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PACS 68.08.Bc – Wetting
PACS 68.43.Hn – Structure of assemblies of adsorbates (two- and three-dimensional clustering)
PACS 87.64.Dz – Scanning tunneling and atomic force microscopy

Abstract – Tapping-mode Atomic Force Microscopy and synchrotron X-ray scattering measure-
ments on dotriacontane (n-C32H66 or C32) films adsorbed on SiO2-coated Si(100) wafers reveal
a narrow temperature range near the bulk C32 melting point Tb in which a monolayer phase
of C32 molecules oriented perpendicular to surface is stable. This monolayer phase undergoes a
delayering transition to a three-dimensional (3D) fluid phase on heating to just above Tb and to
a solid 3D phase on cooling below Tb. An equilibrium phase diagram provides a useful framework
for interpreting the unusual spreading and receding of the monolayer observed in transitions to
and from the respective 3D phases.

Copyright c© EPLA, 2007

Although a macroscopic theory of the wetting of solid
surfaces by liquids has been developed some time ago [1],
the general question of how molecular rotational and con-
formational degrees of freedom may influence the wetting
of a liquid film interacting with a solid surface via van der
Waals forces has not been investigated extensively and is
poorly understood. Normal alkane molecules [CnH2n+2] of
intermediate length (15<n< 50) provide model systems
with which to address this issue. Torsional motion about
C-C bonds in the carbon backbone of the molecules
results in conformational changes that play an essential
role in determining the structure and melting of alkane
monolayers [2]. Furthermore, the effect of these molecular
conformational changes on wetting can be investigated
systematically as a function of the alkane chain length n.
As alkanes are the principal constituents of commercial
lubricants [3,4], their wetting properties are also of inter-
est for lubricating nanoscale devices such as computer
hard drives and micro-electro-mechanical systems.
It is generally believed that films of shorter alkanes

(n� 5) completely wet a solid substrate, i.e., form an
(a)Permanent address: Technische Physik, Universität des Saarlan-
des - D-66041 Saarbrücken, Germany.
(b)Permanent address: Qimonda Dresden GmbH & Co. OHG -
Koenigsbruecker Strasse 180, D-01199 Dresden, Germany.

infinitely thick film, at the bulk triple point. This has
only recently been demonstrated explicitly for the case
of pentane (n-C5H12) adsorbed on basal-plane graphite
surfaces [5]. Experiments with intermediate-length alkanes
(15<n< 50) adsorbed on SiO2 surfaces have not found
triple-point wetting. Instead, liquid droplets have been
observed by optical reflection microscopy at the bulk melt-
ing point [6–8]. Complete wetting of intermediate-length
alkane films a few degrees above the bulk melting point
was inferred indirectly by X-ray specular reflectivity [6,9]
and stray light intensity measurements [10].
In this report, we present direct evidence from tapping-

mode Atomic Force Microscopy (AFM) images that a film
of an intermediate-length alkane, dotriacontane (n-C32H66
or C32), does not completely wet a SiO2 surface at any
temperature. Instead, we find a narrow temperature range
near the C32 bulk melting point Tb where a monolayer
phase in which the molecules are oriented perpendicular
to the surface is stable. On heating just above Tb, this
monolayer phase undergoes a delayering transition to
three-dimensional (3D) droplets that remain present up
to their evaporation point. Moreover, the system shows an
unusual re-entrant drying behavior in that the monolayer
phase also undergoes a delayering transition to a 3D solid
phase on cooling below Tb.

26003-p1



M. Bai et al.

Fig. 1: Topographic AFM images of a low-coverage C32 film taken in the tapping mode. (a) At room temperature after deposition
from solution; (b) temperature dependence of the images in the second heating cycle; and (c) images taken on cooling the sample
after its second heating in (b). Height cross-sections shown below selected images were taken along the line indicated in white.
The inset shows the temperature dependence of the particle volume in (b). All heights are measured relative to the one to two
layers of C32 molecules that lie with their long-axis parallel and immediately adjacent to the SiO2 surface.

