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Abstract

Boundary value problems are ubiquitous in the atmospheric and ocean

sciences. Typical settings include bounded, partially bounded, global and

limited area domains, discretized for applications of numerical models of

the relevant fluid equations. Often, limited area models are constructed

to interpret intensive datasets collected over a specific region, from a vari-

ety of observational platforms. These data are noisy and they typically do

not span the domain of interest uniformly in space and time. Traditional

numerical procedures cannot easily account for these uncertainties. A hi-

erarchical Bayesian modeling framework is developed for solving boundary

value problems in such settings. By allowing the boundary process to be

stochastic, and conditioning the interior process on this boundary, one can

account for the uncertainties in the boundary process in a reasonable fash-

ion. In the presence of data and all its uncertainties, this idea can be related

through Bayes’ Theorem to produce distributions of the interior process

given the observational data. The method is illustrated with an example

of obtaining atmospheric streamfunction fields in the Labrador Sea region,

given scatterometer-derived observations of the surface wind field.
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1 Introduction

Spatial models, both deterministic and stochastic, are used in atmosphere and

ocean sciences in applications such as state estimation, diagnostic analyses, syn-

theses of field observations from intensive field programs, data assimilation, and

process modeling. Considering that data typically exhibit measurement error and

bias, and that physical assumptions are often approximate, there has been growing

interest in both the statistics and atmospheric/ocean science communities regard-

ing stochastic models that utilize physical information.

The Bayesian paradigm is useful for combining different sources of information

(e.g., physics and data) and accounting for uncertainty. However, for complicated

geophysical processes, it is often difficult to specify realistic models and implement

them from the Bayesian perspective. Recently, it has been shown that hierarchical

approaches to such models provide an ideal framework in which to include phys-

ically based prior information for certain geophysical processes (e.g., Wikle et al.

1998; Royle et al. 1999; Wikle et al. 2001). However, in such studies the treatment

of boundary or edge effects is problematic and is often somewhat ad hoc.

This paper describes methods for the incorporation of realistic boundary mod-

els in a hierarchical Bayesian framework. The methodology is illustrated with the

problem of generating distributions of atmospheric streamfunction fields over lim-

ited spatial domains, given incomplete satellite observations of surface wind over

the Labrador Sea. While atmospheric streamfunction at the surface might not

be a quantity that is often employed in traditional analysis methods relevant to

air-sea dynamics, we use it here for two reasons. First, the surface streamfunction

is a scalar field that relates directly to the surface vector wind observations from

scatterometer. Second, in a later paper, we extend the Bayesian hierarchical model

methods introduced here to demonstrate a coupled air-sea model wherein surface

streamfunction plays a significant role (Berliner et al. 2002).
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The next section describes the hierarchical Bayesian modeling approach in gen-

eral, and then relative to the boundary value problem. A simple illustration is

included to show how the methodology can be applied. Section 3 contains the

application of this methodology to the problem of finding the distribution of at-

mospheric streamfunction fields near the surface, given satellite observations of

surface winds over a limited area in the Labrador Sea. Finally, Section 4 contains

a discussion.

2 Methodology

The Bayesian statistical paradigm is based in probability theory (e.g., Berger 1985;

Bernardo and Smith 1994). Assume we are interested in some process y and we

have observational data for this process, denoted by z. Furthermore, there are

parameters associated with our physical-statistical representation of the y process,

as well as the statistical model for the observations. The collection of these param-

eters is denoted by θ. A Bayesian hierarchical analysis develops a joint probability

model for all these variables as the product of a sequence of distributions; formally,

[z,y,θ] = [z|y,θ][y|θ][θ], (1)

where the brackets [ ] denote probability distribution and vertical bars | identify

conditional dependencies for a given process upon other processes and/or parame-

ters. For example, [z|y,θ] denotes the distribution of the data z conditional on the

process y and parameters θ. Updating or learning about the unknown quantities

of interest relies on the probability relationship (Bayes’ Theorem):

[y,θ|z] ∝ [z|y,θ][y|θ][θ]. (2)
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We can make use of physical relationships to aid in the specifications of the

“prior distributions” [y|θ] and [θ]. Our interest is with the left-hand side (LHS)

of (2), the so-called “posterior distribution”, which is the focus of Bayesian anal-

ysis. This distribution of the process and parameters given the data updates the

prior formulations in light of the observed data. For instance, if the process con-

sists of winds u,v, and pressure P, we could exploit the geostrophic relationship

which would allow us to write a stochastic model for the wind field given the

pressure field, [u,v|P,θ]. Note that this is a stochastic relationship (i.e., a dis-

tribution), which quantifies a source of variability with respect to deviations from

the gradient relationship (e.g., u ∝ ∂P/∂y, v ∝ ∂P/∂x). We can model additional

uncertainty by specifying distributions for the parameters θ as well. For example,

the geostrophic model suggests a parameter (to be included as an element of the

vector θ) that is proportional to the inverse product of the density times the Cori-

olis term. One might specify this as the prior expected value. A variance about

this expected value is then prescribed to generate a distribution for this parameter.

