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We study the vacuunC metric and its physical interpretation in terms of the exterior spacetime of a
uniformly accelerating spherically-symmetric gravitational source. Wave phenomena on the lin€arizgrc
background are investigated. It is shown that the scalar perturbations of the lineanizettic correspond to
the gravitational Stark effect. This effect is studied in connection with the Pioneer anomaly.
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[. INTRODUCTION vacuumC metric. This metric is discussed in Sec. Il. We are
particularly interested in the motion of particles and waves in
In testing general relativity within the solar system, thethis field. To this end, we first express t@emetric in appro-
post-Newtonian framework is generally employsée, e.g., Priate coordinates as a nonlinear superposition of the

[1]). The post-Newtonian formalism is essentially based On‘SchwarzschiId and Rindler metrics. Then in Sec.. 1l we lin-
an underlying inertial system of coordinate®, which for earize theC metric and show that the propagation of par-

solar-svstem studies can be identified with the ba Centriticles and waves in the lineariz&metric corresponds to the
y ry ravitational Stark effect. That is, a particle in this field is

reference frame. This assumes that the center of mass of W@ piect to the gravitational attraction of the central source as
Sun follows a geodesic. In this paper, we raise the possibilityye|| as the uniform inertial force; this is the gravitoelectric
that the center of mass of the Sun may be undergoing trangmajog of an electron in the combined Coulomb and an ex-
lational acceleration due to nongravitational forces resultingernal uniform electric field, as in the Stark effect. The con-
perhaps from anisotropic solar emission. Within the framesequences of this effect for interferometry in the gravitational
work of general relativity, a free rotating extended body doesield of an accelerated object are pointed out in Sec. IV. The
not follow a geodesic according to the Mathisson-Pioneer anomaly is discussed in Sec. V. Section VI contains
Papapetrou-Dixon equations; however, the deviation from a brief discussion of our results.
geodesic for the Sun or the planets would be negligibly small
for our present considerations. We therefore neglect the Il. VACUUM C METRIC
gravitational effects of the rotation of the Sun in this work 14 \acuunC metric was first discovered by Levi-Civita
and concentrate instead on the p035|b|I|ty_that the center ([g] in 1918 within a class of degenerate static vacuum met-
mass of the Sun has a small but non-negligible translationgcs However, over the years it has been rediscovered many
acceleration of unknown origin. Thus the barycentric referimes: by Newman and Tamburifid] in 1961, by Robinson
ence frame would then be an accelerated frame of referencgnd Trautmar{5] in 1961 and again by Ehlers and Kundt
All planets and satellites would be affected due to the presfg}—who called it theC metric—in 1962. The charge@
ence of inertial forces arising from the noninertial characteimetric has been studied in detail by Kinnersley and Walker
of the reference system. The effect of such inertial forces ofi7,8]. In general the spacetime represented byGhmetric
the planets could be negligible at present in comparison witltontains one or, via an extension, two uniformly accelerated
other forces; regarding satellites however, it may be theparticles as explained ir8,11]. A description of the geomet-
source of the Pioneer anomaly as discussed later in this p#ic properties of various extensions of t@ametric as well as
per. a more complete list of references is containedlig]. The
The exterior gravitational field of a uniformly accelerated main property of theC metric is the existence of two

spherically symmetric gravitational source is given by thehypersurface-orthogonal Killing vectors, one of which is
timelike (showing the static property of the mefrim the

spacetime region of interest in this work. TRemetric is
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where whereG andH are given by
F(y):=—1+y2-2mAy?, G(6)=sirfd—2mAcosd,
G(X):=1—-x%-2mAx® 2m o,
' : H(r,0)=1— ——A% (sirf6—2mAcos’6)
Gx)=—F(=). @ —2Ar cosf(1+3mAcosb)
These coordinates are adapted to the hypersurface- +6mACosh. ®)