The AFM measurements on C32 films were performed
with a Nanoscope IIIa (Veeco Instruments, Inc.) operat-
ing in the tapping mode. Using silicon cantilevers with
a resonance frequency typically of ∼ 33 kHz, we simulta-
neously recorded AFM images of topography and phase
angle (cantilever oscillation relative to the drive) as a
function of temperature. The samples reported on here
were made by dip-coating an acid-cleaned, electronic-
grade Si(100) substrate in a solution of C32 dissolved
in heptane (C7) [11,12] with alkane purity > 99.9%. The
Si(100) wafers typically had native oxide coatings with
thickness in the range 12–25 Å [11]. The samples were
mounted in a closed cell under a dry nitrogen atmosphere
so that the total amount of alkane was kept constant
during the AFM measurements, although it was impos-
sible to measure the C32 vapor pressure.
In fig. 1(a), we see a topographic AFM image of a

sample at room temperature taken after dip coating and
the subsequent evaporation of the C7 solvent. The image
shows an island of adsorbed C32 having a “dragonfly”
shape. Topographic cross-sections indicate the height of
this feature to be ∼ 4.2 nm after calibration using the
AFM contact mode [12,13] and X-ray specular reflectivity
measurements [11]. Because this height is approximately
equal to the all-trans length of the C32 molecule, we
interpret the dragonfly feature as consisting of a single

layer of molecules oriented with their long axis perpendic-
ular to the surface. Hereafter, we refer to such a structure
as a “perpendicular monolayer.” This feature is qualita-
tively similar to the fractal-like islands previously observed
by AFM at low coverages of C30 on SiO2 [14].
X-ray specular reflectivity [11] and contact mode AFM

measurements [12] at room temperature indicate that
these perpendicular monolayer islands reside on one to
two layers of C32 molecules oriented with their long
axis parallel to the SiO2 surface. Because of their larger
area of contact, the parallel molecules are presumably
bound more strongly by van der Waals forces to the
SiO2 surface than the perpendicular molecules are to
the parallel layers. Our evidence suggests that at room
temperature the parallel molecules form layers covering
virtually the entire SiO2 surface in contrast to the partial
layers of perpendicular molecules. In the tapping mode,
we did not observe any holes in the parallel layers that
allowed determination of their thickness.
After heating this sample slowly (1K/min) above the

bulk melting point of C32 at 68 ◦C and returning at
the same rate to 47 ◦C, we find a qualitative change in
topography. As shown in the first image of fig. 1(b), a
typical scan area no longer contains perpendicular mono-
layer islands but only mesa-shaped particles that cross-
sections indicate have a height of 20–40 nm. Previous
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X-ray diffraction [11] and contact mode AFM [12]
measurements indicate that these particles have an
orthorhombic structure in which the C32 molecules
are aligned perpendicular to the SiO2 surface. Because
these mesa-shaped orthorhombic particles appear on
annealing and retain their structure on cooling to room
temperature as well as in a subsequent heating cycle,
we believe they represent the equilibrium structure at
room temperature. We also note that in true equilibrium
the solid mesa-shaped particles would be faceted rather
than having an irregular shaped boundary as in fig. 1(b).
However, the X-ray diffraction scans discussed below offer
evidence that on heating the majority of the material
within the particles is in thermal equilibrium.
Figure 1(b) follows the evolution of one of the 3D

particles in a second slow heating of the film (the temper-
ature is ramped upward at a rate always below 0.1K/min
between AFM images and the recording of each image lasts
∼ 4.5min during which the temperature is kept constant).
Below the first five AFM images, we show a cross-section
of the film height along the white line drawn in the image.
The cross-section shows that the particle has a flat top of
various heights indicating a solid particle. As the sample
is heated from 47 ◦C to 58 ◦C, the particle boundary
becomes smoother, consistent with the material on the
particle sides coming closer to equilibrium. At ∼ 61 ◦C, a
dramatic change in the particle occurs as indicated by an
abrupt decrease in its volume (see inset). Also, as shown in
the cross-section below the image at 62 ◦C, there is a small
increase in its height along the scan line as well as a contin-
ued smoothing of its boundary. Apparently, the material
lost from the solid particle enters a 3D gas phase or an
interfacial (2D) gas phase in which it is invisible to AFM.
Between 64 ◦C (not shown) and 66 ◦C in fig. 1(b), we