The net result is that with relatively simple physical and stochastic representations

in the sequence of conditional models (e.g., RHS of (1)), we can obtain a posterior

distribution that has very complicated spatial structure; one that, through the

quantification of uncertainty, can “adapt” to a wide variety of observations and

our prior knowledge of the geophysical system (e.g., Royle et al. 1999).

2.1 Hierarchical Boundary Value Problem

We are interested in some spatial process {ψ(s) : s ∈ D}, where s is a spatial

location in D, a bounded subset of d-dimensional Euclidean space. We assume that

some physical model gives a good approximation to the behavior of this process:

g(ψ(s)) = Qs({ζ(r) : r ∈ D}), (3)
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where g is a known function and Q is some known functional of a spatial process

{ζ(r) : r ∈ D}, that is thought to be related to ψ(s). In our illustrations, ψ repre-

sents streamfunction while ζ includes a variable essentially equivalent to relative

vorticity. Not surprisingly, physical arguments relate the two (e.g., Poisson’s equa-

tion). However, our fundamental motivation is that we believe the relationship

(3) to be approximately correct, rather than exact. In general, such lack of exact-

ness might result from physical simplifications and/or discretization. Furthermore,

since the domain D is bounded, we require information about the spatial processes

at the domain boundary. In certain physical systems, boundary conditions can be

critical and often are not known with certainty. The Bayesian strategy for account-

ing for a variety of uncertainties arising in the modeling, as well as to efficiently

incorporate observational data into the analysis, is to model all unknowns as ran-

dom variables.

In this article, inference is focused on a ψ-process defined on a finite lattice in

D. We partition this lattice into two pieces: the interior, I, and the boundary, B.

This leads to two vectors, denoted by ψI and ψB, of primary interest. We develop a

prior probability model for the gridded ψ-process [ψI ,ψB|θ]. Hierarchical thinking

suggests that this model be formed from two components:

[ψI ,ψB|θ] = [ψI |ψB,θ][ψB|θ], (4)

where θ represents other uncertain, but relevant variables such as ζ in (3), as

well as unknown parameters introduced in the modeling. Note that while the

notation and role of randomness may be different from those of the traditional

treatment of deterministic boundary value problems, there is a common intuition.

In particular, the model [ψI |ψB,θ] prescribes the distribution of interior solutions

for fixed boundary conditions.
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Using a specified prior distribution for θ, we seek the posterior distribution

[ψI ,ψB,θ|z] ∝ [z|ψI ,ψB,θ][ψI ,ψB|θ][θ], (5)

where z refers to “data”. This relationship serves as the basis for inference.

2.2 A Simple Illustration

To demonstrate how one can incorporate hierarchical stochastic boundary pro-

cesses, we consider a very simple illustration. Assume that over some one-dimensional

spatial domain D, ψ follows approximately a Poisson equation on the interior:

d2ψ

dx2
≈ ζ. (6)

Let D be some bounded interval D ≡ [0, L] with non-homogeneous Dirichlet

boundary conditions ψ(0) and ψ(L). Although (6) and the boundary conditions

can be solved analytically in simple domains (e.g., Haberman 1987), for illustra-

tive purposes we consider first a deterministic numerical solution of this equation.

In particular, we discretize the interval D, considering equally-spaced locations

{x0 = 0, x1, . . . , xn, xn+1 = L} and use the finite difference approximation,

d2ψ

dx2
≈ ψ(x+ h)− 2ψ(x) + ψ(x− h)

h2
, (7)

where h = xi+1 − xi. Setting ψi ≡ ψ(xi) and ζi ≡ ζ(xi) and applying (7), finite

difference approximations to (6) can be written as

ψi+1 − 2ψi + ψi−1

h2
= ζi, i = 1, . . . , n. (8)
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Given boundary conditions ψ0 = ψ(0), ψn+1 = ψ(L) and {ζi : i = 1, . . . , n}, a solu-

tion to the equations (8) is readily obtained. However, such a solution is subject to

uncertainty due to the discretization of the continuous spatial processes. That is,

the equations ψi = ψ(xi) are really only approximations. Indeed, such discretiza-

tion impacts are but one of several sources of uncertainty. Others include: (i) our

lack of absolute certainty about the use of Poisson’s equation for the ψ process;

(ii) computational, roundoff errors; and (iii) uncertainty in boundary conditions.

