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The measurement of an electromagnetic radiation field by a linearly accelerated observer is discussed. The
nonlocality of this process is emphasized. The nonlocal theory of accelerated observers is briefly described and
the consequences of this theory are illustrated using a concrete example involving the measurement of an
incident pulse of radiation by an observer that experiences uniform acceleration during a limited interval of
time.
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I. INTRODUCTION

Imagine an inertial frame in Minkowski spacetime in
which the fundamental static inertial observers measure the
electric field Est ,xd and magnetic fieldBst ,xd. The fields
measured by an inertial observer moving with uniform ve-
locity v are then given by(see, e.g.,[1])

Ei8 = Ei, Bi8 = Bi, s1d

E'8 = gSE +
v

c
3 BD

'

, B'8 = gSB −
v

c
3 ED

'

, s2d

whereg is the Lorentz factor of the observer. Equations(1)
and (2) are obtained from the fact that Maxwell’s equations
are invariant under Lorentz transformations. More explicitly,
let us define the Faraday tensorFmn→ sE ,Bd such thatF0i

=−Ei andFij =ei jkBk. Greek indices run from 0 to 3 and latin
indices run from 1 to 3. Under a Poincaré transformation
x8m=Lm

nx
n+am, whereLm

n is a Lorentz matrix andam rep-
resents a spacetime translation,

F8mnsx8d =
]x8m

]xr

]x8n

]xs Frssxd. s3d

In component form, this expression reduces to Eqs.(1) and
(2).

The basic laws of microphysics have been formulated
with respect to ideal inertial observers. However, all actual
observers are accelerated. It is therefore necessary to deter-
mine what accelerated observers measure. The term “ob-
server” is employed in this paper in an extended sense; for
instance, an observer could be an ideal measuring device. In
the theory of measurement, it is important to distinguish the
practical aspects of a measurement from its basic theoretical
aspects. Clearly a measuring device has limitations due to
the nature of its construction as well as its modes of opera-
tion. These limitations need to be taken into account when
using such a device in the laboratory. On the other hand,
what is at issue here is our theoretical expectation of an ideal
device of this kind when it is accelerated. To make contact
with the basic laws of microphysics, the accelerated device
must be related via a theoretical postulate to ideal inertial
devices. The postulate that is employed in the standard
theory of relativity is the hypothesis of locality[2–6],
namely, the assumption that the accelerated observer is lo-

cally equivalent to an otherwise identical momentarily co-
moving inertial observer. Along the worldline, the acceler-
ated observer passes through a continuous infinity of such
hypothetical momentarily comoving inertial observers. To
implement this hypothesis of locality, one must therefore
consider a class of Lorentz transformations between the glo-
bal background inertial frame and the inertial frames of the
momentarily comoving inertial observers. It is convenient,
however, to adopt a different, but physically equivalent, ap-
proach based on the use of orthonormal tetrads.

Each inertial observer is endowed with an orthonormal
tetradlm

sad, wherelm
s0d is the temporal axis of the observer

andlm
sid, i =1, 2, 3, are the spatial axes of the observer. The

measurement of the electromagnetic field by the inertial ob-
server amounts to the projection of the Faraday tensor on the
observer’s tetrad

Fsadsbd = Fmnlm
sadl

n
sbd. s4d

For the fundamental set of static inertial observers in the
background global inertial frame,lm

sad=dm
a and hence from

Eq. (4), E and B have the interpretation of fields measured
by these observers. For an inertial observer moving with ve-
locity v, Eq. (4) reduces to Eqs.(1) and(2), as expected. To
see this explicitly in the case of motion along thez axis, we
note that the tetrad of such an inertial observer is

lm
s0d = gs1,0,0,bd, lm

s1d = s0,1,0,0d,

lm
s2d = s0,0,1,0d, lm

s3d = gsb,0,0,1d, s5d

whereb=v /c andg=s1−b2d−1/2 is the Lorentz factor. Equa-
tion (4) then implies that

