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We study the vacuumC metric and its physical interpretation in terms of the exterior spacetime of a
uniformly accelerating spherically-symmetric gravitational source. Wave phenomena on the linearizedC metric
background are investigated. It is shown that the scalar perturbations of the linearizedC metric correspond to
the gravitational Stark effect. This effect is studied in connection with the Pioneer anomaly.
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I. INTRODUCTION

In testing general relativity within the solar system, t
post-Newtonian framework is generally employed~see, e.g.,
@1#!. The post-Newtonian formalism is essentially based
an underlying inertial system of coordinates@2#, which for
solar-system studies can be identified with the barycen
reference frame. This assumes that the center of mass o
Sun follows a geodesic. In this paper, we raise the possib
that the center of mass of the Sun may be undergoing tr
lational acceleration due to nongravitational forces result
perhaps from anisotropic solar emission. Within the fram
work of general relativity, a free rotating extended body do
not follow a geodesic according to the Mathisso
Papapetrou-Dixon equations; however, the deviation from
geodesic for the Sun or the planets would be negligibly sm
for our present considerations. We therefore neglect
gravitational effects of the rotation of the Sun in this wo
and concentrate instead on the possibility that the cente
mass of the Sun has a small but non-negligible translatio
acceleration of unknown origin. Thus the barycentric ref
ence frame would then be an accelerated frame of refere
All planets and satellites would be affected due to the pr
ence of inertial forces arising from the noninertial charac
of the reference system. The effect of such inertial forces
the planets could be negligible at present in comparison w
other forces; regarding satellites however, it may be
source of the Pioneer anomaly as discussed later in this
per.

The exterior gravitational field of a uniformly accelerat
spherically symmetric gravitational source is given by t
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vacuumC metric. This metric is discussed in Sec. II. We a
particularly interested in the motion of particles and waves
this field. To this end, we first express theC metric in appro-
priate coordinates as a nonlinear superposition of
Schwarzschild and Rindler metrics. Then in Sec. III we l
earize theC metric and show that the propagation of pa
ticles and waves in the linearizedC metric corresponds to the
gravitational Stark effect. That is, a particle in this field
subject to the gravitational attraction of the central source
well as the uniform inertial force; this is the gravitoelectr
analog of an electron in the combined Coulomb and an
ternal uniform electric field, as in the Stark effect. The co
sequences of this effect for interferometry in the gravitatio
field of an accelerated object are pointed out in Sec. IV. T
Pioneer anomaly is discussed in Sec. V. Section VI conta
a brief discussion of our results.

II. VACUUM C METRIC

The vacuumC metric was first discovered by Levi-Civita
@3# in 1918 within a class of degenerate static vacuum m
rics. However, over the years it has been rediscovered m
times: by Newman and Tamburino@4# in 1961, by Robinson
and Trautman@5# in 1961 and again by Ehlers and Kun
@6#—who called it theC metric—in 1962. The chargedC
metric has been studied in detail by Kinnersley and Wal
@7,8#. In general the spacetime represented by theC metric
contains one or, via an extension, two uniformly accelera
particles as explained in@8,11#. A description of the geomet
ric properties of various extensions of theC metric as well as
a more complete list of references is contained in@12#. The
main property of theC metric is the existence of two
hypersurface-orthogonal Killing vectors, one of which
timelike ~showing the static property of the metric! in the
spacetime region of interest in this work. TheC metric is
often written in the form@7,8#

ds25
1

A2~ x̃1 ỹ!2
@~ F̃dt22F̃21dỹ 2!2~G̃21dx̃ 21G̃dz̃2!#,

~1!

o-
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where

F̃~ ỹ!ª211 ỹ 222mAỹ3,

G̃~ x̃!ª12 x̃ 222mAx̃3,

G̃~ x̃!52F̃~2 x̃!. ~2!

