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ABSTRACT

A class of solutions of the gravitational field equations describing vacuum spacetimes

outside rotating cylindrical sources is presented. A subclass of these solutions corresponds

to the exterior gravitational fields of rotating cylindrical systems that emit gravitational

radiation. The properties of these rotating gravitational wave spacetimes are investigated.

In particular, we discuss the energy density of these waves using the gravitational stress-

energy tensor.
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1. INTRODUCTION

The main purpose of this paper is to present a class of cylindrically symmetric vacuum

solutions of the gravitational field equations representing rotating gravitational waves and

to study some of the physical properties of such waves. The spacetimes under consideration

here are not asymptotically flat in general; therefore, the concepts of energy, momentum,

and stress do not make sense in the standard interpretation of general relativity. Never-

theless, it is possible to introduce a local gravitoelectromagnetic stress-energy tensor via a

certain averaging procedure [1]. This gravitational stress-energy tensor provides a natural

physical interpretation of the Bel-Debever-Robinson tensor that has been used frequently

in numerical relativity [2]. In this work, we study the local gravitational stress-energy

tensor for free rotating gravitational waves.

Rotating cylindrically-symmetric gravitational waves were first discussed in 1990 [3, 4].

The investigation of these solutions was motivated by Ardavan’s discovery of the speed-

of-light catastrophe [5] and its implications concerning gravitation [6]. Previous work is

generalized in the present paper and an extended class of rotating gravitational wave space-

times is analyzed. We find that the solution investigated previously [1, 2] is special, since

it is the only member of the extended class studied here that represents the propagation

of free rotating gravitational waves.

In this paper, we consider Ricci-flat spacetimes that are characterized by a metric of

the form

−ds2 = e2γ−2ψ(−dt2 + dρ2) + µ2e−2ψ(ωdt+ dφ)2 + e2ψdz2, (1)

in cylindrical coordinates (ρ, φ, z). Here γ, µ, ψ and ω are functions of t and ρ only;

moreover, the speed of light in vacuum is set equal to unity except where indicated other-

wise. The spacetime represented by equation (1) admits two commuting spacelike Killing

vectors ∂z and ∂φ. Though ∂z is hypersurface-orthogonal, ∂φ is not and this fact implies

that the isometry group is not orthogonally transitive. Instead of the variables t and ρ, it

is convenient to express the gravitational field equations in terms of retarded and advanced

times u = t− ρ and v = t+ ρ, respectively. The field equations then take the form
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(µψv)u + (µψu)v = 0, (2)

µuv −
l2

8
µ−3e2γ = 0, (3)

ωv − ωu = lµ−3e2γ , (4)

γu =
1

2µu
(µuu + 2µψ2

u), (5)

γv =
1

2µv
(µvv + 2µψ2

v), (6)

where ψu = ∂ψ/∂u, etc. Here l is a constant length characteristic of the rotation of the

system. Using equation (3), it is possible to eliminate γ from equations (5) and (6); then,

we obtain the following equations

2µ2ψ2
u = 3µ2

u − µµuu + µµuµuuv(µuv)
−1, (7)

2µ2ψ2
v = 3µ2

v − µµvv + µµvµuvv(µuv)
−1. (8)

The integrability condition for this system — i.e. ψuv = ψvu — results in a nonlinear

fourth order partial differential equation for µ. Alternatively, one could obtain the same

equation for µ by combining equations (2), (7), and (8), which shows the consistency of

the field equations (2) − (6). It is important to notice that µ cannot be a function of

u or v alone, since this possibility would be inconsistent with equation (3). The partial

differential equation of fourth order for µ is, however, identically satisfied if µ is a separable

function, i.e. µ = α(u)β(v); this leads, in fact, to the rotating waves discussed earlier [3, 4].

Here we wish to study the general solution of the field equations.

In section 2, we discuss the general solution of the field equations. We find that there

are two possible classes of solutions: The first class corresponds to the stationary exterior
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field of a rotating cylindrical source, while the second class appears to represent a mixed

situation involving rotating gravitational waves. In fact, a subclass of the latter solutions

describes the exterior fields of certain rotating sources that emit gravitational radiation;

these solutions approach the special rotating wave solution [3, 4] far from their sources.