E18 = gsE1 − bB2d, B18 = gsB1 + bE2d, s6d

E28 = gsE2 + bB1d, B28 = gsB2 − bE1d, s7d

E38 = E3, B38 = B3, s8d

in agreement with Eqs.(1) and (2).
It follows from the hypothesis of locality that an acceler-

ated observer is also endowed with an orthonormal tetrad
lm

sadstd, wheret is the proper time along its worldlinexm

=xmstd,
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t =E
0

t

Î1 − b2dt. s9d

Here it has been assumed thatt=0 at t=0. The hypothesis of
locality implies thatt is the time recorded by an ideal clock
comoving with the accelerated observer. The question then
arises whether the field measured by the accelerated observer
is point by point given by Eq.(4) as required by the hypoth-
esis of locality. To answer this question, we must first study
the limitations of the hypothesis of locality.

Consider, for instance, the measurement of the frequency
of a plane monochromatic electromagnetic wave of fre-
quencyv and wave vectork by an observer moving with a
velocity vstd. Assuming that at each instant of timet, the
accelerated observer is equivalent to an inertial observer with
the same instantaneous velocity, the invariance of the phase
of the wave under Lorentz transformations implies that the
frequencyv8 measured by the observer is given by the Dop-
pler effect

v8 =
v − k ·vstd
Î1 − v2/c2

. s10d

This frequency depends on the state of motion of the ob-
server; therefore, Eq.(10) makes physical sense if the ob-
server is able to measure the frequencyv8 during a period of
time in which vstd does not change appreciably. Since the
observer needs to record at least a few periods of the wave in
order to measure its frequency, Eq.(10) is physically reason-
able if

n
2p

v
Udvstd

dt
U ! uvstdu, s11d

wheren,1. Heren is the number of cycles of the wave used
to measure its frequency. In general, the frequency can be
determined more accurately if more cycles are employed; for
largen, however, one finds from Eq.(11) that the accelera-
tion must then be very small. Combining Eq.(11) with uvu
,c, we find thatÂ!c2/A, whereÂ=l / s2pd is the reduced
wavelength of the radiation andA= udv /dtu is the magnitude
of the three-dimensional acceleration vector of the observer.
Thus the Doppler formula in general makes sense if the re-
duced wavelength of the radiation is much smaller than the
acceleration lengthL=c2/A of the observer. On the other
hand, the instantaneous Lorentz transformations may be em-
ployed in accordance with the hypothesis of locality to as-
sign electric and magnetic fields to the accelerated observer.
These fields may then be Fourier analyzed in the local frame
of the observer to determine the frequency spectrum. It is
expected that this spectrum would then reduce to the Doppler
formula in the JWKB limit.

To summarize, for accelerated systems the standard Dop-
pler formula vstd=−kmumstd, where km is the wave four-
vector andum is the four-velocity of the observer, will pro-
duce a result that in general varies in time. If the frequency
changes from one instant of time to the next, the period of
the incident wave must in general be negligibly short in or-
der for the Doppler formula to make physical sense; that is,
l /L→0.

As a phenomenological alternative, a time-dependent fre-
quency can also be defined as the inverse proper time be-
tween successive peaks[7–10]. This has the advantage of
defining the frequency over an extended period of time, the
same way it would be measured in practice. Both of these
approaches invoke the hypothesis of locality.

These phenomenological approaches can be extended to a
gravitational field along the lines indicated in[11]. A discus-
sion of the various limitations on frequency measurements in
the Schwarzschild geometry is contained in[12].

The hypothesis of locality originates from Newtonian me-
chanics, where the state of a particle is given by its position
and velocity; the accelerated observer therefore has the same
state as the comoving inertial observer, hence they are
equivalent. This is analogous to approximating a curve with
its tangent line at a point. In fact, if all physical phenomena
could be reduced to pointlike coincidences of classical par-
ticles and rays of radiation, then the hypothesis of locality
would be exactly valid. On the other hand, it is not possible
to measure an electric or magnetic field instantaneously, as
emphasized by Bohr and Rosenfeld[13,14]. This paper will
pursue a nonlocal approach[15–19] that involves in essence
an integral averaging of all momentarily equivalent inertial
observers for the duration of the acceleration as explained in
Sec. II.

