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Abstract

This paper considers several Bayesian classification methods for the analy-
sis of the glioma cancer with microarray data based on reproducing kernel
Hilbert space under the multiclass setup. We consider the multinomial logit
likelihood as well as the likelihood related to the multiclass Support Vector
Machine (SVM) model. It is shown that our proposed Bayesian classification
models with multiple shrinkage parameters can produce more accurate clas-
sification scheme for the glioma cancer compared to several existing classical
methods. We have also proposed a Bayesian variable selection scheme for
selecting the differentially expressed genes integrated with our model. This
integrated approach improves classifier design by yielding simultaneous gene
selection.
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1 Introduction

There are two main types of brain tumours: those that start in the brain
(primary) and those that spread from cancer somewhere else in the body
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(metastasis). Gliomas are the largest group of primary brain tumours. Ac-
cording to the American Brain Tumor Association (http://www.abta.org),
primary brain tumours occur at a rate of 14 per 100,000 people. Although
people of any age can develop a brain tumour, the problem seems to be most
common in children with ages 3 to 12 and in adults with ages 40 to 70. In
the United States, approximately 2,200 children younger than age 20 are di-
agnosed annually with brain tumours (http://www.abta.org/kids/learning
/facts.htm). In the past, physicians did not think about brain tumours
in elderly people. Due to increased awareness and better brain scanning
techniques, people, who are 85 years old and older, are now being diag-
nosed and treated. The modern clinical practice of neuro-oncology depends
on accurate tumour classification. This classification of the tumour type
is the basis on which clinicians make critical therapeutic recommendations
to the patients. For example, among high-grade gliomas, anaplastic oligo-
dendrogliomas (AO) have a more favourable prognosis than glioblastomas
(GM) (Kleihues and Cavenee, 2000). Moreover, though GMs are resistant to
most available therapies, AO are often chemosensitive, with approximately
two-thirds of cases responding to procarbazine and vincristine (Cairncross
et al., 1994). Hence, treatment of brain tumours is dictated by histological
diagnosis, and there is a critical need for an objective, clinically relevant
method for glioma classification.

Most of the current glioma classifications are derived from the seminal
system of Bailey and Cushing (1928). They drew parallels between the his-
tological appearances of glial tumours and putative developmental stages
of glia. They reasoned that the cells of astrocytomas microscopically most
closely resembled astrocytes and those of oligodendrogliomas mostly mim-
icked oligodendrocytes. As these tumours become more malignant, they
resembled less differentiated precursor cells, hence malignant astrocytomas
were dubbed “astroblastomas”. It is already confirmed that both at the
ultrastructural level and at the immunohistochemical level, many astrocy-
tomas are comprised of cells that exhibit astrocytic differentiation.

Two widely used current histological systems of brain tumour classifica-
tion are that of the WHO (Kleihues and Cavenee, 2000) and St. Anne-Mayo.
Gliomas are classified according to defined histological features that are char-
acteristic of the presumed normal cell of origin. Tumours of classic histology
clearly display these features and resemble typical depictions. These cases
would be diagnosed similarly by nearly all pathologists. Unfortunately, in
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several situations, the use of the WHO or St. Anne-Mayo classification sys-
tem is problematic, primarily because pathological diagnosis remains sub-
jective. Intra-tumoural histological variability is common, and high-grade
gliomas can display little cellular differentiation, thereby lacking defining
histological features. The diagnosis of tumours with such non-classic histol-
ogy is controversial. Consequently, diagnosis accuracy and reproducibility
are jeopardized, and significant inter-observer variability can occur. Hence,
these primary brain tumours have come under intense scientific scrutiny in
recent years.

The discovery that cancer is a genetic disease, arising when defects oc-
cur in growth-regulatory genes, has revolutionized our understanding of tu-
mourigenesis. Inquiries into the genetic basis of gliomas have yielded large
amounts of information about specific genetic events that underlie the for-
mation and progression of human gliomas (Kleihues and Cavenee, 2000).
Specific molecular alterations are associated with astrocytic gliomas, and
other genetic changes with oligodendrogliomas. However, particular genetic
changes may occur in some subtypes of histologically defined astrocytoma
or oligodendroglioma. Given the likely biological differences brought about
by such genetic variety, each subtype requires a specific and unique set of
treatments. For example, clinical testing for chromosome 1p loss in patients
diagnosed with anaplastic oligodendrogliomas has been suggested. Testing
for 19q loss, CDKN2A/p16 deletion, EGFR gene amplification, and TP53
mutation also provide useful information.

These molecular sub-typing approaches have primarily focused on rela-
tively few but presumably casual tumourigenic events. The advent of expres-
sion microarray techniques now allow simultaneous analysis of thousands of
genes. There is an increasing interest in changing the basis of tumour clas-
sification from morphological to molecular, using microarrays which provide
expression measurements for thousands of genes simultaneously (Schena et
al., 1995; DeRisi et al., 1997), a key goal being to perform classification via
different expression patterns. Several studies using microarrays to profile
colon, breast and other tumours have demonstrated the potential power of
expression profiling for classification (Alon et al., 1999; Hedenfalk et al.,
2001, Mallick et al., 2005). The majority of the methods employed treat
binary classification problems. When there are more than two tumour sub-
types, as with glioma, multi-class molecular classification is desirable. Multi-
class error rates tend to be higher, especially because often there will be a
small number of samples in each class.
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Support vector machines (SVM) has shown their popularity in microar-
ray literature specially for binary classification problem. Usually there are
two ways to handle multicategory problems using SVM: (i) by solving the
multicategory problem through a series of binary problems, as suggested by
Dietterich and Bakiri (1995), and Allwein, Schapire, and Singer (2000), and
(ii) by considering the classes all at once as proposed by Vapnik (1995),
Bredensteiner and Bennett (1999), and Crammer and Singer (2001). Con-
structing pairwise classifier or one-versus-rest classifiers is popular among
the first approaches though they have a possible disadvantage of inflating
the variance since smaller samples are used to learn each classifier. The
second approach is a more algorithmic extension of the binary approach,
without much connection with decision rule and uncertainty. Recently, Lee,
Lin, and Wahba (2004) proposed a coherent decision theoretic approach for
the multicategory support vector machine. It involves a data adaptive tun-
ing criterion for the smoothing parameters using generalized approximate
cross validation (GACV) (Wahba et al., 2002).

Recently, Bayesian model based approaches have been used to charac-
terize gene expression pattern for tasks such as gene selection, classification
and clustering (Lee et al., 2003; Newton et al., 2001, 2002; Do et al., 2004;
Parmigiani et al., 2002; Medvedovic and Sivaganesan, 2002). We develop
a fully probabilistic model-based approach, specifically Bayesian multicat-
egory support vector machines based on reproducing kernel Hilbert space
(RKHS) (Lee et al., 2004) and also a RKHS based Bayesian multinomial logit
model for multicategory classification. We construct a hierarchical model,
where the unknown smoothing parameters will be interpreted as shrinkage
parameters (Denison et al., 2002). We will assign a prior distribution to
these parameters, and obtain the posterior distribution via the Bayesian
paradigm. In this way, we obtain not only the point predictors, but find also
the associated measures of uncertainty. Furthermore, we will extend the
model to incorporate multiple smoothing parameters, leading to significant
improvements in the prediction for the example considered.