Indeed, the only solution of the second class corresponding to a pure gravitational wave

spacetime is the special solution [3, 4] that is further discussed in section 3. In section 4,

some aspects of the energy and momentum of the special rotating gravitational waves are

discussed using the gravitoelectromagnetic stress-energy tensor developed in a recent work

[1]. The appendices contain some of the detailed calculations.

2. SOLUTION OF THE FIELD EQUATIONS

To solve the field equations (2) − (6), let us introduce the functions U, V , and W by

U = µuγu −
1

2
µuu, (9)

V = µvγv −
1

2
µvv, (10)

W = µγuv +
3

2
µuv, (11)

and rewrite equations (5) and (6) as

µψu = ǫ (µU)1/2, µψv = ǫ̂ (µV )1/2, (12)

where the symbols ǫ and ǫ̂ represent either +1 or −1 (i.e., ǫ2 = ǫ̂2 = 1). Using equation

(3), it is straightforward to show that

µUv = µuW, µVu = µvW. (13)

Let us now combine relations (12) and (13) in order to satisfy equation (2); the result is
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ǫ U−1/2(µvU + µuW ) + ǫ̂ V −1/2(µuV + µvW ) = 0. (14)

This equation can be written as

U(µuV + µvW )2 = V (µvU + µuW )2, (15)

which holds if either W 2 = UV or µ2
u V = µ2

v U ; that is, equation (15) can be factorized

into a fourth order equation and a third order equation, respectively.

Let us first consider the fourth order equation W 2 = UV . It follows from this relation

and equation (12) that W = ±µψuψv. This expression for W along with U = µψ2
u and

V = µψ2
v can be inserted into equation (13) to obtain relations that when combined with

equation (2) in the form

2µψuv = −(µuψv + µvψu) (16)

imply

ψuψv = 0. (17)

If ψ is a function of either u or v alone, then equation (2) implies that ψ must be a constant.

The spacetime represented by a constant ψ turns out to be a common special case of the

solutions discussed in this section and is flat.

Let us next consider µ2
u V = µ2

v U . It follows from equation (3) that

γu =
3

2

µu
µ

+
1

2

µuvu
µuv

, (18)

γv =
3

2

µv
µ

+
1

2

µuvv
µuv

, (19)

which together with equations (9) and (10) imply that µ2
u V = µ2

v U is essentially equivalent

to

µuvv
µv

− µvvµuv
µ2
v

=
µuvu
µu

− µuuµuv
µ2
u

. (20)
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Equation (20) can be written as

(lnµv)uv = (lnµu)vu. (21)

Let f(u) and g(v) be arbitrary functions of their arguments and consider the transformation

(u, v) → (x, y) such that

x = f(u) + g(v), (22)

y = f(u) − g(v), (23)

fu 6= 0, and gv 6= 0; then, the general solution of equation (21) is that µ should not depend

on y, i.e.

µ = µ(x). (24)

Let us now proceed to the calculation of ψ. To this end, let us consider a function

L(x) given by

L2(x) =
1

2

(

3µ′2 − µµ′′ + µ
µ′µ′′′

µ′′

)

, (25)

where a prime indicates differentiation with respect to x. Equations (7) and (8) can now

be written as

µ2ψ2
u = f2

u L2, µ2ψ2
v = g2

v L2. (26)

Furthermore,

ψu =

(

∂ψ

∂x
+
∂ψ

∂y

)

fu, (27)

ψv =

(

∂ψ

∂x
− ∂ψ

∂y

)

gv. (28)
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Combining equations (26) − (28), we find that either ψ is purely a function of x given by

µ2(dψ/dx)2 = L2(x) or ψ is purely a function of y given by µ2(dψ/dy)2 = L2(x). These

cases will now be discussed in turn.