orthogonal Killing vectork=d;, the spacelike Killing vector
d; and dy, which is aligned along the nondegenerate eigenBonnor[16] has discussed how the present form of (e
vector of the hypersurface Ricci tensor. The constants metric can be cast in Bondi’'s form.
=0 and A=0 denote the mass and acceleration of the As already demonstrated {7,8], the metric(7) can be
source, respectively. Unless specified otherwise, we chooseen to be a nonlinear superposition of two metrics, one as-
units such that the gravitational constant and the speed afociated with a Schwarzschild black hdleaseA=0) and
light in vacuum are unity. Moreover, we assume that @e the other corresponding to a uniformly accelerating particle
metric has signature-2; to preserve this signature, we mustasem=0). To illustrate this point we proceed as follows.
haveG>0. We assume further th&>0: it turns out that Let us first consider a background Minkowski spacetime
the physical region of interest in this case corresponds t@ith Cartesian (inertial) coordinates x*={t,x,y,z} and
mA<1/(3y3) [13-15. The C metric is of Petrov type D iMagine apoint mass r-assumed to be only @stparticle
and belongs to the Weyl class of solutions of the Einsteirt first—accelerating along the negatx-axis with uniform
equationg 12]. accelerationA. The worldline of the test particle, param-

It is useful to introduce the retarded coordinatethe  etrized with its proper timer, is given by
radial coordinate and the azimuthal coordinatg:

1 1
t=KsinhAr, x=0, y=0, z=zO—K(—1+coshAr).

! tJrFT:‘lol~ ! b=z (3) 9
u=— , (= ———=—, ¢=2,
A y AGY) 9
. i It is convenient to assumg = —1/A, so that the worldline
so that the metric can be cast in the form of mcan be expressed as
- ~ 2 - 1
ds?=Hdu?+2dudr + 2Ar?dudx— —dx2—r2Gde¢?, xt=—(sinhAr, 0, 0, —coshA7). (10)
G
@ . | .
Let us now set up a Fermi fran{ée. a nonrotating Fermi-
where Walker transported tetraclong this worldline; that is,

F(r B =1- 20— A2r2(1-%2~ 2mA%) N0 CosPATATSInAT
’ r

_ _ _ )\(1): (7)(,
—Ar(2x+6mAx?) + 6mAXx (5)
N2)=dy.
The norm of the hypersurface-orthogonal Killing vecitois
i The Fermi coordinatefT, X,Y,Z} are defined to be such that
a_ 2
Kok =T1F=—, (6) .
A? XE—xh=X\fy, 7=T. (12)
so that this Killing vector is timelike foH>0. Therefore the mayt,x,y,z}—{T.,X,Y,Z} is given by
In this section, we deal separately with the two limiting 1
cases oim=0 andA=0; therefore, we find it convenient to t= (——Z)sinhAT,
work with the{u,r, 6, ¢} coordinate system, where,@, ¢) A

are spherical polar coordinates with=cosé. Thus theC

metric takes the form x=X,
_ r?sinf y=Y,
ds?=Hdu?+ 2dudr — 2Ar?sin dudd— de?
1
—r2Gd¢? (7) z= —(K—Z)coshAT. (13
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With this coordinate transformation, the line elemest d 1 1 2
=dt?— dx?— dy?— dz? becomes the Rindler metrj®,10] Z=75- (K_r COSH) -r?, (20)
ds?=(1—AZ)%dT2—dx?—dY?—dz2. (14

the metric(14) takes the form(19). To see how this comes
The coordinates in Eq(14) are admissible fofT e (— o, about, let us start w_ith Eq19) and introduce new coordi-
+0), Xe (=%, +%), Ye(—o,+0) andZe (—»,1/A). In natesT and Z according to

the Rindler spacetime, the hypersurface-orthogonal Killing

vector d7 is timelike, but becomes null on the horizah —(——Z)sinhAT=(
=1/A. The coordinate system breaks down beyond this limit A

and is inadmissible. Actually=1/A corresponds to a null

! 0
7 I cos

sinhAu+r coshAu,

cone in{t,x,y,z} coordinates, since®—t2=(Z— 1/A)2. 1 1 _
Let us now suppose that the point masss not a test A ~Z|COSPAT=| - —r cosf|coshAu+r sinhAu.
particle; that is, its gravitational field cannot be neglected. In (21)

the Fermi system the point particle is at the origin of coor-

dinates T,0,0,0); therefore, by itself, its metric should be the By adding and subtracting these equations one gets
Schwarzschild solution given by

1 1
2m 2m\| ! ——Z)z —+r(1—cosg) M,
dszz(l—T)de—(l—T) dr?—r2dQ?, (15 A A
2_d4p21 i 2 1 1 B
where d)?=dé?+ sirfgd¢p? and A~Z|=| 3 -r(1+coso) e Au+T).
X=rsinfcose, Y=rsingsing, Z=r cosh. (22