These coordinates are adapted to the hypersurf
orthogonal Killing vectork5] t , the spacelike Killing vector
] z̃ and] x̃ , which is aligned along the nondegenerate eig
vector of the hypersurface Ricci tensor. The constantsm
>0 and A>0 denote the mass and acceleration of
source, respectively. Unless specified otherwise, we cho
units such that the gravitational constant and the spee
light in vacuum are unity. Moreover, we assume that theC
metric has signature-2; to preserve this signature, we m
haveG̃.0. We assume further thatF̃.0; it turns out that
the physical region of interest in this case corresponds
mA,1/(3A3) @13–15#. The C metric is of Petrov type D
and belongs to the Weyl class of solutions of the Einst
equations@12#.

It is useful to introduce the retarded coordinateu, the
radial coordinater and the azimuthal coordinatef:

u5
1

A F t1E ỹ
F̃21dỹG , r 5

1

A~ x̃1 ỹ!
, f5 z̃, ~3!

so that the metric can be cast in the form

ds25H̃du212dudr 12Ar2dudx̃2
r 2

G̃
dx̃ 22r 2G̃df2,

~4!

where

H̃~r ,x̃!512
2m

r
2A2r 2~12 x̃ 222mAx̃3!

2Ar~2x̃16mAx̃2!16mAx̃. ~5!

The norm of the hypersurface-orthogonal Killing vectork is
determined byH̃,

kaka5r 2F̃5
H̃

A2
, ~6!

so that this Killing vector is timelike forH̃.0.
In this section, we deal separately with the two limitin

cases ofm50 andA50; therefore, we find it convenient t
work with the $u,r ,u,f% coordinate system, where (r ,u,f)
are spherical polar coordinates withx̃5cosu. Thus theC
metric takes the form

ds25Hdu212dudr 22Ar2sinududu2
r 2sin2u

G
du2

2r 2Gdf2, ~7!
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whereG andH are given by

G~u!5sin2u22mAcos3u,

H~r ,u!512
2m

r
2A2r 2~sin2u22mAcos3u!

22Ar cosu~113mAcosu!

16mAcosu. ~8!

Bonnor @16# has discussed how the present form of theC
metric can be cast in Bondi’s form.

As already demonstrated in@7,8#, the metric~7! can be
seen to be a nonlinear superposition of two metrics, one
sociated with a Schwarzschild black hole~caseA50) and
the other corresponding to a uniformly accelerating parti
~casem50). To illustrate this point we proceed as follow
Let us first consider a background Minkowski spacetim
with Cartesian ~inertial! coordinates xm5$t,x,y,z% and
imagine apoint mass m—assumed to be only atestparticle
at first—accelerating along the negativez-axis with uniform
accelerationA. The worldline of the test particle, param
etrized with its proper timet, is given by

t5
1

A
sinhAt, x50, y50, z5z02

1

A
~211coshAt!.

~9!

It is convenient to assumez0521/A, so that the worldline
of m can be expressed as

xm
m5

1

A
~sinhAt, 0, 0, 2coshAt!. ~10!

Let us now set up a Fermi frame~i.e. a nonrotating Fermi-
Walker transported tetrad! along this worldline; that is,

l (0)5coshAt] t2sinhAt]z ,

l (1)5]x ,

l (2)5]y ,

l (3)52sinhAt ] t1coshAt]z . ~11!

The Fermi coordinates$T,X,Y,Z% are defined to be such tha

xm2xm
m5Xil ( i )

m , t5T. ~12!

Therefore the map$t,x,y,z%→$T,X,Y,Z% is given by

t5S 1

A
2ZD sinhAT,

x5X,

y5Y,

z52S 1

A
2ZD coshAT. ~13!
0-2
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With this coordinate transformation, the line element ds2

5dt22dx22dy22dz2 becomes the Rindler metric@9,10#

ds25~12AZ!2dT22dX22dY22dZ2. ~14!