Case (i): ψ = ψ(x)

It follows from equation (2) that in this case

dψ

dx
=

C

µ(x)
, (29)

where C is an integration constant. Thus µ(x) is determined by L2(x) = C2. To solve this

differential equation, let X = µ′ and note that

L2 =
1

2
X2

(

µ2 dX

dµ

)−1
d

dµ

(

µ3 dX

dµ

)

. (30)

Moreover, let S = µ dX/dµ; then, L2(x) = C2 can be written as

dS

dX
= 2

(

C2

X2
− 1

)

, (31)

which can be integrated to give S = −2(D+X+C2/X). Here D is an integration constant.

It follows from this result that µ(x) can be found implicitly from dµ = X(µ)dx, where

µ2 = exp

(

−
∫

XdX

X2 +DX + C2

)

. (32)

We will show that for C = 0, ψ is constant and this solution turns out to be flat. If C 6= 0,

however, we have a new solution.

The spacetime metric in this case can be written in a form that depends only on x.

That is, it is possible to show — by a transformation of the metric to normal form —

that the general solution in Case (i) has an extra timelike or spacelike Killing vector field

∂y. To this end, let us consider the coordinate transformation (t, ρ, φ, z) → (T,R,Φ, Z),

where f(u) = (T + R)/2, g(v) = (−T + R)/2, φ = Φ + H(T,R), and z = Z. In this

transformation H(T,R) is a solution of the partial differential equation

−(F +G)
∂H

∂T
+ (F −G)

∂H

∂R
+

2

l
(F +G)

dµ

dR
= 0, (33)
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where F = f−1
u , G = g−1

v , R = x, and T = y. To prove our assertion, we will show that

under this coordinate transformation the spacetime metric in Case (i) takes the form

−ds2 = P (R)(−dT 2 + dR2) + µ2(R)e−2ψ(R)[Ω(R)dT + dΦ]2 + e2ψ(R)dZ2, (34)

which is clearly invariant under a translation in T thus implying the existence of a Killing

vector field ∂T . If P (R) > 0, then this metric could represent the stationary exterior field

of a rotating cylindrical configuration. It follows from a comparison of the metric forms

(1) and (34) that

P (R) = − 2

l2
µ3 d2µ

dR2
e−2ψ(R), (35)

∂H

∂T
= −1

4
ω(F −G) + Ω(R), (36)

∂H

∂R
= −1

4
ω(F +G). (37)

Equations (36) and (37) can be used in equation (33) to show that Ω(R) = 2l−1dµ/dR. It

remains to show that the integrability condition for equations (36) and (37), i.e.

∂2H/∂R∂T = ∂2H/∂T∂R, is satisfied. It turns out that this relation is indeed true, since

it is equivalent to the field equation (4) for ω.

Finally, let us consider the case C = 0 or, equivalently, ψ = constant. It follows from

equation (31) that in Case (i)

d2µ

dR2
= − 2

µ

[

(

dµ

dR

)2

+D
dµ

dR
+ C2

]

, (38)

and one can show explicitly that the metric form (34) is flat once C = 0. For C 6= 0, the

general solution of Case (i) is not flat; however, its physical properties will not be further

discussed in this work, which is devoted to rotating gravitational waves.

Case (ii): ψ = ψ(y)
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It follows from (dψ/dy)2 = L2(x)/µ2 that ψ must be a linear function of y, since the

left hand side of this equation is purely a function of y while the right hand side is purely

a function of x; therefore, each side must be constant. Thus ψ = ay + b, where a and

b are constants, and L2 = a2µ2. It turns out that equation (3) is identically satisfied in

this case. Using equation (30), the differential equation for µ can be expressed in terms of

X = µ′ as

X2 d

dµ

(

µ3 dX

dµ

)

= 2a2µ4 dX

dµ
. (39)

If a = 0, ψ is constant and we recover the same flat spacetime solution as in Case (i)

with C = 0. Therefore, let a 6= 0 and consider a new “radial” coordinate r given by

r = (a2µ2)−1; then,

r2X2 d
2X

dr2
+
dX

dr
= 0. (40)

The solution X = constant is unacceptable, since it implies that γ = −∞. However, there

is another exact solution that is given by

X = ±
(

3

2
r

)−1/2

, (41)

which turns out to correspond to the special rotating gravitational waves [3, 4] that are

the subject of the next section. It is possible to transform equation (40) to an autonomous

form; to this end, let us define A and B such that A = 2/(3rX2) and B = −4Xr/(3X
3),

where Xr = dX/dr. It can then be shown that equation (40) is equivalent to

dB

dA
=

3

2

B(B −A2)

A(B − A)
, (42)

where (A,B) = (1, 1) represents the special solution (41). This special solution is an

isolated singularity of the nonlinear autonomous system (42) and the behavior of charac-

teristics near this point indicates that (1, 1) is a saddle point.