16
{19 Now multiply and divide these equations to find
We will show that the uncharge@ metric is a nonlinear
superposition of Eqg14) and(15). To this end, we consider
the C metric written in the form(7).
Case 1. LeA=0. Then Eq.7) becomes

2
_r2,

1 . 2 (1 ;
K_ = K—rcos

1+Ar(1-cosé) _

C e Y e2A@tT)
du?+2dudr —r2dQ2. (17) 1-Ar(1+cosf) © ’ (23

2m
dSzz(l— T

from which the expressions fa and T in Eq. (20) follow.
We note that in the relation faZ in Eq. (20) the sign has
been chosen such that-r cosd asA—0. The coordinates

Next, we introduce the coordinate transformatios —T
—r*, wherer* is the tortoise coordinate

r dr* om) 1 T andZ are admissible for _<r<r_, where
r*=r+2min| =—-1|, —=|1—-—| . (18
2m dr r 1
, , Fro=t— (24)
With du= —dT—dr/(1—2m/r), ds? takes the forn{15), i.e. A(1*cosb)

it coincides with the Schwarzschild solution. Of course in
this case one has a horizon at2m. The hypersurface- If we interpretr as the radial coordinate, then
orthogonal Killing vectordy is timelike forr>2m, null on
the horizonr =2m and spacelike in the interior<2m. 1
Case 2. Lem=0. Then the metri¢7) becomes O$r<r+=m. (25)
ds?= (1—2Ar cosf— A?r?sir? )du?+ 2dudr The boundary region corresponds to the horizon ripg)
—2Ar2sin4dudd—r2de?—r2sirfedg?. (19  coordinates. It is natural to assume that in the nonlinear su-
perposition of these two cases that results in the vacGum

By using the coordinate transformation metric, the horizons at=2m andr =r .. would be appropri-

ately modified. This can be deduced explicitly from the form

Toys L [LTAr(2tcoso) of H. _ _

=-utoain 1+ Ar(1—cosd) | Itis usgful to introduce an acceleration lengthscale based

on A>0 given by

X=r sinf cosg, 1

La= : (26)
Y=rsinésing, A 3\3A
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It turns out that the modification of the horizons is related to  X=Rsin® cos®, Y=Rsin® sin®, Z=RcosO.

the ratio ofmandL 4. The event horizons of the vacuuth (32)
metric are Killing horizons given bid=0 [8]. The solution . . _ _
of H=0 can be written as With respect to these, our linearized metric becomes
-1 +\WwW1! 2m 2m
r=Alcosg+ W, @7 ds”=( 1~ -~ 2ARcos® | dT?~ | 1+ =~ |dR?

whereW is a solution ofW3— W+ 2mA=0. There are three
cases depending on whether is less than, equal to or —R2(dO2+sirf@dd?), (33
greater thanL,. We have assumed at the outset that o . N )

<L,; therefore, we expect that the two individual horizons,Which is a linear superposition of Eqgl4) and (19). It is
i.e. the inner one at=2m and the outer one at=r , willbe  Uuseful to note here the transformatioqu,r,6,¢}

somewhat modified. In fact let —{T,R,0,d} given by
R 1
LMo /l_ﬂz —0+iv 28 u=—T—R—2mIn(ﬁ—1)—EARZCOS(B,
\/§ La Li '
A 1
then there are three real solutions fatrgiven by W=2U, r=R— EARZCOS(@,

which results inr=2m for A—0, W=—U—/3V, which
results in r;'=A(1+cosf) for m—0, and W=-0

+/3V, which results ir ~*=A(cos#—1) for m—0 and is
therefore unacceptable.

