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The world of Mathematics in the 17th century was rife with rivalries.  

Isaac Newton and Gottfried Wilhelm von Leibniz both claimed to have 

developed the methods of Calculus, and their competing claims split the 

society of mathematicians into factions.  Newton’s supporters were 

primarily British mathematicians.  Among those in the Leibniz camp 

was the Swiss mathematician Johann Bernoulli.  Another famous 

rivalry was one between Johann and his older brother Jakob.  One of 

them would develop some mathematical problem and challenge the 

other to solve it.  Sometimes, money was staked on the outcome of the 

challenge, and the challenges were often rather public. 

In the June 1696 Acta Eruditorum, one of the world’s first scientific 

journals, Johann proposed the following mathematical problem [1, 

p.645]:   

“If two points A and B are given in a vertical plane, to assign to 

a mobile particle M the path AMB along which, descending under 

its own weight, it passes from the point A to the point B in the 

briefest time”.   

This problem became known as the Problem of the Brachistochrone 

(from the Greek words brachistos and chronos, meaning “shortest” and 

“time”), and Bernoulli pledged to reveal the name of the solution curve 

in six months if none were able to find it within that time.  Only Leibniz 

was able to determine the solution within that period, and at his urging, 
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Bernoulli extended his time limit an additional five months, “in 

order…that no one might have cause to complain of the shortness of 

time allotted” [1, p.647].  Bernoulli also restated the problem publicly in 

January 1697 at the University of Groningen, where he was a Professor 

of Mathematics, so that “those to whom the…Acta is not available” 

could be given a chance to solve it.  Further, he specified that the two 

given points not be on a single vertical line (since in that special case, 

the vertical line would be the solution curve), and that the path be 

frictionless [1, p.647]. 

This problem was not a new one.  In his 1638 publication, Two New 

Sciences, Galileo demonstrated that the Brachistochrone curve was not 

the straight line between the endpoints, despite being the curve of the 

shortest distance, and posited that an arc of a circle seemed to be the 

solution.  As it turns out, his supposition was incorrect, but the true 

answer, the inversion of a curve called the Cycloid, is closely tied to the 

circle.  If a circle is “rolled” along a straight line, the Cycloid is the curve 

generated by the path of a single point on that rolling circle.  The 

inversion is the same curve, just upside-down. 

 
The Cycloid has many interesting properties.  The area under one 

arch of a cycloid is three times that of its generating circle.  The arc 

length of one arch of a cycloid is eight times the diameter of its 

generating circle.  Christiaan Huygens discovered a particularly 

remarkable physical property of the inverted Cycloid:  that the time it 

takes for a particle to descend from rest at some point of the curve to 

the lowest point of the curve is the same, regardless of the starting point 

(so long as the starting point isn’t the lowest point of the curve).  

Particles starting higher up on the curve accelerate more quickly down 
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the steeper incline, but must travel a greater distance, while particles 

starting closer to the lowest point have less distance to travel, but are 

accelerated less quickly.  Because of this property, the inverted Cycloid 

is often called the “Isochrone” or “Tautochrone” (from the Greek words 

isos and tauto, meaning “equal” and “the same”). 

In the proclamation in which Bernoulli restated the Brachistochrone 

problem, he remarked on the fact that so few had theretofore solved it, 

and while he didn’t explicitly state any names, a challenge to Isaac 

Newton can be readily inferred from the phrasing [1, p.648].  Shortly 

thereafter, the problem came to Newton’s attention.  Within twelve 

hours of receiving it, he solved it, and the result was published in the 

January 1697 issue of Philosophical Transactions, a publication of the 

Royal Society.  In the Acta Eruditorum of May 1697, Bernoulli submits 

his own proof of the solution, along with those of his brother Jakob and 

the Marquis de L’Hospital, as well as the excerpt from Philosophical 

Transactions containing Newton’s solution.  He also acknowledges the 

solutions of Leibniz and Ehrenfried Walther von Tschirnhaus.  Of the 

six mathematicians whose solutions are mentioned or included, only 

L’Hospital’s is incorrect. 

