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Nonlocal electrodynamics of linearly accelerated systems

Bahram Mashhoon
Department of Physics and Astronomy, University of Missouri—-Columbia, Columbia, Missouri 65211, USA
(Received 30 July 2004; published 8 December 2004

The measurement of an electromagnetic radiation field by a linearly accelerated observer is discussed. The
nonlocality of this process is emphasized. The nonlocal theory of accelerated observers is briefly described and
the consequences of this theory are illustrated using a concrete example involving the measurement of an
incident pulse of radiation by an observer that experiences uniform acceleration during a limited interval of
time.
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I. INTRODUCTION cally equivalent to an otherwise identical momentarily co-

Imagine an inertial frame in Minkowski spacetime in moving inertial observer. Along the worldline, the acceler-
which the fundamental static inertial observers measure th@t€d observer passes through a continuous infinity of such

electric field E(t,x) and magnetic fielB(t,x). The fields hypothetical momentarily comoving inertial observers. To

measured by an inertial observer moving with uniform Ve_imple_ment this hypothesis of locality, .one must therefore
locity v are then given bysee, e.g.[1]) consider a class of Lorentz transformations between the glo-

bal background inertial frame and the inertial frames of the
E/=E, Bj=By, (1) momentarily comoving inertial observers. It is convenient,
however, to adopt a different, but physically equivalent, ap-
, Y, proach based on the use of orthonormal tetrads.
» BLE 7('3_5 x E>L’ 2) Each inertial observer is endowed with an orthonormal
tetrad\* ), whereX” ; is the temporal axis of the observer

and\*;), i=1, 2, 3, are the spatial axes of the observer. The

measurement of the electromagnetic field by the inertial ob-
server amounts to the projection of the Faraday tensor on the
observer’s tetrad

E = 'y(E + Y B)
C L
wherey is the Lorentz factor of the observer. Equati@ts
and (2) are obtained from the fact that Maxwell’s equations
are invariant under Lorentz transformations. More explicitly,
let us define the Faraday tensey,— (E,B) such thatF
=-FE; andFij:eijkBk. Greek indices run from 0 to 3 and latin

indices run from 1 to 3. Under a Poincaré transformation Fla® =Ful N - (4)
x'#=L* x"+a*, whereL” is a Lorentz matrix ande* rep-
resents a spacetime translation, For the fundamental set of static inertial observers in the
Vit background global inertial frama/ ;= 6", and hence from
F'#(x') = EVEY FPo(x). (3) Eqg. (4), E andB have the interpretation of fields measured

by these observers. For an inertial observer moving with ve-
In component form, this expression reduces to Etjsand  locity v, Eq.(4) reduces to Eqq1) and(2), as expected. To

2). see this explicitly in the case of motion along thaxis, we
The basic laws of microphysics have been formulatedote that the tetrad of such an inertial observer is
with respect to ideal inertial observers. However, all actual o =¥1,0,08), My =(0,1,0,0,

observers are accelerated. It is therefore necessary to deter-
mine what accelerated observers measure. The term “ob- u p
server” is employed in this paper in an extended sense; for M2=(0,0,1,0, M3=%p0,0,9, (5)
instance, an observer could be an ideal measuring device. h _ _ 2N—1/2

’ o R ereB=v/candy=(1- is the Lorentz factor. Equa-
the theory of measurement, it is important to distinguish the(. p=v y=(1-5) q

. ) . . 4) then implies th
practical aspects of a measurement from its basic theoretlca{Pn (4) then implies that

aspects. Clearly a measuring device has limitations due to E;=y(E;- BBy, B;=1vB;+BE,), (6)
the nature of its construction as well as its modes of opera-
tion. These limitations need to be taken into account when E,=y(E,+ 8B,), B,=yB,-BE,), (7)
using such a device in the laboratory. On the other hand,
what is at issue here is our theoretical expectation of an ideal E;=Es; B;=B;, (8)

device of this kind when it is accelerated. To make contact

with the basic laws of microphysics, the accelerated devicé) agreement with Eqg1) and(2).