In response to such issues, we model the true values of the processes of interest

as random variables. We then view basic equations such as the Poisson equation

and its approximations (e.g., (8)) as providing information about the probability

distributions of the true values. Before proceeding, we point out a potentially

confusing, though standard, abuse of notation. Since gridding is so common, we

typically maintain notation such as ψi = ψ(xi), where now ψi simply reflects a

convenient notation for the gridded, true values of the process, rather than the

computed numerical solutions to an approximation of the system.

Pursuing the Poisson-equation example, our attention is now directed to the

development of the joint probability distribution of {ψ0, ψ1, . . . , ψn, ψn+1}. Further,

ζ is also modeled as a random variable. Let the ψ process at interior and boundary

locations be denoted ψI ≡ (ψ1, . . . , ψn)′ and ψB ≡ (ψ0, ψn+1)′, respectively, where

′ denotes the transpose operation. We develop a probability model (e.g., for the

second term on RHS of (5)):

[ψI ,ψB|ζ] = [ψI |ψB, ζ][ψB|ζ]. (9)

The first distribution on the RHS of (9) can be specified to reflect the physical

prior information. We can rewrite (8), moving the boundary points to the RHS:

(ψ2 − 2ψ1)/h2 ≈ ζ1 − ψ0/h
2
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(ψ3 − 2ψ2 + ψ1)/h2 ≈ ζ2

...
...

(ψn − 2ψn−1 + ψn−2)/h2 ≈ ζn−1 (10)

(−2ψn + ψn−1)/h2 ≈ ζn − ψn+1/h
2, (11)

or, in matrix notation

GψI ≈ ζ + GBψB, (12)

where

G ≡ 1
h2




−2 1 0 . . .

1 −2 1 0 . . .

0 1 −2 1 0
. . .

. . . 0 1 −2 1

. . . 0 1 −2




, GB ≡ 1
h2




−1 0

0 0
...

...

0 0

0 −1




. (13)

Thus, it is reasonable that [ψI |ψB, ζ] has mean or expected value given by the

solution of (12), E(ψI |ψB, ζ) = G−1(ζ + GBψB). Due to the various sources of

uncertainty discussed earlier, we quantify anticipated variability about this mean

via specification of a distribution such as

ψI |ψB, ζ ∼ N(G−1(ζ + GBψB),Σψ), (14)

where ∼ is read “is distributed as” and N(µ,Σ) indicates a multivariate normal

(or Gaussian) distribution with mean µ and covariance matrix Σ.1 In this case,

Σψ is the covariance matrix of the random component of variability not accounted

1The statement “the conditional distribution of X given Y equal to y is Gaussian (normal)
with mean µ and covariance Σ” can be written in three ways: X|y ∼ N(µ,Σ); [X|y] is N(µ,Σ);
and X = µ+ e where e ∼ N(0,Σ).
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for by the approximate solution of (12). Finally, to complete the probability model

(9), we must specify a distribution reflecting our uncertainty about the boundary

conditions, say,

ψB|ζ ∼ N(µB,B), (15)

where, in general, µB and B can depend on ζ. In some cases we may assume

that µB and B are known. In this framework, the fixed boundary, often used for

deterministic numerical solutions, corresponds to B as a matrix of zeros (i.e., no

variance). We delay comment on the appropriateness of the normal distributions

until the following section.

3 Hierarchical Stochastic Boundary Model Ap-

plication

Air-sea interaction in the Labrador Sea region has been the focus of recent attention

from climate scientists because of its role in the ocean deep convection process (e.g.,

Lab Sea Group 1998; Renfrew et al. 1999). Pre-conditioning for and eventual

triggering of ocean deep convection in the Labrador Sea is associated with the

formation and propagation of polar lows; intense, local meso-cyclone systems that

are poorly resolved in surface analyses from weather centers (Renfrew and Moore

1999; Pagowski and Moore 2001). Of particular interest are the surface wind fields

that modulate air-sea fluxes of momentum, heat, and moisture, driving the ocean

deep convection process.

In recent years, satellite-borne scatterometer instruments have been able to

provide high-resolution, yet spatially and temporally incomplete, wind observa-

tions over the world’s oceans. In particular, wind estimates from the NASA Scat-

terometer (NSCAT) provided high-quality surface wind data during its operational

lifetime (15 September 1996 - 29 June 1997). Wind data from NSCAT occurred
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in swaths on either side of the polar-orbiting satellite ground track. The orbital

passes occurred at approximately 100 minute intervals, precessing westward. Dif-

ferent portions of the Labrador Sea were covered by successive orbits two times in

a 24-hour period: ascending passes near 0000 UTC, and descending passes near

1400 UTC. Within the sub-region of the NSCAT swath, observations are reported

at 50 km spatial resolution. Here we continue to use the NSCAT-1 dataset that

was used by Royle et al. (1999)2.