1
=0+ EARsin,

=P (34)
I1l. GRAVITATIONAL STARK EFFECT ) ) )
that takes metriq7) directly to the form(33) neglecting

Itis interesting to reduce th& metric to linear form itm terms of ordermz, mA, A21 etc. Fina”y, introducing the
andA by neglectingm®, mA, A% and higher-order terms. It jsotropic radial coordinate,

follows from Eq.(20) in them=0 limit that

T=—u—r—Ar?cosf+O(A?), B m? B mz~
R=|1+ % p=p+tm+ 4p—p+m, (35
1
Z=r cosf+ §Ar2+O(AZ)- (29 we get the linear metric in standard form
Therefore, in metri¢7) let us consider the coordinate trans- > [ . 2_m_ 2 2 2_m S0 2 452
formation{u,r,8,¢}—{T,X,Y,Z}, where ds”={1 p 2AZ|dT 1+ p (dX“+dY “+dz),
(36)
r
T=—u- r+2m|n(ﬁ—1”—Arzcose, where
X=r sinfcose, X=psin® cos®, Y=psin®sin®d, Z=pcosO.
(37
Y=rsinésing,

The geodesic motion of a test particle in this gravitational
1 field, which is characterized by a gravitoelectric potential
Z=r cosf+ EAFZ- (30 m/p+AZ, is quite similar to the classical motion of the elec-
tron in the Stark effect. Moreover, the wave mechanics of the
This is a “linear superposition” of the transformations used Stark effect is also reflected in the behavior of the perturba-
in case 1 and case 2 of the previous section. The m@tyic tions of Eq.(36) by a classical massless radiation field. Con-
under the transformatio(80) takes the form sider the massless scalar field equation

V#9,x=0 (38

2m 2m
ds?= ( 1— F_ZAZ) dT?— E(XdX—I—YdY-FZdZ)2

on the background spacetime given by the met86). To
—dX2—dYy2—dz?, (31  first order inm and A, x can be separated by introducing
parabolic coordinates in analogy with the Stark effect, which
whereR= \X?+ Y2+ ZZ and we have neglectet?, mA, A2 is the shift in the energy levels of an atom in an external
and higher-order terms. Next, introduce polar coordinfites electric field corresponding to the eigenvalues of a Schro
and® such that dinger equation with a Coulomb potentialk/r plus the po-
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tential due to a constant electric fieE=Ez, i.e. —k/r
+eEz where—e is the charge of the electron. In this gravi-
toelectromagnetic counterpart of the Stark effect, we set

N N -~ 1
X=\éncosy, Y=\ensiny, Z=3(&-),

PHYSICAL REVIEW D 70, 044020 (2004

and assume that

X(T.&mp)=e""“Te"U(E)V(7), (40)

where é=0, =0, ¢ takes values from 0 to2, w is a
constant and is an integer.

(39 It follows from Eq.(38) that
|
Ut 1= 2ag)u | 1 em+ Smoz—c)— 2= |u=0
wtz( 173 §lUet| (1€ )+E(mw_ )—4—52 =0,
\Y 111AV C”21A1 2+C Vzv—o 41
T | 1T ATVt 7 (1=7 )+;(mw+ )—4—7’2 =0, (41)
|
whereC is the separation constant adg=dU/d¢, etc. Note _ 1
that the second equation fdfi( %) can be obtained from the x=\éncosy, y=\énsiny, z= 5 (E=m), (47
first one forU(¢) by replacingA— — A andC— —C. Intro-
ducing a new constam® by one has =(¢+ 7)/2 and
1 A 4 (o o\ o o 1 &
c-3o-4) @ Al o] L2
2 2 g8\ 598 T o\ Tan) T & P “8
and rescaling) andV, The equations foa andb then become
A¢ An d /[ da| [MEy¢ 2
U =|1+-—|a(e), V( )=(1——)b< ), (43) Sl [l I Bl LN ST 1) P
2 7 4 7 dE gdg +_ 5 Y 4§+2(k+,3)a 0,
Egs.(41) become d ( db) MEyy »2 5
—| p— +[ ——+—7;2+—(k—,8)}b=0,
d/ da w2 P Aw? , , L, dn\ "dpg 2 4n 4 2 9
d—gfd—§+T4—§T§+mw+— a=0,
5 5 5 where B is the separation constant. The correspondence of
d /[ db L@t v Al mw?— P b—0 these equations with E@41) is exactonce
dzy 77d7] 4 4y 4 7 2 ' 5
w ~
(44 MEO—>7, E——Aw?, kM—2mw? M B— B.
These equations can be put in exact correspondence with (50)

the Schrdinger equation for the hydrogen atom in a constant

electric field that results in the Stark effddi7]