must be related via a theoretical postulate to ideal inertial It follows from the hypothesis of locality that an acceler-
devices. The postulate that is employed in the standargted observer is also endowed with an orthonormal tetrad
theory of relativity is the hypothesis of localitj2—6],  N“4)(7), Where is the proper time along its worldling
namely, the assumption that the accelerated observer is le=x*(7),
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[ As a phenomenological alternative, a time-dependent fre-

T=f V1 - Bt (9 quency can also be defined as the inverse proper time be-
tween successive peakg—1Q. This has the advantage of

Here it has been assumed that0 att=0. The hypothesis of defining the frequency over an extended period of time, the
locality implies thatr is the time recorded by an ideal clock Same way it would be measured in practice. Both of these
comoving with the accelerated observer. The question thefPproaches invoke the hypothesis of locality.
arises whether the field measured by the accelerated observer These phenomenological approaches can be extended to a
is point by point given by Eqi4) as required by the hypoth- gravitational field along the lines indicated[il]. A discus-
esis of locality. To answer this question, we must first studysion of the various limitations on frequency measurements in
the limitations of the hypothesis of locality. the Schwarzschild geometry is contained 112].

Consider, for instance, the measurement of the frequency The hypothesis of locality originates from Newtonian me-
of a p|ane monochromatic e|ectromagne[ic wave of fre_ChaniCS, where the state of a particle is given by its position
quencyw and wave vectok by an observer moving with a and velocity; the accelerated observer therefore has the same
velocity v(t). Assuming that at each instant of timethe State as the comoving inertial observer, hence they are
accelerated observer is equivalent to an inertial observer witRquivalent. This is analogous to approximating a curve with
the same instantaneous velocity, the invariance of the phad tangent line at a point. In fact, if all physical phenomena
of the wave under Lorentz transformations implies that thecould be reduced to pointlike coincidences of classical par-
frequencyw’ measured by the observer is given by the Dop_ncles and rays of radiation, then the hypothesis of locality

0

pler effect would be exactly valid. On the other hand, it is not possible
to measure an electric or magnetic field instantaneously, as
W =2 k-v(t) (10 emphasized by Bohr and Rosenf¢k8,14. This paper will
V1 -v2c?’ pursue a nonlocal approa¢h5-19 that involves in essence

) ] an integral averaging of all momentarily equivalent inertial
This frequency depends on the state of motion of the obgpservers for the duration of the acceleration as explained in
server; therefore, Eq10) makes physical sense if the ob- gec. .
server is able to measure the frequencyduring a period of The expected deviation from the hypothesis of locality
time in which v(t) does not change appreciably. Since thecan pe expressed in terms of acceleration lengths. In general,
observer needs to record at least a few periods of the wave e acceleration of the observer is given by an antisymmetric

order to measure its frequency, Ed0) is physically reason- 5cceleration tensap s defined by
able if

dr

dv(t)

dt

27

<[V, (12) = b N, (12

;’;hﬁ:gg;rlé li_':gr?rr;é]sufahr?cgumbgeér?érca);C|tiseO:rg:qi\évr?(\:/; gg’ﬁd The translational accelerati@#=du*/dr is a spacelike vec-
) s ' r (u*a,=0) and can be expressed ag=g'\*;, where
determined more accurately if more cycles are employed; for (Wa,=0) P 9N