observe a new phenomenon, not seen at lower temper-
atures, in which material begins to spread out of the
flat-topped particle at the expense of its volume. The
cross-section at 66 ◦C indicates that the spreading layer
has a height of ∼ 4.2 nm, which we again interpret as
being a perpendicular monolayer and the remaining parti-
cle, now with an even smoother boundary, has a height
of four perpendicular layers. The perpendicular monolayer
continues to spread on heating until, at ∼ 69 ◦C, it reaches
its maximum lateral extent and the material in the mesa-
shaped particle has been nearly exhausted. This behavior
contrasts with that reported in ref. [7] where a perpen-
dicular monolayer of an intermediate-length alkane (C30)
spread outward from a fluid droplet with a spherically
shaped cap on cooling just below the bulk melting point.
At ∼ 69 ◦C, holes develop in the perpendicular mono-

layer; and, at 70 ◦C, there is an abrupt transition to 3D
droplets identified both by their spherical profile1 and
circular perimeter as well as by a large positive increase
in the phase angle measured. In other similarly prepared

1Cross-sections are not shown for the hemispherically shaped 3D
droplets at 70 ◦C (heating) and 68 ◦C (cooling) because of the large
amount of noise due to tip capture by the fluid.

Fig. 2: Topographic AFM images of a low-coverage C32 film
taken in the noncontact mode at 55 ◦C during the cooling
half of the first heating/cooling cycle. The first two images
took about 4.5 minutes, and the last image was recorded
after waiting two hours without scanning. Height cross-sections
shown below the images were taken along the white lines. These
images provide evidence that the mesa-shaped bulk particle on
the right grows in size at the expense of the regions of one and
two layers of perpendicular molecules on the left by molecular
transport through an interfacial gas phase.

samples that we investigated to higher temperatures, we
observed no wetting of C32 to occur up to a temperature
of 85 ◦C at which there is significant thermal desorption
into the 3D gas phase [10].
On cooling this sample just below the bulk melting

point at 68 ◦C, we see in fig. 1(c) that a perpendicular
monolayer begins to spread outward from one of the
droplets as the droplet volume decreases, a behavior
similar to that reported in ref. [7] (see above). Now the
source of the spreading monolayer is a hemispherical
droplet1 rather than a flat-topped particle. Interestingly,
we have been able to follow this spreading behavior to
lower temperatures than in ref. [7]. At 57 ◦C, the material
in the droplet is nearly exhausted and holes begin to
appear in the monolayer. With further cooling of the
sample to 54 ◦C, we observe a second perpendicular layer
form on top of the first. At this point, the combined
volume of the two layers begins to decrease due to loss of
material to the interfacial gas phase, and the film kinetics
slows. The last three AFM images at 51 ◦C show the
subsequent evolution as a function of time. The second
perpendicular layer grows in area at the expense of the
first layer as their combined volume continues to decrease
until the two layers match boundaries to form a bilayer
island.
This loss of material on cooling of the bilayer in fig. 1(c)

may be due to its having a sub critical volume necessary to
nucleate a solid 3D particle, while 3D particles are formed
around nuclei with a super critical volume outside the
scan area. As depicted in fig. 2 for another low-coverage
sample on cooling, we observe growth of thicker mesa-
shaped particles whose volume increases over a period of
hours. A possible mechanism for this growth is transport
of C32 from monolayer islands of perpendicular molecules
through an interfacial gas phase.
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Fig. 3: Plot of the fraction of the scan area occupied by a layer
of perpendicular molecules for a high-coverage C32 film during
its first heating/cooling cycle.