The expected deviation from the hypothesis of locality
can be expressed in terms of acceleration lengths. In general,
the acceleration of the observer is given by an antisymmetric
acceleration tensorfsadsbd defined by

dlm
sad

dt
= fsad

sbdlm
sbd. s12d

The translational accelerationam=dum /dt is a spacelike vec-
tor sumam=0d and can be expressed asam=gilm

sid, where
amam=g·g=g2std. Here gstdù0 is the magnitude of the
translational acceleration. In analogy with the Faraday ten-
sor, the acceleration tensor may be expressed asfsadsbd

→ (−gstd ,Vstd), wheregistd=fs0dsid and Vistd= 1
2ei jkfs jdskd.

HereV denotes the frequency of rotation of the spatial frame
of the accelerated observer with respect to a nonrotating(i.e.,
Fermi-Walker transported) frame. The invariant acceleration
scales are constructed from the scalarsfsadsbd; for instance,
the lengthsL=c2/g and c/V and the corresponding accel-
eration timesc/g and 1/V refer to the translational and ro-
tational accelerations of the observer, respectively. The in-
trinsic acceleration scales determine the scale of variation of
the state of the observer; therefore, the hypothesis of locality
is a valid approximation if the intrinsic scale of the phenom-
enon under observation is negligibly small compared to the
corresponding acceleration scale of the observer. Thus the
deviation from the hypothesis of locality is expected to be
proportional toÂ /L, whereÂ is the intrinsic length scale of
the phenomenon under observation. For Earth-based optical
experiments in the laboratory, for example,l,5000 Å for
visible light, while c2/g% .1 lt-yr and c/V% .28 AU;
therefore,l /L% is &10−19 and any deviations from locality
appear to be too small to be detectable at present. On the
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other hand, the development of ultrahigh-power lasers during
the past 15 years[20,21] may change the observational situ-
ation and could lead to the measurement of deviations from
locality.

Nonlocal effects may become detectable with the help of
laser pulses that can induce linear electron accelerations of
order 1024 cm/s2 using the chirped pulse amplification tech-
nique[20,21]. Moreover, Sauerbrey[22] has employed such
high-intensity femtosecond lasers to impart linear accelera-
tions of order 1021 cm/s2 to small grains. A grain with a
macroscopic mass of,10−12 g more closely approximates a
classical accelerated observer in the sense employed in rela-
tivity theory [23].

The nonlocal theory of accelerated observers is discussed
in Sec. II. The linearly accelerated observer under consider-
ation in this paper is described in Sec. III. The nonlocal
electromagnetic measurements of the observer are studied in
Secs. IV and V. Section VI contains a brief discussion of our
results.

II. NONLOCALITY

According to the hypothesis of locality, the electromag-
netic radiation field measured by an accelerated observer is
given by

Fsadsbdstd = Fmn„tstd,xstd…lm
sadstdln

sbdstd, s13d

which is the projection of the Faraday tensor onto the tetrad
of the accelerated observer. To go beyond the hypothesis of
locality, one must find a more general relationship between
the measurements of the accelerated observerFsadsbdstd and
the infinite class of momentarily comoving inertial observers
Fsadsbdstd. The most general linear relationship between
Fsadsbdstd andFsadsbdstd consistent with causality is[15]

Fsadsbdstd = Fsadsbdstd +E
t0

t

Ksadsbd
sgdsddst,t8dFsgdsddst8ddt8,

s14d

wheret0 is the instant at which the acceleration is turned on
andKsadsbd

sgdsdd is a kernel that is expected to be proportional
to the acceleration of the observer. For a radiation field with
Â /L→0, the nonlocal part of the ansatz(14) is expected to
vanish. The nonlocal ansatz(14) deals only with spacetime
scalars and is thus manifestly invariant under inhomoge-
neous Lorentz transformations of the background spacetime.