large n, however, one finds from Eq11) that the accelera- a“a#:g.-g:gz(r). Herg 9(n=0 is the magmtude of the
tion must then be very small. Combining Ed.1) with |v| translational accelgranon. In analogy with the Faraday ten-
<c, we find thatx<c2/A, wherex=\/(27) is the reduced SO, the acceleration tensor may be expreslsedﬁ(gﬁﬁ)
wavelength of the radiation ani=|dv/dt| is the magnitude — (~9(7), (1), whereg;(7)= g ) and Qi(7) =€ VY.
of the three-dimensional acceleration vector of the observeHere 2 denotes the frequency of rotation of the spatial frame
Thus the Doppler formula in general makes sense if the reof the accelerated observer with respect to a nonrotgitieg
duced wavelength of the radiation is much smaller than théermi-Walker transportgdrame. The invariant acceleration
acceleration lengthC=c?/A of the observer. On the other scales are constructed from the scal@rs s, for instance,
hand, the instantaneous Lorentz transformations may be enthe lengthsC=c?/g and ¢/Q and the corresponding accel-
ployed in accordance with the hypothesis of locality to as-eration timesc/g and 1K) refer to the translational and ro-
sign electric and magnetic fields to the accelerated observemtional accelerations of the observer, respectively. The in-
These fields may then be Fourier analyzed in the local framé&insic acceleration scales determine the scale of variation of
of the observer to determine the frequency spectrum. It ishe state of the observer; therefore, the hypothesis of locality
expected that this spectrum would then reduce to the Dopplés a valid approximation if the intrinsic scale of the phenom-
formula in the JWKB limit. enon under observation is negligibly small compared to the
To summarize, for accelerated systems the standard Dogorresponding acceleration scale of the observer. Thus the
pler formula w(7)=-k,u*(7), wherek* is the wave four- deviation from the hypothesis of locality is expected to be
vector andu” is the four-velocity of the observer, will pro- proportional tox/ £, wherex is the intrinsic length scale of
duce a result that in general varies in time. If the frequencythe phenomenon under observation. For Earth-based optical
changes from one instant of time to the next, the period oExperiments in the laboratory, for example;-5000 A for
the incident wave must in general be negligibly short in or-visible light, while ¢?/g,=1 It-yr and c/Q,.=28 AU;
der for the Doppler formula to make physical sense; that istherefore \/ L, is =107'° and any deviations from locality
N L—0. appear to be too small to be detectable at present. On the
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other hand, the development of ultrahigh-power lasers durin@(a)(ﬂ)ﬁfz, F.,—F, and A is a 6x6 matrix constructed

the past 15 yearf20,21] may change the observational situ- ¢, the |ocal tetrad frame. It follows that E¢L4) can be
ation and could lead to the measurement of deviations frorUvritten as

locality.

Nonlocal effects may become detectable with the help of -
laser pulses that can induce linear electron accelerations of F(n=F(» +f K(r,7)F(7)dr, (15)
order 16* cm/< using the chirped pulse amplification tech- 7

nique[20,27. Moreover, Sauerbrej22] has employed such
high-intensity femtosecond lasers to impart linear acceleragnereK is a 6x 6 matrix.

tions of order 16" cm/s’ o small grains. A grain with @ 14 find the kernel in Eq(15), we assume that no accel-
macroscopic mass of 10" g more closely approximates a grated observer can ever be comoving with an electromag-
classical accelerated observer in the sense employed in relgayic radiation field. This extends to all observers an impor-

tivity theory [23)]. o tant consequence of Lorentz invariance: a basic radiation
The nonlocal theory of accelerated observers is discussegh|q can never stand completely still with respect to any

in Sec. Il. The linearly accelerated observer under considelartia| observer. That is, if the incident radiation is noncon-
ation in this paper is described in Sec. Ill. The nonlocalgiani(as it must bgfor inertial observers, it will be noncon-

electromagnetic measurements of the observer are studied &, for any accelerated observer. Equivalently, if an accel-
Secs. IV and V. Section VI contains a brief discussion of OUlgrated observer measures a constant electromagnetic

results. radiation field, i.e../F(7)=F(7p) in Eqg. (15), then the inertial
observers must also measure constant fields,H.enust be
constant as well. The \olterra-Tricomi uniqueness theorem
According to the hypothesis of locality, the electromag-then ensures that our physical requirement is satisfied for any

netic radiation field measured by an accelerated observer [gdiation field: a variable field will never be constant for any
given by observer. Inserting these conditions in E§5), we find