In many published studies, the number of selected genes is large, (e.g.,
495 genes (Khan et al., 1998) and 2000 genes (Alon et al., 1999)). Even
in studies that obtained smaller numbers of genes, the numbers are often
excessive when compared to the small number of sample points (microarrays)
(e.g., 50 genes (Golub et al., 1999) or 96 genes (Khan et al., 2001)). An
overly excessive number of genes in conjunction with very few samples is not
advisable because it can create an unreliable selection process (Dougherty,
2001).
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With a limited sample size, it is common for the expected error to de-
crease and then increase for increasingly large feature sets. On account of
this peaking phenomenon (Hughes, 1968), it is necessary to select a set of
features from the full collection of potential features. In principle, there is
an optimal number of features for a classification rule, feature-label distri-
bution, and sample size (Hua et al., 2005), but in practice the distribution is
unknown. A huge hurdle confronting high-dimensional classification is the
combinatorial nature of feature selection; in order to select a subset of k
features from a set of n potential features and be assured that it provides
an optimal classifier with minimum error among all optimal classifiers for
subsets of size k, all k-element subsets must be checked unless there is dis-
tributional knowledge that mitigates the search requirement – a condition
rarely satisfied in practice (Cover and van Campenhout, 1977). Hence, sub-
optimal feature-selection methods are required. Suboptimality results not
only from the lack of a full search, but also from the need to estimate feature-
selection criteria from sample data (Sima et al., 2005). Feature selection is
often split into two categories. In the filter method, features are selected
without recourse to classifier design, for instance, by choosing features most
correlated with the labels or via mutual information. In the wrapper method,
features are selected in conjunction with a classifier design. When the num-
ber of features is very large, such as in the case of gene expressions on a
microarray, the two methods can be used in conjunction. First, one uses
filtering, and then one uses some selection method involving classification
on the preliminary reduced set. Using a filtering method only involves the
danger of selecting many redundant features and also missing features that
perform poorly in isolation but work well in combination.

There has been a number of feature-selection procedures proposed in the
context of gene expression. Dudoit et al. (2000) have proposed a method
for the identification of singly differentially expressed genes by considering
a univariate testing problem for each gene and then correcting for multiple
testing using adjusted p-values. Tusher et al. (2001) have created Signifi-

cance Analysis of Microarray (SAM ), which assigns a score to each gene on
the basis of change in gene expression relative to the standard deviation of
repeated measurements. Given genes with scores greater than an adjustable
threshold, SAM uses permutations of the repeated measurements to esti-
mate the percentage of genes identified by chance. Hastie et al. (2000) have
suggested gene shaving, a new class of clustering methods that tries to iden-
tify subsets of genes with coherent expression patterns with large variation
across conditions. Kim et al. (2002) have proposed to design analytically
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low-dimensional linear classifiers from a probability distribution resulting
from spreading the mass of the sample points to make classification more
difficult, while maintaining sample geometry. The algorithm is parameter-
ized by the variance of the spreading distribution. By increasing the spread,
the algorithm finds gene sets, whose classification accuracy remains strong
relative to greater spreading of the sample.

Among Bayesian contributions in gene selection, Ibrahim et al. (2002)
proposed a Bayesian univariate selection method, for binary responses only,
that primarily models gene expressions of individual genes given disease sta-
tus. Lee et al. (2004) and Bae et al. (2005) proposed stochastic search
algorithms for binary responses. Sha et al. (2004) extended variable selec-
tion for multicategory data. Zhou et al. (2004) have proposed a Bayesian
approach to nonlinear probit gene selection and gene selection using logistic
regressions based on the AIC, BIC, and MDL criteria.

Apart from the methods of Zhou et al. (2004), the usual practice of
gene selection for a nonlinear classification model is, first to exploit an ad
hoc variable selection method to select the significant genes; and then use
these genes in the nonlinear model. As the genes are not selected from the
same classification model, there is a chance of possible bias. In this article,
we develop a simultaneous variable selection approach (wrapper) with the
nonlinear classification model using a unified hierarchical Bayesian model.

We compare our procedure with some highly sophisticated methods like
classical support vector machine (CSVM), neural network (NN) and random
forest (RF). Almost all of these methods except random forest has an inher-
ent weakness in handling high-dimensional data with limited sample sizes.
Hence, we have used the “between square vs. within square” (BWS/BSS)
technique proposed by Dudoit et al. (2002) to order the full set of genes and
then select only a few from the top to include in the models.

Section 2 describes the materials and the data collected. Section 3 intro-
duces a RKHS-based Bayesian multinomial logit model. Section 4 develops
a Bayesian SVM model for multicategory classification. Section 5 provides
a Bayesian gene-selection scheme. Section 6 describes how to classify a new
sample and identify the differentially expressed genes. Section 7 demon-
strates an application of our models on glioma cancer. Section 8 explains
the biological importance of the genes selected by our models in glioma can-
cer, and Section 9 provides some concluding remarks.
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2 Materials and Data

All primary glioma tissues came from Brain Tumor Tissue Bank of the
University of Texas M.D. Anderson Cancer Center. Tissue bank specimens
were frozen shortly after the surgical removal at −800C. Nothing is known
about any possible effect of time delay between tumour removal and tumour
freezing on gene expression, but all of the tumour tissue samples were han-
dled in an identical way. Thus, the tumour harvesting procedure should
have a similar effect on all samples. H&E-stained frozen tissue sections
are routinely prepared from all tissue bank specimens for screening pur-
poses. All tissue specimens for cDNA array analysis were screened by a
neuropathologist, and the diagnosis were independently confirmed by a sec-
ond neuropathologist. The glioma tissue blocks were specifically selected for
densest and purest tumour, and they were all comparatively and uniformly
“pure”. There was minimal contamination by normal brain parenchyma and
minimal variation between samples in this regard.

In this study, the gliomas are termed according to the St. Anne-Mayo
nomenclature as oligodendroglioma (OL), anaplastic oligodendroglioma (AO),
anaplastic astrocytoma (AA) and low grade gliblastoma (GM). Oligoden-
droglioma (OL) develops from cells called oligodendrocytes that produce the
fatty covering of nerve cells. This type of tumour is normally found in the
cerebrum, particularly in the frontal or temporal lobes. Anaplastic oligoden-
droglioma (AO) is a kind of faster growing oligodendroglioma. Anaplastic
astrocytoma (AA) is the most common type of glioma and develops from a
type of star-shaped cell called an astrocyte. It can occur in most parts of the
brain and occasionally in the spinal cord, and glioblastoma multiforme (GM)
usually develops in the cerebral hemispheres, more often in the frontal lobes
than the temporal lobes or basal ganglia but almost never in the cerebellum.

