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Abstract

Spatio-temporal processes are ubiquitous in the environmental and physical sci-

ences. This is certainly true of atmospheric and oceanic processes, which typically

exhibit many different scales of spatial and temporal variability. The complexity

of these processes and large number of observation/prediction locations preclude

the use of traditional covariance-based space-time statistical methods. Alterna-

tively, we focus on conditionally-specified (i.e., hierarchical) spatio-temporal mod-

els. These methods offer several advantages over traditional approaches. Primarily,

physical and dynamical constraints are easily incorporated into the conditional for-

mulation, so that the series of relatively simple, yet physically realistic, conditional

models leads to a much more complicated space-time covariance structure than can

be specified directly. Furthermore, by making use of the sparse structure inherent

in the hierarchical approach, as well as multiresolution (wavelet) bases, the models

are computable with very large datasets. This modeling approach was necessitated

by a scientifically meaningful problem in the geosciences. Satellite-derived wind es-

timates have high spatial resolution but are limited in global coverage. In contrast,

wind fields provided by the major weather centers provide complete coverage but

have low spatial resolution. The goal is to combine these data in a manner that

incorporates the space-time dynamics inherent in the surface wind field. This is

an essential task to enable meteorological research as no complete high resolution

surface wind datasets exist over the world oceans. High resolution datasets of this

kind are crucial for improving our understanding of: global air-sea interactions af-

fecting climate, tropical disturbances, and for driving large-scale ocean circulation

models.

KEY WORDS: Climate; Combining information; Conjugate gradient algorithm; Dy-

namical model; Fractal Process; Gibbs sampling; Numerical model; Ocean model; Satel-

lite data; Turbulence; Wavelets.



1 Introduction

Fierce storms in California, floods in Peru, drought in Australia and Indonesia - these

are just a few of the extreme weather events attributed to the 1997-98 El Niño event

(e.g., Kerr 1998). This El Niño brought unprecedented public attention to the in-

teraction between the tropics and extratropics, and perhaps more importantly, the

interaction between the ocean and the atmosphere. These interactions have been the

focus of climate research for the past decade. Changes in weather around the world,

such as occurred with the recent El Niño, have been linked to variations in the atmo-

spheric circulation, which, at a fundamental level, are affected by exchanges in heat,

moisture, and momentum between the atmosphere and ocean. This exchange across

the air/sea boundary is critically related to small-scale spatio-temporal features of sea-

surface winds.

Climatologists and oceanographers use wind information principally in two ways:

(1) to improve fundamental knowledge about atmospheric phenomena such as El Niño

(e.g., Liu et al. 1998), tropical cyclones (e.g., Gray 1976), and large-scale tropical

oscillations (e.g., Madden and Julian 1994); and (2) to provide input (forcing) for

deterministic models of the coupled ocean/atmosphere system (e.g., Milliff et al. 1999

and references therein). In both cases, one must know something about the behavior

of the surface wind field and its horizontal derivatives at small scales. For example,

it has been shown through the use of simulated datasets that deterministic models of

the ocean are sensitive to both the temporal (Large et al. 1991) and spatial (Milliff

et al. 1996) resolution of the surface wind forcing (see also Chen et al. 1999). Indeed,

although the deterministic coupled ocean/atmosphere models used for prediction of the

1997-98 El Niño were more accurate than for previous El Niño events, indications are

that many of these models would have performed better had uniformly high resolution

tropical wind fields been available (Kerr 1998).

Unfortunately, there are no spatially and temporally complete high resolution ob-

servations of surface winds over the tropical oceans. Thus, the major scientific challenge

here is the development of physically realistic high resolution tropical wind fields. Our

fundamental scientific contribution is the development and implementation of a statis-
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tical approach to generate high resolution wind distributions over large extents of the

tropical ocean. To that end, we develop a hierarchical Bayesian space-time dynamic

model which combines wind data from different sources, and background physics, to

produce realizations of high-resolution surface wind fields. The Bayesian approach is

ideal for this application because: (1) it provides a mechanism for combining data from

very different sources; (2) it provides a natural framework in which to include scientific

knowledge in the model; and (3) it provides posterior distributions on quantities of

interest which can be used for scientific inference.

Our statistical analyses utilize two strikingly different datasets. The first dataset

involves satellite-derived wind estimates that have high resolution in space but are

limited in areal coverage at any given time. Milliff and Morzel (2000) demonstrate that

the information from a single instrument of this type is not sufficient to resolve well all of

the meteorological events in the surface wind field. The second dataset consists of wind

estimates, known as analyses, provided by the major weather centers. These provide

complete wind fields but have low spatial resolution. Although the large-scale features

of the tropical atmosphere are generally well-represented by these analysis fields, they

are unable to resolve many of the small- to medium-scale features in the wind fields

that are needed to understand the dynamics of the tropical ocean and atmosphere (e.g.,

Milliff et al. 1996). Hence, in isolation, neither of these two datasets provide the breath

of scientific information sought by climatologists. Our Bayesian model combines these

data to yield information about winds at a useful spatial scale, and in a manner that

incorporates physical theory about the space-time dynamics inherent in tropical surface

winds.

We demonstrate (see Figure 5) that our posterior wind fields contain much more

finely resolved features than do the current state-of-the-art weather center wind fields

over the tropics. Furthermore, based on external verification with remotely-sensed

cloud imagery, these higher resolution features in the wind fields correspond to phys-

ically meaningful features of the atmosphere. We emphasize that until satellite wind

data are assimilated adequately into numerical weather prediction models of similar

resolution, a Bayesian procedure of the kind we derive here provides the only source of
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high-resolution tropical wind field information sufficient for many aspects of research

regarding air-sea interactions and their effects on climate. Furthermore, the probability

distributions for wind fields that we provide will, for the first time, allow scientists to

consider the distributional nature of phenomena that depend on air-sea interaction.

The datasets used here are described in Section 2. Section 3 describes in some detail

the physically based, space-time model that we have developed. By “physically based,”

we mean that substantial physical modeling and background science were used in both

model development and specifications of priors on model parameters. The Bayesian

implementation and specific computational issues related to our analysis are discussed

in Section 4. The huge datasets used and the large number of unknowns modeled,

necessitated the development of special algorithms. These developments are of general

interest in large-scale Bayesian analyses. Section 5 describes model verification and

inference based on our wind model. A brief discussion is presented in Section 6.

2 Wind Data

Since winds are vector quantities, they can be split into orthogonal components. We

use the standard decomposition in which u represents the east-west (“x-direction”)

component and v represents the north-south (“y-direction”) component. Although

other decompositions are possible, we selected this Cartesian decomposition for physical

reasons; the equator is a fundamental line of symmetry in the equatorial dynamics that

govern weather in the tropics, and is a source of anisotropy that discourages the use

of coordinate systems other than Cartesian (e.g., Gill 1982, pp. 436-463). We consider

surface wind components over a spatial domain in the Western Pacific ocean from

107◦ − 170◦ East longitude and 23◦S to 24◦N latitude as shown in Figure 1. This

portion of the equatorial Pacific contains the “warm pool region” and is critical to the

forcing and maintenance of many weather and climate-scale phenomena (e.g., Philander

1990). We focus on 6-hourly increments during the two-week time period from 28 Oct

1996 through 10 Nov 1996. Tropical variability consistent with these scales include,

for example, westerly wind bursts, equatorial Rossby wave propagation, and tropical
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storms. The two-week time period is sufficient to capture up to 3 - 5 such events.