II. NONLOCALITY

Fae(1) =F D) X(DN (DN (5 (7), (13

which is the projection of the Faraday tensor onto the tetrad
of the accelerated observer. To go beyond the hypothesis of
locality, one must find a more general relationship betweeRyhich may be used to determine the kernel on the basis of
the measurements of the accelerated obsefygy(7) and  our physical postulate. However, Ed.6) is not sufficient to

the infinite class of momentarily comoving inertial observersdetermine the kernel uniquely. A detailed examination of the
Fwp(7)- The most general linear relationship betweenpossible kernel§l6,17 has revealed that the only acceptable

Fa(p(7) @ndF ) (7) consistent with causality igL5] solution is the kinetic kernel given BY(r, 7')=k(7'). In this
case, Eq(16) immediately implies that

A(mp) =A(7) + f R(T, 7I)A(7)d7, (16)

70

f(a)(/s)(T):F(a)(ﬁ)(T)*f K "7, 7 )F o a(7)d7,
0 dA(n)

(14) k(ﬂ):_ d7]

where is the instant at which the acceleration is turned on his K lis directl ional he ob ) |
and K(a)(ﬂ)(”(ﬁ) is a kernel that is expected to be proportionaIT Is kernel Is directly proportional to the observer's accel-
eration and vanishes when it is turned off. Moreover, it is

to the acceleration of the observer. For a radiation field with, ) <t for the case of uniform acceleration. A nonlocal
Mﬁ.ﬁo' the nonlocal part of the ansatb4) IS expected' to theory of accelerated observers has been developed on the
vanish. The r_lonlocal ansa(14) d?a's (_)nly with sp_acetlme basis of this unique kern¢ll5-18 and nonlocal Maxwell's
scalars and is thus manifestly invariant under 'nhomeréquations have been discussed 18]

neous Lorentz transformations of the background spacetime. It is important to recognize that the hypothesis of locality

The nonlocal part_in Eq14) has the form of an average s npevertheless an integral part of the nonlocal theory de-
over the past worldline of the accelerated observer; in th%cribed here: in the eikonal limik/£—0. the nonlocal

JWKB "”?'L the nonlocal part dls_appears and we recover th‘?heory reduces to the standard theory based on the hypothesis
hypo_the5|s of Iocal_lt)(13). Equat|on(14_) EXpresses a Volt- of locality. This is analogous to the correspondence between
erra Jntegral equation of the second kind. According t0 Vol- 5,6 mechanics and classical mechanics. The idea of such a
terra’s theorem, the relationship betweBy g andFw ) IS correspondence will be employed throughout this paper; for
unique in the space of continuous functiq2gl]. Volterra'’s  instance, we will assume that accelerated observers can per-
theorem has been extended to the Hilbert space of squargsym spatial and temporal measurements that are essentially
integrable functlons by T_ncoijﬂ. It is us_eful to rewrite  ~gnsistent with the hypothesis of localitgee Sec. IN. A
Egs.(13) and(14) in matrix form by replacing the Faraday ponjocal treatment will be required only if the wave phenom-
tensors by six-vectors consisting of eIectArlc and magnetigna involved are such that/ £ is not negligibly small and
fields. Thus Eq(13) may be reexpressed &= AF, where hence cannot be ignored.

A (). (17)
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lIl. LINEARLY ACCELERATED SYSTEMS X=X Y=VYo 2=z +Bi(t-tp), (23)

In this paper we are interested in the electromagnetiGyherez is given bygo(z;—2y)=cosh 6, +dor;) — coshéy us-
measurements of a linearly accelerated observer. For the safgy £q. (22). The proper time of the observer fort; is
of concreteness, we assume that the observer moves upjen by

formly with velocity v=v,Z in the background global inertial

frame with coordinatex“=(t,x,y,z) according tox=xg, y _ t—t;
=yp and z=zy+vgt for —0<t<0 and att=0 is forced to TETE costfy+ gory) (24)
accelerate with acceleratiair) >0 along the positive di-
rection_ Henceforth we use units such tbaﬂ_, un|ess Speci_ It fO”OWS from the resu|tS Of the preViOUS SeCtion that in
fied otherwise. The observer carries a natural orthonormdhis case
. )