Let us note here certain general features of X(r), which is the solution of equation

(40). If X(r) is a solution, then so is −X(r). Moreover, equation (40) can be written as

(X2
r )r = −2X2

r /(r
2X2), which indicates that for X 6= constant the absolute magnitude of
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the slope of X(r) monotonically decreases as r increases. If X(r) has a zero at r0 6= 0,

then the behavior of X(r) near r0 is given by

X(r) = ±
√

2

r0

(

r

r0
− 1

)1/2
[

1 +
1

2

(

r

r0
− 1

)

− 3

76

(

r

r0
− 1

)2

+ . . .

]

, (43)

for r ≥ r0. These results are illustrated in figure 1.

Once a solution X(r) of equation (40) is given, one can find a solution of the field

equations in Case (ii). It turns out that in general such a solution is not a pure gravitational

wave. The only exception is the special solution (41). To demonstrate this, let us first

consider a transformation of the spacetime metric (1) to the normal form appropriate for

Case (ii). The first step in this transformation will be exactly the same as that given

in Case (i) and equation (33), i.e. (t, ρ, φ, z) → (T,R,Φ, Z). Next, we change the radial

coordinate to r and let (T,R,Φ, Z) → (t̂, r,Φ, Ẑ), where t̂ = 2aT and Ẑ = la2 exp(2b)Z.

In terms of the new system of coordinates, the spacetime metric may be expressed — up

to an overall constant factor — as

−ds2 = e−t̂
Xr

X

(

−X2dt̂2 +
dr2

r3

)

+
e−t̂

l̂2r
(l̂Xdt̂+ dΦ)2 + et̂dẐ2, (44)

where l̂ = (la)−1 is a constant and X(r) is a solution of equation (40). There are four

curvature invariants for this Ricci-flat spacetime and it is possible to show that two of these

are identically zero. The other two also vanish for the special solution (41); therefore, this

special case corresponds to free gravitational waves [7]. Specifically, let

I1 = RµνρσR
µνρσ − iRµνρσR

∗µνρσ, (45)

I2 = RµνρσR
ρσαβR µν

αβ + iRµνρσR
ρσαβR∗ µν

αβ , (46)

be the complex invariants of spacetime. We find that for the metric form (44) these are

real and are given by

I1 = −e2t̂(rX4X2
r )

−1(1 − 3rX2 − 2r2XXr − r3X3Xr + r4X2X2
r ), (47)
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I2 = −3

4
e3t̂(rX5X3

r )
−1(1 − 2rX2 − 2r2XXr + 2r3X3Xr + r4X2X2

r ). (48)

It is important to note that I1 and I2 vanish for the special solution X = ±(3r/2)−1/2,

indicating that it describes the propagation of free gravitational waves. Moreover, all other

solutions — which do not describe free gravitational waves — are singular for t̂→ ∞, since

I1 and I2 both diverge in the infinite future. Thus all such solutions evolve to states that

are ultimately singular. The singular nature of the special solution (41) has been discussed

previously [3, 4].

It is clear from equation (40) and figure 1 that as r → 0, X(r) → ±(3r/2)−1/2 for

a subclass of the spacetimes under consideration here. Such solutions correspond to the

exterior field of a rotating and radiating cylindrical source such that very far from the

symmetry axis the metric nearly describes free rotating gravitational waves given by the

unique special solution (41). Indeed, inspection of the metric form (44) reveals that the

circumference of a spacelike circle about the symmetry axis and normal to it is proportional

to r−1/2 at a given time t̂; therefore, as r → 0 the metric form (44) describes the asymptotic

region very far from the axis. Moreover, it is simple to check that I1 → 0 and I2 → 0 as

r → 0 for the solution given in figure 1 with Xr(r = 1) = −1.

