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Abstract
Accomodation of important sources of uncertainty in ecological models is essential to

realistically predicting ecological processes. The purpose of this project is to develop a
robust methodology for modeling natural processes on a landscape while accounting for the
variability in a process by utilizing environmental and spatial random effects. A hierarchical
Bayesian framework has allowed the simultaneous integration of these effects. This frame-
work naturally assumes variables to be random and the posterior distribution of the model
provides probabilistic information about the process. Two species in the genus Desmodium
were used as examples to illustrate the utility of the model in Southeast Missouri. In ad-
dition, two validation techniques were applied to evaluate the qualitative and quantitative
characteristics of the predictions.

Keywords: Hierarchical Bayesian models, Bayesian statistics, spatial modeling,

landscape vegetation prediction.

1 Introduction

The spatial pattern of ecological processes has historically been of interest to re-

searchers (Pielou 1977; Turner 1989). Early spatial prediction efforts, in the spirit of

landscape ecology, spawned from the desire to view ecological patterns on a spatial

domain (Turner 1989; Borcard et al. 1992; Guisan et al. 1998). Such efforts were usu-

ally motivated by goals pertaining to understanding the biology of a species, species

associations, species response to the environment, and the notion of preserving bio-

diversity (e.g., Gleason 1926; Erickson 1943; Whittaker 1956; Day and Monk 1974;

Ernst 1978). Predicting spatially explicit ecological processes has evolved into a main

theme within the discipline of landscape ecology (Forman and Godron 1986).
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Several different methodologies for incorporating spatial structure and covariate

information have recently been considered (e.g., Davis and Goetz 1990; Cressie 1993;

Smith 1994; Cherrill et al. 1995; Franklin 1998; Zimmermann and Kienast 1999;

Hoeting et al. 2000; Royle et al. 2001). These methods range from ad hoc, fixed-

neighborhood, and decision based models to very complex statistical models. Still,

statistically rigorous methods for combining species/environment relationships and

explicit non-Gaussian spatial structure at large numbers of prediction locations are

lacking. This can mainly be attributed to the computationally intensive nature of ac-

counting for dependence structure on such spatial domains (Besag 1974; Ripley 1981;

Cressie 1993). Computational potential is increasing at an exponential rate, thus pro-

viding abundant opportunity for innovation in conceptual and computational methods

for dealing with high-dimensional problems. This paper presents an approach to land-

scape level process modeling on large domains while explicitly considering spatially

correlated error.

Our goal is to combine information found within abiotic covariates and spatial

dependence that may act as a surrogate for various biotic covariates, in order to pro-

vide spatial predictions for vegetation as well as the uncertainty in those predictions.

This method combines important features of two different approaches to ecological

modeling, making it a very complete and robust alternative to conventional methods.

Zimmermann and Kienast (1999) describe a method and justification for mapping

individual species patterns using known environmental covariates, while Royle et al.

(2001) describe methods useful in accounting for unknown ecological/biotic processes

through spatial parameter estimation and modeling. Legendre (1993) emphasizes the

importance of considering such effects and the biotic mechanisms they may be rep-

resenting (i.e., seed dispersal, colonization, disturbance and competition). Although

the aim of this project is not to infer which biotic mechanisms are imposing the
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spatial structure, the method we present accounts for the spatial random effects as

well as species/environment relationships to model the distribution of a species on

a landscape. Other similar methods have been proposed (e.g., Augustin et al. 1996;

Hoeting et al. 2000; Lichstein et al. 2002), however the method presented in this paper

maintains statistcal rigor and provides a spatial representation of prediction error.

Constructing such a model within a statistically rigorous framework and utilizing

distributional information with random parameters has made it possible to qualita-

tively evaluate predictions, assess model effectiveness, and provide an unparalleled

amount of information at the pixel level (Figure 5). Knowledge of landscape level

floristic information in addition to simulation-based data helps our method bridge the

gap between the theoretical and applied realms of landscape modeling. We demon-

strate this method using a dataset collected as part of a large-scale ecological project

known as the Missouri Ozark Forest Ecosystem Project (MOFEP).

1.1 Study Area

Southeastern Missouri is home to a topographically complex section of the country

known as the Ozark Highlands (Ozarks). Oklahoma and Arkansas share a portion

of this ancient and environmentally heterogeneous area. More than 530 plant species

have been documented in the Ozark Highlands (Grabner et al. 1997; Grabner 2000).

Ecological and site defining characteristics supply variables that are correlated with

plant diversity and individual species occurrence and abundance (Grabner et al. 1997;

Grabner 2000). Once identified and quantified at a landscape level, these variables

are useful for describing vegetation pattern.