The cDNA microarray containing fragments representing 597 human
genes with known functions and known tight transcriptional controls was
used for the experiments. After a high-stringency wash, the hybridization
pattern was analysed by autoradiography and quantified by phosphorimag-
ing. So at the end, we have a set of gene expression profile data derived from
25 human glioma surgical tissue samples and expression information on 597
genes (Kim et al., 2002). We have 4 samples in AA, 5 in AO, 6 in OL, and
10 in GM class.
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3 RKHS Based Bayesian Multinomial Logit Model

We are interested in classification of glioma cancer with 4 known classes.
Hence the response is a categorical variable with more than two categories,
and the covariates are the gene expression microarray measurements. Let
t = (t1, . . . , tn) indicates n observed response data, i.e., the type of glioma.
This ti represents one of the J possible categories (1, . . . , J) J > 2 (here
J = 4). Let pij = P (ti = j), for i = 1, . . . , n and j = 1, . . . , J , denote the
probability that the ith observation falls into the jth category. We make
an alternate representation of the response ti by introducing a vector of
indicator variables yi ≡ (yi1, . . . , yiJ)T , where

yij =

{

1 if ti = j,
0 otherwise;

(3.1)

for i = 1, . . . , n and j = 1, . . . , J. The multinomial likelihood is

f(y|p) ∝

n
∏

i=1

pyi1

i1 . . . pyiJ

iJ . (3.2)

These probabilities are related to a set of p gene expressions (covariates)
Xn×p through a logistic link function and a hierarchical model as

pij =
exp(zij)

∑J
k=1 exp(zik)

. (3.3)

We relate zij to fj(xi) by zij = fj(xi)+ εij , where εij is the residual random
effect. The fj ’s are unknown functions, which connect the gene expressions
with the tumour types. Sha et al. (2004) considered similar multinomial
model but they modelled the random latent variable zij using just a linear
function. Taking the negative of the log of the multinomial likelihood (3.2),
we get the corresponding loss function

L = −

n
∑

i=1

J
∑

j=1

yij log(pij). (3.4)

This loss function is equivalent to the Kullback-Leibler (KL) directed
divergence measure between yij and pij , given by

LKL =
n

∑

i=1

J
∑

j=1

yij log(yij/pij) =
n

∑

i=1

J
∑

j=1

yij log(yij) −
n

∑

i=1

J
∑

j=1

yij log(pij).

(3.5)
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Maximizing the multinomial likelihood (3.2) will be equivalent to minimizing
the KL loss function (Bernardo and Smith, 1994). To avoid over-fitting,
we can add a penalty function. Thus, casting the whole problem in the
regularization framework, we have the following minimization problem

min
f∈HK

[

n
∑

i=1

LKL(yi, f(xi)) + λ ‖ f ‖2
HK

]

, (3.6)

where LKL(, ) is the KL loss function described above, ‖ f ‖2
HK

is the
squared norm penalty functional, λ is the smoothing parameter, and f =
(f1, . . . , fJ)T is the J-tuple classification function. We assume that fj is
generated from a reproducing kernel Hilbert space (RKHS) with a positive
definite kernel function K(., .). Then the theory of RKHS as described in
Kimeldorf and Wahba (1971), and Wahba et al. (2002) leads to a finite
dimensional representation of fj as

fj(xi) = β0j +

n
∑

k=1

βkjK(xi, xk|θ). (3.7)

The non-linear predictor zij is thus treated as a random latent variable so
that the model is now

zij = β0j +
n

∑

k=1

βkjK(xi, xk|θ) + εij = KT
i βj + εij , (3.8)

where the εij ’s are iid N(0, σ2), Ki = (1, K(xi, x1|θ)
T , . . . , K(xi, xn|θ)) and

βj = (β0j , . . . , βnj)T , i = 1, . . . , n. In practice, only the first J − 1 elements
of yi are used in fitting the RKHS so that the problem is of full rank. So ziJ

is set to 0 for all i for identifiability of the model. There are several possible
choices of kernel functions. In this paper, we use only the Gaussian kernel

K(xi, xj |θ) = exp{−
‖xi−xj‖

2

θ }.

We assign hierarchical priors on the unknown parameters as follows.

βj |Dj , σ
2 ind

∼ Nn+1(0, σ2D−1
j ); Dj = Diag(λ0j , . . . , λnj); (3.9)

σ2 ∼ IG(γ1, γ2); (3.10)

θ ∼ U(aL, aU ); (3.11)

λij
iid
∼ Gamma(c, d), (3.12)

where j = 1, . . . , J − 1, i = 1, . . . , n. Denote λ = (λ01, . . . , λn1, λ02, . . . , λn2,

. . . , λ0(J−1), . . . , λn(J−1))
T , and β =

(

βT
1 , . . . ,βT

J−1

)T
, λ0j are fixed at small
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values to assign a large variance for the intercept terms β0j , j = . . . , J − 1.
Here λ is the vector of smoothing parameters. In the above formulation, we
have multiple smoothing parameters λij . Often for the sake of simplicity, we
assign only one smoothing parameter as λij = λ, for all j = 1, . . . , J − 1 and
i = 1, . . . , n.

The joint posterior is given by

π(z, σ2, β, λ, θ|y)

∝

n
∏

i=1

pyi1

i1 . . . pyiJ

iJ ×
exp{− 1

2σ2

∑n
i=1

∑J−1
j=1 (zij − KT

i βj)
2}

(σ2)n(J−1)/2

×
exp{− 1

2σ2

∑J−1
j=1 βT

j Djβj}

(σ2)(n+1)(J−1)/2
∏J−1

j=1 |D−1
j |1/2

× exp
(

−γ2/σ2
)

(σ2)−γ1−1

×
n

∏

i=1

J−1
∏

j=1

exp (−dλij) (λij)
c−1 (3.13)

The posterior distribution is intractable; and to generate samples from
this posterior, we use MCMC sampling techniques like Gibbs sampling (Gelfand
and Smith, 1990) and Metropolis-Hastings (MH) algorithm (Metropolis et
al., 1953). To generate samples from the joint posterior, we use the full
conditional distributions. The conditional distributions are listed as follows.

(i) βj |λ, z, σ2, θ, y ∼ N(n+1)(µ
∗
βj

, V ∗
βj

),

where µ∗
βj

= V ∗
βj

(
∑n

i=1 Kizij) , V ∗
βj

= σ2
(

∑n
i=1 KiK

T

i + Dj

)−1
for

j = 1, . . . , J − 1;

(ii) σ2|β, λ, z, θ, y
ind
∼ IG(γ∗

1 , γ∗
2), where γ∗

1 = (J − 1)(2n + 1)/2 + γ1 and

γ∗
2 =

{

∑n
i=1

∑J−1
j=1 (zij − KT

i βj)
2
}

2 +
{

∑J−1
j=1 βT

j Djβj

}

2
+ γ2;

(iii) λij |β, z, σ2, θ, y
ind
∼ Gamma(c∗, d∗), j = 1, . . . , J − 1, i = 1, . . . , n,

where c∗ = c + 1/2 and d∗ = β2
ij/2 + d;

(iv) p(θ|λ, β, σ2, z, y) ∝ exp
{

− 1
2σ2

∑n
i=1

∑J−1
j=1 (zij − KT

i βj)
2
}

× I(aL <

θ < aU ), where I() is an indicator variable;
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(v) p(z|θ, λ, β, σ2, y) ∝
∏n

i=1 pyi1

i1 . . . pyiJ

iJ

×
exp

{

− 1
2σ2

∑n
i=1

∑J−1
j=1 (zij − KT

i βj)
2
}

(σ2)n(J−1)/2
.

Generation from conditional distributions (i) to (iii) is easy as each rep-
resents a standard probability distribution. The conditional for θ given in
(iv) does not represent any known distribution. Hence, we device a MH
algorithm to sample from it. Let θ be the current state, then draw a candi-
date value θ∗ from its prior U(aL, aU ). Accept θ∗ as a new value of θ with
acceptance probability

α = min

{

1,
p(θ∗|λ, β, σ2, z, y)

p(θ|λ, β, σ2, z, y)

}

. (3.14)

The latent variables zij , i = 1, . . . , n, j = 1, . . . , J − 1, are sampled using
the data augmentation technique suggested by Albert and Chib (1993) as
follows.