The coordinates in Eq.~14! are admissible forTP(2`,
1`), XP(2`,1`), YP(2`,1`) andZP(2`,1/A). In
the Rindler spacetime, the hypersurface-orthogonal Kill
vector ]T is timelike, but becomes null on the horizonZ
51/A. The coordinate system breaks down beyond this li
and is inadmissible. ActuallyZ51/A corresponds to a nul
cone in$t,x,y,z% coordinates, sincez22t25(Z21/A)2.

Let us now suppose that the point massm is not a test
particle; that is, its gravitational field cannot be neglected
the Fermi system the point particle is at the origin of co
dinates (T,0,0,0); therefore, by itself, its metric should be t
Schwarzschild solution given by

ds25S 12
2m

r DdT22S 12
2m

r D 21

dr 22r 2dV2, ~15!

where dV25du21sin2udf2 and

X5r sinu cosf, Y5r sinu sinf, Z5r cosu.
~16!

We will show that the unchargedC metric is a nonlinear
superposition of Eqs.~14! and~15!. To this end, we conside
the C metric written in the form~7!.

Case 1. LetA50. Then Eq.~7! becomes

ds25S 12
2m

r Ddu212dudr 2r 2dV2. ~17!

Next, we introduce the coordinate transformationu52T
2r * , wherer * is the tortoise coordinate

r * 5r 12m lnS r

2m
21D ,

dr *

dr
5S 12

2m

r D 21

. ~18!

With du52dT2dr /(122m/r ), ds2 takes the form~15!, i.e.
it coincides with the Schwarzschild solution. Of course
this case one has a horizon atr 52m. The hypersurface-
orthogonal Killing vector]T is timelike for r .2m, null on
the horizonr 52m and spacelike in the interiorr ,2m.

Case 2. Letm50. Then the metric~7! becomes

ds25~122Ar cosu2A2r 2sin2u!du212dudr

22Ar2sinududu2r 2du22r 2sin2udf2. ~19!

By using the coordinate transformation

T52u1
1

2A
lnF12Ar~11cosu!

11Ar~12cosu!G ,
X5r sinu cosf,

Y5r sinu sinf,
04402
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1

A
2AS 1

A
2r cosu D 2

2r 2, ~20!

the metric~14! takes the form~19!. To see how this comes
about, let us start with Eq.~19! and introduce new coordi
natesT andZ according to

2S 1

A
2ZD sinhAT5S 1

A
2r cosu D sinhAu1r coshAu,

S 1

A
2ZD coshAT5S 1

A
2r cosu D coshAu1r sinhAu.

~21!

By adding and subtracting these equations one gets

S 1

A
2ZD5F 1

A
1r ~12cosu!GeA(u1T),

S 1

A
2ZD5F 1

A
2r ~11cosu!Ge2A(u1T).

~22!

Now multiply and divide these equations to find

S 1

A
2ZD 2

5S 1

A
2r cosu D 2

2r 2,

11Ar~12cosu!

12Ar~11cosu!
5e22A(u1T), ~23!

from which the expressions forZ and T in Eq. ~20! follow.
We note that in the relation forZ in Eq. ~20! the sign has
been chosen such thatZ→r cosu asA→0. The coordinates
T andZ are admissible forr 2,r ,r 1 , where

r 656
1

A~16cosu!
. ~24!

If we interpretr as the radial coordinate, then

0<r ,r 15
1

A~11cosu!
. ~25!

The boundary region corresponds to the horizon in (r ,u)
coordinates. It is natural to assume that in the nonlinear
perposition of these two cases that results in the vacuumC
metric, the horizons atr 52m andr 5r 1 would be appropri-
ately modified. This can be deduced explicitly from the for
of H.