Finally, let us note that the unique special solution corresponding to free gravitational

waves (41) can be written in terms of µ and x as dµ/dx = ±(2/3)1/2aµ, which can be easily

solved to show that µ depends exponentially upon x = f(u) + g(v). This means simply

that µ can be written as µ = α(u)β(v), where α and β are arbitrary functions. The next

section is devoted to a discussion of the properties of this solution beyond what is already

known from previous studies [3, 4].

3. FREE ROTATING GRAVITATIONAL WAVES

Free nonrotating cylindrical gravitational wave solutions of Eintein’s equations were

first discussed by Beck [8]. These solutions have been the subject of many subsequent

investigations [7, 9, 10]. The solutions considered in this section can be interpreted in
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terms of simple cylindrical waves that rotate [4].

The special solution (41) for free rotating gravitational waves is given by

µ = α(u)β(v), (49)

ψ =

√

3

2
ln
α

β
, (50)

γ =
1

2
ln

[

8

l2
(αβ)3αuβv

]

, (51)

ωv − ωu =
8

l
αuβv. (52)

It turns out that in this case equation (2) is equivalent to the scalar wave equation for ψ

in the background geometry given by equation (1); therefore, the function ψ — which is a

mixture of ingoing and outgoing waves according to equation (50) — has the interpretation

of the scalar potential for the free rotating gravitational waves. The solution (49) − (52)

cannot be thought of as a collision between outgoing and ingoing gravitational waves, since

the field equations do not admit solutions for which µ = µ(u) or µ = µ(v). That is, there

is no purely outgoing solution just as there is no purely ingoing solution.

The spacetime given by equations (49) − (52) is singular. In fact, the analysis of

the corresponding curvature indicates that moving singular cylinders appear whenever

α, β, αu, or βv vanishes. It is interesting to consider the nature of the symmetry axis for

rotating waves, since in these solutions the axis does not in general satisfy the condition

of elementary flatness. If for an infinitesimal spacelike circle around the axis of symmetry

the ratio of circumference to radius goes to 2π as the radius goes to zero, the condition of

elementary flatness is satisfied for the axis under consideration. In our case, this means

that µ2/(e2γρ2) → 1 as ρ → 0. For simple cylindrical waves (i.e., Beck’s solution) we

have µ = ρ and hence the condition of elementary flatness is that γ → 0 as ρ → 0. In

general, Beck’s fields can be divided into two classes: the Einstein-Rosen waves [9] and

the Bonnor-Weber-Wheeler waves [10]. In the former class, the axis does not satisfy the

condition of elementary flatness; in fact, the axis is not regular either. It is a singularity

12



of spacetime and is therefore interpreted as the source of the cylindrical waves which are

otherwise free of singularities. In the latter case, the axis does satisfy the condition of

elementary flatness and is, moreover, regular. The waves presumably originate at infinity:

Incoming waves implode on the axis and then move out to infinity with no singularities

in the finite regions of spacetime. It is therefore clear that no caustic cylinders appear

regardless of the nature of the axis. They do appear, however, when the waves rotate. We

are therefore led to regard the appearance of moving singular cylinders in our solution as

being due to the rotation of the waves. It is important to emphasize the absence of a direct

causal connection between the violation of elementary flatness at the axis and the presence

of singular cylinders: the axis is static while the singularity is in motion, and the condition

of elementary flatness involves the gravitational potentials (gµν) while the singularity of

the field has to do with the spacetime curvature. In fact, it is possible to find instances of

exact solutions for which the axis is elementary flat but singular [11].

In spacetime regions between the extrema of α and β, the solution (49) − (52) can

be reduced to a normal form in which α and β are linear functions of their arguments [3].

With further elementary coordinate transformations, the normal form can be reduced to

two special solutions which are of interest: (a) α = σu, β = σv and (b) α = σu, β = −σv.