Step 1. Let the latent variable zi = (zi1, . . . , ziJ−1) be a vector correspond-
ing to the ith subject.

Step 2. The relationship between yij and zij is as follows.

yij =







0 if max
1≤k≤J−1

{zik} ≤ 0

j if max
1≤k≤J−1

{zik} > 0 and zij = max
1≤k≤J−1

{zik}.
(3.15)

Step 3. So zij ∼ N(KT
i βj , σ

2) under the above constraint. If the ith
subject belongs to the kth class, this can be simulated by repeated
drawing from N(KT

i βj , σ
2), j = 1, . . . , J −1, and accepting only when

the kth component of zi is the maximum.

We can see that when the number of covariates p is much larger than the
sample size n, as in a typical gene expression microarray experiment, using
RKHS and Wahba representation, and can reduce the dimension from p to
n automatically. Compared to the Bayesian multinomial models proposed
by Sha et al. (2004), our RKHS based Bayesian multinomial logit model
(BMLM) does not impose a linear model structure for modelling the random
latent variable. We rather consider the underlying relationship between the
latent variable and the covariates to be an unknown function f , and then use
the RKHS theory to estimate that unknown function. This indeed produces
a richer class of models than before.
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4 Bayesian Multicategory Support Vector Machine

Lee et al. (2004) extended the two class SVM with the hinge loss function
to the multicategory setup. In their paper, they generalized the hinge loss
function for binary classification to a multivariate loss for the multicategory
SVM. As in the previous section, let t = (t1, . . . , tn)T be the observed re-
sponse data, where ti takes one of the J possible values 1, . . . , J . To maintain
the symmetry of class label as in the two class SVM, yi is coded as

yij =

{

1 if ti = j
−1/(J − 1) otherwise.

(4.1)

The separating function here will be a J-tuple function f(x) = (f1(x), . . . ,
fJ(x)). As the sum of the components of the vector yi is 0, so the J-
tuple function f(x) will have a zero sum constraint,

∑J
j=1 fj(x) = 0. Let

fj(x) = β0j + hj(x), and hj(x) ∈ HKj
, for j = 1, . . . , J , where HKj

de-
notes a reproducing kernel Hilbert space of functions and hj denotes any
unknown function in that function space. Then f(x) = (f1(x), . . . , fJ(x)) ∈
∏J

j=1({1}+HKj
), the product space of J reproducing kernel Hilbert spaces.

Hence, solving the multicategory SVM is equivalent to finding the appropri-
ate f(x) by minimizing the penalized multicategory loss with the zero sum
constraint

n
∑

i=1

L(yi) · (f(xi) − yi)+ +
1

2
λ

J
∑

j

‖ hj ‖
2
HKj

, (4.2)

where, if ti = j, then L(yi) is a J-dimensional vector with 0 in the jth com-
ponent and 1 elsewhere. Here, (f(xi)−yi)+ = [(f1(xi)−yi1)+, . . . , (fJ(xi)−
yiJ)+], (x)+ = max(0, x), and · denotes the Euclidean inner product. Note
that L(yi) · (f(xi) − yi)+ is an extension of the hinge loss function (Lee et
al., 2004) in a multicategory setup.

Lee et al. (2004) showed that, to find f(x) = (f1(x), . . . , fJ(x)) ∈
∏J

j=1({1}+HKj
), with the zero sum constraint, minimizing (4.2) is equiva-

lent to finding (f1(x), . . . , fJ(x)) with the form

fj(xi) = β0j +

n
∑

k=1

βkjK(xi, xk|θ) for j = 1, . . . , J (4.3)

satisfying the constraint
∑J

j=1 fj(xi) = 0, for i = 1, . . . , n. If the kernel
function K is strictly positive definite, the zero sum constraint over the data
points can be replaced by the zero sum constraint on the intercept and the
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coefficients as

J
∑

j=1

β0j = 0; (4.4)

J
∑

j=1

βkj = 0, for all k = 1, . . . , n. (4.5)

Viewing the loss as the negative of the log likelihood, we construct our
Bayesian multicategory SVM (BMSVM). The conditional distribution of yi

given the latent variable zi is given as

p(yi|zi) ∝ exp {−L(yi).(zi − yi)+} , (4.6)

where the zi’s is the random J component latent vector, and the yi’s are
conditionally independent of the zi’s. As in the previous section, the la-
tent vector zi is connected to the unknown separating functions f(x) =
(f1(x), . . . , fJ(x)) as

zi = f(xi) + εi, (4.7)

where εi =(εi1, . . . , εiJ)T is the residual random vector, and εi∼NJ(0, σ2IJ).
Assuming that f(x) belongs to a product space of J RKHS and with a
strictly positive definite kernel K, from (4.3) and (4.7) we can write

zij = β0j +
n

∑

k=1

βkjK(xi, xk|θ) + εij = K′
iβj + εij (4.8)

with the restrictions given in (4.4) and (4.5). We put hierarchical priors on
the unknown intercepts and the regression coefficients as follows.

βj |Dj , σ
2 ∼ Nn+1(0, σ2D−1

j ); Dj = Diag(λ0j , . . . , λnj) (4.9)

with the constraints given in (4.4) and (4.5);

σ2 ∼ IG(γ1, γ2); (4.10)

θ ∼ U(aL, aU ); (4.11)

λij
iid
∼ Gamma(c, d), where j = 1, . . . , J , i = 1, . . . , n. (4.12)

We notice that unlike what happens in the case of the multinomial logit
model, here the βj ’s are not independent. The dependence is due to the zero
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sum constraints imposed on them. The joint posterior is given by

π(z, σ2, β, λ, θ|y)

∝ exp

{

−
n

∑

i=1

L(yi).(zi − yi)+

}

×
exp

{

− 1
2σ2

∑n
i=1

∑J−1
j=1 (zij − KT

i βj)
2
}

(σ2)nJ/2

×
exp

{

− 1
2σ2

∑J
j=1 βT

j Djβj

}

(σ2)(n+1)J/2
∏J−1

j=1 |D−1
j |1/2

× I





J
∑

j=1

βkj = 0, k = 0, . . . , n





× exp
(

−γ2/σ2
)

(σ2)−γ1−1 ×
n

∏

i=1

J
∏

j=1

exp (−dλij) (λij)
c−1 . (4.13)

Comparing the posteriors (3.13) and (4.13), we can see the main differ-
ence is in the likelihood. In the Bayesian multinomial logit model, we have
the multinomial likelihood, whereas in the Bayesian multicategory SVM, we
have the likelihood corresponding to the multivariate hinge loss. Also in
(4.13), zero sum constraint on the regression coefficients is imposed using
the indicator function I(

∑J
j=1 βkj = 0, k = 0, . . . , n). Hence the posterior

in (4.13) has a truncated support. The conditional distributions of σ2, λij ,
and θ are the same as those in (ii), (iii), and (iv) in the earlier section. The
conditional posterior of βj , j = 1, . . . , J , will follow multivariate normal dis-
tribution as in (i) of Section 3, but with the zero sum constraint imposed by
(4.4) and (4.5). As the underlying likelihood is different in the multicategory
SVM, the conditional distribution (v) is now changed to p(z|θ, λ, β, σ2, y) ∝
exp {−

∑n
i=1 L(yi).(zi − yi)+} × exp{− 1

2σ2

∑n
i=1

∑J
j=1(zij − KT

i βj)
2}. We

can generate samples from the posterior (4.13) by the following steps.

