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In general, the direct application of the Jarzynski equality �JE� to reconstruct potentials of mean
force �PMFs� from a small number of nonequilibrium unidirectional steered molecular-dynamics
�SMD� paths is hindered by the lack of sampling of extremely rare paths with negative dissipative
work. Such trajectories that transiently violate the second law of thermodynamics are crucial for the
validity of JE. As a solution to this daunting problem, we propose a simple and efficient method,
referred to as the FR method, for calculating simultaneously both the PMF U�z� and the
corresponding diffusion coefficient D�z� along a reaction coordinate z for a classical many-particle
system by employing a small number of fast SMD pullings in both forward �F� and time reverse �R�
directions, without invoking JE. By employing Crooks �Phys. Rev. E 61, 2361 �2000�� transient
fluctuation theorem �that is more general than JE� and the stiff-spring approximation, we show that

�i� the mean dissipative work W̄d in the F and R pullings is the same, �ii� both U�z� and W̄d can be
expressed in terms of the easily calculable mean work of the F and R processes, and �iii� D�z� can

be expressed in terms of the slope of W̄d. To test its viability, the FR method is applied to determine
U�z� and D�z� of single-file water molecules in single-walled carbon nanotubes �SWNTs�. The
obtained U�z� is found to be in very good agreement with the results from other PMF calculation
methods, e.g., umbrella sampling. Finally, U�z� and D�z� are used as input in a stochastic model,
based on the Fokker-Planck equation, for describing water transport through SWNTs on a
mesoscopic time scale that in general is inaccessible to MD simulations. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2166379�
I. INTRODUCTION

The study of the structure-function relationship of large
biomolecules often requires to follow their dynamics on a
meso- or even macroscopic time scale while retaining its
atomic scale spatial resolution. A typical example is molecu-
lar and ion transport through channel proteins.1 While struc-
tural details of the inner lining of the channel in particular,
and that of the protein-lipid-solvent environment in general,
are needed at atomic resolution in order to determine the
forces that guide the diffusion of the particles across the
channel, the duration of the permeation process may exceed
by several orders of magnitude the time scale of several tens
of nanoseconds currently attainable by all-atom molecular-
dynamics �MD� simulations.2 In this case a simplified alter-
native approach is to model the transported molecule in the
channel as an overdamped Brownian particle that diffuses
along the axis of the channel in the presence of an effective
potential of mean force �PMF� that describes its interaction
with the rest of the atoms in the system.3 A PMF is the
Landau free-energy profile along a reaction coordinate, or
order parameter,4 and it can be determined from the equilib-
rium statistical distribution function of the system by system-
atically integrating out all degrees of freedom except the re-
action coordinate.5 In principle, both the effective diffusion
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coefficient and the PMF, quantities that enter the Langevin
equation of motion �or, equivalently, the corresponding
Fokker-Planck equation6� which determines the dynamics of
the transported molecule, can be determined from MD simu-
lations. In practice, however, the calculation of free-energy
differences and PMFs is rather difficult and computationally
expensive.5,7

Since even the longest equilibrium MD trajectories can
sample only a small region of the reaction coordinate domain
of interest, the one situated in the vicinity of the correspond-
ing PMF minimum, simple equilibrium MD simulations are
not suitable for PMF calculations. The traditional method for
calculating PMFs by means of biased equilibrium MD simu-
lations is umbrella sampling.5,8,9 However, umbrella sam-
pling may become inefficient and computationally unafford-
able when the number of required sampling windows
becomes too large. This may happen when the amplitude of
the equilibrium fluctuations of the reaction coordinate is very
small compared to the size of the reaction coordinate interval
in which the PMF is sought.

In such cases the reaction coordinate can be sampled
efficiently by employing steered molecular dynamics10

�SMD� in which the system is guided �or steered�, according
to a predefined protocol, along the reaction coordinate by
using, e.g., a harmonic guiding potential. By choosing a suf-
ficiently large value for the elastic constant of the harmonic
guiding potential, i.e., within the stiff-spring approxi-

11,12
mation, the distance between the target and actual value
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of the reaction coordinate at a given time can be kept below
a desired value. In general, for a large system ��105 atoms�
computationally one can afford only a limited number �typi-
cally �10� of such nonequilibrium SMD pullings, and the
real challenge is to find a way to reconstruct the PMF �at
least semiquantitatively� along the reaction coordinate using
this limited amount of data. In principle, the equilibrium
PMF can be reconstructed from the celebrated Jarzynski
equality �JE� that relates the equilibrium free-energy differ-
ence �F between two states to the average of the external
work W done along all nonequilibrium paths that connect
those states and are subject to the preestablished reaction
coordinate variation protocol.13,14 In terms of the dissipative
work Wd=W−�F, JE can be written as �exp�−�Wd��=1,
where �=1/kBT, kB is the Boltzmann constant, and T is the
temperature of the heat bath �environment�. We note that if
the SMD pulling occurs infinitely slowly then the system is
in equilibrium at all times and Wd=0 �reversible paths�. Thus
JE is trivially satisfied and W�Wrev=�F is the reversible
work. In general SMD pullings are nonequilibrium with Wd

�0 along most of the trajectories. However, the validity of
JE depends crucially on a small fraction of trajectories with
Wd�0 that transiently violate the second law. Since such
trajectories �whose number decreases exponentially with

W̄d /kBT� are very unlikely to occur among a few fast SMD
pullings, it is clear that the sought PMF cannot be deter-
mined by the direct application of JE, except when the pull-

ing paths are close to equilibrium �i.e., when W̄d�kBT�. Un-
der near-equilibrium conditions, the validity of JE has been
confirmed in a RNA stretching experiment.15 Also, JE has
been successfully applied for free-energy calculations in
computer simulation of small and/or simplified model sys-
tems. However, in spite of a large number of papers dedi-
cated to the applications of JE �Refs. 16–26� and other fluc-
tuation theorems,27,28 there are surprisingly few studies
which use SMD simulations combined with the JE to calcu-
late PMFs for large biomolecules.11,29