A portion of the Current River Hills Subsection (an ecological subregion of the

Ozark Highlands) is home to an extensive long-term ecological project known as the

Missouri Ozark Forest Ecosystem Project (MOFEP). This project was designed to

monitor and assess the short and long-term effects of common management practices

4



on Ozark ecosystems. In this project, the Missouri Department of Conservation in

conjunction with the University of Missouri and the USDA Forest Service collect

data at 9 sites ranging in size from 265–530 ha (Figure 1). These sites were selected

because they had minimal edge, were greater than 240 ha, and were largely free from

anthropogenic manipulation for at least the past 40 years (Brookshire et al. 1997).

The floristic data were collected at 10,368 specific locations throughout the 9 sites.

This field dataset is one of the richest of its kind and provides a solid foundation from

which to base landscape level predictions.

1.2 Ecological Importance

The Ozarks provide a unique set of ecosystems of which many important ecological

components are still not well understood. The triad of relationships between vegeta-

tion, edaphic characteristics, and nutrient cycling seem to be especially interesting to

researchers.

Much of the Ozark Highlands consist of highly weathered, nutrient poor, ultisols

and alfisols (Meinert et al. 1997). These edaphic factors provide an environment

where leguminous nitrogen-fixing plants appear to succeed in dominating a majority of

available understory growing space. Such relationships are partially documented but

again not well understood (Grabner et al. 1997; Grabner 2000). This project focuses

on modeling the distributions of two herbaceous plants in the genus Desmodium with

hopes that in addition to providing a solid example for this new modeling technique,

it may provide a better understanding of ecological processes in the Ozark Highlands.

This approach to landscape modeling may find application in several disciplines.

Although the focus in this work is on developing a method to help us better under-

stand realistic vegetation distributions on a landscape, other potential applications of

this type of model may include but certainly are not limited to: (1) Spatio-temporal

mapping of wildlife forage availability, (2) Analysis of inter-species spatial interaction
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(competition), (3) Landscape level identification of areas susceptible to exotic inva-

sion, (4) Analysis of spatial and temporal patterns of biodiversity. Scale is irrelevant

to the methods presented here, thus the same technique could be implemented at the

molecular and global levels.

2 Material and Methods

2.1 Field Data

Before treatments were applied to MOFEP forest stands, a set of initial data were

collected in order to assess pre-treatment conditions. The ground flora data gathered

in 1995 were determined to be the most complete and representative, and therefore

serve as our main set of field data. Originally intended for use with analysis of

variance, these data are collected in a spatially non-random scheme and are made

up of a total of 648 plots whereby each consists of four subplots that are in turn

represented by four 1 m2 quadrats (Figure 2). Vegetation in each quadrat is identified

and quantified on a percent coverage basis (Grabner 1996).

Specifically for our modeling effort, we converted the dominance estimates to

species presence/absence and then aggregated over the subplot in order to reduce

unwanted change in spatial support related to a difference in measurement scales

between the field and covariate data. The binary nature of the subplot aggregation is

intuitive in that a species which is present in one of the four quadrats is registered as

present for the subplot (hence coded as 1), while a species absent from all quadrats

in a subplot is recorded as absent from the subplot (and hence coded as 0). The

geographic location of the aggregate then becomes the center of the subplot. It is

assumed that the four quadrats represent the grid cell in which the subplot center

lies. The original dataset was consequently reduced to 2592 geographic locations with

binary information for every species in the MOFEP region.
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2.2 Covariate Data

As discussed earlier, several environmental descriptors have varying degrees of influ-

ence on some plant species in the Ozark Highlands and when geographically quan-

tified, are potentially useful as covariates in a predictive model of plant occurrence.

The type and magnitude of influence is highly species dependent, therefore it was nec-

essary to find diverse and representative covariates that may be related to the success

of a given plant. Covariates were chosen based on availability, resolution, as well as

previous published and unpublished analysis. The availability of certain potentially

important covariates (e.g., micro-climate, specific soil type, animal influences, and

forest canopy gaps) is limited due to the effort required in explicitly describing such

information on a continuous landscape. Methods have been developed for simulating

biophysical variables based on non-biotic environmental variables (i.e., Guisan and

Zimmermann 2000), however the examples provided in this project focus on covari-

ates at hand. Many potentially important covariates are available but do not share

the same resolution as the proposed predictions. Such covariates would impose an

unacceptable amount of error and were therefore omitted from this study. Table 1

displays the full list of covariates used in this project and their original formats as

well as current descriptions.