Consider the NSCAT data shown in Figure 1 for December 26, 1996. Our

problem is to predict (spatially) high-resolution (approximately 1/2 degree in lati-

tude and longitude) surface streamfunction fields in the Labrador Sea region given

spatially-incomplete surface wind data from NSCAT observations. That is, we

seek to predict the distribution of the geophysical process (atmospheric stream-

function) at specified spatial locations, given noisy data (wind) over portions of a

limited-area domain of interest.

3.1 Hierarchical Modeling of Streamfunction

The Poisson equation arises in many applications in atmospheric science (e.g.,

Holton 1992, p. 386, 448). For example, to calculate streamfunction from winds,

one might first calculate vorticity from the wind field and then solve the Pois-

son equation numerically, given appropriate boundary conditions. Our problem is

complicated by the need to specify boundary values for ψ on the edges of a limited-

area domain given incomplete non-uniform observations of wind, and measurement

error in the observed winds. A natural solution to these problems would be to inter-

polate the winds onto a regular grid and specify an arbitrary boundary condition.

Although such a procedure is plausible, it does not account for the random errors

2These data have been superseded by a 25 km resolution product as reported by the NASA
Scatterometer Project (1998), but the increased spatial resolution is not important to the topic
of this paper.
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from the various sources of uncertainty in the observations, the discretization, and

the interpolation procedure. That is, with ad hoc procedures, one cannot char-

acterize the errors associated with the estimate of the streamfunction. Through

a hierarchical boundary-value specification, we can account for these errors and

obtain realistic spatial prediction errors for the streamfunction field. Furthermore,

we can obtain realizations from the distribution of streamfunction, given the satel-

lite observations. Of course, the prediction errors and realizations depend on the

prior specification. It is important to recognize, however, that one is effectively

specifying a prior when “solving” the traditional boundary value problem with

fixed boundaries. The Bayesian approach simply allows one to account for the

uncertainty that one might have about the boundary specification.

3.1.1 Basic Hierarchical Model

We develop distributions for ψI and ψB (interior and boundary streamfunction,

respectively) given the data U,V. Specifically, ψI is an nI × 1 vector of stream-

function values at nI spatial locations within the prediction grid of interest; ψB

is an nB × 1 vector of streamfunction values at the nB boundary locations. The

data vectors U,V are both of dimension m× 1 where the m locations correspond

to the NSCAT observation locations as shown in Figure 1.

Following steps like those of Section 2.2, except that the domain of interest is

two- rather than one-dimensional, and making explicit reference to the wind data

as well as relative vorticity computed from a wind field, we are led to a hierarchical

model with the following component distributions:

U,V|u,v ∼ N(K[u′ v′]′,Σε), (16)

ψI |ψB,u,v ∼ N(G−1(Dxv −Dyu + GBψB),Σψ), (17)
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ψB ∼ N(µB,B), (18)

u,v ∼ N([µu1
′ µv1′]′,Σuv), (19)

where u,v are (nI +nB)× 1 vectors denoting the true wind process at the interior

and boundary prediction grid locations. In (17) Dx,Dy correspond to the matrix

operators for centered first-difference calculations; thus, Dxv−Dyu provides a nu-

merical estimate of relative vorticity. The matrices G,GB are the two-dimensional

analogs to (13), and Σψ is the conditional covariance of the streamfunction interior

given the streamfunction boundary and the winds. The data model (16) is based

on the assumption that all observations within a gridbox centered at a prediction

location are assumed to be noisy observations of the true process at that prediction

location. This is represented using (i) a 2m×2(nI +nB) incidence matrix (a sparse

matrix of ones and zeros) K, and (ii) a measurement error covariance matrix, Σε.

Note that more complicated expressions relating observations to the process are

possible, leading to more complicated forms for K (e.g., Wikle et al. 1998; Wikle et

al. 2001). The distribution (18) requires specification of parameters µB and B, the

prior mean and covariance matrix, respectively, for the streamfunction boundary

process. This specification relies on the simplifying assumption that the boundary

process is not directly related to the wind process. Although unrealistic in the

present example, this assumption makes possible the analytical derivation of the

posterior distribution. Thus, although the method can easily accommodate the

more general boundary assumption, we have made the simplifying assumption to

facilitate illustration of the approach. Finally, in (19) µu, µv are the wind com-

ponent prior means, Σuv is the wind process prior covariance matrix, and 1 is a

vector of ones. Additional discussion of these distributional parameters is given

below.