The purpose of this paper is to propose a simple and
efficient method, referred to as the FR method, for calculat-
ing simultaneously both the PMF U�z� and the corresponding
diffusion coefficient D�z� along a reaction coordinate z for a
classical many-particle system by employing a small number
of fast nonequilibrium SMD pullings in both forward �F� and
time reverse �R� directions, without invoking JE. In fact, as
already mentioned, for such limited number of processes JE
fails to hold. The essence of the FR method, detailed in Sec.
II can be summarized as follows: Several fast F and R SMD
pullings are carried out within the stiff-spring approximation.
The latter guarantees that �i� the reaction coordinate follows
closely its target value determined by the pulling protocol,
�ii� the change in PMF ��U� is well approximated by the
corresponding change in the free energy ��F� of the system
biased by the harmonic guiding potential, and �iii� the work
distribution function PF/R�W� along F /R paths is Gaussian. A
few F and R SMD trajectories are sufficient to sample
PF/R�W� about its maximum �see Fig. 1� and, therefore, de-

termine approximately the mean F /R work W̄F/R. However,

the same data are insufficient for even a rough estimate of
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the variance �W
2 =W2−W̄2, i.e., of the actual width of

PF/R�W�. From Crooks transient fluctuation theorem30 �see
Eq. �16��, which is more general than JE, follows that if
PF�W� is Gaussian then PR�W� is also a Gaussian with the

same variance �width� �W
2 =2kBTW̄d, and peak position W̄R

=W̄F−2�F. Thus, �i� the PMF is given by �U=�F= �W̄F

−W̄R� /2, and �ii� the mean dissipative work is the same for

both F and R paths, given by W̄d= �W̄F+W̄R� /2. From W̄d

the position-dependent diffusion coefficient is D

=kBT� / �dW̄d /dz�, where � is the pulling speed.
Thus, the reason why previous studies failed to recon-

struct the PMF from unidirectional SMD pullings far from
nonequilibrium by using JE is because such approach re-
quires the complete sampling of the corresponding work dis-
tribution function that is simply impossible to obtain from a
limited number of pullings. �In fact, the sampling of P�W�
has to be so complete that it must include paths with Wd

�0 as discussed above.� While the mean work can be easily
estimated, breaking this up into the PMF and the mean dis-
sipative work �i.e., the heat exchanged with the environment�
requires either the knowledge of the precise width �variance�
of the F work distribution function �e.g., when the F SMD

paths are close to equilibrium and W̄d is small� or additional
information that may come from a set of R SMD pullings, as
outlined above. The solution to this problem offered by our
FR method is surprisingly simple, however, its validity de-
pends crucially on Crooks fluctuation theorem �from which
JE can be derived� and the Gaussian nature of PF/R�W� guar-
anteed by stiff-spring approximation. In particular, the con-
clusion that the mean dissipative work is the same for both F
and R SMD paths is highly nontrivial.

The remaining of the paper is organized as follows. In
Sec. II we describe in detail the theoretical basis of our pro-
posed FR method. In order to test its efficiency and viability,
in Sec. III we apply the FR method to calculate the PMF and
the position-dependent diffusion coefficient of water mol-
ecules moving across densely packed single-walled carbon
nanotubes �SWNTs� that connect two water reservoirs. The
obtained PMF is compared with the ones obtained from equi-
librium MD and umbrella sampling simulations. Finally,

FIG. 1. �Color online� Gaussian forward �long-dashed line�, reverse �dotted
line�, and dissipative �solid line� work distribution functions within the stiff-
spring approximation. The shaded region in PF/R�W� is the one sampled in
F /R SMD pullings. The tail region of Pd�W� corresponding to negative
dissipative work is also highlighted.
conclusions are drawn in Sec. IV.
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II. THEORY

We consider a classical many-particle system �e.g., a
channel protein in a fully solvated lipid bilayer� described by
the Hamiltonian H0���, where ��	r ,p
 represents the coor-
dinates and momenta of all the atoms in the system. The
dynamics of the system may be either deterministic or sto-
chastic, but we assume that the conditions for which JE and
the transition fluctuation theorem hold are met, i.e., the dy-
namics are Markovian and preserve the equilibrium en-
semble, and the energy of the system is finite.30 These con-
ditions are met in MD simulations in both NVT and NPT
ensembles.12

A. Reaction coordinate and PMF

In general, any PMF calculation starts with the identifi-
cation of a properly chosen reaction coordinate whose
change in time describes the evolution of the state of the
system.5 For example, in describing the progression of a
transported molecule in a nanopore �e.g., channel protein or
SWNT� a proper reaction coordinate is the projection of the
center of mass of the molecule �or of a part of the molecule�
on either the permeation direction across the membrane,
hereafter denoted by z, or on the axis of the pore. If the
channel is relatively straight then the difference between the
two reaction coordinate choices can be neglected. For sim-
plicity, here we assume that this is always the case.

By definition, the PMF U�z� is determined from the
equilibrium distribution function of the system by integrating
out all degrees of freedom except the reaction coordinate z,
i.e.,5

e−�U�z� � p0�z� =� d�
e−�H0���

Z0
	�z − z̃���� , �1�

where p0�z� is the equilibrium distribution function of the
reaction coordinate, Z0 is the partition function, and 	�z� is
the Dirac-delta function whose filtering property guarantees
that the integrand in Eq. �1� is nonzero only when the reac-
tion coordinate has the desired value, i.e., when z̃���=z.
Hereafter we use the convention that z �or z�t�� represents the
target value, while z̃� z̃��� the actual value of the reaction
coordinate. Also, unless otherwise stated, throughout this pa-
per the energy is measured in units of kBT, e.g., in Eq. �1�
one needs to set �=1.

In principle, the equilibrium distribution function p0�z�
can be easily computed from equilibrium MD simulations,
since it is proportional to the logarithm of the binned histo-
gram of the reaction coordinate sampled along the MD tra-
jectory. Thus, the PMF is readily given by

U�z� = − log�p0�z�� . �2�

In terms of the U�z� the equilibrium average of any function
f�z̃� of the reaction coordinate can be calculated as

�f�z̃��0 =� d�
e−H0���

Z0
f�z̃� � dz	�z − z̃����

= dze−U�z�f�z� = dzp �z�f�z� . �3�
� � 0
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In practice, however, even the longest equilibrium MD
trajectories sample only a restricted region of the reaction
coordinate domain of interest �i.e., within the vicinity of the
PMF minimum� and the direct application of Eq. �1� is im-
practical.