Climatic covariate influences are partially absorbed by topographic variables upon

which localized climatic features may be dependent in the Ozark Highlands. Although

future models of this type could incorporate climate-related variables, inclusion in this

project was not feasible owing to a lack of availability and resolution.

A Digital Elevation Model (DEM) is a very important component of this project

because it provides several different types of information (e.g., slope, aspect, eleva-

tion, curvature) that are potentially important as covariates in a statistical model.

The original DEM’s used in this project were created and provided by Krystansky
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and Nigh (2000) at the Missouri Ecological Classification Project. All vector-based

covariates were rastorized to a grid cell size of 10 m2. The choice of this cell size

was based on the following four reasons: (1) the bulk of grid-based covariates origi-

nated from a digital elevation model of the same resolution; (2) this area represents

the finest resolution possible without being overwhelmed by measurement error; (3)

the resolution is necessary to adequately describe Ozark landforms and subtle to-

pography; and (4) it minimizes the difference in scales between field subplots and

covariates.

The prediction domain chosen is nested within MOFEP sites one and two (Fig-

ure 4) and is represented by two land type associations, two parent material types,

areas of variable depth soil, all aspects, variable relief and elevations (Figure 4). The

prediction domain (≈ 328 ha) consists of a [256×128] grid resulting in 32,768 predic-

tion locations. Of the 216 subplots that fall within the prediction domain, Desmodium

glutinosum is present on 67 and Desmodium nudiflorum is present on 159. All fur-

ther covariate and prediction images will be shown on this domain. These gridded

covariates (Figure 3) are expected to account for a majority of the variation in the

distributions of these two species.

2.3 Basic Model

A hierarchical Bayesian framework was used to implement a generalized linear mixed

model (hereafter GLMM). Many other vegetation prediction projects have used gener-

alized linear models, especially with logistic link functions (e.g., Smith 1994; Franklin

1998; Guisan et al. 1998; Zimmermann and Kienast 1999). These probablistic models

are convenient because of their intuitive nature and ease of implementation. While it

is possible to introduce a spatial random effect in the GLM framework, thus obtain-

ing the GLMM, problems with estimation and implementation arise when predicting

on large domains (where correlation is described as a function of distance, not just
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neighborhood). A GLMM implemented through a Bayesian approach provides the

ability to deal with uncertainty related to spatial correlation (Clayton 1997; Gilks

et al. 1997; Royle et al. 2001).

Conceptually, hierarchical modeling is based on a simple result from probabil-

ity. Consider three random variables X, Y, Z with the joint probability distribution

[X, Y, Z].1 This distribution can always be factored into component distributions such

as: [X, Y, Z] = [Z|Y,X][Y |X][X]. Thus, there is a hierarchical structure to the dis-

tributions. The idea is that the joint distribution [X, Y, Z] may be very complicated

and difficult to specify, but a series of conditional models are simpler to specify.

In Bayesian modeling, one is interested in updating a prior belief about a random

variable given data. For example, assume we have observations Z of some process Y .

We are interested in updating our prior distribution [Y ] with data to get the posterior

distribution [Y |Z]. To do this, we need information about how the data depend on

the process, [Z|Y ], which is often referred to as the “likelihood”. Bayes’ Theorem

provides this updating:

[Y |Z] =
[Z|Y ][Y ]

[Z]
. (1)

Often, there are conditioning parameters, say θ, that describe the distributions.

These can also be given prior distributions and one can utilize the hierarchical de-

composition within the Bayesian framework. For example:

[Y, θ|Z] ∝ [Z|Y, θ][Y |θ][θ]. (2)

The challenging aspect of such models in complicated settings is the specification

of the component models and the evaluation of the posterior. Very often the normal-

izing constant in (2) cannot be found analytically and Monte Carlo methods must be

considered. Recent advances in Markov Chain Monte Carlo (MCMC) have dramat-

ically increased the complexity of models that can be considered by this approach

(Gilks et al. 1997).
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2.4 Hierarchical Spatial Model

In our problem of predicting plant species presence or absence we can think of the data

as representing some binary random variable. Specifically, Yi = 1 if a species is present

at spatial location si (i =1,. . . ,m) and Yi = 0 if it is absent. If we let Yi be a Bernoulli

random variable then E(Yi) =E(Yi = 1) = pi. Our goal is to model this mean

response in terms of some linear function of the nx covariates Xij,(i = 1, . . . ,m),(j =

1, . . . , nx), e.g., pi = f(x′iβ), where x′i = (xi1, . . . , xinx)
′ and β is the associated vector

of parameters. Common examples of f() with binary variables include the logistic

function and the probit function. In general, these ideas fall under the category of

generalized linear models (GLMs) in statistics (e.g., McCulloch 1994). In our case,

we know that the chosen covariates can’t possibly explain all of the variability in

the mean response. Thus, we consider adding random effects, ηi, as surrogates for

unobserved biological and environmental covariates. That is, pi = f(x′iβ + ηi). With

the random effect, this model is now known as a generalized linear mixed model

(GLMM) (e.g., McCulloch 1994). One must then specify a distribution for the ηi.