Our choices of Gaussian distributions for each of the random variables of in-
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terest merit discussion. In the case of the data model (16), we emphasize that it

is the measurement errors conditioned on the true wind process that are modeled

as Gaussians. This assumption is at least partially justified in the case of NSCAT

data by Freilich and Dunbar (1999). The Gaussian assumption for the conditional

model on ψI may be reasonable since it is the deviation from the Poisson relation

that is assumed to be Gaussian, not the ψI process itself. The bivariate Gaussian

spatial model on the true wind process (19) is consistent with traditional spatial

analysis models (e.g., Daley 1991), although in certain situations one may have to

choose the covariance matrix Σuv carefully. Perhaps the least justifiable assump-

tion in the model is the assumption that the boundary process follows a Gaussian

spatial model. However, we do not believe such an assumption is unreasonable. Fi-

nally, we note that the hierarchical methodology described here is still viable with

non-Gaussian distributions, but the Gaussian assumptions allow for analytically

tractable calculations of the posterior distribution.

3.1.2 Bayesian Analyses

Direct application of Bayes’ Theorem provides the posterior distribution

[ψI ,ψB,u,v|U,V] ∝ [U,V|u,v][u,v][ψI |ψB,u,v][ψB]. (20)

While complete details of the probabilistic calculations are not central to this arti-

cle, a clarifying calculation is presented. Note that the constant of proportionality

(referred to as a “normalizing constant”) in Bayes’ Theorem is given by the inte-

gral of the RHS with respect to all variables not in the condition of the LHS. That

is, to convert the proportionality to an equality, we divide the RHS of (20) by

∫
[U,V|u,v][u,v][ψI |ψB,u,v][ψB]dψIdψBdudv =

∫
[U,V|u,v][u,v]dudv.

(21)
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The form of the RHS of (21) is special for this model. The result follows from the

previously mentioned simplifying assumption that ψB is independent of the winds

and hence, [ψB] is unaffected by the observational data.

Noting that the posterior of the wind process is written

[u,v|U,V] =
[U,V|u,v][u,v]∫

[U,V|u,v][u,v]dudv
(22)

we use (21) and (22) to rewrite the posterior distribution (20) as the equality:

[ψI ,ψB,u,v|U,V] = [u,v|U,V][ψI |ψB,u,v][ψB]. (23)

To obtain the posterior distribution of the interior and boundary streamfunc-

tion conditional on the wind data, we integrate out the wind process:

[ψI ,ψB|U,V] = [ψB]
∫

[ψI |ψB,u,v][u,v|U,V]dudv. (24)

More often, we are interested in the posterior of the interior process given the data,

[ψI |U,V], in which case ψB is integrated out of (24). In general, such integrations

are intractable and must be evaluated with Monte Carlo methods. However, in

this example, the choice of distributions (16)-(18) allow analytic determination of

this posterior as follows.

Step 1. The posterior of the wind process given the satellite observations [u,v|U,V]

can be shown3 to be a multivariate normal distribution N(µuv|UV ,Σuv|UV ),

where

µuv|UV = Σuv|UV (K′Σ−1
ε [U′ V′]′ + Σ−1

uv [µu1
′ µv1′]′), (25)

3The calculation is accomplished by combining the exponents of the relevant Gaussian density
functions and completing the square. In general, if z|y ∼ N(Ay,Σz|y) and y ∼ N(µy,Σy) then
completing the square gives the posterior distribution y|z ∼ N(Σy|z[A′Σ−1

z|yz + Σ−1
y µy],Σy|z)

where Σy|z = (A′Σ−1
z|yA+ Σ−1

y )−1 (e.g., Berger, 1985).
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Σuv|UV = (K′Σ−1
ε K + Σ−1

uv )−1. (26)

Step 2. Facts from probability theory4 yield the posterior distribution [ψI |ψB,U,V],

which is a multivariate normal distribution N(µψ|UV,B,Σψ|UV,B) with

µψ|UV,B = G−1Dµuv|UV + G−1GBψB (27)

and

Σψ|UV,B = Σψ + G−1DΣuv|UV D′G−1, (28)

where D ≡ [−Dy Dx].

Step 3. Finally, we may integrate out the boundary, yielding the final posterior on

the interior streamfunction: [ψI |U,V]. The result is again a multivariate

normal distribution N(µψ|UV ,Σψ|UV ) with

µψ|UV = G−1Dµuv|UV + G−1GBµB (29)

and

Σψ|UV = Σψ|UV,B + G−1GBBG′BG−1. (30)

3.1.3 Examples

The characterization of uncertainty is directly related to the choice of prior spec-

ification. Below, we illustrate with three cases the effect of prior assumptions on

the posterior mean, standard deviation, and realizations.