The nonlocal part in Eq.(14) has the form of an average
over the past worldline of the accelerated observer; in the
JWKB limit, the nonlocal part disappears and we recover the
hypothesis of locality(13). Equation(14) expresses a Volt-
erra integral equation of the second kind. According to Vol-
terra’s theorem, the relationship betweenFsadsbd andFsadsbd is
unique in the space of continuous functions[24]. Volterra’s
theorem has been extended to the Hilbert space of square-
integrable functions by Tricomi[25]. It is useful to rewrite
Eqs. (13) and (14) in matrix form by replacing the Faraday
tensors by six-vectors consisting of electric and magnetic

fields. Thus Eq.(13) may be reexpressed asF̂=LF, where

Fsadsbd→ F̂, Fmn→F, and L is a 636 matrix constructed
from the local tetrad frame. It follows that Eq.(14) can be
written as

F̂std = F̂std +E
t0

t

K̂st,t8dF̂st8ddt8, s15d

whereK̂ is a 636 matrix.
To find the kernel in Eq.(15), we assume that no accel-

erated observer can ever be comoving with an electromag-
netic radiation field. This extends to all observers an impor-
tant consequence of Lorentz invariance: a basic radiation
field can never stand completely still with respect to any
inertial observer. That is, if the incident radiation is noncon-
stant(as it must be) for inertial observers, it will be noncon-
stant for any accelerated observer. Equivalently, if an accel-
erated observer measures a constant electromagnetic

radiation field, i.e.,F̂std=F̂st0d in Eq. (15), then the inertial
observers must also measure constant fields, i.e.,F must be
constant as well. The Volterra-Tricomi uniqueness theorem
then ensures that our physical requirement is satisfied for any
radiation field: a variable field will never be constant for any
observer. Inserting these conditions in Eq.(15), we find

Lst0d = Lstd +E
t0

t

K̂st,t8dLst8ddt8, s16d

which may be used to determine the kernel on the basis of
our physical postulate. However, Eq.(16) is not sufficient to
determine the kernel uniquely. A detailed examination of the
possible kernels[16,17] has revealed that the only acceptable

solution is the kinetic kernel given byK̂st ,t8d=kst8d. In this
case, Eq.(16) immediately implies that

kshd = −
dLshd

dh
L−1shd. s17d

This kernel is directly proportional to the observer’s accel-
eration and vanishes when it is turned off. Moreover, it is
constant for the case of uniform acceleration. A nonlocal
theory of accelerated observers has been developed on the
basis of this unique kernel[15–18] and nonlocal Maxwell’s
equations have been discussed in[19].

It is important to recognize that the hypothesis of locality
is nevertheless an integral part of the nonlocal theory de-
scribed here: in the eikonal limitÂ /L→0, the nonlocal
theory reduces to the standard theory based on the hypothesis
of locality. This is analogous to the correspondence between
wave mechanics and classical mechanics. The idea of such a
correspondence will be employed throughout this paper; for
instance, we will assume that accelerated observers can per-
form spatial and temporal measurements that are essentially
consistent with the hypothesis of locality(see Sec. III). A
nonlocal treatment will be required only if the wave phenom-
ena involved are such thatÂ /L is not negligibly small and
hence cannot be ignored.
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III. LINEARLY ACCELERATED SYSTEMS

In this paper we are interested in the electromagnetic
measurements of a linearly accelerated observer. For the sake
of concreteness, we assume that the observer moves uni-
formly with velocity v=v0ẑ in the background global inertial
frame with coordinatesxa=st ,x,y,zd according tox=x0, y
=y0 and z=z0+v0t for −`, t,0 and att=0 is forced to
accelerate with accelerationgstd.0 along the positivez di-
rection. Henceforth we use units such thatc=1, unless speci-
fied otherwise. The observer carries a natural orthonormal
tetrad framelm

sad given by

lm
s0d = sC,0,0,Sd, lm

s1d = s0,1,0,0d,

lm
s2d = s0,0,1,0d, lm

s3d = sS,0,0,Cd, s18d

whereC=coshu, S=sinhu, and

u = u0 + ustdE
0

t

gst8ddt8. s19d

Here tanhu0=v0 andustd is the unit step function such that
ustd=1 for t.0 and ustd=0 for t,0. The orthonormal
frame of the observer is nonrotating, i.e., it is Fermi-Walker
transported along the worldline of the observer. We recall
that a Fermi-Walker transported four-vectorvm carried along
a worldlinexmstd obeys the transport equation

dvm

dt
= suman − unamdvn, s20d

whereum=lm
s0d is the four-velocity andam=dum /dt is the

four-acceleration vector of the worldline. Thus each leg of
the tetrad(18) satisfies Eq.(20); moreover, we note that
amlm

s3d=ustdgstd, where we have taken the signature of the
Minkowski metric to be +2. The magnitude of the four-
acceleration vectorg is related to the magnitude of the three-
acceleration vectorA by g=Ag3, whereg is the Lorentz fac-
tor.