B. Harmonic guiding potential

In order to properly sample energetically more difficult
to reach regions, one needs to guide or steer the system
towards those regions by employing, e.g., a harmonic guid-
ing potential

Vz�z̃� � V�z̃����z� =
k

2
�z̃��� − z�2, �4�

where k�kz is the stiffness �elastic constant� of the harmonic
guiding potential. With this extra potential energy, the
Hamiltonian of the new biased system becomes Hz=H0

+Vz�z̃�. As a result, atom j in the selection that defines the
reaction coordinate will experience an additional force

F j = −
�Vz

�r j
= − k�z̃��� − z�

�z̃���
�r j

. �5�

Thus, the harmonic guiding potential �4� will force the sys-
tem to evolve in the configuration space in such a way that at
all times z̃ stays confined in the vicinity of z.

The free-energy difference 	Fz=Fz−F0 between the
equilibrium states of the systems described by the Hamilto-
nians Hz and H0 can then be written as a Gaussian convolu-
tion of exp�−U�z��. Indeed,

e−	Fz =� d�
e−�H0���

Z0
e−Vz�z̃����

= �e−Vz�z̃��0

=� dz�e−U�z��e−Vz�z�� =� dz�e−U�z��e−�k/2��z − z��2
.

�6�

C. Stiff-spring approximation

The sought PMF, U�z�, can be obtained from Eq. �6� by
Gaussian deconvolution of the free-energy factor exp�−	Fz�.
However, it is more convenient to resort to the large k or
stiff-spring approximation.11,12,31 Assuming that we seek to
determine U�z� with a spatial resolution 	z, by choosing the
spring constant such that k
2/ �	z�2 one can easily see that
in Eq. �6� the main contribution to the last integral comes
from the region �z−z���	z, and therefore one can write

e−	Fz  e−U�z� � dz�e−�k/2��z − z��2
=�2�

k
e−U�z�. �7�

Now, taking the logarithm of both sides in Eq. �7�, one ob-
tains 	Fz=Fz−F0=U�z�+const and, therefore,

�U = U�z� − U�z0�  �F = Fz − Fz0
. �8�

Thus, within the stiff-spring approximation the PMF of the

unbiased system is well approximated by the free-energy dif-
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ference of the system biased by the harmonic guiding poten-
tial. Note that in SMD simulations, to make sure that the
distance between the target z�t� and actual z̃ values of the
reaction coordinate on average stays smaller than the desired
	z, one needs to choose the spring constant according to

k  max� 2�

�	z�2 ,
2Umax

�	z�2 � , �9�

where Umax is the highest PMF barrier one wants to explore,
and �
1.

D. PMF from umbrella sampling and WHAM

In umbrella sampling,5,8,9,32 the range of reaction coordi-
nate values of interest �zmin,zmax� is divided into Nw sampling
windows centered about conveniently chosen values zi, i
=1, . . . ,Nw. Next, the reaction coordinate is sampled in each
window separately by preparing identical replicas of the sys-
tem and applying the harmonic guiding potential Vzi

�z̃�. As a
result, the biased distribution functions can be readily ob-
tained by direct sampling of the reaction coordinate for the
biased system, i.e., pi�z�= �Z0 /Zi�e−Vi�z�p0�z�, where, for brev-
ity, the index zi has been replaced by i. By inverting this
equation, the equilibrium distribution in each window can be
expressed in terms of the biased distribution of the reaction
coordinate. The standard method for efficiently stitching to-
gether the biased pi�z�’s in order to obtain the equilibrium
p0�z�, and therefore the sought PMF, is the so-called
weighted histogram analysis method32 �WHAM�, according
to which

p0�z� =
�i=1

NwNipi�z�

�i=1
NwNie

−Vi�z�/�e−Vi�
, �10a�

�e−Vi� =� dzp0�z�e−Vi�z�, �10b�

with Ni the number of data points used to construct pi�z�.
The above nonlinear coupled WHAM equations that need to
be solved iteratively minimize the errors in determining
p0�z�. When applicable, umbrella sampling combined with
WHAM is perhaps the best choice for calculating PMFs. In
practice, however, one often encounters situations in which
the minimum number of sampling windows required to prop-
erly cover the range of reaction coordinate values of interest
is excessively large and the application of the method may
become computationally unattainable. Molecular transport in
channel proteins is a good example.

E. SMD, transient fluctuation theorem,
and the Jarzynski equality

In SMD simulations,10 where initially the system is in an
equilibrium state characterized by z�0�, the target value of
the reaction coordinate z�t� �also referred to as control pa-
rameter� is varied in time according to a prescribed protocol.
For example, in constant-velocity SMD z�t�=z�0�+�t, 0� t
��, where � is the constant pulling speed equal to the ratio
of the total pulling distance to the desired simulation time.

We refer to the SMD pulling paths of the system when t
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increases from 0 to � as forward paths. The time reverse
pulling paths are obtained by starting the system from an
equilibrium state corresponding to z��� and reversing the
sign of t in z�t� for F paths. In our SMD example, this
amounts to setting zR�t�=zF��− t�=z���−�t, 0� t��. The
choice of a sufficiently large spring constant �see Sec. II C�
in the now time-dependent harmonic guiding potential �Eq.
�4�� guarantees that the instantaneous reaction coordinate z̃�t�
follows closely the target value z�t� during the pulling pro-
cess. Thus, SMD is a fast sampling method of the reaction
coordinate by driving the system out of equilibrium. The
faster the pulling is the more significant is the deviation from
equilibrium. The work done during a SMD simulation is
given by

Wt � Wz = �
z0

z�t�

dz��Vz�z̃�/�z� = k�
z0

z�t�

dz�z − z̃� . �11�

Crooks has shown that under rather general conditions,
listed at the beginning of this section, the following nonequi-
librium fluctuation theorem holds:30

�f�W�e−WdF�F = �f�− W��R, �12a�

or

�f�W��F = �f�− W�e−WdR�R. �12b�

Here f�W� is an arbitrary function of the work W, and

�¯�F/R =� dWPF/R�W� . . . , �13�

represents the average over forward/reverse paths or, equiva-
lently, the average with respect to the forward/reverse work
distribution functions PF/R�W�. The dissipative work in a
F /R process is given by

WdF/R = WF/R � �F , �14�

with �F=Fz���−Fz�0�. The JE follows immediately from Eqs.
�12� by setting f�W�=1, and it can be written in any of the
following forms:

�exp�− WdF��F = �exp�− WdR��R = 1, �15a�

�exp�− W��F = e−�F, �exp�− W��R = e�F. �15b�

Another important equality that connects the F and R work
distribution functions can be derived from Eqs. �12� by set-
ting f�W��=	�W−W�� and carrying out the integral with re-
spect to W�. The result is Crooks transient fluctuation
theorem30

PF�W�
PR�− W�

= eWdF. �16�

This equation is used to derive our new results in Sec. II G.