Although there are some in situ observations of ocean surface winds from buoys

and ships, they are rather sparsely distributed in space and time relative to land-

based observation networks. The world’s major meteorological centers take these few

observations and insert them into global-scale numerical weather prediction models

to produce tropical wind field analyses (e.g., Daley 1991). Hence, the resulting data

are not measurements or observations in the traditional sense, but rather statistics

computed as highly complex functions of observations.

We consider weather center wind fields from the National Centers for Environmen-

tal Prediction (NCEP). These data represent surface winds (actually, 10-m above the

surface) and have a reporting period of 6 hours and spatial resolution of nearly 2 de-

grees, or about 200-km in equatorial regions. NCEP u-winds are shown in the left

panels of Figure 2 for three consecutive 6-hour periods in early November 1996.

Wind data from the NASA scatterometer (NSCAT) instrument are also used here.

A scatterometer is a satellite-borne instrument that emits radar pulses at specific fre-

quencies and polarizations toward the sea surface where they are back-scattered by

surface capillary waves (e.g., Naderi et al. 1991). The back-scattering is detected and

related, through a “geophysical model function”, to wind speed and direction near the

surface (usually 10-m; see for example Stoffelen and Anderson 1997; Wentz and Freilich

1997; Wentz and Smith 1999). That is, as in the case of analysis fields, these data are

not direct measurements of winds, but rather functions of back-scatter detections.

Due to the polar orbit of these satellite platforms, the temporal resolution of these

data are relatively sparse and, over the span of several hours, the spatial coverage area

is relatively small (see the right panels of Figure 2). Each “snapshot” in time includes

all observations within a 6-hr window centered on the corresponding analysis time.

The NSCAT surface (i.e., 10-m) wind data used here were produced by the NSCAT-1

model function (Wentz and Freilich 1997). These data have a 50-km nominal spatial

resolution, although the reported winds are actually derived by applying the model

function to an average of several backscatter observations within a 50-km by 50-km

observational “cell.”
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Notation Let Va(ri; t) and Ua(ri; t) denote the NCEP analysis north-south and east-

west, respectively, wind components at spatial location {ri : i = 1, . . . ,m} and time {t :

t = 1, . . . , T}. The scatterometer (NSCAT) north-south (east-west) wind component

is denoted by Vs(r̃j ; t) (Us(r̃j ; t)) at location {r̃j : j = 1, . . . , pt} and time {t : t =

1, . . . , T}. (The number of NSCAT observations, pt can be highly variable, see Figure

2.) We define the “true” (i.e., noiseless) wind components as v(si; t) and u(si; t) at

spatial locations {si : i = 1, . . . , n} and times {t : t = 1, . . . , T}. The cumbersome

notation of indexing spatial locations is needed because we are faced with a “change of

support” problem: the NCEP and NSCAT data represent different spatial scales, both

of which differ from the desired prediction sites si.

In the present example, we choose a one-degree regular prediction grid (Figure 1)

and consider 54 six-hour time increments over the period from 0600 UTC (Coordinated

Universal Time) on 28, October 1996 to 1200 UTC on 10, November 1996. We neglect

small displacements in the prediction lattice due to the curvature of the earth.

Next, let Vt denote an m + pt vectorization of the north-south weather center

and scatterometer observations at time t. Similarly, Ut is the combined list of the

data corresponding to the east-west component. Also, let vt and ut be n vectors

of the “true” north-south and east-west wind components, respectively, at prediction

locations at time t.

Finally, we use the following notation to denote matrices composed of columns of

vectors representing intervals of time: let {V}BA be the collection of vectors {Vt : t =

A, . . . , B}.

3 Hierarchical Space-Time Models

A major difficulty in the application of statistical space-time models in geophysical

problems has been adequate description of the complicated space-time covariance struc-

tures inherent in these contexts. For an overview of traditional space-time modeling

approaches, see Wikle and Cressie (1999). These methods are not suitable to the

present problem in that they cannot easily (1) account for propagation of synoptic-
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scale weather disturbances, (2) fill “gaps” in the observations with realistic variance at

all spatial scales, (3) include multiple measurement errors and change of support for

different data sources, and (4) incorporate huge amounts of data.

3.1 The Hierarchical Approach

Hierarchical models are ideal for extremely complex and/or high dimensional problems.

In essence, the strategy is based on the formulation of three primary statistical models

or stages:

Stage 1. Data Model: [data|process, θ1],

Stage 2. Process Model: [process|θ2],

Stage 3. Prior on Parameters: [θ1, θ2],

where the bracket notation denotes probability distribution (e.g., Gelfand and Smith

1990) and θ1 and θ2 generically represent parameters introduced in the modeling. The

idea is to approach complex problems by breaking them into pieces - in this case, a

series of conditional models (e.g., Berliner 1996). The Stage 2 model for the process

(in our case, true winds) can itself be specified as a product of physically-motivated

conditional distributions. By treating the space-time variability as a series of relatively

simple, yet physically-based conditional models, we can obtain space-time dependence

structures that are much more complicated (and more realistic physically) than could

be specified directly. Bayesian analysis relies on the posterior distribution of the process

of interest and parameters given data: [process, θ1, θ2|data]. There have been several

recent examples of hierarchical Bayesian space-time models. For example, Waller et al.

(1997) employed such a model for mapping disease rates. An overview of hierarchical

space-time dynamic models along with a geophysical application can be found in Wikle

et al. (1998).

3.2 Stage 1. Data Model

We expect the wind data to be replete with complicated spatio-temporal dependencies.

However, conditional upon the true winds, we expect the complexity of this dependence

to be dramatically reduced. That is, Stage 1 models only measurement errors, rather
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than that portion of the complex structure present in the data due to the structure

of the true winds. The fundamental assumptions are that, conditional on the true

process {u}T1 , {v}T1 , the data are independent with respect to time, and the set of U

observations is independent of the set of V observations. Specifically, we have that

[{V}T1 , {U}T1 |{v}T1 , {u}T1 ; θ1] =
T∏

t=1

[Vt|vt; θ1][Ut|ut; θ1]. (1)

In particular, we assume normally distributed errors:

Vt|vt,Σt ∼ Gau(Ktvt,Σt) and Ut|ut,Σt ∼ Gau(Ktut,Σt), (2)

where Gau(ν,A) refers to a multivariate Gaussian distribution with mean ν and covari-

ance matrix A. We assume that the covariance matrices Σt are diagonal with unknown

variances σ2
B, for NCEP data at sites on the boundary of the NCEP grid, σ2

I for NCEP

data at interior sites on the NCEP grid, and σ2 for NSCAT observations; that is, the

first m diagonal elements of Σt are either equal to σ2
I or σ2

B and the remaining pt are

equal to σ2. Further, for each t, Kt is a specified (m + pt) × n matrix that maps the

prediction grid locations to the observation locations.