Here σ = ±(l0)
−1/2, where l0 is a constant length whose introduction is necessary on

dimensional grounds. The metrics for these cases are, respectively,

−ds2 =
8

l40l
2
(uv)3

(u

v

)−
√

6

(−dt2 + dρ2) +
1

l20
(uv)2

(u

v

)−
√

6
(

8

l0l
ρdt+ dφ

)2

+
(u

v

)

√
6

dz2 (53)

and

−ds2 = − 8

l40l
2
(−uv)3

(

−u
v

)−
√

6

(−dt2 + dρ2) +
1

l20
(uv)2

(

−u
v

)−
√

6
(

− 8

l0l
ρdt+ dφ

)2

+
(

−u
v

)

√
6

dz2. (54)
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To ensure that the spacetime metric is real, case (a) must be limited to (u > 0, v > 0) or

(u < 0, v < 0). Similarly, case (b) must be limited to (u > 0, v < 0) or (u < 0, v > 0).

In either case the hypersurfaces u = 0 and v = 0 are curvature singularities. Since the

laws of physics break down very close to these surfaces, it appears that the consideration

of boundary conditions across such surfaces would be without physical significance. In

case (b), ρ is a temporal coordinate and t is a spatial coordinate. The transformation

(t→ ρ, ρ→ t), or equivalently (u→ −u, v → v), brings the metric to the form

−ds2 =
8

l40l
2
(uv)3

(u

v

)−
√

6

(−dt2 + dρ2) +
1

l20
(uv)2

(u

v

)−
√

6
(

− 8

l0l
tdρ+ dφ

)2

+
(u

v

)

√
6

dz2, (55)

which reduces to case (a) with a further coordinate transformation φ → φ + 8tρ/(l0l).

Therefore, only the normal form in case (a) will be considered in the rest of this paper.

The geodesic equation for free rotating gravitational wave spacetimes is discussed in

appendix A.

4. THE GRAVITATIONAL STRESS-ENERGY TENSOR

In a recent paper [1], a local gravitoelectromagnetic stress-energy tensor Tµv has been

defined for Ricci-flat spacetimes via a certain averaging procedure in a Fermi frame along

the path of a geodesic observer. That is,

Tµν =
L2

12π
Tµνρσλ

ρ
(0)λ

σ
(0)

=
L2

12π
Tµν(0)(0) , (56)

where L is a length-scale characteristic of the field under consideration, Tµνρσ is the Bel-

Debever-Robinson tensor [7, 12] defined by

Tµνρσ =
1

2
(RµξρζR

ξ ζ
ν σ +RµξσζR

ξ ζ
ν ρ ) − 1

16
gµνgρσRαβγδR

αβγδ, (57)
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and λµ(0) = dxµ/dτ is the vector tangent to the timelike path of the observer. The grav-

itational stress-energy tensor is expected to provide approximate measures of the average

gravitoelectromagnetic energy, momentum, and stress in the neighborhood of the observer.

There does not seem to be any direct connection between Tµν and the Landau-Lifshitz

pseudotensor; this point is further discussed in appendix B.

It would be interesting to study the energy of rotating gravitational waves. However,

the spacetime metric for the rotating waves (44) is given explicitly only for the case of the

exact solution (41) of the differential equation (40). This unique solution is approached

asymptotically by the rotating wave solutions very far from the symmetry axis. For the

sake of simplicity, we therefore restrict attention to the special solution (41) that, according

to the results presented in section 3, corresponds to the free rotating waves.

To determine the energy density of this radiation field measured by a geodesic observer,

it is first necessary to consider a solution of the geodesic equation discussed in appendix

A. Let us therefore choose a “radial” geodesic of the free rotating waves given by

t =
l0
2

(ζ1/p + ζ1/q), (58)

ρ = − l0
2

(ζ1/p − ζ1/q), (59)

φ =

√
5

2

(

ζ2/p − ζ2/q −
√

3

2
ζ4/5

)

+ φ0, (60)

z = z0, (61)

where we have used equations (A11) − (A14) of appendix A together with the metric in

normal form (53), i.e. α(u) = u/l
1/2
0 and β(v) = v/l

1/2
0 , and we have fixed the constants

in these equations such that τ1 = τ2 = l0 and

2c1 = l
1−p/2
0 , 2c2 = l

1−q/2
0 .