It is useful to introduce an acceleration lengthscale ba
on A.0 given by

LA5
1

3A3A
. ~26!
0-3
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It turns out that the modification of the horizons is related
the ratio ofm andLA . The event horizons of the vacuumC
metric are Killing horizons given byH50 @8#. The solution
of H50 can be written as

r 215A~cosu1W21!, ~27!

whereW is a solution ofW32W12mA50. There are three
cases depending on whetherm is less than, equal to o
greater thanLA . We have assumed at the outset thatm
,LA ; therefore, we expect that the two individual horizon
i.e. the inner one atr 52m and the outer one atr 5r 1 will be
somewhat modified. In fact let

1

A3
S 2

m

LA
1 iA12

m2

LA
2 D 5Û1 iV̂, ~28!

then there are three real solutions forW given by W52Û,
which results inr 52m for A→0, W52Û2A3V̂, which
results in r 1

215A(11cosu) for m→0, and W52Û

1A3V̂, which results inr 2
215A(cosu21) for m→0 and is

therefore unacceptable.

III. GRAVITATIONAL STARK EFFECT

It is interesting to reduce theC metric to linear form inm
andA by neglectingm2, mA, A2 and higher-order terms. I
follows from Eq.~20! in the m50 limit that

T52u2r 2Ar2cosu1O~A2!,

Z5r cosu1
1

2
Ar21O~A2!. ~29!

Therefore, in metric~7! let us consider the coordinate tran
formation$u,r ,u,f%→$T,X,Y,Z%, where

T52u2F r 12m lnS r

2m
21D G2Ar2cosu,

X5r sinu cosf,

Y5r sinu sinf,

Z5r cosu1
1

2
Ar2. ~30!

This is a ‘‘linear superposition’’ of the transformations us
in case 1 and case 2 of the previous section. The metric~7!
under the transformation~30! takes the form

ds25S 12
2m

R
22AZDdT22

2m

R3
~XdX1YdY1ZdZ!2

2dX22dY22dZ2, ~31!

whereR5AX21Y21Z2 and we have neglectedm2, mA, A2

and higher-order terms. Next, introduce polar coordinateQ
andF such that
04402
,

X5R sinQ cosF, Y5R sinQ sinF, Z5R cosQ.
~32!

With respect to these, our linearized metric becomes

ds25S 12
2m

R
22ARcosQ DdT22S 11

2m

R DdR2

2R2~dQ21sin2QdF2!, ~33!

which is a linear superposition of Eqs.~14! and ~15!. It is
useful to note here the transformation$u,r ,u,f%
→$T,R,Q,F% given by

u52T2R22m lnS R

2m
21D2

1

2
AR2cosQ,

r 5R2
1

2
AR2cosQ,

u5Q1
1

2
ARsinQ,

f5F ~34!

that takes metric~7! directly to the form ~33! neglecting
terms of orderm2, mA, A2, etc. Finally, introducing the
isotropic radial coordinater,

R5S 11
m

2r D 2

r5r1m1
m2

4r
.r1m, ~35!

we get the linear metric in standard form

ds25S 12
2m

r
22AẐDdT22S 11

2m

r D ~dX̂ 21dŶ 21dẐ 2!,

~36!

where

X̂5r sinQ cosF, Ŷ5r sinQ sinF, Ẑ5r cosQ.
~37!

The geodesic motion of a test particle in this gravitation
field, which is characterized by a gravitoelectric potent
m/r1AẐ, is quite similar to the classical motion of the ele
tron in the Stark effect. Moreover, the wave mechanics of
Stark effect is also reflected in the behavior of the pertur
tions of Eq.~36! by a classical massless radiation field. Co
sider the massless scalar field equation

¹m]mx50 ~38!

on the background spacetime given by the metric~36!. To
first order in m and A, x can be separated by introducin
parabolic coordinates in analogy with the Stark effect, wh
is the shift in the energy levels of an atom in an exter
electric field corresponding to the eigenvalues of a Sch¨-
dinger equation with a Coulomb potential2k/r plus the po-
0-4
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tential due to a constant electric fieldE5Eẑ, i.e. 2k/r
1eEz, where2e is the charge of the electron. In this grav
toelectromagnetic counterpart of the Stark effect, we set

X̂5Ajh cosc, Ŷ5Ajh sinc, Ẑ5
1

2
~j2h!,

~39!
w
an

-

04402
and assume that

x~T,j,h,c!5e2 ivTeincU~j!V~h!, ~40!

where j>0, h>0, c takes values from 0 to 2p, v is a
constant andn is an integer.