Several issues arise regarding our assumptions concerning the data-acquisition pro-

cess. First, we assume that conditional on true winds, the scatterometer errors and

the NCEP analysis errors are independent. This is quite plausible, since NCEP did

not use scatterometer data in producing wind fields. Second, there is evidence in

the literature for the plausibility of our assumptions that the scatterometer errors are

mutually conditionally independent and have homogeneous variance, and that the east-

west and north-south component errors are independent. For example, Freilich (1997)

demonstrates that an independent and normally distributed random error model for

scatterometer velocity components is consistent with observed distributions for wind

speed. Freilich and Dunbar (1999) considered comparisons between collocated satel-

lite wind estimates and direct measurements from ocean buoys in a validation study.

They concluded that the independent-component error model, with standard deviations

equal to 1.3 m/s (for both components), is appropriate for NSCAT data. Furthermore,
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over the relatively small geographical region considered here, these references suggest

the homogeneous variance assumption is reasonable. Haslett and Raftery (1989) have

shown that application of a square-root transformation may enhance both homogeneity

and normality in wind measurements (as opposed to the sort of processed data used

here). As suggested by Freilich (1997), such a homogeneity-of-variance transformation

of wind speed is consistent with the independent, homogeneous, normal random mea-

surement error model for the Cartesian wind components. Finally, the assumption that

NCEP analysis errors are mutually independent seems to be the least tenable assump-

tion in view of the complex nature of the numerical and statistical methods used in

production of such information. The formulation of genuine covariances for analyzed

fields is a major research area in its own right, and well beyond the scope of this paper.

We believe that the independence assumption is not critical for our results.

Mapping Matrices. We partition the mapping matrices as Kt = [K′a,K′s(t)]′,

where Ka and Ks(t) arem×n and pt×nmatrices, respectively. Since the prediction grid

is at a finer resolution than the NCEP data, Ka acts by assuming that the conditional

means of the data are smoothed versions of the “true” winds on the lattice. This

“change of support” approach is further justified since NCEP data have been shown to

be too smooth at large scales (e.g., Milliff et al. 1999; Wikle et al. 1999). Specifically,

the Ka matrix considers the nearest 9 prediction grid locations within some distance

D (D = 165-km) and weights those locations linearly by wi = (D− di)/w∗, where di is

the distance between the i-th prediction grid location and the NCEP datum location,

and w∗ normalizes the weights to sum to one.

Each Ks(t) is an incidence matrix of 0’s and 1’s that simply maps the conditional

mean of an NSCAT observation to the nearest grid process location. The error induced

by this mapping is related to the chosen prediction grid resolution. Effectively, by em-

ploying the mapping matrix, Kt, we allow the wind process to “live” on a fine-resolution

regular grid. The resolution of this grid could be so high as to allow the NSCAT data

points to each correspond to a unique lattice location. Practically, a balance must

be sought between computational expense, grid resolution, and the resolution of the

physics that one is seeking to describe or model. More complicated approaches to pa-
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rameterizing both Ka and Ks(t) are possible (see Wikle and Berliner 2000). However,

a computationally necessary feature is that these mapping matrices be very sparse (see

Section 4.1).

3.3 Stage 2. Priors on the Process

Our task is to formulate a joint probability model for the gridded wind process,

{u}T1 , {v}T1 . We begin by decomposing each of the wind processes into three physically

meaningful components. The decomposition and models for the resulting components

were developed based on our physical and statistical understanding of the problem. Fol-

lowing a review of that reasoning in the next section, we present the specific statistical

models used for each of the three components.

3.3.1 Decomposition of the Wind Process

In the equatorial region, much of the large-scale variability in wind fields can be repre-

sented by treating the atmosphere as a thin fluid; that is, the depth of the atmosphere is

much smaller than characteristic horizontal length scales (e.g., Holton 1992; Gill 1982).

However, the thin fluid approximation is incomplete in that a) it excludes small-scale

motions that are fundamentally three-dimensional, and b) it is based on a zero-mean

background flow. The following decompositions for our statistical model address these

deficiencies while retaining the convenience of the thin fluid approximation:

ut = µu + uEt + ũt, (3)

vt = µv + vEt + ṽt. (4)

Here µu, µv are spatial means for the respective wind components; uEt , vEt are the

component contributions from the thin fluid approximation; and ũt, ṽt represent small-

scale motions.

We assume that the components {µu,µv,uEt ,vEt , ũt, ṽt} are mutually independent.

The assumption of independence between the elements of ut and vt requires physical

justification, which is discussed in Section 3.3.2.
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Large-Scale Wind Components: The thin-fluid approximation for large-scale trop-

ical dynamics involves companion approximations as well. Important among these are:

a) the neglect of non-linear terms in the momentum equations; and b) the simplification

of spherical effects to a linear dependence on latitude. These approximations lead to a

system referred to in the geophysical literature as the “linear shallow-water equations

on the equatorial beta plane” (e.g., Holton 1992; Gill 1982). Looking for solutions in

the form of two-dimensional waves in the Cartesian (x,y) plane leads to an ordinary

differential equation for vE(x, y; t), from which corresponding solutions for uE(x, y; t)

can be derived. The solutions for vE(x, y; t) can be written:

vE(x, y; t) =
∑
p

∑

l

vEl,p(x, y; t) (5)

where the vEl,p(x, y; t) are the equatorial normal mode (ENM) orthogonal basis set

(Matsuno 1966). The waves associated with individual ENMs are identifiable in ob-

servations (e.g., Wheeler and Kiladis 1999), and they form the foundation for much of

our understanding of tropical dynamics in the atmosphere and ocean.

In practical applications the infinite series (5) is often truncated to a few leading

modes, such that:

vE(x, y; t) ≈
P∑

p=1

L∑

l=0

vEl,p(x, y; t) (6)

for some choice of P and L; here, we use set of P = 2 and L = 3 yielding 8 modes for vE .

The ENM theory applies to motions with length scales as long as the circumference of

the planet. The prediction domain size limits the maximum length scale in our problem

to a small fraction of the circumference. In theory, energy can be distributed across an

infinity of modes in the series (5). However, Wheeler and Kiladis (1999) demonstrate

that most of the energy is distributed in clusters of a relatively few modes, suggesting

that the truncation employed in (6) is not too severe.