Johann’s proof is rather innovative.  Operating under Fermat’s 

principle—that light always travels from one point to another along the 

path that takes the least time—he demonstrates that a beam of light 

traveling through (and being refracted by) differentially thin layers of 

varying transparent materials will travel along a Cycloid path.  While 

this does effectively validate Bernoulli’s claim that the problem was a 

useful one to science, and not merely hypothetical speculation, his 

method cannot be generalized to apply to other fields or circumstances.  

His brother Jakob’s method, on the other hand, is generalizable, and 

was later developed into what is known as the Calculus of Variations. 

Jakob precedes his proof with the following Lemma—a sort of 

preliminary proof, the result of which he uses to help complete his 

primary proof. [My analysis below appears in square brackets and a 

smaller font.] 

primary proof. My following analysis appears in square brackets.
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Lemma: 

Let ACEDB be the desired curve along which a heavy point falls from 

A to B in the shortest time, and let C and D be two points on it as close 

together as we like. 

   

  
Then the segment of arc CED is among all segments of arc with C 

and D as end points the segment that a heavy point falling from A 

traverses in the shortest time.  [In other words, there are no other curve 

segments with endpoints C and D through which a heavy point falling 

from A would pass in less time than it would through CED.  

Demonstrating this fact is the purpose of the Lemma, as it allows him 

(in his subsequent proof) to focus on any segment of the curve, rather 

than the curve in its entirety.] 

[Proof of Lemma:]  Indeed, if another segment of arc CFD were 

traversed in a shorter time, then the point would move along ACFDB in 

a shorter time than along ACEDB, which is contrary to our supposition.  
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[End of Proof of Lemma.] 

 

[Proof of the Brachistochrone Problem:]  Hence in a plane 

arbitrarily inclined to the horizon (the plane need not be [vertical]), 

take ACB as the required curve, on which a heavy point from A reaches 

B in a shorter time than on any other curve in this plane. 

 
Take on it two points C and D infinitesimally close together [practically 

the same point, in other words.  Bear in mind that, even though (for the 

sake of clarity) C and D don’t look like they are infinitesimally close in 

the following diagrams, it is something he is taking for granted] and 

draw the horizontal line AH, the vertical CH, and DF [perpendicular] to 

it. 

 
Take E halfway between C and F and complete [rectangle EIDF] by 

means of the line EI [and DI]. 
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On EI we now must determine point G such that the time of fall through 

CG + the time of fall through GD [which is denoted by tCG + tGD, being 

sure to keep in mind that the fall begins at point A] is a minimum.  [In 

other words, given points C and D, infinitesimally close, on ACB, we 

want to find a formula that describes how to place point G between 

them.] 

If we now take on the line EI another point L such that GL is 

incomparably small as compared to EG [so he is assuming that G and L 

are nearly the same point.  He has already assumed that CD is 

infinitesimally small, so he is taking GL to be infinitesimally small 

compared to that], and if we draw CL and DL, 

 
then, [since he is assuming that CGD and CLD are effectively the same 

path:] 

tCL + tDL = tCG + tGD 

[here, “=” is technically only a very close approximation, and should be 
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taken to mean that the difference between the two things being 

“equated” is negligibly small] and hence [by subtracting tCL and tGD 

from both sides] 

tDL –  tGD = tCG – tCL. 

I now reason as follows.  According to the nature of the fall of heavy 

bodies [see Appendix 1 for explanation], 

CE

CG

t
t

CE
CG


, and CE

CL

t
t

CE
CL


, 

hence [subtracting the right from the left, we have] 

CE

CLCG

t
tt

CE
CLCG 




. 

If we take a point M on CG such that CG – CL = GM, 

 
then we have, because of the similarity of the [“infinitesimal”] triangles 

LMG and CEG, [that EG
GM

CG
GL  .  Then, multiplying by CG and dividing by 

CE, we see that EGCE
GMCG

CE
GL

*
* .  Since GM = CG – CL, we have that 

CE
CLCG

EG
CG

EGCE
CLCGCG

CE
GL )(

*
)*(   .  Thus, since CE

CLCG
t
tt

CE
CLCG   , we have] 

CE

CLCG

tEG
ttCG

CE
GL
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.  (#) 

In the same way, we find, according to the nature of the fall of heavy 

bodies, 

EF

GD

t
t

EF
GD


, and EF

DL

t
t

EF
DL


, hence EF

GDDL

t
tt

EF
GDDL 




. 