19V =(Ho+H)W, (45

where we seth=1 in this section and¥ is given by
V(€ 7,9)=e e a(¢)b(7),

1_, k £
Hoz—mv _F' leeEz:Mz

(46)
and the standard notation foy related to the Cartesian co-
ordinates byr = (x?>+y?+ 2?2, has been used. Hegeis a
new perturbation parameter defined&yyeME. For the hy-
drogen atomM is the reduced mass ard=e?. Passing to
parabolic coordinates

The solution of equation$49) is discussed in detail in
standard treatments of nonrelativistic quantum mechanics
(see, e.g[17]). In the absence of the perturbatidine. &£
=0), it is well known that the solutions of Eg&!9) can be
expressed in terms of the hypergeometric functions for the
discrete Eq<<0) as well as the continuuniEg>0) states of
the hydrogen atom. Equatiof¥9) cannot be solved exactly;
however, the Stark shift can be evaluated in perturbation
theory for a sufficiently small external electric field.

Let us note here again the close formal correspondence
between the quantum theory of the Stark effect in hydrogen
and the theory of a classical massless scalar field on the
linearized C metric background. To extend this result to
massless fields with nonzero spin, we encounter difficulties.
In fact, using the Newman-Penrose formalism, it is possible
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to separate the equations in a particular set of coordinatéd/roblewski[21] involving a system undergoing linear accel-
[18]; on the other hand, the field equations are not separableration. The essential ideas in the derivation of &4) can
in the physically transparent coordinate system of our linearbe naturally extended to other neutron experim¢@23
ized C metric. as well as interference experiments involving photp2¢]

For many laboratory applications, the potential associatednd atomg25-27. In particular, in future space-borne atom
with the gravitational Stark effect can be written agp  interferometry experiments the inertial acceleration of atoms
+Ap cosO with p=pg+{, wherep,, is the average radius resulting from the nongeodesic motion of the satellite should
of the Earth and/ is the local vertical coordinate in the be taken into account along the lines indicated here.
laboratory. Using the local acceleration of gravity, Our discussion of neutron interferometry experiments has
=m/p§9, the effectiveNewtoniangravitational potential is involved unpolarized neutron beams. In a noninertial frame
then —m/p,+9{—A(ps + {)cos®; some of the applica- Of reference, the neutron is in general influenced by the
tions of this potential are discussed in the next section.  translational and rotational accelerations of the system. The

intrinsic spin of the neutron is expected to couple with the
IV. ACCELERATION-INDUCED PHASE SHIET rotation of the frame. An interesting question is whether
there exists a similadirect coupling between intrinsic spin

It follows from the results of the previous section that and linear acceleration. At present, there is no observational
wave phenomena in the exterior spacetime represented lwidence in support of a direct spin-acceleration coupling
Eq. (36) will also be affected by the acceleratidnConsider, [28].
for instance, wave phenomena in a laboratory fixed on the
Earth, which is usually assumed to follow a geodesic of the V. PIONEER ANOMALY
spacetime manifold. However, we wish to take into account a . ) N
uniform nongravitational acceleration of the center of mass 1he physical relevance of th@ metric may be clarified
of the Earth. Indeed, the deviation of the Earth’s motion fromVia nonrelativistic celestial mechanics as follows. Imagine an
a geodesic could be due to the solar radiation pressure. Arpertial reference frame and a star of massuch that its
other possibility would be the Mathisson-Papapetrou CoucenEer of mass accelerates with a constant accelerétion
pling of the curvature of the solar gravitational field with the = Az with A>0. Thus the motion of a planet or a satellite
angular momentum of the Earth. Estimates suggest that su@bout the star in terms of a noninertial coordinate system
accelerations are very small and at a level below{t,x,y,z} in which the star is at rest with its center of mass at
~10 1 cm/<. Nevertheless, for an Earth-based experimenthe origin of the spatial coordinates is given to lowest order
the appropriate exterior field for the “nonrotating spherical” by
Earth would be given by Eq36) if the acceleration can be

considered uniform for the duration of the experiment. Tak- d’r mr

ing the rotation of the Earth into account, we mention that @Jr r_3: —A (52

the rotatingC metric has been discussed by a number of

authors[12], but is beyond the scope of this paper. in accordance with Newtonian physics. The effective New-