Note that the scaling parameter l0 is therefore related to the intrinsic rotation parameter

l via 2l0 =
√

5l. Moreover, φ0 and z0 are constants and ζ is defined by
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ζ = 1 − τ/l0. (62)

The observer under consideration here starts at the symmetry axis ρ = 0, which is regular

at τ = 0, and returns to it at τ = l0 when it is singular. The trajectory of this observer

ρ(φ) is depicted in figure 2.

Imagine now an orthonormal tetrad frame λµ(α) that is parallel propagated along this

timelike worldline. It is simple to work out explicitly two axes of the tetrad: the time axis

and the spatial axis parallel to the symmetry axis. These are given by λµ(0) = dxµ/dτ using

equations (58) − (61) and

λµ(3) = ζ−3/5 δµ3 , (63)

respectively. It follows from the projection of Tµνρσ given by equation (57) on these axes

that along the geodesic the gravitational radiation energy density is given by

T(0)(0) =
36

625π

L2

(l0 − τ)4
, (64)

while the energy flux along the symmetry axis vanishes, T(0)(3) = 0, as expected. There is,

however, radiation pressure along the z-axis and is given by

T(3)(3) =
3

125π

L2

(l0 − τ)4
. (65)

The energy density and the pressure measured by the geodesic observer both diverge at

the singularity τ = l0. Note that T(3)(3)/T(0)(0) = 5/12, which is less than unity as would

be expected for the ratio of pressure to density. The characteristic length-scale associated

with rotating gravitational waves is l; therefore, the constant length L in expressions (64)

and (65) could be chosen to be simply proportional to l = 2l0/
√

5.

APPENDIX A: GEODESICS IN ROTATING WAVE SPACETIMES

Starting with the metric form given by equation (1), let

16



Lg = −1

2

(

ds

dλ

)2

=
1

2
[e2γ−2ψ(−ṫ2 + ρ̇2) + µ2e−2ψ(ωṫ+ φ̇)2 + e2ψ ż2], (A1)

where ṫ = dt/dλ, etc. Since the Lagrangian (A1) does not depend upon φ and z, there are

two constants of the motion pφ and pz given by

pφ =
∂Lg
∂φ̇

= µ2e−2ψ(ωṫ+ φ̇) , (A2)

pz =
∂Lg
∂ż

= e2ψ ż. (A3)

Moreover, we have

d

dλ
(ωpφ − e2γ−2ψ ṫ) =

∂Lg
∂t

, (A4)

and

d

dλ
(e2γ−2ψρ̇) =

∂Lg
∂ρ

. (A5)

Let us now focus attention on “radial” geodesics such that the momenta associated

with azimuthal and vertical motions vanish. It is then convenient to write the equations

of motion in terms of radiation coordinates u and v. We find that equations (A2) − (A5)

reduce to

d

dλ

(

e2γ−2ψ du

dλ

)

= (e2γ−2ψ)v
du

dλ

dv

dλ
(A6)

and

d

dλ

(

e2γ−2ψ dv

dλ

)

= (e2γ−2ψ)u
du

dλ

dv

dλ
, (A7)

which imply that

e2γ−2ψ du

dλ

dv

dλ

is a constant along the path. This constant vanishes for a null geodesic, so that “radial”

null geodesics correspond to u = t− ρ = constant or v = t+ ρ = constant, where λ is the

affine parameter along the path.
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We are mainly interested in timelike “radial” geodesics, hence we set λ = τ , where

τ is the proper time along the path. Then, with Ũ = du/dτ and Ṽ = dv/dτ , we have

Ũ Ṽ = e2ψ−2γ. It follows from (A6) and (A7) that ŨvṼ
2 = ṼuŨ

2. The general solution is

given by

du

dτ
=

1

2

(

∂S
∂u

)−1

, (A8)

dv

dτ
=

1

2

(

∂S
∂v

)−1

, (A9)

where S(u, v) is any solution of the differential equation

4
∂S
∂u

∂S
∂v

= e2γ−2ψ. (A10)

This is, in fact, the Hamilton-Jacobi equation for “radial” timelike geodesics, and S along

the path differs from the proper time by a constant.