We begin with specification of the parameters for the distributions in the model

4The theoretical “facts” that imply these results are (i) if y|x has mean Hx and covariance
Σy|x and x has mean µ and covariance Σx, the unconditional (i.e., integrating out x) mean and
covariance of y are Hµ and Σy|x +HΣxH ′, respectively; (ii) if the conditional distribution of y|x
is normal; x enters that conditional distribution only in the mean and linearly in the mean; and
if the marginal distribution of x is normal, then the marginal distribution of y is normal.
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hierarchy. For the Labrador Sea problem we let Σε = σ2
ε I where the satellite

measurement error variance is σ2
ε = 1.7m2s−2, based loosely on the study by Freilich

and Dunbar (1999). Furthermore, we let Σuv = Suv ⊗Ruv, where Suv is a 2 × 2

covariance matrix between the u and v wind components, Ruv is an (nI+nB)×(nI+

nB) spatial correlation matrix, and ⊗ represents the Kronecker product operation.

For the elements of Suv, we let the covariance between u and v be 12 m2s−2 and

variance of u and v be 213 m2s−2 and 55 m2s−2, respectively. These values were

based on data analysis of scatterometer data in the Labrador Sea region.

The spatial correlation matrix Ruv was assumed to be isotropic and from the

Matérn class (Matérn 1986; Handcock and Wallis 1994):

r(d) =
1

2θ2−1Γ(θ2)

(
2d
√
θ2

θ1

)θ2
Kθ2

(
2d
√
θ2

θ1

)
,

where d is the distance between spatial locations, Γ is the gamma function and

Kθ2 is the modified Bessel function of the third kind and order θ2. This class of

correlation functions is useful because of the wide range of behaviors that can be

modeled and the interpretability of the parameters. Specifically, θ1 > 0 is a spatial

scale parameter related to the range of dependence and θ2 > 0 is related to the

smoothness of the spatial field. For example, if θ2 = 1/2 then the correlation func-

tion simply reduces to an exponential model; as θ2 →∞ the function approaches

a “Gaussian” correlation function. In general, the correlation function is dθ2 − 1

times mean-squared differentiable, where d is the integer ceiling function. In our

case, given that we would like the wind fields to be differentiable in principle, we

let θ2 = 2.5. Furthermore, we set θ1 = .0337 km−1, which corresponds to observed

Labrador sea wind component length scales of approximately 270 km (Milliff et

al. 2002). Note that the Matérn class does not allow negative correlations. This is

not generally a problem for the small domain of interest in the current application

(Milliff et al. 2002). However, with a larger domain it would be more realistic
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to consider a spatial correlation function that allows negative correlations (e.g.,

Thiebaux 1975). Note that one must be careful in the specification of the spatial

covariance function for the wind process. As discussed by Bennett and Budgell

(1987), there are regularity conditions for this spatial structure such that the co-

variance function must be sufficiently smooth (e.g., differentiable) to guarantee

that the second moment of the streamfunction distribution exists as the grid spac-

ing goes to zero. This requirement is satisfied with the correlation model chosen

above.

Given our expectation that the variance of the conditional interior streamfunc-

tion is small with spatial dependence over relatively small length scales, we let

Σψ = σ2
ψRψ, where σ2

ψ = 1010 m4s−2 and Rψ follow a Matérn model with smooth-

ness parameter equal to 2.5 and spatial dependence parameter .0566 km−1. Again,

as discussed in Bennett and Budgell (1987), one must be careful with the specifica-

tion of this covariance function as grid spacings go to zero. Regularity conditions

suggest that there should be non-trivial spatial structure in this field under such

conditions.

Finally, we will specify µB and let B = σ2
BRB, where RB is based on a Matérn

correlation model with spatial smoothness parameter 3.5 and spatial dependence

parameter θB = .0471 km−1, reflecting a moderate amount of spatial dependence.

We now investigate the sensitivity of the streamfunction posterior distribution

to choice of µB and σ2
B. We consider three cases, as outlined in Table 1. In Case

I, µB is specified to match (subjectively) the suggested domain inflow and outflow

based on visual inspection of the wind data plot (Figure 1). The resulting boundary

mean is shown in Figure 2e and Figure 3e (note that the posterior mean of ψB and

the prior mean are the same for the model presented here). Since the determination

of the appropriate boundary process by such visual inspection of the noisy and

incomplete winds is uncertain, we specify the boundary process prior variance as
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σ2
B = 1.1×1012 m4s−2. In general, this is meant to represent the situation where we

might have a rough idea of the boundary condition (say, from an analysis field), but

allow for substantial uncertainty in that knowledge. Figure 2 shows the posterior

mean, standard deviation and realizations from the posterior distribution of the

streamfunction field in this case. Note that the posterior mean streamfunction field

is reasonable, with flow across the boundary (as suggested by the intersection of

the contours with the boundary) and a strong cyclonic circulation. However, there

is substantial uncertainty in this field, as suggested by the large posterior standard

deviations and the realizations. Of course, the realizations are not as smooth as the

posterior mean due to the (i) uncertainty in the wind data, (ii) noise amplification

in the vorticity calculation, and (iii) uncertainty in the boundary process. Clearly,

inference based on the posterior mean field would be quite different than that based

on one of the realizations.