The Earth’s acceleration will introduce a very small shift ygnian gravitational potential is in this case given byn/r
in the phase of a wave propagating in the gravitational field; oz which is analogous to the electric potential for the
of the Earth. Co.nsider, for instance, the grgvitationally iN-Stark effect. Assuming that A produces a small perturba-
duced quantum interference of neutrons as in the COW eXjon on the Keplerian motion of the planet or satellite, one
periment[19,20. Let us imagine for the sake of simplicity ¢an yse the general methods of celestial mechanics, such as
that the Z axis of the system{T,X,Y,Z} of metric (36)  the scheme developed [&9], to find the perturbed motion.
makes an angl® with the vertical direction in our local Within the context of general relativity, the equation of mo-
laboratory and so an otherwise free particle in the laboratoryion of the test planet or satellite is given by the geodesic
is subject to the effective Newtonian gravitational acceleraequation in the vacuur@ metric.
tion g—Acos®. The corresponding neutron phase shift in  Let us now apply these ideas to the anomalous accelera-
the COW experiment would then be given by tion of Pioneer 10 and Pioneer {130,31]. The Pioneer 10/11
Missions were launched over thirty years ago and have been
the first to explore the outer solar system. The analysis of
Doppler tracking data from Pioneer 10/11 spacecraft is con-
sistent with the existence of a small anomalous acceleration
wherew is the de Broglie frequency of the neutrod,is the  of about 107 cm/§ toward the Sun. The effect first ap-
area of the interferometeg; is the inclination angle of the peared at a distance of about 20 astronomical units from the
interferometer plane with respect to the horizontal plane ifSun, where the outward acceleration of the spacecraft due to
the laboratory and is the neutron speed. Whekh=0 or the solar radiation pressure reached a level well below
0 = 7/2, this formula reduces to the standard formula of thel0"’ cm/€. To explain the Pioneer anomaly, the compo-
COW experimen{20]. nents of the acceleration A along the directions of motion

It should be mentioned that observational evidence alof the spacecraft must be both towards the Sun and approxi-
ready exists for the acceleration-induced phase shift of neunately equal to~10"7 cm/$. Let us recall that Pioneer 10
trons according to the experimental results of Bonse andnd Pioneer 11 are moving away from the solar system in

Aw
Ago=(g—Acos®)Tsma, (51

044020-6
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almost opposite directions; more exactly, Pioneer 11 is out o§maller than the acceleration needed to explain the Pioneer
the ecliptic, 17° inclination, while Pioneer 10 is in the eclip- anomaly. On the other hand, the Sun also emits charged par-
tic, 3° inclination[32]. Let P and P’ be unit vectors that ticles in the form of the solar wind, coronal mass ejections,
indicate the radial directions of motion of Pioneer 10 andetC.; again, simple estimates suggest that the Pioneer
Pioneer 11 with respect to the Sun, respectively. Suppose thafiomaly is comparatively too large to be explained by any
the smaller angle between these directions is givenmby anisotropy in normal solar activity. Thus it appears highly

— 28, where3=7°. Then,A can be expressed as unlikely on the basis of current data that solar recoil accel-
eration could be responsible for the Pioneer anomaly. In any

Ao~ o, case, theC metric is in principle no longer applicable to a
) sinB(P+P ), (33 radiating source. These issues require further investigation.

whereA,=10 ° cm/¢ is the magnitude of the vectdr and
is such that, with sin720.12, Agsing is the magnitude of

the anomalous acceleration. Let us note using (68 that In this paper, we have considered the possibility that the
A-P=A.P’=A,sing. It is therefore possible to find a vec- Pioneer anomaly could be due to a small uniform accelera-
tor —A that generates the Pioneer anomaly; however, thgon of the center of mass of the Sun. Within the framework
problem is then shifted to explaining the origin of such anof general relativity, accelerating gravitational sources have
acceleration of the center of mass of the Sun. been discussed by many authft2]. The simplest such so-
One possibility could be recoil acceleration due to thelution corresponding to a uniformly accelerated Schwarz-
anisotropic emission of solar radiation. For most practicaischild source is th€ metric. We have shown that the behav-
purposes, one may assume that normal stars on the mai@r of particles and waves on the lineariz€dmetric back-
sequence such as the Sun radiate isotropically. As a matter gfound can be described by the gravitational Stark effect.
principle, however, it is difficult to believe that at any given
instant of time the net momentum radiated along all antipo-
dal directions would be exactly zero. However, even if all of ACKNOWLEDGMENTS
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