We expect these random effects to be correlated in space.

Traditional likelihood-based approaches for estimation of GLMMs with correlated

random effects can be difficult to implement with complicated spatial effects and large

prediction domains. Diggle et al. (1998) showed that one could easily account for such

structures in a hierarchical Bayesian setting. However, their approach, like the tra-

ditional approach, cannot easily be implemented on very large prediction domains.

Thus, we outline a hierarchical Bayesian probit model (i.e., f() is the cumulative

normal distribution function denoted by Φ()) with spatial random effects that can be

implemented on very high dimensional prediction domains, as encountered in land-

scape ecology.

Albert and Chib (1993) showed that the introduction of a latent (hidden) process
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to the probit formulation greatly facilitates Bayesian computation. We follow their

approach, with two critical modifications: (1) Introduction of spatial random effects

and, (2) the spectral parameterization of those effects. Our model is described below.

Let:

Yi =

{
1 if Zi > 0, species is present at spatial location i
0 if Zi ≤ 0, species is absent at spatial location i,

(3)

where Zi is a latent spatial process with distribution Zi ∼ N(x′iβ + ηi, 1), and ηi is

a spatially correlated Gaussian process with mean zero. Then, it can be shown that

pi = E(Yi) = Φ(x′iβ + ηi). Although the data only apply to Zi, (i = 1, . . . ,m) we

will ultimately be interested in predictions of pj (j = 1, . . . , n) which may include

many sites in addition to where we have data (n À m). Note that our covariates

are available at all m locations as well. Thus, we consider the multivariate normal

distribution Z|β,η ∼ N(Xβ + η, I) where Z is n × 1, β is p × 1, x is n × p, η is

n×1, and I is an n×n identity matrix. In the hierarchical spirit we must also specify

distributions for η and β. We select η ∼ N(0, σ2
ηRη) and β ∼ N(βo,Σβ), where Rη

is a spatial correlation matrix. In principle, an MCMC algorithm can be developed

for this model analogous to Albert and Chib (1993). However, when n is of order

105 or more (as in our example), such algorithms are not feasible. Thus, we make

one additional modification. We note that the spatial random effects can be rewritten

η = Ψα, where Ψ is an n×n matrix of orthonormal basis functions (e.g., Fourier basis

functions, wavelets, etc.) and, α are the associated spectral coefficients. Specifically,

as in Wikle (2002) we let Ψ be Fourier basis functions so that Ψ′η = α is a discrete

Fourier transform and η = Ψα is the associated inverse transform. There are ex-

tremely efficient algorithms for computing these transforms, even in high dimensions

(e.g., the Fast Fourier Transform). Thus, we write Z|β,α ∼ N(xβ + Ψα, I) where

α ∼ N(αo,σ
2
αRα). In addition to fast computation, this has the advantage that

for stationary processes the Fourier spectral coefficients are approximately indepen-

11



dent (e.g., Shumway and Stoffer 2000). Thus, Σα is a diagonal matrix which further

simplifies computation. Finally, we don’t know a priori the spatial dependence in η

(and thus α) or the variance component σ2
η (and thus σ2

α), although we have some

understanding of these features through preliminary data analysis. Consequently, we

account for our understanding and our uncertainty about such understanding by spec-

ifying informed prior distributions on parameters. We allow σ2
α ∼ IG(qα, rα) where

IG() refers to an inverse gamma distribution. Based on preliminary data analysis it

was assumed that the spatial dependence for η can be modeled well by an isotropic

exponential correlation function, rη(d) = exp(−θd), where d is the distance between

two locations and θ is the spatial dependence parameter, θ > 0. As discussed in

Wikle (2002), if one knows rη(d) then one can specify Rα(θ) as well. Thus, we let

θ ∼ UNIF(u1, u2) to finish out the model hierarchy, where UNIF(a, b) refers to a uni-

form distribution on the continuous closed interval between a and b. The hierarchical

model is summarized as follows:

Yi =

{
1 if Zi > 0, species is present at spatial location i
0 if Zi ≤ 0, species is absent at spatial location i

(4)

Z|β,α ∼ N(Xβ + Ψα, I) (5)

β|βo,Σβ ∼ N(βo,Σβ) (6)

α|αo,σ2
α, θ ∼ N(αo, σ

2
αRα(θ)) (7)

σ2
o |qα, rα ∼ IG(qα, rα) (8)

θ|u1, u2 ∼ UNIF (u1, u2) (9)

Where, βo, Σβ, αo, qα, rα, u1, and u2 are specified.
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2.5 Coding the Model

The process of iterative sampling from the posterior distribution is laborious, therefore

computational efficiency is critical in implementing such a model. A programming

language with spectral-transform capabilities and sparse matrix storage running on

a dual-processor computer with large memory was used to perform most of the in-

tensive operations. Efficient software, fast processors and disk space are not enough

to implement the models proposed here. Therefore, the need for a mathematically

efficient algorithm is the key for including a valid spatial component using large data

sets over extensive prediction domains ([256 × 128] or 32,768 prediction locations).

Discussion of such algorithms can be found in Hooten (2001), Wikle et al. (2001),

Royle et al. (2001), and Wikle (2002).

2.6 Validation Methods

Validation is critical in a hierarchical modeling project because the complexity of

a high dimensional hierarchical GLMM makes it more difficult to get statistical

goodness-of-fit measures. Therefore, innovative methods must be devised to eval-

uate the effectiveness of a hierarchical model. Neter et al. (1996) mention that there

are three conventional ways to validate a regression model: (1) collection of new data

to check the model and its predictive ability; (2) comparison of results with theoret-

ical expectations, earlier empirical results, and simulation results; (3) use of holdout

sample to check the model and its predictive ability. Ideally, one would want to use

a seperate but temporally similar data set for assessing the predictive power of the

model at locations where data were not originally present. This would be especially

helpful since this project is aimed at predicting continuously across a spatial domain.

Independent data sets are available for selected MOFEP regions, however the predic-

tion grid chosen for this project does not encompass such regions. It is not feasible to
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collect another dataset because the presence of vegetation has been affected by tem-

poral variability and disturbance from management practices. Therefore, comparison

of predictions with independent data is not an option for model validation.

The comparison of results with theoretical expectations offers promising insight

into realistic natural processes. Simulation offers theoretical justification for imple-

menting a spatial component within the model, however it is not a direct validation

of the predictions.

The most promising method for model validation may be the third approach

suggested by Neter et al. (1996). By withholding a portion of the original data, the

results can be validated by the randomly withheld sample. In a dataset with only

216 observations, it is difficult to get a sufficiently large sample to be effective in

assessing model accuracy. However, the dataset can be iteratively split into two sets,

a model-building set and a validation or prediction set (i.e., cross-validation), for a

series of model runs. Upon each iteration the validation set is compared with the

predictions gained from modeling with the model-building set. The comparisons are

reported in contingency tables and also the independence in predicted probabilities

given the true data are tested for significance with a chi-squared test. Zar (1984)

provides the following formulation of a χ2 test statistic:

χ2 =
n(|f1,1f2,2 − f1,2f21| − n

2
)2

(C1)(C2)(R1)(R2)
(10)

Where the following contigency table exists:

Predicted
P A total

Real
P f1,1 f1,2 R1

A f2,1 f2,2 R2

total C1 C2 n

Where “P” refers to presence and “A” to absence. The use of such a test assumes a

null hypothesis that the predicted occurrence of a species is independent of the true
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occurrence of a species. The alternate hypothesis is that the predicted occurrence of a

species is associated with the true occurrence of a species. Chi-squared tests are com-

monly used for assessing the accuracy of binary regression models. The chi-squared

test also assumes independent observations which isn’t the case here. However, it

is assumed that since the spatial dependence is not overly large that the random

selection process gives fairly independent samples. Nevertheless, the p-values in this

setting are only considered guides and are not used for inferential decisions. It is

important to note that such tests applied in similar situations are subject to arbi-

trary threshold values and although informative, may not always provide adequate

validation for models of this type. Some studies have devised certain methods for

calibrating such thresholds (e.g., Franklin 1998). This project utilized chi-squared

tests in conjunction with boxplots for predicted probabilities versus real occurrence

to suggest that a given threshold is reasonable.