It can be shown that each mode can be written as

vEl,p(x, y; t) = Vl(y) cos(kpx− ωl,pt), (7)
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where Vl(y) describes the north-south structure of the l-th mode; kp = 2πp/Dx, where

p is the east-west wavenumber and Dx is the east-west domain length; and ωl,p is the

dispersion frequency of the (l, p)-th wave-mode solution (i.e., it describes the propaga-

tion speed and direction of the ENM). Further, the north-south structure can be shown

to be proportional to Hermite polynomials that are exponentially damped away from

the equator (e.g., Gill 1982):

Vl(y) = Hl(y∗) exp(−.5y∗2), (8)

where Hl() is the l-th Hermite polynomial (with l corresponding to the number of nodes

in the north-south direction), and y∗ is the “normalized” latitudinal distance from the

equator. Specifically, y∗ = β0y/(
√
ghe/β0)0.5, where β0 is a constant related to the

ratio of the earth’s angular velocity to its radius, g is the gravitational acceleration,

and he is the “equivalent depth” of the thin fluid. Of the parameters considered here,

Dx (and thus kp), β0 and g are fixed and known. The dispersion frequency (ωl,p)

and the equivalent depth parameter (he) cannot be precisely determined from the

thin-fluid approximation theory. However, plausible values can be estimated via data

analysis (e.g., Wheeler and Kiladis 1999). In the case of the dispersion frequency,

we consider a reparameterization using random components (as discussed below) with

priors determined from historical data analysis (see Section 3.4.1). For the equivalent

depth parameter, it is natural (as Bayesians) to model he as random and use this

historical information to construct a prior distribution. However, in view of the complex

way in which he enters the model through the Hermite polynomials and the already

complicated scope of our model, a fully Bayesian analysis seems prohibitive. We simply

set he = 25 meters, which is what our prior mean would be based on the discussion

in Wheeler and Kiladis (1999). Fortunately, the analysis does not seem particularly

sensitive to the value of he (see Section 4.4).

An elementary trigonometric identity permits rewriting (7) as

vEl,p(x, y; t) = cos(ωl,pt)[Vl(y) cos(kpx)] + sin(ωl,pt)[Vl(y) sin(kpx)]. (9)
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In view of the approximations associated with this development, it is very unlikely

that real winds will propagate like perfect sinusoids as suggested in (9). Furthermore,

these expressions were obtained in continuous space and time; our statistical model

will be for gridded winds defined on a limited domain. To account for such sources of

uncertainty, we embed the physical modeling into a stochastic model. Specifically, we

replace the leading cosine and sine terms in (9) with random coefficients. That is, for

each of our grid points si ≡ (xi, yi), i = 1, . . . , n, we let

vEt (si) =
P∑

p=1

L∑

l=0

{al,p;1(t)[Vl(yi) cos(kpxi)] + al,p;2(t)[Vl(yi) sin(kpxi)]}, (10)

where al,p;1(t), al,p;2(t) are assumed to be random coefficients. Allowing these param-

eters to be random greatly increases the flexibility of our model. In addition, we see

that the cosine and sine terms they replace suggest a natural, physically-based prior.

The model for the a’s will be described in the next section.

Our stochastic version of (6) takes the form

vEt = Φavt , (11)

where vEt is the vector of vE-winds for all prediction grid locations at time t; and avt

is a vector of pairs of a’s for each of the J = P × (L + 1) combinations of p and l

(recall, P = 2, L = 3, so avt is of length 16). The matrix Φ is obtained by evaluating

the ENM basis functions at grid points. Specifically, for a total of J combinations, Φ

is n × 2J matrix with columns φ2(j−1)+1(x, y) = Vj(y) cos(kjx) and φ2(j−1)+2(x, y) =

Vj(y) sin(kjx) for j = 1, . . . , J , evaluated at the coordinates of the n prediction grid

locations. Figure 3 shows the structure of two of these basis functions (l, p) = (0, 1)

and (l, p) = (2, 1). A similar model, uEt = Φaut , is also used.

Small-Scale Wind Components: The small-scale wind components ṽt,ũt represent

scales and types of dynamical processes not explained by the thin-fluid approximation

near the equator. We would like these processes to represent the scales that are resolved

in the NSCAT sampling and are commonly thought to display multiresolution spatial

behavior associated with fractal processes. We chose to represent them in terms of
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wavelet basis functions with compact support:

ṽt = Ψbvt , (12)

where bvt is an n-vector of temporally evolving random coefficients; and Ψ is an n× n
matrix containing Daubechies wavelet basis functions of order two (evaluated on the

prediction grid), modified for closed domains (e.g., Cohen et al. 1993); the “order” is

the number of vanishing moments of the wavelets. A similar decomposition is specified

for ũt.

Our use of wavelets is motivated by the observation that these small-scale processes

are typically localized in space and time. The specific choice of the above multireso-

lution wavelet basis is based on its ability to represent fractal processes (e.g., Wornell

1993). This is critical in attempting to explain the multiscale turbulence structure

of wind fields (see Section 3.4). Also, this wavelet basis has advantages in terms of

computational efficiency (see Section 4).

Spatial Mean: The spatial mean processes µv and µu account for the climatological

mean wind structure. In the tropical western Pacific, the climatological winds are

easterly (i.e., out of the east, toward the west). Note that there are land areas in our

domain (see Figure 1). Given that near-surface wind behaves differently over land and

sea (e.g., surface heating and/or frictional differences), the spatial mean field should

include a dichotomous variable to delineate if a prediction grid location is over land or

sea. Finally, although the climatological wind structure can change with season and

horizontal extent, our spatial domain is small enough and our temporal domain is short

enough (approximately 2 weeks) that we need not consider more complicated spatial

or time-varying mean fields in this analysis.

3.3.2 Process Model Specification

The decompositions (3) and (4), and subsequent modeling leads to the statistical models

ut = µu + Φaut + Ψbut , (13)
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vt = µv + Φavt + Ψbvt . (14)

Our hierarchical Bayesian model at this stage requires specification of a parameterized

joint distribution

[µu,µv, {aut }T0 , {avt }T0 , {but }T0 , {bvt }T0 |θ], (15)

where {aut }T0 represents the collection {aut : t = 0, . . . , T}, etc., and θ generically denotes

a collection of parameters to be specified. The crucial point is that the dynamical

aspect of our modeling is through time series models for the a and b vectors. We will

use autoregressive models for these evolutions. Hence, we have appended their initial

states to the collection of unknowns. Priors for these initial states are discussed at the

end of this section.

As noted previously, a critical modeling assumption is that all six components of the

gridded winds in (15) are mutually conditionally independent; that is, (15) is factored

as

[µu,µv|θ][{aut }T0 |θ][{avt }T0 |θ][{but }T0 |θ][{bvt }T0 |θ]. (16)

Our justification of the á priori independence assumption is based primarily on physi-

cal grounds. The theory of nondivergent two-dimensional turbulence implies that the

velocity components are uncorrelated across all spatial scales (e.g., Freilich and Chel-

ton 1986). As discussed in Section 3.4.2, we rely strongly on theoretical and empirical

results that suggest tropical surface wind fields behave like turbulent fields. In addi-

tion, Freilich and Chelton (1986) show that the empirical cross-spectral densities of

tropical surface wind components are very small, justifying the general prior modeling

assumption of independence. Of course, dependence can arise á posteriori, especially

in the presence of physically meaningful structures (e.g., storms). For example, for our

two-week study period, posterior analysis yields a correlation, averaged over both time

and space, between wind components of 0.3.