It follows from Eq. ~38! that
Ujj1
1

j S 12
1

2
Aj DUj1Fv2

4
~11jA!1

1

j
~mv22C!2

n2

4j2GU50,

Vhh1
1

h S 11
1

2
Ah DVh1Fv2

4
~12hA!1

1

h
~mv21C!2

n2

4h2GV50, ~41!
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whereC is the separation constant andUj5dU/dj, etc. Note
that the second equation forV(h) can be obtained from the
first one forU(j) by replacingA→2A andC→2C. Intro-
ducing a new constantb by

C5
1

2 S b2
A

2 D ~42!

and rescalingU andV,

U~j!5S 11
Aj

4 Da~j!, V~h!5S 12
Ah

4 Db~h!, ~43!

Eqs.~41! become

d

dj S j
da

dj D1Fv2j

4
2

n2

4j
1

Av2

4
j21S mv21

b

2 D Ga50,

d

dh S h
db

dh D1Fv2h

4
2

n2

4h
2

Av2

4
h21S mv22

b

2 D Gb50.

~44!

These equations can be put in exact correspondence
the Schro¨dinger equation for the hydrogen atom in a const
electric field that results in the Stark effect@17#

i ] tC5~H01H1!C, ~45!

where we set\51 in this section andC is given by
C(t,j,h,c)5e2 iE0teinca(j)b(h),

H052
1

2M
¹22

k

r
, H15eEz5

E
M

z ~46!

and the standard notation forr, related to the Cartesian co
ordinates byr 5(x21y21z2)1/2, has been used. HereE is a
new perturbation parameter defined byE5eME. For the hy-
drogen atomM is the reduced mass andk5e2. Passing to
parabolic coordinates
ith
t

x5Ajh cosc, y5Ajh sinc, z5
1

2
~j2h!, ~47!

one hasr 5(j1h)/2 and

¹25
4

j1h F ]

]j S j
]

]j D1
]

]h S h
]

]h D G1
1

jh

]2

]c2
. ~48!

The equations fora andb then become

d

dj S j
da

dj D1FME0j

2
2

n2

4j
2

E
4

j21
M

2
~k1b̃ !Ga50,

d

dh S h
db

dh D1FME0h

2
2

n2

4h
1

E
4

h21
M

2
~k2b̃ !Gb50,

~49!

where b̃ is the separation constant. The correspondence
these equations with Eq.~41! is exactonce

ME0→
v2

2
, E→2Av2, kM→2mv2, M b̃→b.

~50!

The solution of equations~49! is discussed in detail in
standard treatments of nonrelativistic quantum mecha
~see, e.g.@17#!. In the absence of the perturbation~i.e. E
50), it is well known that the solutions of Eqs.~49! can be
expressed in terms of the hypergeometric functions for
discrete (E0,0) as well as the continuum (E0.0) states of
the hydrogen atom. Equations~49! cannot be solved exactly
however, the Stark shift can be evaluated in perturbat
theory for a sufficiently small external electric field.

Let us note here again the close formal corresponde
between the quantum theory of the Stark effect in hydrog
and the theory of a classical massless scalar field on
linearized C metric background. To extend this result
massless fields with nonzero spin, we encounter difficult
In fact, using the Newman-Penrose formalism, it is possi
0-5
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to separate the equations in a particular set of coordin
@18#; on the other hand, the field equations are not separ
in the physically transparent coordinate system of our line
ized C metric.

For many laboratory applications, the potential associa
with the gravitational Stark effect can be written asm/r
1Ar cosQ with r5r % 1z, wherer % is the average radiu
of the Earth andz is the local vertical coordinate in th
laboratory. Using the local acceleration of gravity,g
5m/r %

2 , the effectiveNewtoniangravitational potential is
then 2m/r % 1gz2A(r % 1z)cosQ; some of the applica-
tions of this potential are discussed in the next section.