For comparison, consider Case II where all parameters are identical to Case

I except that we specify a nearly “fixed” boundary (we do this by setting the

boundary variance to an extremely small value, e.g. σ2
B = 1.0 m4s−2). That is, we

are very certain as to the boundary value. Figure 3 shows the results from this

case. Compared to Case I, there is much less variability in the realizations since

we are certain about the boundary, and thus, the posterior standard deviations

of the interior streamfunction field are much smaller. This is reasonable since we

are comparatively certain as to the boundary value. These comparisons show that

uncertainty in the boundary can make a substantial impact on realizations of the

interior process. A key point is that our methodology permits one to quantify such

impacts explicitly.

As another test, consider Case III where again σ2
B = 1.1 × 1012 m4s−2, but

now we let µB = µb1, where µb = −3.5 × 105m2s−1 (the mean of µB shown in

the previous examples). That is, we specify the prior mean of the boundary to be
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constant in space. This corresponds to a no-flux boundary condition, which we

know to be unrealistic in the atmospheric setting. Figure 4 shows the correspond-

ing output. Clearly, the posterior mean streamfunction field does not allow flow

across the boundary in this setting, which is unrealistic. However, the realizations

do allow flow across the boundary, illustrating the effect of the uncertain boundary

condition upon the realization from the posterior distribution. In this case, the

realizations convey uncertainty that is not obvious from examination of the pos-

terior mean. That is, a poor specification of the prior mean was compensated by

the data, leading to a reasonable posterior distribution on the interior streamfunc-

tion. One might not be interested in the posterior mean in this setting, but could

consider realizations from the posterior distribution for purposes of inference.

3.2 Remarks

We note that in some contexts the boundary values are actually not of direct

interest, but are rather viewed as a nuisance necessary only for developing a model

for the interior (e.g., limited area modeling in the atmosphere or ocean). In such

cases, it is natural given the new methods presented here to suggest developing

a model in which the boundary is “integrated out” à priori. That is, standard

probability theory applied in (4) implies that

[ψI |θ] =
∫

[ψI |ψB,θ][ψB|θ]dψB. (31)

Alternatively, we performed this integration conditional on the observed data in

deriving (29) and (30). This exemplifies a fundamental feature of hierarchical mod-

eling. Namely, the LHS of (31) describes our uncertainty in the interior formally in

terms of two sources: our uncertainty about the interior if we knew the boundary

and our uncertainty regarding the boundary. Further, it is important to note that
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hierarchical thinking leads to the LHS of (31) in a conceptually simple fashion.

That is, direct specification of [ψI |θ] without first developing the RHS is typically

very difficult. On the other hand, this circumstance should be contrasted with

our model for the wind process (19). In that case, the joint prior distribution on

the entire wind field is simultaneously specified, rather than the result of a wind-

on-the-boundary model coupled to a interior-wind model given the boundary, as

was the case for streamfunction. The key difference is that our streamfunction

model was designed to make significant use of Poisson’s equation. Incorporation of

that physics requires both the traditional modeler and the hierarchical modeler to

deal with the boundary explicitly. Indeed, should we seek to incorporate a richer

model for winds, perhaps based on some physical reasoning that dictates structures

among gridded winds, we would likely need a two-step, explicit boundary model

as well.

A second critical remark regarding the value in explicitly developing [ψB|θ]

is that the formulas of probability theory direct us to formulas for updating this

distribution, and hence the RHS of (31), should available data, say dψB , be informa-

tive about the boundary. Specifically, one simply replaces [ψB|θ] by [ψB|θ, dψB ];

this is obtained via Bayes’ Theorem.

4 Discussion

The hierarchical stochastic boundary condition methodology outlined here is more

general than the relatively simple Poisson example might suggest. For example,

we may include Neumann or mixed boundary conditions as well as time-varying

boundaries. For Neumann boundary conditions one specifies the gradient of the

process at the boundary. A common example is the boundary condition, ∂ψ/∂n =

α(s), which states that the normal derivative at the boundary location s of the

process ψ is equal to some value of the process α at that location. For bounded
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domains, a standard numerical procedure uses the value of the process outside

the boundary (i.e., at a so-called image point) in terms of its interior reflection.

For example, in the 1-d example considered in Section 2, we consider the interior

locations x1, . . . , xn. At the left end, the Neumann condition would be ψ0 =

ψ2 − α12h. In our case, this would suggest a slight modification to G as well as

the introduction of the α process on the RHS of (12). In this implementation a

specific boundary process ψB need not be specified, but is effectively replaced by

a discretized α process defined on the boundary.