It is simple to illustrate a class of solutions of the eikonal equation (A10) via separation

of variables, i.e.

S(u, v) = −c1αp(u) − c2β
q(v), (A11)

where p = 4 −
√

6, q = 4 +
√

6, and c1 and c2 are constants such that

c1c2 =
1

5l2
. (A12)

Equations (A8) and (A9) now have solutions

α(u) =

(

τ1 − τ

2c1

)1/p

, (A13)

β(v) =

(

τ2 − τ

2c2

)1/q

, (A14)

where τ1 and τ2 are constants of integration. More explicitly, let us consider the normal

form of the metric with α(u) = l
−1/2
0 u and β(v) = l

−1/2
0 v as employed in section 4. The

geodesic would then hit the null singular hypersurface u = 0 (or v = 0) at τ = τ1 (or

18



τ = τ2). The singular nature of these moving cylinders can be seen from the fact that the

geodesic can not be continued past them since then u or v would become complex.

APPENDIX B: THE LANDAU-LIFSHITZ PSEUDOTENSOR IN RIEMANN

NORMAL COORDINATES

The energy of a gravitational field — if it can be defined at all — is nonlocal ac-

cording to general relativity. On the other hand, the Bel-Debever-Robinson tensor is

locally defined. A connection could perhaps be established between these concepts if the

energy-momentum pseudotensor of the gravitational field is expressed in Riemann normal

coordinates about a typical event in spacetime.

Let xµ be the Riemann normal coordinates in the neighborhood of some point (“ori-

gin”) in spacetime; then,

gµν = ηµν −
1

3
Rµανβ x

αxβ + · · · , (B1)

Γµνρ = −1

3
(Rµνρσ +Rµρνσ)x

σ + · · · . (B2)

The Landau-Lifshitz pseudotensor is quadratic in the connection coefficients by construc-

tion; therefore, tL−Lµν is — at the lowest order — quadratic in Riemann normal coordinates.

Hence,

tL−Lµν,αβ =
c4

144πG
Θµναβ + · · · , (B3)

where Θµναβ is symmetric in its first and second pairs of indices by construction and is

given by

Θµναβ =
1

2
(RρσµαRνσρβ +RρσµβRνσρα) +

7

2
(RµρσαR

ρσ
ν β +RµρσβR

ρσ
ν α)

−3

8
ηµνηαβRρσκδR

ρσκδ. (B4)
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This expression should be compared and contrasted with equation (57) that expresses the

Bel-Debever-Robinson tensor in a similar form. There is no simple relationship between

Θµναβ and Tµναβ ; however, one can show that

Θµναβ − 7 Tµναβ =
1

16
ηαβηµνK +

1

4
(RρσµαRρσνβ +RρσµβRρσνα) (B5)

in Riemann normal coordinates. Here K is the Kretschmann scalar, i.e. K = RµνρσR
µνρσ.
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FIGURE CAPTIONS

Figure 1. The plot of X(r) versus r for three solutions of equation (40) with the boundary

conditions that at r = 1, X = 2 and Xr = −1, 0, 1. The function −X(r) is plotted in this

figure as well. Note that the solution for Xr(r = 1) = −1 approaches the special solution

(41), also depicted here, for r → 0. The behavior of the solution for Xr(r = 1) = 1 near

r0 ≃ 0.22 is in accordance with equation (43).

Figure 2. The functions ρ(τ)/l0 and φ(τ) given by equations (59) and (60), respectively,

with φ0 = π/2 are plotted here as polar coordinates (i.e., abscissa = ρ cosφ and ordinate

= ρ sinφ). This represents the trajectory of a particle following the “radial” geodesic

given by equations (58) − (61). The particle starts at τ = 0 from ρ = 0 and moves

counterclockwise until it returns to a singular axis (ρ = 0) at τ = l0. The return trip takes

only about ten percent of the total proper time l0.
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