We interpret the sequence of AFM images in fig. 1(b)
as indicating the stability of a monolayer phase of C32
molecules oriented perpendicular to the surface in the
temperature range from 64 ◦C to 69 ◦C. On heating,
the kinetics of the transition from the 3D mesa-shaped
particles to the monolayer phase is sufficiently slow that
we are able to view the growth of the monolayer phase in
time. Similarly, on cooling, the transition from 3D liquid
droplets to the perpendicular monolayer phase shown in
fig. 1(c) is kinetically hindered so that we again view the
growth of the monolayer as an outward spreading from a
3D droplet that has a higher chemical potential.
We have also performed similar heating/cooling

cycles on higher-coverage samples. For these, we observe
spreading of a perpendicular monolayer phase to begin
on heating above ∼ 62 ◦C; however, the number and size
of the source particles are now sufficient to allow the
perpendicular monolayer phase to fill a larger fraction of
the scan area. The delayering transition to 3D droplets is
again initiated by the development of holes in the perpen-
dicular monolayer followed by a decrease in its area. This
behavior is similar to the recession of a perpendicular
monolayer as previously observed for a C30 film heated
above its bulk melting point [7].
In fig. 3, we have plotted the fraction of the scan area

occupied by the perpendicular monolayer structure as a
function of temperature on heating and cooling one of
these higher coverage samples. It is evident that there is a
well-defined temperature range, 64 ◦C to 69 ◦C, in which
the perpendicular monolayer structure occupies over
80% of the scan area (12.5× 12.5µm2). The approach
to equilibrium is slow so that on heating we observe the
spreading of the monolayer at the onset of the transition to
the perpendicular monolayer phase and then recession
of the monolayer in anticipation of the transition to
the 3D fluid phase. On cooling, these kinetic processes
are reversed so that, on approaching the transition to the
monolayer phase from above, the monolayer spreads with
some hysteresis and then at lower temperature recedes in
anticipation of the transition to the 3D solid phase. These

results are consistent with those described above for a
lower coverage sample. They support our interpretation
of a narrow range in temperature just below the bulk
C32 melting point in which a monolayer phase of C32
molecules oriented perpendicular to the surface is stable.
We have also investigated the structural changes in the

C32 films observed by AFM using grazing-incident-angle
synchrotron X-ray diffraction. Due to the much larger
area of the film sampled by the incident X-ray beam
compared to that of an AFM image (∼ 105 times larger),
the X-ray patterns give an average structure that can
be helpful in determining the equilibrium phases of the
film. Measurements were conducted at beam line 6ID-B of
the Advanced Photon Source using an X-ray wavelength
of 0.765 Å and a two-dimensional detector. The incident
beam made an angle of ∼ 0.1◦ with the SiO2 surface,
which is slightly greater than or comparable to the critical
angle for C32 (0.077◦) and SiO2 (0.11◦), respectively. The
sample had about the same coverage and was prepared
similarly to the one used in the AFM measurements of
fig. 1(b), including the initial heating/cooling cycle.
In fig. 4(a), we show scans of the X-ray intensity taken

with the wave vector transfer Q aligned parallel to the
SiO2 surface. At each value of Q, the intensity has been
integrated over a narrow range 0.02 Å−1 to 0.04 Å−1 in
a direction normal to the surface in order to improve
statistics but to exclude contributions from dynamical
scattering near the C32 critical angle. Below a temper-
ature of 56 ◦C, we see a diffraction pattern characteristic
of a polycrystalline film consisting of three features: a
dominant peak at Q∼ 1.51 Å−1 (labeled peak 2), a shoul-
der on its leading edge caused by a peak at ∼ 1.49 Å−1
(labeled peak 1), and a broader peak at Q∼ 1.66 Å−1.
These features cannot be indexed by the bulk monoclinic
structure reported for C32 at room temperature [15].
The decomposition of the X-ray scans parallel to the

surface into peaks 1 and 2 is illustrated by the dashed
curves plotted underneath the scan at 47 ◦C in fig. 4(a). In
fig. 4(b), we have plotted the position of these two peaks
as a function of temperature. We see that the position
of the dominant peak 2 evolves smoothly to a value of
Q= 1.49 Å−1 upon heating to 68 ◦C where fig. 4(a) shows a
weak and broad peak. As this is the last diffraction feature
to remain before the delayering transition to a 3D droplet
as observed in the AFM images of fig. 1(b), we tentatively
identify the weak and broad peak at 68 ◦C with the
equilibrium perpendicular monolayer phase. Its position is
close to the value of 1.51 Å−1 found for the perpendicular
monolayer phase that has hexagonal symmetry in the
surface freezing effect of bulk C32 [16].
We have found that the position and intensity of the