We assume for the sake of simplicity that the acceleration
of the observergstd is uniform and equal tog0 for 0,t
,t f, but vanishes otherwise. That is

gstd = g0fustd − ust − t fdg. s21d

Therefore, the observer starts from its positionsx0,y0,z0d at
t=0 and accelerates uniformly according to

t =
1

g0
fsinhsu0 + g0td − sinhu0g, x = x0, y = y0,

z= z0 +
1

g0
fcoshsu0 + g0td − coshu0g s22d

until the time tf, whereg0tf =sinhsu0+g0t fd−sinhu0. For t
. tf, the observer moves uniformly with speedb f =tanhsu0

+g0t fd,

x = x0, y = y0, z= zf + b fst − tfd, s23d

wherezf is given byg0szf −z0d=coshsu0+g0t fd−coshu0 us-
ing Eq. (22). The proper time of the observer fort. tf is
given by

t = t f +
t − tf

coshsu0 + g0t fd
. s24d

It follows from the results of the previous section that in
this case

L = F U V

− V U
G, U = 3C 0 0

0 C 0

0 0 1
4, V = SI3, s25d

where I i, sI id jk=−ei jk, is a 333 matrix proportional to the
operator of infinitesimal rotations about thexi axis. Accord-
ing to the postulates of the nonlocal theory of accelerated
observers, the fields as measured by the linearly accelerated
observer are given by Eq.(14), where the kernel, given by
Eq. (17), reduces in this case to

kstd = − gstdF 0 I3

− I3 0
G . s26d

In the standard theory of relativity, the field as measured
by the accelerated observer is determined via the hypothesis
of locality and for the specific case of the linearly accelerated
observer described in this section

Es1d = CE1 − SB2, Bs1d = CB1 + SE2, s27d

Es2d = CE2 + SB1, Bs2d = CB2 − SE1, s28d

Es3d = E3, Bs3d = B3, s29d

where sC,Sd=scoshu0,sinhu0d for t,0, sC,Sd=(coshsu0

+g0td ,sinhsu0+g0td) for 0ø tø tf and sC,Sd=(coshsu0

+g0t fd ,sinhsu0+g0t fd) for t. tf. However, according to the
nonlocal theory the electric field is given by

Es1d = Es1d + ustdE
0

t

gst8dBs2dst8ddt8, s30d

Es2d = Es2d − ustdE
0

t

gst8dBs1dst8ddt8, s31d

Es3d = Es3d. s32d

Similarly, the nonlocal magnetic field is given by

Bs1d = Bs1d − ustdE
0

t

gst8dEs2dst8ddt8, s33d

Bs2d = Bs2d + ustdE
0

t

gst8dEs1dst8ddt8, s34d
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Bs3d = Bs3d. s35d

It follows that the components of the electric and magnetic
fields parallel to the direction of motion of the observer re-
main the same. Moreover, fort.t f the observer moves uni-
formly yet its measurement of the electromagnetic field
yields in addition to the standard result a new constant com-
ponent that is in effect the memory of the past acceleration of
the observer.

The measurements of the accelerated observer for the case
of a perpendicularly incident plane-polarized Gaussian pulse
of electromagnetic radiation were numerically investigated
in [26] on the basis of the hypothesis of locality, namely,
Eqs.(27)–(29). The same situation has recently been studied
in connection with thenonlocal measurements of the ob-
server involving Eqs.(30)–(35); in fact, an extension of the
previous work[26] and a detailed numerical analysis of non-
locality in this case are contained in[27].