Step 1. Generate λij , σ2 and θ in the same way as in the Bayesian multi-
nomial logit model of the previous section.

Step 2. Generate βj , j = 1, . . . , J from the multivariate normal distribution
satisfying the constraints (4.4) and (4.5).

Step 3. The conditional distribution of the latent vector zi is not standard;
so we update it by blocks of zi as suggested by Roberts and Sahu
(1997). When zi is in the present state, draw a candidate value z∗

i from
N(K0

i β, σ2IJ), where K0
i = Iq

⊗

KT
i , β = (βT

1 , . . . ,βT
q )T. Accept the

update with the acceptance probability

αi = min

{

1,
exp {−

∑n
i=1 L(yi).(z

∗
i − yi)+}

exp {−
∑n

i=1 L(yi).(zi − yi)+}

}

.
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As in our previous model, the RKHS gives us a low n-dimensional representa-
tion for a much higher p-dimensional problem, without making an additional
projection on the feature space.

5 A Bayesian Gene Selection Scheme

The two models proposed in the previous two sections have an in-built
dimension reduction technique, where a successful dimension reduction is
made via RKHS. Consequently, instead of dealing with p covariates, we deal
with n different kernel functions. In a typical microarray experiment, we
have gene expression data on 5000 − 10, 000 genes for less than 100 tumour
samples. Many genes do not contain information that is useful for deter-
mining the differences between the samples. These genes should not be used
for classification: indeed, sometimes they may even contain noise that can
lead to incorrect classification. Although the RKHS formulation enables us
to keep all the genes in our model, yet an improved classification can be
obtained if only differentially expressed genes are included in the model. A
simple method as proposed by Dudoit et al. (2002) may be used to rank
the full set of genes and select the top few genes or the genes with the most
marginal relevance. But their method does not consider the possible inter-
action effect between several genes. In this section, we propose a Bayesian
variable selection technique (George and McCulloch, 1993) for our models
in Sections 3 and 4.

Let Xn×p be a matrix of gene expression data, where each column rep-
resents a gene and each row represents a sample. To do the gene selection,
introduce γ = (γ1, . . . , γp)

T , a p × 1 vector of indicators, such that

γk =

{

0 the ith gene is not selected,
1 the ith gene is selected.

(5.1)

For a particular combination of genes or the choice of γ, Xγ denotes the
reduced gene expression matrix with only those columns of the full gene
expression matrix X, which correspond to those the elements of γ that are
equal to one. Hence the dimension of Xγ is n× pγ , where pγ =

∑p
k=1 γk, or

the number of nonzero components in the vector γ.

We put independent Bernoulli prior on γk as follows.

γk
iid
∼ Bernoulli(ω), i = 1, . . . , p. (5.2)
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The value of ω is chosen to be small to restrict the number of genes in the
model. We can also include the prior knowledge of some of the genes, which
are more important than others by assigning different ωk for different γk.

The inclusion of γ, the indicator vector, will result in the computation of
the kernel function K on the basis of the reduced expression matrix Xγ and
is denoted by Kγ(, ). The posterior (3.13) from the RKHS based Bayesian
multinomial logit model will now change to

π(z, σ2, β, λ, θ, γ|y)

∝
n

∏

i=1

pyi1

i1 . . . pyiJ

iJ ×
exp{− 1

2σ2

∑n
i=1

∑J−1
j=1 (zij − KT

γi
βj)

2}

(σ2)n(J−1)/2

×
exp{− 1

2σ2

∑J−1
j=1 βT

j Djβj}

(σ2)(n+1)(J−1)/2
∏J−1

j=1 |D−1
j |1/2

× exp
(

−γ2/σ2
)

(σ2)−γ1−1

×
n

∏

i=1

J−1
∏

j=1

exp (−dλij) (λij)
c−1 ×

p
∏

k=1

ωγk(1 − ω)1−γk . (5.3)

In order to generate samples from (5.3), in addition to all previous steps
for sampling z, σ2, β, λ, and θ, an additional step is required to sample γ.
We use the conditional distribution

(vi) p(γ|z, σ2, β, λ, θ,y) ∝ exp
{

− 1
2σ2

∑n
i=1

∑J−1
j=1 (zij − KT

γi
βj)

2
}

×
∏p

k=1 ωγk(1 − ω)1−γk .

The above conditional distribution is not of a standard form. Hence we again
deploy a MH algorithm where the components of the new update γ∗, γ∗

i can
be drawn from the Bernoulli(ω) distribution independently. The new γ∗ is
accepted with probability

α = min

{

1,
exp{− 1

2σ2

∑n
i=1

∑J−1
j=1 (zij − KT

γi
βj)

2}

exp{− 1
2σ2

∑n
i=1

∑J−1
j=1 (zij − KT

γi
βj)

2}

}

.

Similarly, we can also incorporate the Bayesian model selection technique
in our Bayesian multicategory support vector machine model. The use of
the indicator vector γ will only change the kernel matrix. The other part of
the BMSVM model as explained in Section 4 remains same. The posterior
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(5.2) from the Bayesian multicategory SVM model will now take the form

π(z, σ2, β, λ, θ, γ|y)

∝ exp

{

−
n

∑

i=1

L(yi).(zi−yi)+

}

×
exp

{

− 1
2σ2

∑n
i=1

∑J
j=1(zij − KT

γiβj)
2
}

(σ2)nJ/2

×
exp{− 1

2σ2

∑J
j=1 βT

j Djβj}

(σ2)(n+1)J/2
∏J

j=1 |D
−1
j |1/2

× I





J
∑

j=1

βkj = 0, k = 0, . . . , n





× exp
(

−γ2/σ2
)

(σ2)−γ1−1 ×
n

∏

i=1

J
∏

j=1

exp (−dλij) (λij)
c−1

×

p
∏

k=1

ωγk(1 − ω)1−γk . (5.4)

As in Section 4, here too we will follow exactly same steps to generate
samples from the joint posterior (5.4). The extra step needed to sample γ,
the vector of indicators, is incorporated by sampling from the conditional
posterior

(vi) p(γ|z, σ2, β, λ, θ,y) ∝ exp
{

− 1
2σ2

∑n
i=1

∑J
j=1(zij − KT

γi
βj)

2
}

×
∏p

k=1 ωγk(1 − ω)1−γk .

From the conditional posterior distribution of γ it is clear that although
the priors of the components γi, i = 1, . . . , p are assumed to be i.i.d.
Bernoulli(ω), the posterior is not independent. Hence, we can establish
some dependency among the genes, which was not possible to establish by
the Dudoit et al. (2002) criterion.