shoulder observed below 57 ◦C at Q= 1.50 Å−1 depends
somewhat on the part of the C32 film illuminated by the
X-ray beam. We speculate that it could represent a rem-
nant of the metastable dragonfly phase in fig. 1(a) that,
due to “pinning” by defects, did not participate in the
delayering transition that occurred on heating during the
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(a)

(b)

peak 1

peak 2

Fig. 4: (a) Temperature dependence of the in-plane synchrotron
X-ray diffraction scans of a C32 film prepared similarly to that
in fig. 1. Intensities are calculated from the 2D detector after
integrating over a limited Q range in a direction perpendicu-
lar to the SiO2 surface as described in the text. Dashed lines
indicate the decomposition of the main diffraction peak into a
shoulder (peak 1) and the dominant peak 2. (b) Plot of the
position in Å−1 of peaks 1 and 2 vs. temperature. Solid and
dashed curves are guides to the eye. The peak 2 data represent
the orthorhombic phase C′ up to ∼ 57 ◦C at which point the
transition to the rotator R′ phase occurs. The points above
60 ◦C correspond to the equilibrium perpendicular monolayer
phase. Peak 1 represents the metastable perpendicular mono-
layer phase. It is not clear what happens to this metastable
monolayer phase at higher temperature.

first thermal cycle. Alternatively, it might result from a
metastable perpendicular monolayer phase that, due to
slow kinetics or pinning, did not delayer on cooling during
the first cycle. We note that the position of the weak
and broad peak at 68 ◦C that we have identified with
the equilibrium perpendicular monolayer phase is close
to that of the putative metastable monolayer. It is not
clear what happens to this metastable monolayer phase
at higher temperature.
Again, using the AFM images as a guide, we identify

the two stronger peaks in the X-ray scans of fig. 4(a)
below a temperature of 57 ◦C with a crystalline phase
C ′ corresponding to an ensemble of 3D mesa-shaped
particles similar to the one in fig. 1(b) and having a
distribution of heights. Indexing the lower (Q= 1.51 Å−1)
and upper (Q= 1.66 Å−1) of these peaks as the (110) and
(200) reflections of an orthorhombic unit cell, respectively,
we obtain lattice constants a= 7.57 Å and b= 4.98 Å in

reasonable agreement with those found for orthorhombic
particles of C32 growing on a Ag(111) surface [17].
We have tried to analyze the X-ray intensity along

scans (not shown) directed nearly perpendicular to the
SiO2 surface at the position of peak 1 and the dominant
peak 2 in fig. 4(a) as well as at Q= 0. These scans have
proved difficult to model quantitatively due to the verti-
cal disorder in the film and the height dispersion of the 3D
particles present. Nevertheless, at 55 ◦C, the perpendicular
scans clearly show that the intensity of peaks 1 and 2 falls
monotonically to zero over a range ∆Qz ≈ 0.14 Å−1, corre-
sponding to a film thickness 2π/∆Qz ≈ 45 Å, which is on
the order of the all-trans length of the C32 molecule. This
behavior is consistent with both peaks being contributed
by regions of the film in which the molecules are oriented
perpendicular to the SiO2 surface rather than from the
one to two layers of parallel molecules underneath.
As shown in fig. 4(a), between 56 ◦C and 58 ◦C, we

observe a transition from the double-peak feature near
Q∼ 1.5 Å−1 to a single broad peak and the disappearance
of the weaker peak at Q∼ 1.66 Å−1. These changes
indicate a transition in the film from the orthorhombic
structure described above to a phase characterized by a
higher symmetry (probably a hexagonal structure) and
much a shorter coherence length than in the low-
temperature C ′ phase. Following previous suggestions
of a rotator phase for interfacial alkane molecules of
intermediate length [9,10], we interpret the changes in
the X-ray scans in the range 56–58 ◦C as indicating
a transition from the 3D crystalline phase C ′ to a
3D rotator (plastic) phase R′ phase in which the C32
molecules are orientationally disordered about their long
axis. As discussed above, the R′ subsequently undergoes
a transition to the perpendicular monolayer phase on
heating to ∼ 64 ◦C as indicated by the AFM images.
We point out that the transition from the interfacial