The primary benefit of using a rigorous statistical approach to modeling is the

ability to use a model-based validation. In this hierarchical framework there is a

marginal posterior distribution for pi corresponding to each element of the spatial

prediction grid (Figure 5). Just as a grid cell posterior mean can be reported by

averaging the posterior predictions for parameters of interest, a measure of error

about the posterior mean (standard deviation or variance) can be reported as well. It

follows that these measures can be presented in the form of an image and represent

the spatial distribution of prediction error on the domain. Such images provide a

reasonable approach with which to evaluate model accuracy and add to the overall

validation of the model (Royle et al. 2001).
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3 Results

3.1 Predictions

An area within sites 1 and 2 (Figure 1) consisting of nearly 330 hectares (≈33,000 grid

cells) was chosen to test the model. Of the 2592 MOFEP subplots, 216 fall within the

aforementioned area (see Figure 4) and these are utilized in this form of the model.

Approximately 32% of the data locations contained Desmodium glutinosum while 74%

of the sampled locations contained Desmodium nudiflorum. The data locations only

make up 0.66% of the prediction grid and are therefore very sparse within prediction

domain.

By predicting at a discrete and contiguous number of locations (grid cells in this

case) over a spatial domain, maps that display information about the posterior dis-

tribution can be created. Maps based on predicting the E(Yi) process, such as those

shown in this section, can be viewed as probabilistic maps of species occurrence,

such that map intensities can range from 0 to 1 (1 being 100% probability of species

occurrence).

The MCMC algorithm (Gibbs sampler) was run for 10,000 iterations after a burn-

in period of 2000 iterations. Resulting parameter distributions were summarized in

the form of histograms. Figure 7 shows the marginal posterior histograms for the

parameters, β, in the model for both species. It can be inferred that the covariates

are indeed important factors influencing the occurrence of these species because the

distributions for β generally do not overlap zero. In the case of Land Type Association

for Desmodium glutinosum, a slight overlap of zero is evident. This suggests that the

Land Type Association covariate is perhaps less important than the other covariates

when modeling this species.

Posterior prediction means, p̂i, were obtained from the Gibbs sampler for each

unit in the prediction domain and plotted as an image (Figures 8, 10). Realizations
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from the posterior distribution of pi graphically portray the variablilty in distributions

(Figures 9, 11).

The simultaneous visual analysis of the prediction images and posterior predictions

of the β parameters reveals important ecological differences in the response of the two

species to certain covariates. Worthy of special attention are the opposite responses

of the two species to the relative elevation and variable depth soil covariates.

3.2 Validation

Two primary methods were used for assessing the model accuracy: (1) testing for in-

dependence between predicted occurrence and real occurrence using cross-validation;

(2) presenting maps of prediction error in the form of marginal posterior standard

deviations for pixel means.

A threshold value was used to create binary values from the mean probability im-

ages so that when the probability is greater than the threshold the species is thought

to be present and when it is less than the threshold the species is thought to be

absent. Conventionally, a probability threshold of 0.5 is used, however this may not

always be the most reasonable threshold for these predictions because the data may

not encompass the threshold. Determining if the model is distinguishing between

those subplots where the species is present and those where it is absent is sufficient.

Therefore chosing a threshold between the two distributions of predictions is the most

reasonable approach. Boxplots showing the differentiation of predicted probabilities

for Desmodium glutinosum and Desmodium nudiflorum are shown in Figure 12. Such

boxplots suggest that a 50% threshold is a reasonable cutoff for the predicted proba-

bilities in this case.

Approximately 50% of the original data were randomly withheld in an iterative

fashion and the model output was aggregated in order to test for independence as

discussed in section 2.7. The two-by-two contingency tables for both species are
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shown below. The chi-squared test for Desmodium glutinosum yielded a χ2 value of

15.30 and a p-value of < 0.0001. A χ2 value of 13.63 and a p-value of 0.0002 was

found for Desmodium nudiflorum.

D. glutinosum Predicted
Threshold=0.5 P A total

Real
P 18 15 33
A 10 57 67

total 28 72 100

D. nudiflorum Predicted
Threshold=0.5 P A total

Real
P 64 7 71
A 16 13 13

total 80 20 100

The second part of the validation is based on maps of prediction error presented in

Figure 13. These maps, created using the marginal posterior standard deviations for

pixel means, offer a rigorous spatially based measure of model accuracy. The results

of such mapping efforts are similar for both species, and show that the prediction

error is greatest at locations farthest from the data, as expected.

4 Discussion

Results of the modeling were informative. A pattern of spatial arrangement in the

data was evident and expected. As mentioned, this is likely due to the effect of

influential spatial processes in environmental covariates. However if none of these

covariates are explicitly known on the domain, a pure spatial prediction could be

gained from the geographic location and value of the data alone.