We next describe the prior distributions in (16). For economy in presentation,

we describe in detail only the models for the v-components, and hence, suppress de-

pendence on v. The models for the u-components were developed similarly, and are
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summarized at the end of this section.

Spatial Mean. We chose a simple spatial regression model for µ:

µ = Pγ, (17)

where P is a specified design matrix. In the present analysis, this includes an overall

intercept term and a land/sea indicator variable (1 - land, 0 - sea). The regression

coefficient vector γ is then length 2 and is assigned a bivariate normal prior distribution:

γ ∼ Gau(γo,Σγ). The hyperparameters of this distribution were specified based on an

ordinary least squares regression of NCEP data from a 4 month period roughly centered

around, but excluding, our study period. Specifically, for the v and u components

the prior means were (−.4, .02) and (−2.7, 1.9), respectively. We assumed the prior

variance-covariance matrices were diagonal with relatively small variances. We used

preliminary data analysis in developing these specifications. Since our study period

is only two weeks in duration, genuine climatological means (even seasonal means)

would not serve well in centering the model. Further, these mean parameters are not

of interest by themselves. Rather, they merely offered a simple method for adjusting

for a land-versus-sea effect.

Dynamic Models. One of the key features of our approach is that we seek to model

empirically the atmospheric dynamics, so that wind information observed at time t

can, in principle, propagate to nearby locations at time t+1, where there may be fewer

observations (e.g., see Figure 2). Thus, we assume that the coefficient vectors (a’s, and

b’s) are conditionally independent and follow first-order Markov vector autoregression

(VAR) models: for t = 1, . . . , T ,

at|Ha,at−1,Σηa ∼ Gau(Haat−1,Σηa) (18)

bt|Hb,bt−1,Σηb ∼ Gau(Hbbt−1,Σηb), (19)

where Ha and Hb are VAR parameter matrices for the ENM and wavelet coefficients,

respectively; and Σηa and Σηb are the associated VAR innovation covariance matrices.

To initialize these VAR models we assumed that a0 ∼ Gau(µa,Σa), and b0 ∼
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Gau(µb,Σb). The hyperparameters µa, Σa, µb, and Σb were specified based on an

assumption of zero mean and diagonal covariance matrices with large variances. Specif-

ically, Σa was assumed to have variance 100 and Σb was given prior variance corre-

sponding to the multiresolution scaling discussed in Section 3.4.2.

3.4 Stage 3. Priors on Parameters

We assume that the parameters σ2
I , σ

2
B, σ

2,Ha,Hb,Σηa , and Σηb are mutually indepen-

dent. Similar formulations are used for the parameters relevant to the u-component

model.

3.4.1 Autoregressive Parameter Matrices

As suggested by the derivations in Section 3.3.1, to describe wave structures that

propagate in time, each pair of coefficients al,p;1, al,p;2 must be dependent. A simple

model for such evolution is a first-order, vector autoregression:



al,p;1(t)

al,p;2(t)


 = Ha

l,p



al,p;1(t− δt)
al,p;2(t− δt)


+ ηal,p(t). (20)

where Ha
l,p is a 2× 2 propagator matrix; the ηal,p(t) are vectors of random innovations;

and δt is some time interval (0.25 days in our case). Application of simple trigonomet-

ric identities for cos(ωl,p(t + δt)) and sin(ωl,p(t + δt)) suggests physically-based prior

information for the structure of Ha
l,p:

Ha
l,p =




cos(ωl,pδt) − sin(ωl,pδt)

sin(ωl,pδt) cos(ωl,pδt)


 . (21)

Given an equivalent depth he, ωl,p can be determined from data analysis. For the

v-wind, we used the values suggested by Wheeler and Kiladis (1999) as prior means,

namely, ωl,p = 2π[−0.133,−0.18,−0.08,−0.05, 0.67, 0.59, 0.75, 0.75] for (l, p) = [(0,1),

(0,2),(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)], respectively. Our prior knowledge regarding the

last two modes is comparatively uninformed. Note that in some (l, p) combinations
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there can be wave modes with the identical horizontal structure (i.e., basis function)

that have different propagation characteristics. For simplicity, we have chosen for

our prior the “dominant” wave mode suggested by the data analysis of Wheeler and

Kiladis (1999). Thus, vec(Ha
l,p) is specified to be Gaussian with means given by (21)

and diagonal covariance structure with relatively large prior variances all set to 100.

Sensitivity analysis showed that the posterior wind fields were not sensitive to these

specifications. Similar priors were developed for the u components.

Our specification for the prior on the VAR matrix Hb is based more on a subjective

sense of the dynamics. We expect that small-scale features should have some persistence

over the 6-hour time intervals considered in this model. However, it is not clear from

theory what the prior means and variances should be or whether we should allow spec-

tral interaction. Interaction of the spectral modes would be implied if we allowed non-

zero off-diagonal elements in Hb. The added level of complexity required to implement

such a formulation was not justified in the current application. Instead, an effective

interaction of scales is parameterized by a fractal innovation variance structure as de-

scribed in Section 3.4.2. We assume that the elements of Hb ≡ diag([hb(1), . . . , hb(n)]′)

are distributed as independent Gaussians,

hb(j)| ∼ N(µhb(j), σ
2
hb

(j)) : j = 1, . . . , ka. (22)

For the hyperparameters, we choose µhb(j) = 0.4 and σ2
hb

(j) = .01 for all j. These

values reflect our subjective physical prior that there should be persistence in small-

scale modes. Sensitivity analyses on these hyperparameters showed that the posterior

wind fields were not extremely sensitive to the specification.

3.4.2 Autoregressive Innovation Covariance Matrices

The VAR conditional covariance matrix Σηa is assumed to be block diagonal, with J

2×2 covariance matrices, Σηa(l, p) on the diagonal. For each l = 0, . . . , L; p = 1, . . . , P ,

these covariance matrices are assumed to be mutually independent and distributed as,

Σηa(l, p)−1 ∼W ((κaSηa(l, p))−1, κa), (23)
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where W () is a Wishart distribution with degrees of freedom κa and expectation

Sηa(l, p)−1. For the v-component, these hyperparameters were specified to be κa = 2

and Sηa(l, p) = σ2
ηa(l, p)I, where σ2

ηa(l, p) = (s2(l, p)/2)[1− (cos(ωl,pδt))2]. In this case,

s2(l, p) are climatological variances for each wave mode as observed by Wheeler and

Kiladis (1999), that is, s2(l, p) = (2133, 2681, 3047, 7922, 305, 335, 200, 200), for the 8

ENMs used here. The posterior wind fields are not overly sensitive to the choice of these

hyperparameters. A similar specification was developed for the u-component portion

of the model.