6 Classification of Future Cases and Identifying the Significant

Genes

When we have J different classes of cancer tumours, and J > 2. For a
new sample, whose corresponding gene expression measurement is denoted
by xnew, the classification rule is induced by

φ(xnew) = arg max
j

p(tnew = j|xnew, told), (6.1)
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where

p(tnew =j|xnew, told) =

∫

Θ
p(tnew =j|xnew, told, Θ)π (Θ|told) dΘ; j =1, . . . , J

(6.2)
is the posterior predictive probability that the tumour belongs to the jth
class and Θ = (z, σ2, β, λ, θ, γ), the set of all parameters in the model. A
Monte Carlo estimate of (6.2) is given by

p̂(tnew = j|xnew, told) =
B

∑

t=1

p̂(tnew = j|xnew, told, Θ
t); j = 1, . . . , J, (6.3)

where Θt is t-th MCMC sample from the posterior, and B is the total number
of Monte Carlo samples used for estimation after the initial burn in. Hence
for the new tissue sample, we compute its posterior predictive probability of
being in class j for all the classes j = 1, . . . , J , and finally assign the new
sample to that class for which this probability is maximum.

For identifying the significant genes from the dormant ones, we run the
MCMC chain for a long time, and after discarding sufficient samples to
account for the burn in period, we calculate the relative number of times
each gene appeared in the sample. This will serve as an estimate of the
posterior probability that a single gene is included in the model, and can be
used as a measure for identifying the differentially expressed genes from the
inactive ones. Since we assume that only the differentially expressed genes
are responsible for the variation in types of tumours, those should be included
in our model more frequently to maximize the posterior distribution. It is
to be noted now that instead of a two step procedure of first gene selection
and then classification, our model can simultaneously select important genes
and do the classification.

7 Analysis of the Glioma Data

In this section, we have modelled the glioma cancer data using our BMLM
and BMSVM models. The gliomas are termed according to the St. Anne-
Mayo nomenclature as low grade OL, AO, AA and GM, so J = 4. We
have in total 597 genes, and tissue samples are collected from 25 patients.
As the number of patients is very small, we cannot split the data further
into training and test sets and evaluate the performance of our classifier on
the test set. Leave one out cross-validation technique is often not accurate
and suffers badly from high outliers (Braga-Neto and Dougherty, 2004). To
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evaluate the performance of our classifiers, we use .632 bootstrap technique
(Efron, 1983). We draw a sample of n observations from our data of n
observations with replacement, and make this the training set. The sample,
which are left out or not included in the training set, are kept as the test
set. We denote the proportion of samples classified incorrectly in the test set
by etesti and the proportion of samples classified incorrectly in the training
set by etraini

. We do this kind of bootstrapping B times. At the end, the
average gives us the bootstarp estimate of the error. The Bootstrap estimate
of the misclassification error given by the formula

1

B

B
∑

i=1

(0.632etesti + 0.368etraini
) . (7.1)

We have fixed B = 5000 in our case.

The Bayesian gene selection criterion as developed in Section 5, and also
the gene ordering criterion as suggested by Dudoit et al. (2002), are used
to include only the important genes. For both examples, we have also con-
sidered three standard nonlinear classification models: (i) Neural Network
(NN), (ii) Random Forest (RF) and (iii) Classical Support Vector Machine
(CSVM). None of the models, except the random forest, is equipped to deal
with such a high dimensional problem. In each case, we use the BWS/BSS
criterion to order the genes and then select the top few genes for each of
our models. Next, we fit our (iv) RKHS based Bayesian multinomial logit
model (BMLM) and (v) Bayesian multicategory SVM (BMSVM). For each
method, we make an initial gene selection according to the BWS/BSS cri-
terion before running our model. Lastly, we fit our (vi) Bayesian RKHS
based multinomial logit model integrated with Bayesian gene selection tech-
nique (Section 6) (BMLM + BGS ) and (vii) Bayesian multicategory SVM
integrated with Bayesian gene selection technique (BMSVM + BGS). Our
models (vi) and (vii) are different from (iv) and (v) in the sense that in
our last two models, we can simultaneously predict the class label and the
differentially expressed genes in a full Bayesian setup. In contrast, in (iv)
and (v), the gene selection was made on the basis of BWS/BSS, which is
a strong frequentist idea similar to an F -statistic, while the classification is
made on the basis of our Bayesian models.

Choice of priors plays an important role in our analysis, and we have
used near-diffused proper priors. The near diffuseness guarantees that our
prior choice is as flat as possible but proper, which ensures the propriety
of the posterior along with the objectivity of our analysis. We followed the
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following combination of hyperparameters: γ1 = 1, γ2 = 10, c = 10−8,
d = 10−5, aL = 0 and aU = 100. This choice of hyperparameters is also
suggested by Mallick et al. (2005), and produces a near-diffused but proper
prior. We used the Gaussian kernel as we found empirically that it produces
better classification result than the polynomial kernel. We chose ω = 0.05 so
that on an average only top 5% of the genes are to be included in the models
producing sparsity. For all our models (models (iv) to (vii)), we have tried
both multiple smoothing parameters and single smoothing parameters. The
results obtained with single smoothing parameters are denoted by “ ∗ ”.

We run a MCMC chain 200,000 times and discard the first half as the
burn in. To ensure that we are not stuck in one of the many modes of the
posterior distribution, we use multiple chains with different starting values.
In both models, we used a total of 5 independent chains with widely different
starting points and our final prediction is based on the pooled samples from
these 5 chains. We have used neural network models with 20 hidden nodes.
After 20 hidden nodes, we do not gain anything in terms of prediction accu-
racy compared to the cost of computational complexity. The nnet function
in R with softmax option is used to fit the neural network model. For the
random forest, we have used the randomForest function in R with 10000
boosted trees and all other default parameters.

Table 1. Bootstrap error rate of misclassification in the glioma
cancer data. Genes selected by the BWS/BSS criterion.

Method Top Genes

20 50 100 597

NN 0.1213 0.1338 0.1612 -
CSVM 0.0909 0.1554 0.1921 0.3672
RF 0.1489 0.1691 0.1801 0.2839

BMLM 0.0702 0.0802 0.0988 0.2138
BMSVM 0.0722 0.0794 0.1002 0.2714
BMLM∗ 0.1258 0.1428 0.2004 0.3814
BMSVM∗ 0.1346 0.1302 0.1444 0.3532

Table 1 reports the total .632 bootstrap estimate of the misclassification
error using the formula (7.1). Initially, we used the BWS/BSS criterion
as proposed by Dudoit et al. (2002) to order the genes. After we order
the genes, we select the top 20, 50, 100 and 597 (i.e., all genes without any
selection) genes and use them in the models to predict the class of the “out
of bag” sample. The first row indicates the number of top genes included in
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the model. As we have pointed out already that the classification of Glioma
cancer is extremely difficult, we observe that most of the standard methods
like neural network and random forest do equally poorly in classification.
With top 20 genes selected by the BWS/BSS criterion, neural network and
random forest give bootstrap misclassification errors as 0.1213 and 0.1489
respectively. As we went on adding genes to it, the performance of random
forest decayed drastically. With 597 genes, the bootstrap error is nearly the
double of what we obtained with top 20 genes. Neural network is much more
stable in performance when more genes are added. But again it is impossible
to fit a neural network with all the 597 genes. The CSVM worked very well
with the top 20 genes, it gave 0.0909 bootstrap error, which is much lower
than both the neural network and the random forest. But again, here also
by increasing the number of genes to 50 and with any addition thereafter,
the performance of the CSVM model diminishes drastically. Our BMLM
and BMSVM models (the ones with multiple smoothing parameters) give
much better results than all the previous standard models. With the top
20 genes, the bootstrap error is reduced by 20% to 50% in both of our
models when compared to the three standard ones. Also, we see that as
we increase the number of genes to 100 in our models, their performance is
not as affected as the RF, CSVM and NN. But inclusion of all 597 genes
gives very high error estimates for all the models, although BMLM and
BMSVM continue to improve on CSVM and RF. A main limitation of our
BMLM and BMSVM models is that they rely on a two step procedure of
gene selection and subsequent class prediction. The main problem in the
BWS/BSS criterion is that we do not know exactly how many top genes
we should use, so that we keep on adding more genes in the models.