Patterns in the predicted images for the posterior mean of the spatial process

somewhat resembled that of the images for covariate-based predicted means. This

similarity occurs because the spatial process is trying to absorb any spatial correlation
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in the unknown covariates. Differences between the two predictions illustrate the need

for spatially explicit covariates in the model.

The modeled residual spatial random field (η) given in Figures 9 and 11 can be

thought of as the “missing covariate(s)” and will ultimately improve the accuracy

of the model. Images given in the same figures illustrate that the η-process differs

by species as suggested in the exploratory analysis (Figure 6). From an analytical

standpoint, it is clear that the process is most evident in neighborhoods about the

data. From an ecological standpoint, these neighborhoods likely have an implicit

biological meaning. The evaluation and interpretation of a given species η-process

could be extensive and is therefore beyond the scope of this project. It is recognized

however, that the residual process is probably a synthesis of complex interactions,

both biological and environmental.

The predicted mean images for each plant graphically depict relationships be-

tween the vegetation and environment (Figures 8 and 10). Mathematically, the grid

cell intensities of such maps are based on rigorous relationships and represent the

best possible predictions available. Ecologically, the predictions are based on a com-

bination of environmental factors and surrogates for biological factors, making them

a very complete and robust reflection of the species response on a continuous spatial

domain. Theoretically, this response might be interpreted as the spatial prediction of

vegetation occurence or perhaps suitable habitat. It is suggested that the interpreta-

tion be flexible so it may individually suit a specific project.

Predicted maps of the mean posterior probabilities take the form of the covariates.

Therefore the predicted images (represented by a grid) could be utilized in a GIS for an

endless number of applications. Additionally, output from the proposed model could

be used as covariates in another model (such as a model predicting wildlife habitat,

fire susceptibility, forage, . . . ). Importantly, measures of uncertainty related to these
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covariates are then available (such information has traditionally been unavailable).

The distributional nature of the posterior predictions is difficult to portray with a

map of prediction means because the mean response of a species at a given time and

location is represented by a single value. However, if a realization is taken from each

pixel distribution on a contiguous domain, the result is one of infinitely many maps

of possible real species response. Such a map, as presented in Figures 9, 11 can be

thought of as a snapshot of a stochastic process. These maps have much to offer as

foundations for theoretical projects investigating patch dynamics, realistic vegetation

patterning, and environmental simulation.

The purpose of this project is to provide methods that are robust enough to be

applied to a number of different applications. Of course a specific scenario was chosen

to test and present the proposed methods and as such the validation of this model

applied to the specific scenario has the purpose of illustrating certain advantages of

the technique.

The chi-squared tests provided a way to evaluate the ability of the model to

distinguish between those areas where a species should be present or absent. The

tabular results of the tests showed that the specified threshold of 0.5 is a reasonable

classification criteria for these data. However, as mentioned earlier, statistics that are

dependent on such analyst-based classifications are subjective. However, they still

provide a way to test the differentiating power of the model. Chi-squared tests used

here prove that the model is distinguishing between presence and absence for both

species. Resulting p-values allow the rejection of a null hypothesis that predictions

and actual data are independent.

It was mentioned earlier that one advantage of using a statistical model over a

more ad hoc approach, is the ability to provide a model-based estimate of prediction

error. In a spatial setting this information is especially valuable for it can provide an
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error estimate at each prediction location. In the form of a map, this information can

be compared to the location of field data, covariate effects, residual spatial effects,

and ultimately the predictions. The practice of reporting error for spatially explicit

data is becoming more popular (e.g. Justice and Running 1998) and it is convenient

that the approach presented here automatically provides a way to incorporate such

information.

It is common for maps of marginal posterior standard deviations to illustrate that

the model is good at predicting near the locations of the actual data, and gains some

error as it is applied further from the data (Royle et al. 2001). The maps presented in

Figure 13 illustrate this expected patterning of prediction error. Overall, the standard

deviations of the posterior mean predictions are quite small and suggest that the

model is doing a good job predicting occurrence for both species (especially near

the locations of the data). Such maps have the potential to be quite useful in other

models where it is appropriate to specify uncertainty related to prior information.

Ultimately this chain of utilizing the output from one model to formulate priors or

data in new models could prove to be useful in modeling more complex systems.

5 Conclusions

The purpose of this project was to develop and test a robust methodology for realisti-

cally accounting for uncertainties in modeling natural processes at a landscape level.

Specifically, this problem was considered from a hierarchical Bayesian perspective.