IV. ACCELERATION-INDUCED PHASE SHIFT

It follows from the results of the previous section th
wave phenomena in the exterior spacetime represente
Eq. ~36! will also be affected by the accelerationA. Consider,
for instance, wave phenomena in a laboratory fixed on
Earth, which is usually assumed to follow a geodesic of
spacetime manifold. However, we wish to take into accoun
uniform nongravitational acceleration of the center of m
of the Earth. Indeed, the deviation of the Earth’s motion fro
a geodesic could be due to the solar radiation pressure.
other possibility would be the Mathisson-Papapetrou c
pling of the curvature of the solar gravitational field with th
angular momentum of the Earth. Estimates suggest that
accelerations are very small and at a level bel
;10210 cm/s2. Nevertheless, for an Earth-based experim
the appropriate exterior field for the ‘‘nonrotating spherica
Earth would be given by Eq.~36! if the acceleration can be
considered uniform for the duration of the experiment. Ta
ing the rotation of the Earth into account, we mention th
the rotatingC metric has been discussed by a number
authors@12#, but is beyond the scope of this paper.

The Earth’s acceleration will introduce a very small sh
in the phase of a wave propagating in the gravitational fi
of the Earth. Consider, for instance, the gravitationally
duced quantum interference of neutrons as in the COW
periment@19,20#. Let us imagine for the sake of simplicit
that the Ẑ axis of the system$T,X̂,Ŷ,Z% of metric ~36!
makes an angleQ with the vertical direction in our loca
laboratory and so an otherwise free particle in the labora
is subject to the effective Newtonian gravitational accele
tion g2A cosQ. The corresponding neutron phase shift
the COW experiment would then be given by

Dw5~g2A cosQ!
Av

v
sina, ~51!

wherev is the de Broglie frequency of the neutron,A is the
area of the interferometer,a is the inclination angle of the
interferometer plane with respect to the horizontal plane
the laboratory andv is the neutron speed. WhenA50 or
Q5p/2, this formula reduces to the standard formula of
COW experiment@20#.

It should be mentioned that observational evidence
ready exists for the acceleration-induced phase shift of n
trons according to the experimental results of Bonse
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Wroblewski@21# involving a system undergoing linear acce
eration. The essential ideas in the derivation of Eq.~51! can
be naturally extended to other neutron experiments@22,23#
as well as interference experiments involving photons@24#
and atoms@25–27#. In particular, in future space-borne ato
interferometry experiments the inertial acceleration of ato
resulting from the nongeodesic motion of the satellite sho
be taken into account along the lines indicated here.

Our discussion of neutron interferometry experiments
involved unpolarized neutron beams. In a noninertial fra
of reference, the neutron is in general influenced by
translational and rotational accelerations of the system.
intrinsic spin of the neutron is expected to couple with t
rotation of the frame. An interesting question is wheth
there exists a similardirect coupling between intrinsic spin
and linear acceleration. At present, there is no observatio
evidence in support of a direct spin-acceleration coupl
@28#.

V. PIONEER ANOMALY

The physical relevance of theC metric may be clarified
via nonrelativistic celestial mechanics as follows. Imagine
inertial reference frame and a star of massm such that its
center of mass accelerates with a constant acceleratioA
5Aẑ with A.0. Thus the motion of a planet or a satelli
about the star in terms of a noninertial coordinate syst
$t,x,y,z% in which the star is at rest with its center of mass
the origin of the spatial coordinates is given to lowest ord
by

d2r

dt2
1

mr

r 3
52A ~52!

in accordance with Newtonian physics. The effective Ne
tonian gravitational potential is in this case given by2m/r
1Az, which is analogous to the electric potential for th
Stark effect. Assuming that2A produces a small perturba
tion on the Keplerian motion of the planet or satellite, o
can use the general methods of celestial mechanics, suc
the scheme developed in@29#, to find the perturbed motion
Within the context of general relativity, the equation of m
tion of the test planet or satellite is given by the geode
equation in the vacuumC metric.