tetrad frame\” , given by Uy cC 0o

)\“(O)=(C,O,O,S), )\“(1)=(O,1,0,0, A= [—V U]' Uu=|0 C 0|, V=S, (25

0 01
M2=(0,0,1,0, N\5=(S0,00), (18)  wherel;, (I;),=—¢€j is a 3x3 matrix proportional to the

operator of infinitesimal rotations about tkeaxis. Accord-
ing to the postulates of the nonlocal theory of accelerated
; observers, the fields as measured by the linearly accelerated
0= 6y+ u(T)J g(7)dr. (19)  observer are given by Eql4), where the kernel, given by

0 Eq. (17), reduces in this case to

whereC=coshg, S=sinh6, and

Here tanhgy=vy andu(7) is the unit step function such that I3

u(n=1 for 7>0 and u(n=0 for 7<0. The orthonormal k(T):_g(T){_b 0] (26)
frame of the observer is nonrotating, i.e., it is Fermi-Walker o _

transported along the worldline of the observer. We recall [N the standard theory of relativity, the field as measured

a worldlinex*(7) obeys the transport equation of locality and for the specific case of the linearly accelerated

observer described in this section

do*
dL = (u*a’-u'a*)v,, (20 E1)=CE;-SB,, B(;)=CB;+SE, (27)
r
whereu*=N* is the four-velocity anda“=du*/dr is the Ez=CE,+SB,, B =CB,-SkK, (28)
four-acceleration vector of the worldline. Thus each leg of
the tetrad(18) satisfies Eq.(20); moreover, we note that Eg=Es Bg =B, (29)

a,\*5=u(7)g(7), where we have taken the signature of the
Minkowski metric to be +2. The magnitude of the four- Where (C,S)=(coshé,sinhé) for t<0, (C,S)=(cosh 6,
acceleration vectay is related to the magnitude of the three- +Jo7),sinf(fy+go7)) for O<t<t; and (C,S=(cosh 6,
acceleration vectoA by g=Av3, wherey is the Lorentz fac-  +dy7;), Sinl(6y+gg7)) for t>t;. However, according to the
tor. nonlocal theory the electric field is given by

We assume for the sake of simplicity that the acceleration

of the observerg(7) is uniform and equal t@, for 0< 7 _ fT , N
<, but vanishes otherwise. That is £ =B +u) 0 9Bz (r)dr’, (30
o(7) = go[u(7) - u(7 = 7)]. (21) )
Therefore, the observer starts from its positiag, yo,z,) at £ =E@ - U(T)fo 9(7")By(7)d7, (3D
t=0 and accelerates uniformly according to
€@ =Eqa- (32

1
t=—[sinh(6+go7) = sinh 6], X=Xo, Y=VYo,
% Similarly, the nonlocal magnetic field is given by

1 T .
z=7y+ g—[cost(&o +go7) — coshép] (22) By =B~ U(T)f g(7")Eq(7)d7, (33
[0] 0
until the timet;, where ggt;=sinh(6y+gy7s) —sinh6,. For t ;
+>tf, t)he observer moves uniformly with spe@g=tanh 6, By =B+ U(T)f 9(7)Eq(7)d7, (34)
o7t) 0
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B3 =B (35) F=eF. (39)

It follows that the components of the electric and magneticThis result together with the kerng6) can be substituted in
fields parallel to the direction of motion of the observer re-gq. (15) with 7,=0 and after a simple integration the nonlo-
main the same. Moreover, fot> 7; the observer moves uni- ¢a| result is
formly yet its measurement of the electromagnetic field
yields in addition to the standard result a new constant com- Sy — €
ponent that is in effect the memory of the past acceleration of Fn= EOCI)(T)[bi ] ' (40
the observer.