Table 2. Bootstrap error rate of misclassification glioma cancer data.
Genes are adaptively selected by the models.

Methods CV Error No. of Genes Selected

BMLM + BGS 0.0540 23
BMSVM + BGS 0.0596 25
BMLM∗ + BGS 0.0680 27
BMSVM∗ + BGS 0.0652 23

In Table 2, we report the results of our models BMLM+BGS and BMSVM
+BGS, where we adaptively select the important genes and make the class
predictions simultaneously. Both BMLM+BGS and BMSVM+BGS mod-
els reduce the bootstrap error by more than 20% than the BMLM and the
BMSVM respectively. In BMLM+BGS model, on an average 23 genes are
included, and in the BMSVM+BGS, on an average 25 genes are selected.
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Figure 1. Glioma DNA data. (a) Marginal relevance of Genes by BWS/BSS

criterion. (b) Relative number of times a gene is selected by our BMLM+BGS

model. (c) Relative number of times a gene is selected by our BMSVM+BGS

model.

Figure 1 plots the marginal relevance of each gene by the BWS/BSS
criterion and also the relative number of times each gene appeared in our
BMLM+BGS and BMSVM+BGS models. From the figure, we can see that
there is an overlap of active genes as suggested by the BWS/BSS criterion
and our Bayesian variable selection approach. In fact, there are 8 common
important genes selected by both methods. Kim et al. (2002) developed an
algorithm for identification of gene sets important for glioma classification.
In Table 3, we provide the names of the important genes, which are detected
by both of our models and also found to be relevant by the algorithm of Kim
et al. (2002). From Table 3, we get that 11 genes are found to match with
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Kim’s algorithm, while between the 23 genes selected by BMLM+BGS and
the 25 genes selected by BMSVM+BGS, there is a match for 14 such genes.
A heat map of the genes selected by our two models and the BWS/BSS
criterion is also provided in Figure 2.

Three genes, namely cyclin-dependent kinase inhibitor 1C (CDKN1C),
G2/mitotic-specific cyclin B1 (CCNB1) and cell division protein kinase 7
(CDK7), are marked as important by both models but are not selected by
Kim’s algorithm or BWS/BSS criterion. In Figure 3, we show the heat map
of these three genes, and it appears that they might be important. It is well-
known that inducible expression of CDKN1C in cell lines deficient in this
cyclin-dependent kinase inhibitor reduces the motility and the invasiveness
of malignant gliomas (Sakai et al., 2004). Presence of CCNB1 usually shows
an increased growth rate of malignant glioma cell lines and plays a significant
role in glioma tumorigenes (Weber et al., 2000). A further investigation may
throw more light on the role of these three genes for glioma cancer.

From Tables 1 and 2, we see that we had a significant advantage of using
multiple smoothing parameters over single smoothing parameters in terms
of bootstrap misclassification error. In all the models with single smoothing
parameter, we get higher bootstrap error than the corresponding model with
multiple smoothing parameters.

Table 3. Names of the genes selected by both of our models BMLM+BGS
and BMSVM+BGS. The genes, which are also identified to be relevant

by the Kim et al. (2002) algorithm, are marked by a ‘∗’.

Name of the gene GeneBank access no.
∗ angiopoietin 1 receptor; TIE-2 L06139
∗ insulin-like growth factor-binding protein 2 (IGFBP2) M35410
∗ FLT1; VEGFR1 X51602; U01134
∗ cell surface glycoprotein MUC18; M28882

cyclin-dependent kinase inhibitor 1C (CDKN1C) U22398
G2/mitotic-specific cyclin B1 (CCNB1) M25753
STK1; CDK7 L20320

∗ guanine nucleotide-binding protein beta subunit 2 M36429
∗ guanine nucleotide-binding protein beta 1 subunit

(GNB1) M36430
∗ mitogen-activated protein kinase 10

(MAP kinase 10; MAPK10; PRKM10) U34819; U07620
∗ growth factor receptor-bound protein 2 (GRB2) L29511; M96995
∗ tumour necrosis factor superfamily member 5 (TNFSF5) L07414
∗ muscle-specific DNase I-like

(DNase1L1; DNL1L); DNase X X90392; L40817; U06846
∗ thymosin beta 10 (TMSB10; THYB10); PTMB10 M92381
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Figure 3. Heatmap of the 3 genes marked as significant by our two models but

missed by the Kim’s algorithm and the BWS/BSS criterion.
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8 Biological Significance of the Selected Genes in Glioma

Cancer

Our BMLM+BGS and BMSVM models have selected 23 genes and 25
genes as relevant respectively based on a marginal posterior probability of
0.01. There is a significant overlap in the gene lists between the two models.
In total, 14 genes are found to be common in both the models and are listed
in Table 3.

Most of the selected genes carry a lot of biological significance and have
putative roles in cancer biology. We focus on potential roles for a few of
them. For example, Angiopoietin-2 (Ang2) induces human glioma invasion
through the activation of matrix metalloprotease-2 and plays an important
role in angiogenesis and tumour progression. Ang2 induces human glioma
cell invasion. In invasive areas of primary human glioma specimens, up-
regulated expression of Ang2 was detected in tumour cells. Correspondingly
higher levels of MMP-2 expression were present in Ang2-expressing tumour
cells in these glioma, (Hu et al., 2003).

Another molecule that appears in the list is insulin-like growth factor
binding protein 2 (IGFBP2). Wang et al. (2003) showed that IGFBP2
contributes to glioma progression in part by enhancing MMP-2 gene tran-
scription and in turn tumour cell invasion.

There is also speculation that progression to glioma requires activation
of angiogenesis and has stimulated significant efforts in the development of
agents that will block this process. In particular, two pathways have re-
ceived considerable attention. They are vascular endothelial growth factor
(VEGF) and its receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1); note that
VEGFR appears on our list of genes in Table 3. VEGF has been shown to
be critical for the earliest stages of vasculogenesis, promoting endothelial cell
proliferation, differentiation, migration and tubular formation. Gene target-
ing studies have shown that deficiency of VEGF, Flt-1 or Flk-1 results in
early embryonic lethality caused by defects in angiogenesis and vasculogen-
esis (Elizabeth et al., 2001).