If we take on DL the point N such that DL – GD = LN, 

 
then we have, because of the similarity of [“infinitesimal”] triangles 
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LNG and GID, [that GI
DG

LN
GL  .  Then, multiplying by LN and dividing by 

EF, we see that EF
GDDL

GI
DG

GIEF
GDDLDG

GIEF
LNDG

EF
GL 





  )(

, recalling that LN = 

DL – GD.  Thus, since EF

GDDL
t
tt

EF
GDDL   , and recalling that EF = CE by 

construction, we have] 

EF

GDDL

tGI
ttDG

CE
GL





)(

.  (##) 

By comparison [of (#) and (##)] we obtain 

EF

GDDL

CE

CLCG

tGI
ttDG

tEG
ttCG






 )()(

, 

and [multiplying both sides of the equation by the right-hand 

denominator, dividing by the left-hand numerator, and recalling that 

tDL –  tGD = tCG – tCL, we see that] 

CG
DG

ttCG
ttDG

tEG
tGI

CLCG

GDDL

CE

EF 







)(
)(

. 

But [since C and E are infinitesimally close together, the acceleration 

due to gravity over CE is negligible, so we can treat the speed of the 

falling object at point C as the average speed, v .  Then, because 

CC ygvv  2  (see Appendix 1 for this extrapolation), and since 
CEt
CEv  , 

we can see that 
CHg

CE
yg

CEt
C

CE






22

.  In the same way, since E and F 

are infinitesimally close together and CE = EF by construction, we have 

EHg
CEtEF



2

.  Then we see that 
EH
CH

EHgCE
CHgCE

t
t

CE

EF 





2
2 , so] according to 

the law of gravity we have 

EHEG
CHGI

tEG
tGI

CE

EF








, 

and therefore finally: 

CG
DG

EHEG
CHGI





. 
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Now EG and GI are elements of the abscissa AH, CG and DG are 

elements of the curve [ACB], CH and EH their ordinates, and CE and 

EF elements of the ordinate.  [In the notation of modern differential 

Calculus, we would refer to EG + GI as dx, where AH is some 

nonnegative value of x, as on the axes above; we would refer to CG + DG 

as ds; CH and EH are some nonnegative values of y, as on the axes 

above; and we would refer to CE + EF as dy.  Note:  by these labels, we 

are assuming that the force of gravity is pulling downward in the 

positive y direction.  Further, since GL is “incomparably small as 

compared to EG,” GL would be referred to as d2x, the second 

differential of x.]  The problem can therefore be reduced to the purely 

geometric one of determining the curve of which the [curve] elements 

are directly proportional to the elements of the abscissa and indirectly 

proportional to the square roots of the ordinates.  [In other words:  

dxkyds  , where k is some nonnegative constant.  Then, since ds2 = 

dx2 + dy2, we can square both sides to get (dx2 + dy2) * y = k2 * dx2.  

Then, y * dy2 = (k2 – y) * dx2.  Dividing by the quantity (k2 – y) and 

taking the square root of both sides, we have 
dx

yk
ydy 


 2
, which is of 

identical form to the differential equation for the cycloid.  Rather than 

stop at that, however, Jakob goes on to prove geometrically that the 

cycloid fits the equation he derived in the previous proof.] 

I find that this property belongs to the Isochrone of Huygens, which 

therefore is also the Oligochrone [Jakob’s name for the 

Brachistochrone, from the Greek oligo, meaning “scant”], namely the 
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cycloid [2, pp.396-398]. 

 

[Proof that the cycloid has the properties determined for the curve of 

least descent:] Let ACP be a semicycloid; let CM and GN be tangents to 

the curve in C and G; let PQR be the [left] semicircle of the generating 

circle of ACP [extend PR to M.  Drop a perpendicular from H on AR 

through C to E and draw lines EI and DI as before]. 

 

  
 

 

 

[See the figure below. Extend EI to PR, intersecting the semicircle in V 

and its diameter in X.  Draw PV and RV.  Recalling that G and D are 

assumed to be infinitesimally close together, we can treat D as though it 

is a point on tangent GN.  A property of cycloids that Jakob uses here is 

that Differential Triangle DGI is similar to Triangles PVX and NGX.  A 

property of semicircles he uses is that Triangles PVX, VRX, and PRV are 

 

cycloid [2, pp.396-398]. 