For the wavelet coefficient innovation covariances, we assumed that

Σηb ≡ diag(σ2
ηb

(1), . . . , σ2
ηb

(n)). (24)

The choice of the hyperparameters were based on physical ideas. The spatial energy

spectrum of tropical surface winds has been shown to behave like a self-similar random

fractal process (Freilich and Chelton 1986; Wikle et al. 1999), in which the energy

spectrum is proportional to the inverse of the spatial frequency taken to some power:

Sv(k) ∝ σ2
v

|k|d , (25)

where Sv(k) is the spatial energy spectrum of v at spatial frequency k, σ2
v is the wind

component variance, and d is the decay rate (e.g., Wornell 1993). In the tropical surface

wind case, d has been shown to be approximately equal to 5/3 over a broad range (1-km

to 1000-km) of spatial scales (Wikle et al. 1999). This spectral decay rate is consistent

with famous results from turbulence theory (Kolmogorov 1941a,b; see also the review by

Rose and Sulem 1978). It is also a robust empirical result in that recent observational

studies of surface winds (Freilich and Chelton 1986; Wikle et al. 1999; Milliff et al.

1999) and winds aloft (Nastrom and Gage 1985; Lindborg 1999) demonstrate a similar

power-law relation without the conditions for two-dimensional isotropic turbulence and

an inertial sub-range that are required by the theory due to Kolmogorov. Wornell

(1993) derived the relationship for variances of such a fractal process in terms of scales

of a wavelet multiresolution analysis. Furthermore, Chin et al. (1998) extended this
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result to the two-dimensional case by assuming identical distribution of the “diagonal”,

“horizontal”, and “vertical” multiresolution wavelet coefficients. They show that the

variance of two-dimensional wavelet coefficients is proportional to 2−l(1+κ)−1, where l

is the level of the multiresolution decomposition (l = 1, . . . , Nl). We use these results,

along with the result that the innovation variance for a first-order autoregressive process

can be written in terms of the autoregressive coefficient and marginal variance (e.g.,

σ2
ηb

= [1− h2
b ]σ

2
b ), to derive the prior variances for each multiresolution level in the ηb

process:

σ2
ηb

(l) ∝ [1− h2
b(l)][2

−l(1+d)−1], (26)

where we substitute the prior mean µhb = 0.4 for hb(l) and let d = 5/3. We use this

relationship to determine the inverse gamma priors:

σ2
ηb

(j)|qηb(j), rηb(j) ∼ IG(qηb(j), rηb(j)) : j = 1, . . . , kb. (27)

That is, we define all spectral indices within a given multiresolution scale (l) to have

independent inverse gamma distributions with parameters qηb(l), rηb(l) determined by

assuming a mean given in (26) and a suitable variance. For instance, we give a large

variance to the largest wavelet scales (which overlap with the large-scale equatorial

modes) and can adequately be determined by the data. Alternatively, we assigned

small (inverse gamma) prior variances for small and medium wavelet scales where

observational data is less abundant. This is the most critical prior assumption in the

Bayesian analysis! Sensitivity analysis has shown that if we do not give narrow priors on

the small and medium scale wavelet modes, the posterior spectrum will not follow the

5/3 slope over all spatial scales as is necessary for realistic wind fields. This is simply

because there are large spatial regions that are not sampled by the scatterometer. Thus,

by using the narrow priors, we are in effect, constraining the posterior to physical reality,

but in a way that it can be informed by the data, if available.
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3.4.3 Measurement Error Variances

The measurement error variances for the data model were assigned inverse gamma

distributions: σ2 ∼ IG(q, r), σ2
I ∼ IG(qI , rI), and σ2

B ∼ IG(qB, rB). As noted in

Section 3.2, Freilich and Dunbar (1999) showed the NSCAT measurement error variance

is approximately 1.7 (m/s)2. Since we have ignored “gridding error” in both space and

time, we inflated this value to a prior mean of 2.0 (m/s)2 and assumed a prior variance

of 0.1. Hence, we set q = 42, r = .0122. There is little information in the literature

concerning NCEP measurement error variances. We have partially accounted for the

overly smooth nature of NCEP winds via the Ka matrix, and so suggest that the

measurement error variance should be about the same as found for NSCAT (1.7 (m/s)2)

at interior NCEP locations and twice that (3.4 (m/s)2) at boundary grid locations. This

latter assumption follows because there are fewer prediction grid locations available for

the change of support averaging (see Section 3.2). However, to reflect our lack of

certainty, we assigned larger prior variances (0.3) than for the NSCAT variance. Thus

we set qI = 11.63, rI = .0553, qB = 40.53, qB = .0074. Our posterior wind fields were

not extremely sensitive to these choices.

4 Bayesian Analysis

The fundamental product of a Bayesian analysis is the posterior distribution of all

unknowns. Explicit formulas for the posterior distribution for large complicated hier-

archical models such as presented here are intractable. Hence, we use a Markov chain

Monte Carlo (MCMC) method, specifically a Gibbs sampler.

4.1 Computation

In our example analysis, there are 64× 48× 54 ≈ 166, 000 prediction locations in space

(i.e., 64× 48) and time (i.e., 54) and we have a large amount of data to ingest into the

model (∼ 200, 000 observations over 14 days). The derivations of the full conditional

distributions used in a basic Gibbs sampler implementation are straightforward; the

relevant full conditionals are available from
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http://www.stat.missouri.edu/~wikle/trop_wind_pap.html .

However, the high dimensionality of some of these distributions prohibits the use of

traditional sampling algorithms. For instance, consider the full conditional distribution

for the wavelet coefficients:

bt|· ∼ Gau[A−1
t gt,A−1

t ], (28)

for t = 1, . . . , T , where

At ≡ (Ψ′K′tΣ
−1
t KtΨ + Σ−1

ηb
+ H′bΣ

−1
ηb

Hb)−1 (29)

gt ≡ ((Vt −Ktµv −KtΦavt )
′Σ−1

t KtΨ + bv′t−1H
v′
b Σ−1

ηb
+ bv′t+1Σ

−1
ηb

Hb)′. (30)

Each At is a 3072× 3072 matrix, and many of the matrices from which it is computed

are huge (e.g., Kt can be as large as 3072×6481). Standard methods for the generation

of very high-dimensional multivariate normal random variates (e.g., see Ripley 1987)

are impractical since we must sample from such high-dimensional distributions for each

time t and over many Gibbs iterations. Fortunately, the sparse specification of Kt can

be exploited computationally (e.g., Press et al. 1986, Section 2.10). Similarly, the

models for temporal evolution parameters (e.g., Hb,Σηb) involve sparse (e.g., diagonal)

matrices. Further, computations for the multiresolution wavelet transform are fast

(order n operations). The net result is that matrix multiplications of the form Atw,

for any n-vector w, can be performed in order n operations.