orthorhombic crystalline phase C ′ to the rotator phase
R′ phase occurs about 7 ◦C below that of the monoclinic-
to-triclinic crystalline-to-rotator phase transition in bulk
C32 at 64 ◦C [18]. The R′ phase likely has a different
structure and a shorter coherence length than the bulk
triclinic rotator phase. The flat tops of the particles in the
AFM images of fig. 1(b) in the temperature range 58–66 ◦C
suggest that the R′ phase has a layered structure like the
orthorhombic C ′ phase, while the broad diffraction peak
at 58 ◦C implies considerably more translational disorder
within a layer than in the C ′ phase. Furthermore, the
abrupt change in particle volume in this temperature
range (see inset to fig. 1(b)) indicates a rapid exchange of
molecules between the R′ and gas phases as well as a
high mobility of the molecules within the R′ phase.
This high mobility is consistent with the smoothing of the
particle boundary observed in the AFM images of fig. 1(b)
in the temperature range 58–66 ◦C.
It is useful to summarize our results in a model equilib-

rium phase diagram shown in fig. 5 where we have plotted
the C32 chemical potential µ measured with respect to
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Fig. 5: Proposed phase diagram for the submonolayer C32 film
plotted in the µ-T plane where the chemical potential µ is
measured relative to that of the bulk C32 liquid (L). C′ and
R′ refer to the interfacial bulk C32 crystalline and rotator
phases, respectively. The solid line segment between T− and
T+ denotes the stability region of the perpendicular monolayer
phase.

that of the bulk liquid as a function of temperature. In
constructing this diagram, we assume that the underlying
one to two layers of parallel molecules immediately adja-
cent to the SiO2 surface remain in a solid state and that
there is a coexisting interfacial (or 2D) gas phase through-
out the temperature range considered. The solid black line
segments labeled C ′, R′, monolayer, and L therefore repre-
sent the coexistence lines of the bulk crystalline, rotator,
perpendicular monolayer, and liquid phases, respectively,
with the interfacial vapor phase (see fig. 7 in ref. [5]).
The prime indicates interfacial structures distinct from the
freestanding bulk phases. We suggest that there is a first-
order transition from the 3D R′ phase to a perpendicular
monolayer phase at a temperature T− ∼ 64 ◦C and from
this phase to the 3D L phase at T+ ∼ 69 ◦C. The solid
line segment between T− and T+ represents the stability
region of the perpendicular monolayer phase. We inter-
pret the monolayer spreading behavior observed as the
transition temperatures T− and T+ are crossed in the
direction toward the perpendicular monolayer phase to
result from a slow relaxation to equilibrium. Similarly,
we attribute the recession of the monolayer to a slow
relaxation to the respective 3D phases as these phase
boundaries are crossed in the opposite direction. Both the
R′ and perpendicular monolayer phases are characterized
by shorter-range translational order than in the C ′ phase;
but, as indicated by the slope of their co-existence lines
in the phase diagram, they have lower entropy than the
nonwetting bulk liquid phase.
Preliminary AFM and synchrotron X-ray measurements

indicate that a similar phase diagram applies to submono-
layer C32 deposited from solution onto highly oriented
pyrolytic graphite as well as to C24, C30, and C36
deposited on the same SiO2 surfaces that we have used
in this study. These results raise a number of interest-
ing questions: Why does the bulk liquid fail to wet the

underlying parallel layers of molecules immediately adja-
cent to the SiO2 surface and is the delayering transition
of the perpendicular monolayer phase related to conforma-
tional changes in the molecules? What are the microscopic
mechanisms driving the spreading and receding of the
perpendicular monolayer phases? And at what (shorter)
alkane chain length will a crossover to complete wetting
occur as observed for pentane on graphite?
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