To illustrate further the physical consequences of the non-
local theory, two rather distinct situations will be explicitly
worked out in the rest of this paper. In the first case(“parallel
incidence”), discussed in the next section, the electromag-
netic radiation propagates along thez axis. This situation is
analogous to the acceleration of grains by a high-intensity
femtosecond laser pulse; indeed, the results of this work
should be compared and contrasted with the analysis of the
experimental situation presented in[22,23]. The second case
(“perpendicular incidence”), discussed in Sec. V, involves a
pulse of plane-polarized radiation that propagates along thex
axis; the nonlocal measurements of the accelerated observer
are compared with the standard theory. To simplify the
analysis, we take advantage of the fact that all of the field
operations considered in this work are linear. Therefore, it
suffices to focus attention on a generic Fourier component of
the incident pulse. Moreover, we use complex fields whose
real parts correspond to the measured fields. Thus to recover
the actual predictions of the theory, one must take the real
part of the Fourier sum of the results given in Secs. IV and V.

IV. PARALLEL INCIDENCE

Imagine a plane monochromatic wave of frequencyv
given in the circular polarization basis by

E = E0e±eivsz−td, B = E0b±eivsz−td, s36d

wheree±=sx̂± i ŷd /Î2, b±= 7 ie±, andE0svd is the amplitude
of the wave. The wave propagates along thez direction and
at t=0 impinges on a grain(“observer”) at z=z0 that accel-
erates along thez axis with initial velocity v0. For 0øt
øt f, it follows from Eq. (22) that in the six-vector notation
of Sec. II

Fstd = E0svdfsudFe±

b±
G , s37d

wheref is given by

fsud = eivz0 expFi
v

g0
se−u − e−u0dG s38d

andu=u0+g0t. Moreover,F̂=LF implies that in this case

F̂ = e−uF. s39d

This result together with the kernel(26) can be substituted in
Eq. (15) with t0=0 and after a simple integration the nonlo-
cal result is

F̂std = E0FstdFe±

b±
G , s40d

where

Fstd = e−ustdfsud + i
g0

v
ffsud − fsu0dg. s41d

It is important to note that the nonlocal theory, just as in the
local case, does not introduce any coupling between the pho-
ton helicity and the acceleration of the observer. The nonlo-
cal contribution toF is given by isg0/vdffsud−fsu0dg in
Eq. (41); as expected, it is proportional toÂ /L0=g0/v,
which for the experiments described in[22,23] is negligibly
small and of the order of 10−5.

In connection with the treatment of[22,23], it is interest-
ing to note that in Eq.(22), one can expand in powers of
g0t!c to get

t = g0tS1 +
1

2
b0

g0t

c
+ ¯ D, z= z0 + g0tSv0 +

1

2
g0t + ¯ D ,

s42d

whereb0=v0/c, g0 is the corresponding Lorentz factor and
in Eq. (38)

e−u0 =Î1 − b0

1 + b0
. s43d

It follows that

z= z0 + v0t +
1

2
A0t

2 + ¯ , s44d

where A0=g0/g0
3 is the magnitude of the initial three-

dimensional acceleration vector. Using these results,f and
F in Eq. (41) can be expressed as

f = eisv/cds−ct+z0+v0t+A0t2/2+¯d,

F = FÎ1 − b0

1 + b0
+ i

g0

cv
+

g0

c2S− ct + v0t +
1

2
A0t

2 + ¯ DGf

− i
g0

cv
eisv/cdz0, s45d

in general agreement with[23]. One can thus draw the con-
clusion that the nonlocal contribution to the field that sets the
charged particles in the grain in motion has an amplitude of
order 10−5 compared to the standard local theory for the ex-
periments reported in[22,23]. The reflected wave is therefore
expected to be affected at essentially the same negligibly
small level of,10−5. It is this reflected wave that is detected
and analyzed in practice[22,23]. The nonlocal theory in this
case would thus appear to be trivially consistent with the
results of experiments reported in[22,23], since the nonlo-
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cality enters the analysis at the insignificant level ofg0/v
,10−5.