The measurements of the accelerated observer for the ca4&'ere
of a perpendicularly incident plane-polarized Gaussian pulse g
of electromagnetic radiation were numerically investigated D(7) =€ V() +i=2[H(6) - P(6p)]- (41)
in [26] on the basis of the hypothesis of locality, namely, @
Egs.(27)«29). The same situation has recently been studiedt is important to note that the nonlocal theory, just as in the
in connection with thenonlocal measurements of the ob- |ocal case, does not introduce any coupling between the pho-
server involving Eqs(30)~35); in fact, an extension of the ton helicity and the acceleration of the observer. The nonlo-
previous worki26] and a detailed numerical analysis of non- cal contribution tod is given byi(go/ w)[$(6)—¢(6)] in
locality in this case are contained [&7]. Eq. (41); as expected, it is proportional ta/Ly=gy/ ®,

To illustrate further the physical consequences of the nonwhich for the experiments described[22,23 is negligibly
local theory, two rather distinct situations will be explicitly small and of the order of 6.
worked out in the rest of this paper. In the first cegarallel In connection with the treatment 22,23, it is interest-
incidence’), discussed in the next section, the electromagjng to note that in Eq(22), one can expand in powers of
netic radiation propagates along thaxis. This situation is goT<cC to get
analogous to the acceleration of grains by a high-intensity 1 g 1
femtosecond laser pulse; indeed, the results of this work _ Lo %7 _ <
should be compared and contrasted with the analysis of the 7°T<1 ¥ 2/80 c ¥ ) Z=%" 707(v0+ Zg°T+ )
experimental situation presented[22,23. The second case (42)
(“perpendicular incidence;’ discussed in Sec. V, involves a
pulse of plane-polarized radiation that propagates along the where By=vo/c, v, is the corresponding Lorentz factor and
axis; the nonlocal measurements of the accelerated observier Eq. (38)
are compared with the standard theory. To simplify the
analysis, we take advantage of the fact that all of the field e % = A /ﬂ). (43)
operations considered in this work are linear. Therefore, it 1+8,
suffices to focus attention on a generic Fourier component olf[ follows that
the incident pulse. Moreover, we use complex fields whose
real parts correspond to the measured fields. Thus to recover 1,
the actual predictions of the theory, one must take the real Z=ZgF vt + DA oo,

part of the Fourier sum of the results given in Secs. IV and V.
where Aozgolyg is the magnitude of the initial three-

IV. PARALLEL INCIDENCE dimensional acceleration vector. Using these resuditand
® in Eqg. (41) can be expressed as

(44)

Imagine a plane monochromatic wave of frequency
given in the circular polarization basis by b= @l (WlO)(ctrzgrvgttAgto/2+ )

E= Eoeieiw(z_t), B= Eobieiw(z_t), (36)

wheree, = (X+i9)/\2, b, = Tie,, andEy(w) is the amplitude d= [ 1 /ﬂ + i& + 9_(2)<_ Ct+ vt + }Aot2+ )}(ﬁ
of the wave. The wave propagates along thdirection and 1+B, cw cC 2
att=0 impinges on a graii‘observer’) at z=z, that accel-

erates along the axis with initial velocity v,. For 0<r —i%e'“"/c)z‘), (45)
<7, it follows from Eq.(22) that in the six-vector notation cow
of Sec. Il in general agreement witl23]. One can thus draw the con-
clusion that the nonlocal contribution to the field that sets the
F(n= |50(w)¢,(9)[et ] (37)  charged particles in the grain in motion has an amplitude of
b. order 10° compared to the standard local theory for the ex-

periments reported if22,23. The reflected wave is therefore
expected to be affected at essentially the same negligibly
} small level of~107°. It is this reflected wave that is detected

where ¢ is given by

(38) and analyzed in practid®2,23. The nonlocal theory in this
. case would thus appear to be trivially consistent with the
and 6= 6y+gg7. Moreover,F=AF implies that in this case  results of experiments reported 82,23, since the nonlo-

H(6) = €% exp{igg(e“9 - e %)

0
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cality enters the analysis at the insignificant levelggf ¢

~10°5. Bz = - coshd x(6) + f sinh @' x(6')dé’. (51)
Nonlocal effects may not be negligible in future experi- %

ments using macrophysical accelerated systga2s23. A L . .