Another gene from the list is MUC18, which is a cell adhesion molecule.
It has been observed that increased levels of MUC18 results in an increased
potential of the cell to grow and divide uncontrollably and thus spreading
the glioma (Heimberger et al., 2005). The GNB1 gene included in both of
our models is also considered by the biologists as one of the candidate genes
for glioma tumour suppressor gene (Collins, 2004).
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Some recent experiments support that extracellular signal regulated ki-
nase (ERK), a mitogen activated protein kinase, MAPK2 might have a crit-
ical role in cell proliferation (Bhaskara et al., 2005). FACS analysis and
immunofluorescence studies using monoclonal antibodies, which specifically
recognized EGFR, demonstrated that EGFR was expressed predominantly
at the cell surface, similar to wild-type (wt) EGFR and to the expression
seen in primary biopsy-derived glioma cells (Cavenee, 2002). Phosphotyro-
sine residues in the carboxyl tail of wtEGFR provide sites for interaction with
SRC homology 2 (SH2) domain-containing adaptor molecules such as SRC
and GRB2. Immunoprecipitation studies have shown that EGFR is consti-
tutively associated with phosphorylated SHC and GRB2 in several cell lines
of different origins. This suggests that the low level constitutive activation
of EGFR may cause coupling into unique pathways in these cells and may
also point out an entry into interference therapies targeted at gliomas.

The tumour necrosis factor (TNF) superfamily member 5 is also selected
by our model. At present, the anti-tumour activity of human recombinant
TNF is being examined against various malignant tumours of human origin
(Wakabayashi et al., 1997). In the study by Sawada et al. (2004) , they re-
ported the anti-tumour activity of recombinant human TNF against human
malignant glioma cell lines in vitro and in vivo.

The three genes like CDKN1C, CCNB1 and cell CDK7, which are missed
by Kim’s algorithm but captured by us, also carries direct biological signifi-
cance in glioma cancer as mentioned in the previous section.

9 Discussion

Gliomas are very complex cancers involving different growth characteris-
tics and cell lineage features (Kleihuse and Cavenee, 2000). As the original
clone of tumour cells may exist at any stage of cell differentiation and may
have different transformation events, the boundaries between tumour grades
and tumour lineages can be blurred. This is reflected in morphologically
based tumour classification schemes that often mix cell lineage features with
tumour growth characteristics. The results are subjective, and disagreement
among pathologists regarding identity of the tumour are very common. The
gene expression activities yielded by molecular and genomic biology are more
objective to classify diseases as the usual belief is that cell phenotypes have
genotypic origins. Recent success in subclassification of neoplasms within a
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disease group using gene expression profiles (Golub et al., 1999, Hedenfalk
et al., 2001) provide support for such a belief.

The major roadblock is the small sample size issue inherent to micro-
array based classification effort. Contributing to this are the limited number
of human tissues for study and the cost of such gene expression profiling
projects. We want to identify classifiers which: (i) are flexible to execute
complex classifications efficiently, (ii) automatically reduce the dimension
to accommodate the small sample size problem and (iii) can identify the
significant genes. The method based on RKHS developed here satisfies all
of these criteria.

The use of RKHS theory helps us to change the dimension of the problem
from p to n. In cases when we use the gene expression covariates, p, the
number of covariates, is much greater than n, the number of samples. Hence
RKHS method provides us with an automatic dimension reduction from p
to n. Earlier papers proposed Bayesian probit model approaches with latent
variables for modelling cancer tumours with more than two classes. But
all these methods are much restricted compared to ours in the sense that
they used simple linear model to model the latent variables. In contrast,
our model does not impose any kind of structure on the latent variables.
The relationship between the latent variables and the microarray covariates
is denoted by an unknown function f . and we assume that the function
belongs to an abstract function space, the RKHS. This is the only assumption
we make. Then maximize the penalized log likelihood or the posterior to
estimate the unknown function. This type of function estimation helps us
to come up with a more flexible class of models. Although the use of RKHS
helps us to bypass the problem of gene selection by already reducing the
dimension of the model from p to n, in real life applications, an initial gene
selection is always recommended. From Table 1, it is clearly seen that all the
standard models and our two models gave extremely poor performance when
all genes are used. Rather than doing a two step model fitting, which can
induce possible bias in the classifier, i.e, an initial gene selection and then
fitting the models using only the selected genes, in Section 6, we suggested
an integrated Bayesian gene selection and model fitting approach with the
help of indicator variables.

The multicategory SVM proposed by Lee et al. (2004) makes use of the
RKHS theory and an extension of the hinge loss. Our BMSVM model is
an extension of their approach in the Bayesian paradigm. Lee et al. (2004)
treated the whole problem of multiclass classification from an optimization
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standpoint, whereas our method treats the whole problem in a probabilis-
tic framework. Unlike the frequentist approach, in our method, the kernel
parameter θ is not fixed, and we put a prior on it. By putting the prior
on the kernel parameter, we gain as we eventually use a mixture of kernels.
We can also obtain the full posterior predictive probability distribution of
p(tnew = j), for j = 1, . . . , J , i.e., the probability that a new tumour belongs
to the jth type. The full posterior predictive probability distribution con-
tains much more information than just a point estimate, and we can easily
construct a confidence interval based on it.

The use of near-diffused proper priors helps us to make our method less
sensitive to the choice of prior parameters. It also ensures that the posterior
is proper so that we can use all standard MCMC techniques to generate
samples from it. The procedure is definitely sensitive to the choice of ω as
it controls the number of genes each time it is included in the model. In
both the examples, we have kept ω = 0.01 as suggested by Lee et al. (2004),
and Sha et al. (2004). It means that only 10% of the genes are expected
to be included in the model, which indirectly implies that we are inducing
sparsity. As an alternative, we can also assign a hierarchical Beta(a, b) prior
on ω.

Our BMLM and BMSVM have lower misclassification errors than the
standard methods like neural network, classical support vector machine and
random forest in modelling the glioma cancer. Our methods gave better
results than all three standard ones. Both BMLM and BMSVM, when inte-
grated with the Bayesian variable selection technique, give improved perfor-
mance. Hence we recommend either of our models with multiple smoothing
parameters augmented with the Bayesian variable selection technique.

Identifying a particular class or type of glioma cancer is very important
for its diagnosis and treatment. Targeting specific therapies to pathogenet-
ically distinct tumour types is important for cancer treatment because it
maximizes efficacy and minimizes toxicity (Golub et al., 1999). Toxicity
plays a major role as the target area of the treatment is the brain or cen-
tral nervous system, and any kind of toxic effect of the drug or treatment
may lead to long lasting potential hazard to the patient. Diagnostic pathol-
ogy has traditionally relied on macro- and microscopic histology and tumour
morphology as the basis for tumour classification. Of all cancers, the gliomas
are the hardest to classify and current methods are often unable to do the
correct classification. In this paper, our proposed models are able to iden-
tify accurately different types of gliomas simultaneously with gene selection.
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From Section 8, we see that the genes marked as active or important by our
models carry some special biological significance as they can lead to some
new lines of investigation for the biologists and geneticists.

In a broader context, the approach applied in this study can be used
to identify genes that contribute to the major differences between any two
groups of samples analysed. In the process of this, some less understood phe-
notypes might be identified. For example, we might find significant genes
that distinguish cancers with high metastatic potential from cancers with
little or no metastatic potential or genes that identify cancers that will be
sensitive to specific therapies versus those that will be resistant and con-
tinue to grow unabated through therapy. Current histology-based classifi-
cation and grading systems can do neither of these. Identification of such
significant genes may not only provide markers for diagnosis and disease
management but may also provide novel potential targets for drug devel-
opment. A method that could identify the strong features of cancer, both
genotypically and phenotypically, would provide an ideal route to the heart
of the problem and we will use our method for these future studies.
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