The random boundary process ψB is a useful construct in open boundary spec-

ifications of the kind required in the experiments described here. Open boundary

specifications raise difficult issues in purely deterministic modeling contexts. Rie-

necker and Miller (1991) demonstrated the sensitivity of domain-scale solutions

to errors in open boundary specifications in data assimilation experiments in a

quasi-geostrophic ocean model for a limited-area domain. About a decade later,

Lermusiaux (1999) and Lermusiaux and Robinson (2001) report many sophistica-

tions in ocean model and data assimilation components of the open ocean forecast

system that descends from the prior work. Still, the open boundary specification

requires specific regional calibration, dependent upon adequate in-situ observa-

tions, in the set-up stages of the forecast experiments. Issues of ill-posedness

in quasi-geostrophic ocean model applications in limited-area domains have been

noted since Bennett and Kloeden (1978). Miller (1984) described the problem in

light of theoretical work that had gone on in pure and applied mathematics in

the late 1970’s and early 1980’s. Similarly, the partition into unique streamfunc-

tion and velocity potential fields for atmospheric flows observed in limited-area

domains requires arbitrary constraints to close the problem (e.g., Lynch 1989). It

appears from our preliminary experiments that issues of these kinds that arise in

deterministic modeling contexts can be circumvented by the stochastic approach
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presented here. However, more fundamental demonstrations await further work.

One can imagine that a stochastic boundary condition could be useful for re-

gional models that are nested within larger models. In that case, one might assume

that the time-varying boundary process for the nested model is given as a distri-

bution with prior mean from the larger model, with suitable variability. This too

will be explored elsewhere.

Finally, the model considered here assumed that the distributional parameters

were known. Extensions are possible to cover the cases where the parameters are

random and there are data to inform the boundary. In these cases the posterior

distribution is rarely tractable analytically. However, recent advances in the de-

velopment and use of Markov chain Monte Carlo (MCMC) have enabled Bayesian

treatments of many large and complex problems (e.g., Robert and Casella 2000).

Rather than a direct computation of the posterior distribution, one computes suc-

cessive simulations from a Markov chain5 constructed in a fashion that permits

the assertion that its stationary distribution coincides with the target posterior.

Hence, after some transience or burn-in time, realizations of the chain are viewed

as simulated, though dependent, cases from the posterior distribution. For meteo-

rological applications of these notions, see Wikle et al. (1998), Royle et al. (1999),

Berliner et al. (2000), and Wikle et al. (2001).
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Table 1: Modeling Scenarios

Scenario µB σ2
B

Case I: Spatially varying; e.g., Figure 2e, 3e 1.1× 1012 m4s−2

Case II: Same as Case I 1.0 m4s−2

Case III: Constant, µB = −3.5× 105 m2s−1 1.1× 1012 m4s−2
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FIGURE CAPTIONS

Figure 1. NSCAT data and study domain area.

Figure 2. Streamfunction posterior mean, standard deviation, and realizations

for Case I, with µB as shown in panel (e) by the solid line (the prior and posterior

mean are equivalent for the model presented here) and σ2
B = 1.1 × 1012 m4s−2;

contour values should be multiplied by 106 m2s−1.

Figure 3. Streamfunction posterior mean, standard deviation, and realizations

for Case II with µB spatially varying as shown by the solid line in panel (e) and

σ2
B = 1.1 m4s−2; contour values should be multiplied by 106 m2s−1. Note the

boundary realizations are collinear because of the extremely small prior variance

on the boundary process.

Figure 4. Streamfunction posterior mean, standard deviation, and realizations

for Case III with µB = −3.5 × 105 m2s−1 for all boundary locations and σ2
B =

1.1× 1012 m4s−2; contour values should be multiplied by 106 m2s−1.
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(c) Streamfunction: Posterior Realization
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Figure 2: Streamfunction posterior mean, standard deviation, and realizations for
Case I, with µB as shown in panel (e) by the solid line (the prior and posterior
mean are equivalent for the model presented here) and σ2

B = 1.1 × 1012 m4s−2;
contour values should be multiplied by 106 m2s−1.
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Figure 3: Streamfunction posterior mean, standard deviation, and realizations for
Case II with µB spatially varying as shown by the solid line in panel (e) and
σ2
B = 1.1 m4s−2; contour values should be multiplied by 106 m2s−1. Note the

boundary realizations are collinear because of the extremely small prior variance
on the boundary process.
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Figure 4: Streamfunction posterior mean, standard deviation, and realizations
for Case III with µB = −3.5 × 105 m2s−1 for all boundary locations and σ2

B =
1.1× 1012 m4s−2; contour values should be multiplied by 106 m2s−1.


