2]. If cx in the proof of Theorem 1

is in [0,−D1], then we can take ξ∗ to be ξ∗
0 .

Suppose that this is not the case, so that −c− < −D1 < cx < c+. By Corol-
lary 2, the monotonicity of cx in Lemma 1 and its continuity, there exist 0 < p0 < 1
and 0 < ω1 < ω− + ω+p0 such that

ω−�(−c−) + ω+p0�(c+) = (ω− + ω+p0 − ω1)�(0)

+ ω1�(−D1),
(A.12)

−ω−c−�(−c−) + ω+p0c
+�(c+) = −ω1D1�(−D1),

ω−[−c−]2�(−c−) + ω+p0[c+]2�(c+) < ω1[−D1]2�(−D1).

Define

2p1 = ω−c−�(c−) + ω+p0c
+�(c+)

−ω−c−�(−c−) + ω+p0c+�(c+)
+ 1.

Then 0 ≤ p1 ≤ 1, and the design ξ1 = {(D1,ω1(1 − p1)), (−D1,ω1p1), (c
+,

ω+(1−p0)), (0,1−ω+(1−p0)−ω1)} has a larger information matrix than ξ̃ . By
applying Corollary 2, we can further improve the information matrix by replacing
the points −D1 and c+ by 0 and a point cx ∈ (−D1, c

+). The resulting design with
support points D1, cx , and 0 can be taken as design ξ∗, giving the conclusion for
the double exponential and double reciprocal models.

These arguments are also valid for the logistic and probit models. Thus, for these
models, it suffices to show that there exists a design ξ0 based on two symmetric
points or on D1 and a point c0 ∈ (−D1,D2] so that Cξ∗ ≤ Cξ0 , where ξ∗ is as
in the first part of this proof. If the support of ξ∗ consists of the origin and two
symmetric points in [D1,−D1], then by Theorem 1 we can find a better design
based on two symmetric points only. Thus the conclusion follows in that case.
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Suppose therefore that ξ∗ = {(0,ω0), (cx,ωx), (D1,1 − ω0 − ωx)}, where cx >

−D1. As in the proof of Theorem 1, there exists a cx0 ∈ (0, cx) such that

(ω0 + ωx)�(cx0) = ω0�(0) + ωx�(cx),

and so that two inequalities similar to those in (4.3) and (4.4) hold.
If cx0 ≤ −D1, then by a similar argument as in the proof of Theorem 1 we can

improve design ξ∗ by replacing design points cx and 0 with design points cx0 and
−cx0 so that the information matrix is larger. The resulting new design is based on
D1, −cx0, and cx0, and by Theorem 1 we can find a design with two symmetric
points only that is at least as good.

If, however, cx0 > −D1, by the monotonicity property in Proposition A.2 we
use that there exists a px ∈ (0,1), such that

(ω0 + ωxpx)�(−D1) = ω0�(0) + ωxpx�(cx).

Again by a similar argument as in Theorem 1, we can obtain a design, say ξ1,
based on D1, −D1 and cx that is better than ξ∗. Let ω1 and ωx0 be the weights
for −D1 and cx , respectively, in ξ1. For any q,0 ≤ q ≤ 1, there exists a cx1 ∈
(−D1, cx) such that

(ω1q + ωx0)�(cx1) = ω1q�(−D1) + ωx0�(cx),

(ω1q + ωx0)cx1�(cx1) ≥ −ω1qD1�(−D1) + ωx0cx�(cx),(A.13)

(ω1q + ωx0)c
2
x1�(cx1) ≥ ω1q[−D1]2�(−D1) + ωx0c

2
x�(cx).

For the two inequalities, equality holds only if q = 0. Form a new design,
say ξ2, obtained by replacing (−D1,ω1) and (cx,ωx0) with (D1,ω1(1 − q)) and
(cx1,ω1q +ωx0). Comparing the information matrices for ξ1 and ξ2, by (A.13), for
any q the first diagonal elements are the same and Cξ2 has a larger second diagonal
element. The difference in the off-diagonal elements of the two matrices is given
by

(ω1q + ωx0)cx1�(cx1) + ω1(2 − q)D1�(−D1) − ωx0cx�(cx).(A.14)

For q = 0, cx1 = cx and the expression in (A.14) is negative. For q = 1, by the
second inequality in (A.13) the expression in (A.14) is positive. By the first equa-
tion of (A.13), cx1 is a continuous function of q . This implies that (A.14) is also a
continuous function of q . So there exists a q ∈ (0,1) such that (A.14) is 0. Let ξ0

be as design ξ2 for that value of q . Then ξ0 is better than ξ∗ and is based only
on D1 and cx1. This completes the proof. �

PROPOSITION A.3. Suppose �1(c) and �3(c) are twice differentiable on
[A,B] and satisfy

� ′
1(c)

(
� ′

3(c)

� ′
1(c)

)′
> 0(A.15)
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for all c ∈ [A,B]. Then, for any c ∈ [A,B], there exists an ω ∈ (0,1), such that

�1(c) = ω�1(A) + (1 − ω)�1(B) and
(A.16)

�3(c) ≤ ω�3(A) + (1 − ω)�3(B).

PROOF. If (A.15) holds, then either � ′
1(c) > 0 and (

� ′
3(c)

� ′
1(c)

)′ > 0 or � ′
1(c) < 0

and (
� ′

3(c)

� ′
1(c)

)′ < 0. Since the second case can be reduced to the first by defining

�̃1(c) = −�1(c), it suffices to consider only the first case.
Since � ′

1(c) > 0, �1(c) is a strictly increasing function on [A,B]. Define ω =
�1(B)−�1(c)
�1(B)−�1(A)

. Then 0 ≤ ω ≤ 1 for any c ∈ [A,B], and the equality in (A.16) holds.
We will show that the inequality in (A.16) also holds. When c = A this is obvious.
So take c > A. The inequality in (A.16) is equivalent to G(A,c,B) ≥ 0, where

G(A,c,B) = (
�3(A) − �3(B)

)(
�1(B) − �1(c)

)
(A.17)

+ (
�3(B) − �3(c)

)(
�1(B) − �1(A)

)
.

Since G(A,c,B) = 0 when B = c, it suffices to show that ∂G(A, c,B)/∂B > 0.
But

∂G(A, c,B)

∂B
= � ′

1(B)
(
�1(c) − �1(A)

)(� ′
3(B)

� ′
1(B)

− �3(c) − �3(A)

�1(c) − �1(A)

)

≥ � ′
1(B)

(
�1(c) − �1(A)

)(� ′
3(c)

� ′
1(c)

− �3(c) − �3(A)

�1(c) − �1(A)

)
> 0,

where the last inequality follows by the same argument as for (A.2) �
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