F. PMF from unidirectional SMD and the Jarzynski
equality

An increasingly popular alternative for calculating PMFs

is based on the application of the JE from repeated unidirec-
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tional nonequilibrium SMD simulations.11,12,20–22,29,31,33–35

Within the stiff-spring approximation the sought PMF can be
readily obtained from Eqs. �8� and �15b�

�U�z�  �F = − log�exp�− Wz��F. �17�

Here the index F indicates that the average is taken over the
ensemble of forward pulling paths. As already mentioned,
the average of the exponential in Eq. �17� cannot be esti-
mated reliably even for a reasonably large number of SMD
pullings, unless the pulling speed is sufficiently small so that
the system is close to equilibrium along the pulling paths.
This is due to the fact that the overlap between exp�−W� and
the sampled part of PF�W� is in general exponentially small.
Nevertheless, there exist two approaches that in principle
may give fairly good estimates of Eq. �17�, provided that the
system is not too far from equilibrium during pullings. The
first method is the cumulant approximation,11,12,31 according
to which

�U�z� = − log�exp�− Wz��  W̄z − �z
2/2, �18a�

�z
2 = Wz

2 − W̄z
2, �18b�

where for simplicity we have dropped the index F and �z
2 is

the variance �second cumulant� of the work. It has been
shown that within the stiff-spring approximation the work
distribution function PF�W� is Gaussian, and therefore gen-
erally recognized that in this case the cumulant approxima-
tion �18�, in fact, is exact. However, as mentioned in Sec. I,
the reason why in practice Eqs. �18� is valid only close to
equilibrium is because SMD pulling paths can sample only a
narrow region about the peak of the Gaussian PF�W�. This
allows for a fairly accurate determination of the mean work
�Wz� but in general seriously underestimates the variance �z

2.
The second method for evaluating the average in Eq.

�17� is a weighted histogram approach suggested by Hum-
mer and Szabo21,22 and indirectly by Crooks.30 The nonequi-
librium fluctuation theorem due to Crooks can also be writ-
ten as

�f�z�t��exp�− Wd��F = �f�zR�0���R = �f�z�t���eq, �19�

where zR�t� represents the time evolution of the control pa-
rameter during reverse pullings, f�z� is an arbitrary function,
and the index “eq” means the equilibrium average corre-
sponding to the biased system with Hamiltonian Hz0

. By in-
serting f�z�=	�z− z̃� into Eq. �19� one obtains

�	�z − z̃�e−Wz��F =
Z0

Zz0

�	�z − z̃�e−Vz��z̃��0 =
e−Vz��z�

�e−Vz0�0
e−U�z�.

�20�

Since the equilibrium average �exp�−Vz0
��0 corresponding to

the unbiased system contributes only an additive constant to
the PMF, from Eq. �20� one obtains the following result:

U�z� = − log�	�z − z̃�exp�− �Wz��� , �21a�
where

aded 17 Nov 2010 to 128.206.162.204. Redistribution subject to AIP li
�Wz� = Wz� − Vz��z̃� = k�
0

t

d�z�̇����z���� − z̃����

−
k

2
�z���� − z̃����2. �21b�

Thus, U�z� can be calculated from the work time series
obtained in repeated SMD simulations by constructing a
weighted histogram of the reaction coordinate according to
Eqs. �21�. This method resembles to the umbrella sampling
and WHAM and is preferable to the cumulant approximation
method whenever we have a large number of pulling paths.
However, in the case of large systems when only a limited
number of trajectories can be sampled this method is inap-
plicable because of insufficient data.

G. PMF from forward and reverse SMD pullings with
a stiff spring

In this section we present our new method for calculat-
ing PMFs from few fast SMD pullings along the reaction
coordinate in both F and R directions, hereafter referred to as
the FR method. We assume that the pullings are done with a
spring for which the stiff-spring approximation holds �Sec.
II C�. In this case, the F work distribution PF�W� is Gauss-
ian, and according to Crooks fluctuation theorem �16� it fol-
lows that the R work distribution PR�W� is also Gaussian.
Thus one can write

PF/R�W� = �2��F/R
2 �1/2 exp�−

�W − W̄F/R�2

2�F/R
2 � , �22�

where W̄F/R and �F/R
2 are the mean work and variance corre-

sponding to the F and R pulling directions, respectively. The
mean dissipative work in the two distinct pulling directions
is

W̄dF/R =� dW�W � �F�PF/R�W� = W̄F/R � �F . �23�

Inserting �22� into �16� and taking into account that
WdF=W−�F, after little algebra it follows that Crooks fluc-
tuation theorem can hold only if

�2 � �F
2 = �R

2 = W̄F + W̄R �24a�

and

�F = �W̄F − W̄R�/2. �24b�

Finally, inserting Eq. �24a� into �23�, one finds that the mean
dissipative work is the same in both F and R pulling direc-
tions, i.e.,

W̄d � W̄dF = W̄dR = �W̄F + W̄R�/2. �24c�

Equations �24� are the key formulas of our FR method for
calculating PMFs from fast F and R SMD pullings. Assum-
ing that a few ��10� such SMD pullings can sample reason-

ably well the work about the peak position W̄F/R of PF/R�W�,
as indicated by the shaded regions in Fig. 1, then Eqs. �24�
yield essentially with the same degree of accuracy both the

¯
desired PMF, �U�F, and the mean dissipative work, Wd.
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This feature makes the proposed method superior to the cur-
rently used approaches described in the previous sections. In
fact, these other methods can only determine the mean total

work W̄F with some statistical correction either through the
cumulant approximation or a weighted histogram method.

Furthermore, since it is reasonable to assume that W̄d is pro-
portional to the pulling speed �, one can readily determine
the position-dependent friction coefficient ��z� from the

slope of the mean dissipative work ��z�= �dW̄d�z� /dz� /�.
Then, the corresponding diffusion coefficient is given by the
Einstein relation �in kBT energy units�

D�z� = ��z�−1 = ��dW̄d�z�/dz�−1. �25�

Now that both U�z� and D�z� are determined, the equation of
motion of the reaction coordinate on a meso �or macro� time
scale is given by the Langevin equation corresponding to an
overdamped Brownian particle3

��z�ż = − dU�z�/dz + ��t� , �26a�

or, equivalently, the corresponding Fokker-Planck equation
�FPE� for the probability distribution function p�z , t� of the
reaction coordinate

�tp�z,t� = − �zj�z,t� = �zD�z��zp�z,t� + �zU��z�p�z,t� ,

�26b�

where ��t� is the Langevin force �modeled as a Gaussian
white noise� and j�z , t� is the probability current density.