Let us now apply these ideas to the anomalous accel
tion of Pioneer 10 and Pioneer 11@30,31#. The Pioneer 10/11
Missions were launched over thirty years ago and have b
the first to explore the outer solar system. The analysis
Doppler tracking data from Pioneer 10/11 spacecraft is c
sistent with the existence of a small anomalous accelera
of about 1027 cm/s2 toward the Sun. The effect first ap
peared at a distance of about 20 astronomical units from
Sun, where the outward acceleration of the spacecraft du
the solar radiation pressure reached a level well be
1027 cm/s2. To explain the Pioneer anomaly, the comp
nents of the acceleration2A along the directions of motion
of the spacecraft must be both towards the Sun and appr
mately equal to;1027 cm/s2. Let us recall that Pioneer 10
and Pioneer 11 are moving away from the solar system
0-6



t
p-

nd
th

-
th
an

he
ca
m
er
n

po
o

he
n

e

neer
par-
ns,
eer
ny
ly
el-
any
a
on.

the
ra-
rk
ve

-
rz-
v-

t.

e-
for
s to
.

VACUUM C METRIC AND THE GRAVITATIONAL STARK . . . PHYSICAL REVIEW D 70, 044020 ~2004!
almost opposite directions; more exactly, Pioneer 11 is ou
the ecliptic, 17° inclination, while Pioneer 10 is in the ecli
tic, 3° inclination @32#. Let P̂ and P̂8 be unit vectors that
indicate the radial directions of motion of Pioneer 10 a
Pioneer 11 with respect to the Sun, respectively. Suppose
the smaller angle between these directions is given byp
22b, whereb.7°. Then,A can be expressed as

A5
A0

2 sinb
~P̂1P̂8!, ~53!

whereA0.1026 cm/s2 is the magnitude of the vectorA and
is such that, with sin7°.0.12, A0sinb is the magnitude of
the anomalous acceleration. Let us note using Eq.~53! that
A•P̂5A•P̂85A0sinb. It is therefore possible to find a vec
tor 2A that generates the Pioneer anomaly; however,
problem is then shifted to explaining the origin of such
acceleration of the center of mass of the Sun.

One possibility could be recoil acceleration due to t
anisotropic emission of solar radiation. For most practi
purposes, one may assume that normal stars on the
sequence such as the Sun radiate isotropically. As a matt
principle, however, it is difficult to believe that at any give
instant of time the net momentum radiated along all anti
dal directions would be exactly zero. However, even if all
the Sun’s intrinsic luminosity were directed only along t
negativez-axis, the recoil of the Sun due to momentum co
servation would have an accelerationAẑ, where A
.10210 cm/s2. This is about four orders of magnitud
a

s

al

rs
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smaller than the acceleration needed to explain the Pio
anomaly. On the other hand, the Sun also emits charged
ticles in the form of the solar wind, coronal mass ejectio
etc.; again, simple estimates suggest that the Pion
anomaly is comparatively too large to be explained by a
anisotropy in normal solar activity. Thus it appears high
unlikely on the basis of current data that solar recoil acc
eration could be responsible for the Pioneer anomaly. In
case, theC metric is in principle no longer applicable to
radiating source. These issues require further investigati

VI. DISCUSSION

In this paper, we have considered the possibility that
Pioneer anomaly could be due to a small uniform accele
tion of the center of mass of the Sun. Within the framewo
of general relativity, accelerating gravitational sources ha
been discussed by many authors@12#. The simplest such so
lution corresponding to a uniformly accelerated Schwa
schild source is theC metric. We have shown that the beha
ior of particles and waves on the linearizedC metric back-
ground can be described by the gravitational Stark effec
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