remark is therefore in order here regarding the relevance oq is simple to work out the integral in E¢S0) and the result

our present calculations that are based on a single planI

wave. It should be emphasized that further extensive calcu-

lations using wave packets would be necessary iq order that E =sinhd x(6) - i@[)((g) - x(60)7, (52)

the nonlocal theory could be properly compared with experi- w

mental data regarding accelerated plasmas generated by an . . .

incident femtosecond laser pulg22,23. What is measured Wheréx(6o) =Eo expliwxy). The integral in Eq(51) can be

in such experiments is the shape of the reflected pulsgvaluated by expanding the exponential function(s’) in

[22,23; therefore, to determine the anticipated contributionPowers of sint” and then using formulas 2.412 on p. 93 of

of nonlocality, one should consider an incident pulse in thd28- ] ) .

accelerated frame that is a Fourier sum of terms of the form For 7=, the fields measured by the uniformly moving

(41). One must then take into account the interaction of thisobserver are

incident radiation with the accelerated medium via an effec-

tive reflectivity function as if22]. The theoretical determi-

nation of the reflected pulse in the laboratory frame would

then require an inverse nonlocal transformation—given in its

general form by Eq(19) of [19]—and hence further detailed &2=0, £3=X, B1)=B3=0, and

considerations that are beyond the scope of the present paper.

Ew = sinhoy %7 ~1 2Ix(6) - x(b9)],  (53)

For 7= 77, the measurements of the observer are given by - % P
Eq. (40), where®d(7) for 7= 7; can be expressed as B3 = - coshé; x(7) + ) sinh¢’'x(6')do".  (54)
0
d(7) =€ (7) + ig—o[qﬁ(ﬁf) - (6] (46)  Here'y(7) is given by
w
- (1) = Eqgelo-tr ()]
Here 6;= 6, +go7; and ¢(7) is given by X(7) = Egel P, (55

B 1-3 where y;=coshé;. The constant terms in E@¢53) and (54)
S =exp io| z—t; - . +,8f(7_ )| (. (47)  are the remnants of the observer's accelerated history.
f

The second term id(7) is the constant memory of the ob- V1. DISCUSSION
server’s past acceleration.

We have examined some of the observational conse-
quences of the nonlocal theory of accelerated observers for
the case of linearly accelerated systems. As in the standard

Consider a linearly polarized plane monochromatic wavdocal theory, the electromagnetic radiation field parallel to
of frequencyw propagating in thex direction. The electric the direction of motion remains unchanged and, moreover,

V. PERPENDICULAR INCIDENCE

and magnetic fields are given by there is no coupling between the helicity of the radiation and
) . _ A the translational acceleration of the obsery29,3Q. The
E=Ee“*Y2, B=-E€“*y. (48)  observer’s nonlocal determination of the electromagnetic ra-

diation field has been compared and contrasted with the stan-
dard local ansatz. The results are consistent with a relative
nonlocal contribution to the field given essentially by the
amplitudex/ L, which turns out to be negligibly small for the
experiments reported if22,23. Moreover, for an observer
that has resumed uniform motion, the constant electromag-
© netic memory of past acceleration has been studied. The ob-
x(60) = Ege 0 exp[— i—(sinh#- sinh 00)] (49)  servation of such nonlocal effects may become possible with
% methods that use high-power laser systems to generate large

where 6= 6y+gy7. The measured components of the e|ectro_acceleratlon$20—2:-].

magnetic field according to the nonlocal theory are then
0 ACKNOWLEDGMENTS

Ey=sinho x(6) - coshé' x(6')de’, (50)
bo

At t=0 the wave impinges upon a graifobserver) at
(Xo,Y0,2o) that has been prearranged to accelerate along the
direction with initial velocityv,. To determine the field mea-
sured by the observer, it is useful to assume thatrs= 7
and definey(6),
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E2=0, E3=x(0), B1=B=0, and their constructive comments.
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