We emphasize again that far from equilibrium the vari-
ance �W

2 ��z
2 of the F /R work calculated from SMD pullings

data �cf. �18�� is in general much smaller than the variance
�2 of the actual work distribution function, and therefore it
cannot be used to estimate even approximately the mean
dissipative work, unless an exponentially large number of
SMD trajectories are collected and used for this purpose.

Finally, we note that PF�W� and PR�W� are identical

Gaussians centered about W̄F and W̄R, respectively. One can
also define a distribution function for the dissipative work
through Pd�W�= PF�W−�F�= PR�W+�F�, which is centered

about W̄d �Fig. 1�. This allows us to calculate the fraction of
the SMD trajectories that violates the second law, i.e., for
which Wd�0; these trajectories are crucial in establishing
the validity of the JE. We have

��e−Wd��Wd�0 = �
−�

0

dWPd�W�e−W

=
1

2
erfc�W̄d

1/2� �
exp�− W̄d�

Wd
1/2 , �27�

which clearly indicates that for W̄d�1 �i.e., W̄d�kBT in SI
units� the number of such trajectories is exponentially small,
and finding any of them in SMD simulations of large bio-
molecules is rather unlikely.

H. Generalized acceptance ratio method

The idea of combining results from both F and R simu-

lations is not new, dating back to the original Bennett’s ac-
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ceptance ratio method.36 However, in previous such
studies37–42 the focus was mainly on determining the free-
energy difference between two states and to estimate the cor-
responding error, unlike in our FR method in which the PMF,
the mean dissipative work, and the corresponding diffusion
coefficient are determined simultaneously from specially de-
signed F and R pullings with Gaussian-distributed work. For
example, starting from the nonequilibrium fluctuation theo-
rem �12� and following the general philosophy of the Bennett
acceptance ratio method, Crooks has shown30 that the best
estimate �i.e., with smallest error� of the free energy �see
Eqs. �12��

e−�F = �f�W��F/�f�− W�e−W�R �28�

is obtained by choosing the f�W�=1/ �1+nF /nR exp�W
−�F��, where nF/R represent the number of F /R paths
sampled. Essentially the same result was derived by Shirts
et al. in Ref. 41 by applying the maximum-likelihood estima-
tor method to Crooks fluctuation theorem �16�. Thus, the
best estimate of the free-energy difference �F between two
equilibrium states corresponding to the reaction coordinates
z�0� and z�t� is given by the solution of the following tran-
scendental equation:

�
i=1

nF 1

1 + nF/nR exp�WFi
− �F�

− �
i=1

nR 1

1 + nR/nF exp�− WRi
− �F�

= 0. �29�

In order to calculate the PMF U�z� along the reaction coor-
dinate z by using this method, first, one needs to divide the
domain of interest 	zmin,zmax
 into N intervals determined by
the division points zi, i=0, . . . ,N. Then the system needs to
be steered into these points via SMD, and in each of them it
needs to be equilibrated. Then, depending on the available
computational resources, a well-defined number of F and R
SMD pullings should be carried out between adjacent divi-
sion points, each time starting from a different equilibrium
configuration. Finally, solving Eq. �29� within the stiff-spring
approximation, one determines the change �Ui=Ui−Ui−1

along each segment �zi−1 ,zi�. Although, strictly speaking, the
above methods that combine F and R SMD pullings can
determine the free-energy difference between initially equili-
brated states, in practice we find that in many cases Eqs.
�24b� and �24c� give good results even between the division
points zi �see Sec. III B�. This means that N does not need to
be a large number, and therefore the computational overhead
due to the intermediate equilibrations can be significantly
reduced.

III. PMF OF WATER MOLECULES IN SWNT

In this section we calculate the PMF that guides the
translocation of water molecules across a periodic structure
of densely packed SWNTs as well as the corresponding
position-dependent diffusion coefficient. The choice of this
system as a testing ground for our FR method was motivated
by the following. First, water-filled SWNTs are nontrivial

many-particle systems comprising thousands of atoms, yet
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they are easy to simulate and the PMF of waters inside the
SWNTs can be easily tuned by changing the van der Waals
interaction parameters between the carbon and water
molecules.44 Second, SWNTs are hydrophobic nanopores
that can be regarded as simplified models for the much more
complex channel proteins. Thus, they are ideal for testing
new computational methods and hypothesis that later can be
applied to protein channels. Finally, during the past few
years, SWNTs have been intensively studied through MD
simulations, revealing many interesting and surprising
properties.44–51 In particular, these simulations revealed that
hexagonally packed �6,6� SWNTs, with a diameter of 8.1 Å,
spontaneously fill with a single file of water molecules when
connecting two water reservoirs. Water molecules diffuse
across the tubes in a concerted fashion, with a diffusion rate
close to the corresponding bulk value. This correlated motion
can be described rather well with a continuous-time random-
walk �CTRW� model.45 As an alternative to the CTRW
model, here we propose a more general stochastic model in
which the motion of each water molecule along the z axis of
a SWNT is characterized by an effective �position-
dependent� diffusion coefficient D�z� and a PMF, U�z�. Both
quantities can be determined efficiently and simultaneously
by our FR method.

We consider a periodic system �see Fig. 2� of four hex-
agonally packed identical SWNTs of �6,6� armchair type.
Each SWNT �156 atoms� has a C–C diameter of 8.2 Å and a
length of 14.7 Å. On both sides of the SWNTs there is a
water layer of width 18.9 Å. The system contains 556 water
molecules in total. The unit cell has dimensions 23�20
�52.5 Å3 and contains a total of 2292 atoms. All MD simu-
lations were performed in the NPT ensemble �T=300 K and
p=1 atm�, using periodic boundary conditions and the par-
ticle mesh Ewald �PME� method for full electrostatics.52 Wa-
ter molecules were modeled as TIP3P.53 To facilitate the
comparison between the PMFs obtained with different meth-
ods, the van der Waals parameters of the C atoms �of type
CA for benzene in the CHARMM force field�54 were changed
�from �=0.10 to �=0.13 kcal/mol and from R0=3.76 to R0

=4.81 Å respectively� to artificially increase the size of the
potential barriers in the PMF from 0.35kBT to 2kBT. All
simulations were performed with the program NAMD,55 with
a performance of �1 day/ns on 8 CPUs of a G4 Beowulf
cluster �preferred for repeated SMD pullings� or �12 h/ns
on 24 CPUs �preferred for long equilibrium MD simula-

44,45,47,50

FIG. 2. �Color online� Lateral �left� and top �right� views of the unit cell
�a=20 Å, b=23 Å, and c=52.5 Å� of the simulated water and SWNT sys-
tem using van der Waals and surface representations. Water molecules cross
the SWNTs in single files. Figure rendered with VMD �Ref. 43�.
tions�. Just like in previously reported simulations,
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the initially empty SWNTs filled up completely with water
�i.e., five molecules per nanotube� in the first few hundreds
of picoseconds. Also, the arrangement of the SWNTs pre-
vented water molecules from entering the space between
them.