To make sampling from such a distribution practical on a high-end workstation, we

employ iterative linear methods. Specifically, we use a conjugate gradient solver (e.g.,

Golub and van Loan 1996, Section 10.2). Details of this sampling approach are given

in the Appendix. A key strength of the conjugate gradient approach is that the sparse

operations described in the previous paragraph can be exploited. The iterative solver

terminates after a pre-selected convergence criterion is met. The sample obtained is

an approximate sample from the true full-conditional distribution. We can control the

degree of approximation by selecting a more or less rigorous convergence criterion. For

the results presented here, we have prescribed a rather rigorous convergence criterion

21



(see the Appendix) If larger spatio-temporal domains are of interest, tradeoff between

computation time and the degree of convergence, becomes important.

4.2 Gibbs Sampler Convergence

The Gibbs sampler was implemented separately on both the east-west (u) and north-

south (v) wind components. (This is valid under all the conditional independence

assumptions described earlier.) Strategies to assess the convergence of a Gibbs sampler

in high-dimensional models (e.g., ∼ 105 parameters) such as presented here are not well-

developed. We base our convergence diagnosis on visual assessment of randomly and

subjectively chosen model parameters obtained from pilot simulations with varying

starting values. In addition to a visual assessment, we examined the Gelman and

Rubin (1992) convergence monitor. These assessments suggested no reason to reject

convergence after about 700 iterations. We then ran a single chain (2400 iterations) and

discarded the first 800 iterations. Inference was based on the remaining 1600 samples.

4.3 Posterior Wind Process

A particularly interesting time period in our data is centered on the mature phase of

tropical cyclone Dale. In particular, consider the u-component posterior mean wind

field for 0000 UTC on 7, November 1996 First, Figure 4a shows the NCEP weather

center u-wind component field for this period. Our (estimated) posterior mean for the

u-wind component is shown in Figure 4b. The field of posterior means for the u-wind

spatial mean plus the equatorial wave modes (i.e., µu + Φaut ) is shown in Figure 4c.

Figure 4d shows the associated wavelet mode posterior mean component (i.e., Ψbut ).

The posterior wind field has significantly more small-scale spatial structure than the

NCEP field. Recalling the NSCAT sampling for this period (see Figure 2), it is clear

that there is small-scale structure in regions for which small-scale observations were

not available. This is a crucial and desirable feature of our modeling strategy.
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4.4 Sensitivity

Assessing sensitivity to our prior/model specifications is extremely difficult due to

both the model’s size and complexity. We performed some sensitivity analyses one

parameter at a time, by rerunning the Gibbs sampler with different values for each

parameter, albeit with fewer iterations. We expect interactions among sensitivities

of various models and priors on parameters at various levels, but it is not feasible

to perform “complete factorial” sensitivity experiments. Primarily, sensitivities were

investigated by visual inspection of the wind fields, and examination of the empirical

spatial spectrum of the posterior winds to see how it compared to the desired 5/3 slope

discussed in Section 3.4.2. The posterior wind fields are not sensitive to reasonable

choices of the equivalent depth he, NCEP weighting scheme (Ka), and hyperparameters

on measurement error variances. Similarly, the posterior wind fields are not overly

sensitive to the hyperparameters for γ, Ha
l,p, Σηa(l, p) and Hb. However, as mentioned

in Section 3.4.2, the posterior wind fields are very sensitive to the priors on Σηb , which

must be narrowly centered around the required fractal variances that give the desired

5/3 spatial spectra. This is necessary to ensure proper variability in the posterior winds

over areas and time periods where NSCAT sampling is absent.

5 Inference and Model Assessment

Though again limited by model size and complexity, we considered three “validations”:

(1) external/physical, (2) internal/physical, and (3) NSCAT data hold out/resample.

5.1 External Physical Verification and Inference

As stated in the introduction, to understand convective processes in the tropical at-

mosphere, one must have a detailed view of the surface wind field and its horizontal

derivatives. Specifically, we consider the divergence of the surface wind field. The di-

vergence, defined at a point as ∂u/∂x+ ∂v/∂y, measures the overall rate at which air

is being transported away from that point. Conversely, if the sign of the divergence at

a location is negative, then air is converging on the point. Convergence at the surface
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can be related, through a continuity equation, to upward vertical motion. If sufficient

moisture is available in the atmosphere, this rising motion leads to the formation of

clouds and, through non-linear dynamical and thermodynamical processes, the pos-

sibility of a tropical storm associated with deep convection. This suggests that an

external verification of our model would be to compare cloud imagery with divergence

fields calculated from our posterior wind fields.

Figure 5a shows wind vectors and gridded estimates of divergence for a subset of the

spatial domain at 0000 UTC on 7, November 1996 based on the low-resolution NCEP

data only. This period corresponds to the mature phase of tropical cyclone Dale. The

NCEP field represents “state-of-the-art” wind and divergence fields currently available.

Figure 5b shows a cloud top (or “brightness”) temperature image for the same period as

observed from the Japanese GMS satellite. Colder cloud top temperatures on this plot

generally correspond to higher clouds, which in turn, are indicative of deep convection

and tropical storm activity. Thus, areas of clouds in Figure 5b should be associated with

darker blue areas (convergence) in Figure 5a. It is clear in the comparison between the

NCEP divergence field and this cloud imagery, that the NCEP field does not capture

the convergence associated with the cloud structures and bands of deep convection

associated with the tropical storm. Alternatively, Figure 5c shows the posterior mean

wind vectors and surface divergence for the same period from our analysis. The use of

NSCAT winds and a model capable of space-time propagation have added detail not

present in the NCEP analysis. In particular, note the substantial agreement between

areas of convergence in the wind field and cloud bands in the tropical cyclone. The

physical agreement shown here between convergence and cloud imagery provides very

strong physical evidence that the model is performing well.

5.2 Internal Physical Verification

An important check on our model is obtained by examination of realizations from the

posterior distribution. Figure 6 shows divergence/wind plots for two Gibbs-sampled

realizations (widely separated in “Gibbs-time”) for the cyclone Dale period shown in

Figure 5. These realizations are physically realistic, suggesting no reasons for ques-
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tioning the plausibility of the posterior distribution. Furthermore, Figure 6c shows the

posterior standard deviation for divergence at this same time. Note that, as expected,

the “tracks” of low standard deviation correspond to the satellite sampling paths (see

Figure 2).

5.3 Hold Out/Resample Verification

Although it would be useful to inspect residuals from our model, we do not have resid-

uals in the traditional sense. Our data sources reflect winds at either coarser (NCEP)

or much finer (NSCAT) spatial scales. The modeled wind process is never observed!

However, we investigated the model’s ability to generate plausible observational data.

Consider the time period represented in Figure 5. We ran a separate Gibbs sampler

but left out the NSCAT data for this period. We then compared NSCAT observations

to posterior means (and realizations) at the NSCAT locations by mapping the posterior

output to those locations via the appropriate Ks(t′). Figure 7a shows the relationship

when all NSCAT data are included in the analysis. Figure 7b shows the result when the

NSCAT data for this time period are excluded. Similarly, Figure 7c and 7d show the

same plots but for a realization from the posterior distribution. Given the amount of

data removed (over 5×103 observations), the linear associations shown in these figures

suggests that the model is reasonable.