Nonlocal effects may not be negligible in future experi-
ments using macrophysical accelerated systems[22,23]. A
remark is therefore in order here regarding the relevance of
our present calculations that are based on a single plane
wave. It should be emphasized that further extensive calcu-
lations using wave packets would be necessary in order that
the nonlocal theory could be properly compared with experi-
mental data regarding accelerated plasmas generated by an
incident femtosecond laser pulse[22,23]. What is measured
in such experiments is the shape of the reflected pulse
[22,23]; therefore, to determine the anticipated contribution
of nonlocality, one should consider an incident pulse in the
accelerated frame that is a Fourier sum of terms of the form
(41). One must then take into account the interaction of this
incident radiation with the accelerated medium via an effec-
tive reflectivity function as in[22]. The theoretical determi-
nation of the reflected pulse in the laboratory frame would
then require an inverse nonlocal transformation—given in its
general form by Eq.(19) of [19]—and hence further detailed
considerations that are beyond the scope of the present paper.

For tùt f, the measurements of the observer are given by
Eq. (40), whereFstd for tùt f can be expressed as

Fstd = e−uff̃std + i
g0

v
ffsu fd − fsu0dg. s46d

Hereu f =u0+g0t f and f̃std is given by

f̃std = expHivFzf − tf −Î1 − b f

1 + b f
st − t fdGJ . s47d

The second term inFstd is the constant memory of the ob-
server’s past acceleration.

V. PERPENDICULAR INCIDENCE

Consider a linearly polarized plane monochromatic wave
of frequencyv propagating in thex direction. The electric
and magnetic fields are given by

E = E0e
ivsx−tdẑ, B = − E0e

ivsx−tdŷ. s48d

At t=0 the wave impinges upon a grain(“observer”) at
sx0,y0,z0d that has been prearranged to accelerate along thez
direction with initial velocityv0. To determine the field mea-
sured by the observer, it is useful to assume that 0øtøt f
and definexsud,

xsud = E0e
ivx0 expF− i

v

g0
ssinhu − sinhu0dG , s49d

whereu=u0+g0t. The measured components of the electro-
magnetic field according to the nonlocal theory are then

Es1d = sinhu xsud −E
u0

u

coshu8xsu8ddu8, s50d

Es2d=0, Es3d=xsud, Bs1d=Bs3d=0, and

Bs2d = − coshu xsud +E
u0

u

sinhu8xsu8ddu8. s51d

It is simple to work out the integral in Eq.(50) and the result
is

Es1d = sinhu xsud − i
g0

v
fxsud − xsu0dg, s52d

wherexsu0d=E0 expsivx0d. The integral in Eq.(51) can be
evaluated by expanding the exponential function inxsu8d in
powers of sinhu8 and then using formulas 2.412 on p. 93 of
[28].

For tùt f, the fields measured by the uniformly moving
observer are

Es1d = sinhu f x̃std − i
g0

v
fxsu fd − xsu0dg, s53d

Es2d=0, Es3d= x̃, Bs1d=Bs3d=0, and

Bs2d = − coshu f x̃std +E
u0

uf

sinhu8xsu8ddu8. s54d

Here x̃std is given by

x̃std = E0e
ivfx0−tf−gfst−tfdg, s55d

whereg f =coshu f. The constant terms in Eq.(53) and (54)
are the remnants of the observer’s accelerated history.

VI. DISCUSSION

We have examined some of the observational conse-
quences of the nonlocal theory of accelerated observers for
the case of linearly accelerated systems. As in the standard
local theory, the electromagnetic radiation field parallel to
the direction of motion remains unchanged and, moreover,
there is no coupling between the helicity of the radiation and
the translational acceleration of the observer[29,30]. The
observer’s nonlocal determination of the electromagnetic ra-
diation field has been compared and contrasted with the stan-
dard local ansatz. The results are consistent with a relative
nonlocal contribution to the field given essentially by the
amplitudeÂ /L, which turns out to be negligibly small for the
experiments reported in[22,23]. Moreover, for an observer
that has resumed uniform motion, the constant electromag-
netic memory of past acceleration has been studied. The ob-
servation of such nonlocal effects may become possible with
methods that use high-power laser systems to generate large
accelerations[20–23].
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