A. PMF from equilibrium MD simulations

The PMF U0�z� � Eq. �2�� was determined from a
9-ns-long equilibrium MD trajectory recorded after the sys-
tem was equilibrated. The histogram p0�z� was constructed
by binning the z coordinate of the O atoms of all water
molecules. No visible change in the normalized distribution
p0�z� could be noticed when the first 7 ns part of the equi-
librium MD trajectory was used to build it, indicating that
the sampling was complete. Inside the SWNTs �see Fig. 3�a��
U0�z� has five equidistant minima �water binding sites� with
a separation distance of 2.8 Å and almost identical potential
barriers of height 2kBT. It is convenient to label these
minima from 1 to 5 along the positive z direction. On both
sides, moving away from the SWNTs into the bulk water the
PMF exhibits three more minima �labeled 0, −1, −2, and 6,
7, 8, respectively� before it flattens out. Water molecules to
move in and out the SWNTs �i.e., to hop between minima �0,
1� and �5, 6�� must overcome roughly the same energy bar-
rier as the ones located inside the tubes. However, there is a
strong spatial inhomogeneity of the water distribution right
outside the nanotubes that is related to the large asymmetry
of the energy barrier connecting minima �−1,0� and �6, 7�,
respectively. The PMF profile is reflected by the snapshot of
the water molecules in Fig. 3�a� and is compatible with the
observation that single-file water transport through SWNTs
usually occurs in unidirectional bursts. We have also deter-
mined the PMF, UUS�z�, inside the SWNTs by using um-
brella sampling and WHAM, as described in Sec. II D. A
total of six sampling windows were used. For convenience,
these were centered, by means of harmonic guiding poten-

2

FIG. 3. �Color online� �a� PMF U0�z� of a water molecule along the z axis
of one of the SWNTs obtained through equilibrium MD simulations. The
included snapshot illustrates a completely filled SWNT with five water mol-
ecules located about the corresponding PMF minima. �b� Comparison be-
tween U0�z� �thin line� and the same PMF UUS�z� �thick line� obtained from
umbrella sampling. Graphics rendered with the program VMD �Ref. 43�.
tials with k=1.2 kcal/mol Å , on the six maxima within the
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SWNTs of U0�z�. The samplings of the biased systems were
carried out through 5-ns-long equilibrium MD simulations.
To speed up the computation, the guiding potentials in the
four SWNTs were centered on different maxima. Thus each
equilibrium MD trajectory provided four biased distribution
histograms pi�z�. The fact that these were properly sampled
was tested by making sure that the histograms corresponding
to the first 4 ns part of the equilibrium MD trajectory coin-
cided with the one obtained from the entire trajectory. Fi-
nally, UUS�z� was determined by solving Eqs. �10�. As shown
in Fig. 3�b�, the agreement between the calculated U0�z� and
UUS�z� is rather good, though not perfect. While the recon-
structed PMF is valid only for a completely filled SWNT, the
umbrella sampling method can also be used to determine the
PMF of water in partially filled SWNTs.56

B. PMF from nonequilibrium SMD pullings

Next, by employing our new FR approach described in
Sec. II G, the PMF UFR�z� was determined from a small
number of fast F and R SMD pullings of water molecules
across the SWNTs. In each SMD simulation four water mol-
ecules were pulled across the SWNTs �one molecule per
nanotube� by applying a stiff �k=10 kcal/mol Å2� harmonic
guiding potential �see Eq. �4�� that moved with �=20 Å/ns
along the z axis of the nanotubes. Only four such pullings
were performed in both F and R directions between the ex-
tremities of the interval z� �−10,10� Å. Each SMD simula-
tion was started from an equilibrated configuration �in accor-
dance with the applicability of Crooks fluctuation theorem�
and was 1 ns long. Out of the 4�4=16 F and R trajectories,
only those trajectories in which the corresponding SWNT
remained filled with water at all times were retained for
analysis. In several cases, once the pulled water molecule
crossed halfway of the channel the binding sites behind it
remained unoccupied. Since such configurations correspond
to a different free-energy profile, such trajectories must be
dropped in determining the PMF for a completely filled
SWNT. Thus, we ended up with 7 F and 14 R paths for
calculating the PMF. Because we already know the “exact”
PMF U0�z�, we deliberately did not choose to add more tra-
jectories from extra simulations. Indeed, since in the case of
large biomolecules one can afford only a small number of
SMD runs, our goal here is to test the viability of the pro-
posed FR method for calculating PMFs under such unfavor-
able conditions. The external work along the F and R paths,

including the mean work W̄F/R, is shown in Figs. 4�a� and
4�b�, respectively. Note that in order to display WR on the
same plot with WF, the sign of the former needs to be re-
versed and shifted to the origin of the latter. As shown in Fig.
4�c�, within the SWNTs �indicated by dashed vertical lines�
the PMF UFR= �W̄F−W̄R� /2 agrees surprisingly well with U0

and UUS. We have checked �results not shown� that by in-
creasing the pulling speed to �=40 Å and using a similarly
small number of F and R trajectories, the quality of the ob-
tained PMF is very similar to the one shown in Fig. 4�c�.
However, in this particular case, the higher the pulling speed

is the most likely that the SWNTs will partially empty during
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pulling and, therefore, more runs are necessary to collect a
minimum number of paths for calculating the PMF.