6 Discussion

The wind fields from these analysis are currently being used in studies of tropical cy-

clone development and its relationship to intra- and inter-seasonal phenomena such as

the Madden-Julian oscillation and El Niño, and the seasonal prediction of El Niño. Ad-

ditional studies of this kind will be possible when the methodology is extended to cover

the entire tropical region. We are currently “porting” this model to a supercomputing

environment which will allow such calculations for larger domains. Since the poste-

rior wind fields generated by the current model show realistic small- and medium-scale

variability, the results from these analyses can then be used to provide distributional
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forcing to tropical ocean general circulation models.
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Appendix: High Dimensional Multivariate Normal Sam-

pling

Consider the full conditional distribution for some n× 1 vector x:

x|· ∼ N(Q−1g,Q−1) (A.1)

where Q ≡ Ψ′K′KΨ + D is known and has dimensions n× n and g is a known n× 1

vector. Define n× 1 random vectors e1, e2 ∼ i.i.d. N(0, I) and let

f ≡ Ψ′K′e1 + D1/2e2. (A.2)

Consider the linear system:

Qx = g + f . (A.3)

Since Q is invertible by hypothesis and, with probability one, g 6= −f , the unique

(with probability one) solution to (A.3) is x̃ = Q−1(g + f). It can easily be shown that

E(f) = 0 and var(f) = Q, and , hence, E(x̃) = Q−1g and var(x̃) = Q−1. Thus, with

simulated e1, e2, the corresponding solution to (A.3) is a sample from (A.1).

For n very large, we rely on iterative approaches to solving (A.3), rather than

attempting the indicated matrix inversion directly. Specifically, we used the conjugate

gradient algorithm (e.g., Golub and Van Loan 1996, Section 10.2). Especially in the case

of sparse systems as arising in our model, this approach has computational advantages

related to storage and efficiency. The basis of the algorithm is that the solution to

(A.3) coincides with the minimizer of the expression

minx{1
2
x′Qx + x′(g + f)}. (A.4)

Posed in this fashion, improvements over direct iteration, such as Newton’s method or

steepest descent, come to mind. The conjugate gradient method is similar, but has
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the property that all successive differences, xi+1 − xi, between iterates are mutually

Q-orthogonal (or “conjugate”); that is, (xi+1 − xi)′Q(xj+1 − xj) = 0.

As with most iterative procedures, a key computational issue is the rapid compu-

tation of powers of Q. Indeed, we can write (A.3) as

(Ψ′K′KΨ + D)x = g + Ψ′K′e1 + D1/2e2, (A.5)

where D1/2 is sparse for our models. Thus, we do not have to store Q, and only

have to perform a series of vector multiplications. By making use of sparseness from

our hierarchical implementation and spectral and multiresolution representations, these

multiplications can be carried out very efficiently (e.g., in our case Ψx corresponds to

the inverse discrete wavelet transform).

With an iterative approach, a choice must be made as to starting values (we typically

use the value for the previous Gibbs iteration or the one step ahead “prediction” from

the appropriate Markov model). Furthermore, though the conjugate gradient algorithm

is known to converge to the solution in at most n steps, n is far too large to permit

running the algorithm to convergence for each MCMC iteration. Hence, one must

choose an approximate-convergence criterion. In our implementation, this criterion is

specified to be ε||g + f ||, where ε = 0.0005; this criterion is usually met after 15 to 30

iterations.
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Figure 1: Prediction grid locations (+) over the Equatorial Pacific study region.



110 120 130 140 150 160 170
−25

−20

−15

−10

−5

0

5

10

15

20

25

NCEP Observations u−wind: 1200 UTC 6 Nov 1996
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NCEP Observations u−wind: 1800 UTC 6 Nov 1996
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NSCAT Observations u−wind: 1800 UTC 6 Nov 1996

110 120 130 140 150 160 170
−25

−20

−15

−10

−5

0

5

10

15

20

25

NCEP Observations u−wind: 0000 UTC 7 Nov 1996
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Figure 2: NCEP and NSCAT Sampling Locations and u-wind component values (ms−1)
within six hour time windows centered on 1200 UTC on 6, November 1996, 1800 UTC
on 6, November 1996, and 0000 UTC on 7, November 1996.
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Figure 3: Examples of shallow-water equatorial normal mode basis functions used in
the analysis. (top) North-South Hermite mode l = 0; East-West Fourier mode domain
wavenumber p = 1. (bottom) l = 2, p = 1.
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(c) Posterior Mean u−wind (Spatial Mean + Equatorial Modes): 0000 UTC 7 Nov 1996
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(d) Posterior Mean u−wind (Wavelet Modes): 0000 UTC 7 Nov 1996
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(b) Posterior Mean u−wind (Total Wind): 0000 UTC 7 Nov 1996
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(a) NCEP u−wind: 0000 UTC 7 Nov 1996
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Figure 4: East-West (u) component of wind at 0000 UTC on 7, November 1996 (in
ms−1). (a) NCEP u-wind component; (b) Posterior mean of total “blended” u-wind
(i.e., sum of components shown in (c) and (d) below); (c) Posterior mean of u-wind
spatial mean component (µ) plus equatorial mode components (Φat); (d) Posterior
mean of wavelet mode u-wind components (Ψbt).
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(a) NCEP Divergence and Wind: 0000 UTC 7 Nov 1996
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(c) Blended Divergence and Wind: 0000 UTC 7 Nov 1996
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(b) GMS Cloud Top Temperature (C): 0000 UTC 7 Nov 1996
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Figure 5: (a) NCEP divergence (s−1) and wind fields (direction of arrows correspond to
wind direction, and length corresponds to magnitude) for a subregion of the prediction
grid at 0000 UTC on 7, November 1996; (b) Cloud Top Temperature (deg K) satellite
imagery for the same period; (c) Corresponding blended posterior mean divergence and
wind fields.
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(a) Realization from the Posterior; 0000 UTC 7 Nov 1996
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(b) Realization from the Posterior; 0000 UTC 7 Nov 1996
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(c) Posterior Standard Deviation for Divergence: 0000 UTC 7 Nov 1996
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Figure 6: (a),(b) Wind and divergence field realizations from the posterior distribution
at 0000 UTC on 7, November 1996; (c) Posterior standard deviation for divergence
(s−1) at the same time.
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(a) NSCAT Data vs. Posterior Mean; (NSCAT data included) 
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(b) NSCAT Data vs. Posterior Mean; (NSCAT data deleted) 
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(c) NSCAT Data vs. Realization; (NSCAT data included) 
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(d) NSCAT Data vs. Realization; (NSCAT data deleted) 

Figure 7: NSCAT u-wind component at 0000 UTC 7 November 1996 versus the poste-
rior u-wind downscaled to NSCAT locations; (a) Data vs. posterior mean with NSCAT
data included for this period; (b) Data vs. posterior mean with NSCAT data deleted
for this period; (c) Same as (a) except that a realization from the posterior is used; (d)
Same as (b) except that a realization from the posterior is used. All data are in m/s.