This approach has allowed the incorporation of a critical spatial component into a

generalized linear mixed model. Similar modeling methodologies have been proposed,

however many are currently focused on small spatial domains because of mathemat-

ical and computational limitations. The formulations presented here are aimed at

predicting natural processes on larger domains.

The methodology presented here was tested using part of a landscape level dataset
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collected in the Missouri Ozarks as part of the Missouri Ozark Forest Ecosystem

Project. Relationships between vegetation occurrence and known environmental fea-

tures were investigated in an exploratory analysis. Residual spatial random effects in

the data were observed and extensively analyzed via several methods. Simulations

were conducted to insure that the proposed methods of informing a spatial prior were

indeed reasonable.

An approach for constructing generalized linear models was modified to include a

spatial parameter. The coding of this model was optimized using a spectral transfor-

mation that invariably simplified the formulation of the marginal posterior distribu-

tions. The integrations required to analytically find the necessary joint distributions

were intractible, therefore the model was implemented using an iterative process

known as Markov Chain Monte Carlo that allowed samples to be drawn from the

posterior distribution through a Gibbs sampler.

Parameter distributions, posterior mean prediction images, maps of the residual

spatial process, and realizations were provided in order to show the range of informa-

tion available through this approach. Different methods for validating such models

were presented and applied to the modeling results for Desmodium glutinosum and

Desmodium nudiflorum. Both validation methods suggested that this model is per-

forming quite well overall and is especially accurate at predicting near the original

data.

As mentioned earlier, probabilistic results of the proposed model using the example

dataset could be viewed as the spatial prediction of a species on a continuous domain

at the time of data collection or as the realized niche of the given species. It was not

the intent of the project to determine which description is most appropriate but to

provide the most robust and informative predictions about the ecological process.

Finally, these methods provide a partial answer to a problem alluded to by Clark
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et al. (2001), where they state that the failure to appropriately account for the various

sources of ecological uncertainty will result in misleading inference and even though

recent techniques in atmospheric science are available, ecology seems to be a late

adopter. The intent of this paper was not to make inference about the biology of a

certain species, however the two specific examples discussed are meant to show how

the methodology could be applied in an ecological setting. The next step might be for

ecologists to apply this or a combination of this and other methods to a specific area

of interest or concern in order to make management decisions or scientific observation.
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Endnotes

1.) Note that throughout the paper we use the bracket notation “[ ]” to refer to

a probability distribution. A conditional distribution, say A conditioned on B, is

denoted as [A|B].
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Table 1: All covariates with previous and current descriptions.

Covariate Format Type Interval/
Categories

Origin Original
Format

SWnessa grid continuous [-1–1] DEM grid
Rel. Elev.b grid continuous [0–1] DEM grid
LTAc grid categorical 2 GIS layer vector
VDd grid categorical 2 model grid

a Similar to Beers aspect transform (Beers et al. 1966), (represents most
”southwest” aspects as 1 and most ”northeast” as -1)

b Relative Elevation (continuous measure of slope position, where 0 repre-
sents the bottom of the hill and 1 represents the top)

c Land Type Association (although this region of the Ozarks is made up
of many LTA’s, only two were deemed to be important to this Genus of
plant)

d Variable depth soil (this is an ecological land type in the Ozarks and
is speculated by researchers to be one of the most important variables
influencing the growth of Desmodium)
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Figure 1: The 9 MOFEP sites are nested in the Ozark Highlands near the Current
River.
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Figure 2: The conceptual MOFEP plot layout and covariate grid overlay (measure-
ments in meters)
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Figure 3: Covariates used in model.
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Figure 4: The prediction domain spanning MOFEP sites 1 and 2. Red and blue pixels
represent the subplot locations.

Figure 5: Graphical illustration of the distributional information available at the
pixel-level provided by the posterior distribution.
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Figure 6: Empirical correlograms for the two species and exponentially fitted lines
with parameter theta and root mean squared error of fitted model.
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Figure 8: Data locations and posterior mean with and without covariates for Desmod-
ium glutinosum.
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Figure 9: Residual spatial process and two realizations for Desmodium glutinosum.
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Figure 10: Data locations and posterior mean with and without covariates for
Desmodium nudiflorum.
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Figure 11: Residual spatial process and two realizations for Desmodium nudiflorum.
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Figure 12: Predicted probabilities vs. real occurrence. Widths are relative to the
amount of data while notches represent a 95% confidence interval for the median.
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Figure 13: Standard deviation map for the prediction mean of D. glutinosum and
Desmodium nudiflorum.
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