As discussed in Sec. II E, for Crooks fluctuation theorem
to be valid it is necessary that the initial states of both F and
R pullings be sampled from an equilibrium distribution.
Thus, strictly speaking the above results using the FR
method apply only to the two ends of the considered interval.
The good agreement between UFR and U0 suggests that our
method may give reliable PMFs for all values of the reaction
coordinate z in the considered interval. However, as shown
next, it is simple to extend our FR method to cases where
this issue may impact negatively on the determination of the
PMF. Thus, the reaction coordinate interval was divided into
40 segments of the same length. For each division point, the
system was equilibrated for a few hundreds of picoseconds
by using the same harmonic guiding potential centered about
those points. Starting from statistically independent equilib-
rium configurations, four pullings with the same �
=10 Å/ns in both F and R directions were carried out on
each segment. None of the SWNT emptied during these short
SMD runs and, therefore, all trajectories were used for analy-
sis. The resulting PMF, UFR−40�z�, is shown in Fig. 5�a�. The
agreement with the previously determined UFR is fairly good,
especially inside the SWNTs. Closer inspection suggests that
compared to the exact U0, UFR−40 is not as good as UFR.
Thus, one may conclude that more sampling in the FR
method does not necessarily give better results. Indeed, in
the FR method we only need a good estimate of the mean F
and R work, and not a complete sampling of the correspond-
ing work distribution functions. However, it is very difficult
to estimate how good is the mean work calculated from a
few fast pullings. Also, we have calculated the PMF in the
division points by using the maximum-likelihood estimator

FIG. 4. �Color online� Work along �a� forward and �b� reverse SMD pullings

�dashed lines�. The mean work W̄F/R is shown as thick-solid line. �c� Com-

parison between U0�z� �dashed line� and UFR�z�= �W̄F−W̄R� /2 �solid line�,
obtained from fast forward and reverse SMD pullings. Vertical dashed lines
indicate the extremities of SWNTs.
method, as shown in Fig. 5�a�. The UMLE points fall right on
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the UFR−40 curve, suggesting again that in the FR method the
quality of the sampled paths is more important than the op-
timal statistical analysis of the trajectories.

In Fig. 5�b� the mean F and R work is plotted for both
cases when the F /R pullings are done in one shot �thick

lines� and on the segments separately �thin lines�. While W̄R

for both cases match almost perfectly, the difference between
the corresponding mean F work is quite significant and most
definitively is the source of discrepancy between UFR and
UFR−40. This difference may be due to the smaller number of
F trajectories used in case one or to partially emptied sites
towards the ends of the SWNTs during the simulations along
the segments that were not accounted for properly. However,
it is worth noticing that the mismatch between the PMFs is
less pronounced than for the mean F work.

In any event, for the same SMD data, the FR method
gives far better results than the currently used cumulant ap-
proximation method based on JE �see Sec. II F�. In Fig. 5�c�
the PMFs determined by applying the cumulant approxima-
tion separately to F and R trajectories, i.e., UF and UR, are
compared to UFR. It is clear that both UF and UR are biased
in opposite directions. Apparently this behavior was recog-
nized in previous work in which the PMF of a glycerol mol-
ecule in a GlpF channel was calculated for the first time.11 To
eliminate the bias from only F pullings, the authors parti-
tioned the GlpF channel into 12 segments and artificially
applied in an alternating fashion F and R pullings in adjacent
segments. Our FR approach for determining PMFs naturally
solves this biasing issue due to the invalidity of JE for few,

FIG. 5. �Color online� �a� PMF of a water molecule in a SWNT determined
by using the FR method: channel as a whole �solid line� and divided in 40
adjacent segments of the same length �dashed line�. The PMFs at the ends of
the segments obtained with the maximum-likelihood estimator method are
also shown �circles�. �b� Mean forward �solid lines� and reverse �dashed
lines� work for SWNTs considered as a single segment �thick lines� and as
40 adjacent segments �thin lines�. �c� PMFs calculated within the cumulant
approximation considering only forward �thin-solid line� and reverse �thick-
dashed line� pullings. The arithmetic mean of these two �thin-dashed line�
matches almost perfectly the PMF from the FR method �thick-solid line�.
Vertical dashed lines indicate the extremities of SWNTs.
fast unidirectional SMD trajectories. We also note that the

aded 17 Nov 2010 to 128.206.162.204. Redistribution subject to AIP li
arithmetic mean of UF and UR �Fig. 5�c�� matches rather well
UFR, indicating that, in fact, the second cumulant correction
of the work to the PMF is irrelevant in the FR method, in

which the mean dissipative work W̄d
�W
2 /2 is already cor-

rectly accounted for by combining F with R paths.

C. Dissipative work and diffusion coefficient

Next, we focus on the determination of the mean dissi-
pative work and the corresponding diffusion coefficient. In
Fig. 6�a� the mean dissipative work derived from the indi-
vidual F /R pullings and from the FR method is plotted. As

expected, W̄dF/R=�F/R
2 /2 calculated from the variance of

WF/R seriously underestimate W̄d determined from the FR
method by using Eq. �24c�. This observation has several con-

sequences. First, the fact that W̄dF/R does not increase fast
enough with the pulling distance clearly indicates that only a

small region about W̄F/R of PF/R�W� is sampled and not the
entire work distribution function. Second, the strongly biased
PMFs UF/R, obtained from the cumulant approximation, lead
to underestimated dissipative work WdF/R=WF/R�UF/R that
give the false impression that the JE equation is satisfied
along the F /R pullings, as shown in Fig. 6�b� �thin lines�.
This, of course, is expected because UF/R are calculated
based on the assumption that JE holds. The reality is that, in
fact, JE fails to hold for both F and R pullings as the system
departs from equilibrium. The reason, of course, is that paths
with negative dissipative work �Wd�0� that are crucial for
the validity of JE �Eqs. �15�� are not sampled. This is clearly
illustrated in Fig. 6�b� where �exp�−WdF/R��, plotted by using

the correct expressions W̄dF/R=W̄F/R��U �thick lines�, de-
cay rapidly towards zero as the system is pulled away from
equilibrium. Clearly, the larger the deviation from equilib-
rium is the less JE is satisfied.

The position dependent D�z� can be calculated from the

slope of W̄d according to Eq. �25�. Since the mean dissipative

FIG. 6. �Color online� �a� Mean dissipative work determined from the FR
method �thick-solid� and the cumulant approximation applied separately to
forward �thin-solid� and reverse �thin-dashed� pullings. �b� Validity test of
JE along forward �solid� and reverse �dashed� processes. The PMF U in the
corresponding dissipative work WdF/R=WF/R�U is determined from the FR
�thick� and the cumulant approximation �thin� methods, respectively.
work is almost linear it is not surprising that the diffusion
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coefficient has an almost constant value of D71 Å2/ns.
This is more than three times smaller than the bulk diffusion
coefficient of water Dbulk250 Å2/ns.

D. Stochastic model of water transport in SWNTs

The determined U�z��UFR�z� and D provide the input
in the FPE, Eq. �26b�, for describing water transport through
SWNT on meso/macro time scales. This should be regarded
as a generalization of CTRW model of Berezhkovskii and
Hummer.45 In principle, by solving the FPE for the nonequi-
librium distribution function p�z , t� for well-defined initial
and boundary conditions one can completely characterize the
single-file transport of water molecules in the considered
SWNTs. A detailed analysis along this line will be reported
in another publication.

In the CTRW model single-file water molecules occupy
the binding sites �PMF minima� within the SWNT. Since
they cannot pass each other, the diffusion of water molecules
across the nanotube is brought about by random hops to the
empty binding sites right in front or behind them. The wait-
ing �or residence� time between two consecutive hops is a
stochastic Poisson process. Besides the equidistant spacing
between two adjacent sites a, the mean waiting time � is the
defining parameter of the CTRW model. In terms of � the
effective diffusion coefficient is Deff=a2 /2�.

In our stochastic model � is identified with the mean first
passage time6 �MFPT� from one minimum �zi, i=1, . . . ,5� of
the PMF U�z� into the adjacent one zj, with j= i±1, and is
given by

�i,j = �
zi

zj

dxeU�x�/D�x��
zi

x

dye−U�y�. �30�

Now, the mean waiting time can be expressed as

�̄ = ��
i=1

N−1

�i,i+1 + �
i=2

N

�i,i−1�/2�N − 1� . �31�

In our case N=5 and the corresponding mean waiting time
�84 ps. Applying our stochastic model to the pristine
SWNT considered in Ref. 45 �for which the barrier height
between binding sites is only 0.35kBT compared to 2kBT in
our modified SWNTs� one obtains �̄12.9 ns that compares
very well with the reported 13 ns.

Furthermore, the effective diffusion coefficient Deff of
single-file water molecules in SWNTs can be defined as

Deff = D�ā2/2D�̄� , �32�

where ā=2.8 Å is the mean spacing between two adjacent
binding sites. Deff describes the diffusion of fictitious par-
ticles in the absence of the PMF with the same mean diffu-
sion time on a distance ā as the mean waiting time �̄. In our
case we get Deff45 Å2/ns. It is this diffusion coefficient
that can be measured from the well-known asymptotic for-
mula ��z2�t��=2Defft from equilibrium MD simulations. In-
deed, from our simulations we obtain Deff48 Å2/ns, in
very good agreement with the result from our stochastic

model.
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Finally, one can calculate the mean permeation time T
across the channel in two different ways: �i� as the MFPT
from one end of the nanotube to the other, and �ii� as
L2 /2Deff, where L is the length of the SWNT. In both cases
one obtains essentially the same result: T1.45 ns between
z1 and z5 and T�3.2 ns between z0 and z6 �i.e., between the
binding sites right outside the ends of the SWNTs�. The ob-
served 12 permeations per nanotube in 9 ns corresponds to a
permeation time of 1.38 ns that is a good estimate for T but
it is considerably shorter than T�. Thus, even in this rela-
tively simple case very long equilibrium MD simulations are
needed to calculate the unidirectional water flux through the
modified SWNTs by simply counting the number of full per-
meations of water molecules, reinforcing once again the
value of our stochastic modeling approach.

IV. CONCLUSIONS

The potential and value of Crooks fluctuation theorem
for determining free-energy profiles are becoming more ap-
parent both theoretically41 and experimentally.57 In this paper
we have shown that by employing Crooks fluctuation
theorem30 within the stiff-spring approximation the potential
of mean force along a suitably chosen reaction coordinate
can be determined �at least semiquantitatively� from combin-
ing a few fast forward and time-reversed nonequilibrium pro-
cesses started from an equilibrium configuration and subject
to the same evolution protocol of the reaction coordinate. In
the proposed FR method one determines simultaneously both

the PMF �U� and the mean dissipative work �W̄d� without
invoking JE. In fact, JE is not even satisfied for fast F or R
pullings simply because processes with negative dissipative
work �that transiently violate the second law and are expo-
nentially small in number� are not sampled. The FR method
is based on a key observation involving Crooks fluctuation
theorem �which is more general than JE�: whenever the F
work distribution function PF�W� is Gaussian �e.g., in the
case of the stiff-spring approximation� then PR�W� is also
Gaussian. Furthermore, PF/R�W� have the same width and are
shifted by precisely twice the corresponding free-energy dif-
ference between the equilibrium states connected by the F

and R processes. Thus, both U and W̄d can be readily deter-

mined from the mean F and R work �W̄F/R�. The practical
success of the FR method stems from the fact that the mean

work W̄F/R can be measured rather accurately from only a
few fast F /R pullings. This also explains why previous
methods, based on the direct application of JE, fail to work
away from equilibrium, making them inefficient for practical
applications. Indeed, the width of PF/R�W�, which is propor-

tional to W̄d, cannot be determined even approximately from
a few unidirectional pullings, unless these are close to equi-
librium and rendering PF/R�W� sufficiently narrow. This FR
method works rather well for both small and large �e.g., bio-
molecular� systems. Although here we applied and tested the
FR method in the context of SMD simulations, in principle
this can be applied equally well to analyze properly the de-
signed single-molecule experiments.
To test its viability, we have applied the FR method to
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determine the PMF and position-dependent diffusion coeffi-
cient of single-file water molecules in SWNTs. The derived
PMF was found to be in good agreement with the one ob-
tained from standard equilibrium MD methods, e.g., um-
brella sampling. In the case of large biomolecular systems,
when equilibrium MD methods become computationally un-
affordable, the proposed FR method may provide the only
hope for determining PMFs. In addition, the FR method has
the unique feature that it determines simultaneously both the
PMF and the corresponding position-dependent diffusion co-
efficient. These two quantities then can be used in a stochas-
tic model that permits the study of the dynamics of the sys-
tem along the reaction coordinate on meso/macro time scale
by retaining its microscopic spatial resolution. For example,
our stochastic model provides a generalization of the re-
cently proposed CTRW model for single-file water transport
in SWNTs.45
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