 

[Proof that the cycloid has the properties determined for the curve of 

least descent:] Let ACP be a semicycloid; let CM and GN be tangents to 

the curve in C and G; let PQR be the [left] semicircle of the generating 

circle of ACP [extend PR to M.  Drop a perpendicular from H on AR 

through C to E and draw lines EI and DI as before]. 

 

  
 

 

 

[See the figure below. Extend EI to PR, intersecting the semicircle in V 

and its diameter in X.  Draw PV and RV.  Recalling that G and D are 

assumed to be infinitesimally close together, we can treat D as though it 

is a point on tangent GN.  A property of cycloids that Jakob uses here is 

that Differential Triangle DGI is similar to Triangles PVX and NGX.  A 

property of semicircles he uses is that Triangles PVX, VRX, and PRV are 
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similar.] 

 
Then [by the similarity of the aforementioned triangles] we have 

RV
RX

PV
VX

GN
GX

DG
GI


 

[Then, from the equation of the semicircle 

    22
2
12

2
1 RXPRRXPRRXPRVX  , we can use the Pythagorean 

Theorem on Triangle VRX to find that 

PRRXRXPRRXRXVXRXRV  2222
. 

Thus, recalling that RX = EH, we have] 

 
PR
EH

PR
RX

PRRX
RX

RV
RX

DG
GI





2

.  (&) 

[Now we draw a perpendicular from C to PR, intersecting the semicircle 

and its diameter at Q and S, respectively.  Because of the same 

properties of semicircles and cycloids from before, we have that 

Differential Triangle CEG is similar to Triangles PSQ, MSC, QSR, and 

PQR.  Additionally, just as before, from the equation of the semicircle 

    22
2
12

2
1 RSPRRSPRRSPRQS  , we can use the Pythagorean 

Theorem on Triangle QSR to determine that PRRSQR  .] 
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Then we have [recalling that RS = CH] 

  CH
PR

RS
PR

RS

PRRS
RS
QR

QS
PQ

CS
CM

EG
CG




 2

.  (&&) 

Therefore [multiplying (&) by (&&) and dividing EG
GI

 by the result yields] 

EHEG
CHGI

EHPREG
CHPRGI

CG
DG









, 

as was desired [3, p.213].  [End of Proof.] 

 

This problem attracted some of the most famous European 

mathematicians of the period to attempt to uncover its solution.  It was 

yet another outlet for the fierce competition so typical of that era, and 

contributed to many scientific advances, including the development of a 

new field of Calculus.  Like Bernoulli, many were fascinated by the fact 

that the inverted Cycloid is the solution to both the Brachistochrone and 

Isochrone problems, and others are fascinated by it even today. 
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Appendix 1 

 
The average speed of a moving body is the distance of travel divided 

by the time of travel.  The statements (regarding “the nature of the fall 

of heavy bodies”) made by Jakob are equivalent to saying 

CLCECG t
CL

t
CE

t
CG

 , 

which means that the average speed is the same over CG, CE, and CL. 

Since C and G are infinitesimally close, we can treat the slope of the 

curve—and, consequently, the acceleration due to gravity on a body 

moving along the curve—as constant from C to G.  Thus, by the Mean 

Speed Rule, the average speed, v , of a body moving from C to G is  

 GC vvv  2
1 . 

The mean speed rule also holds true for a body moving from C to E or 

from C to L. 

The law of conservation of energy states that the sum of kinetic 

energy (energy due to movement) and potential energy (energy due to 

position) remains constant.  Assuming that gravity is pulling in the 

direction of positive y, this can be expressed as 

    2
2

22
1

1
2

12
1 ygmvmygmvm  . 

If we divide everything by m, the mass, and take the initial velocity and 

y value to be zero, then 

    2
2

22
1

1
2

12
1 0 ygvygv  . 

 

Rearranging and taking the square root of both sides shows 

22 2 ygv  , 

so an object’s speed at any point along the curve is directly proportional 

to the square root of its y value.  Thus, since the y value is the same for 
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points E, L, and G, the object’s speed would also be the same at those 

points.  Then the mean speeds over CE, CL, and CG are equal, as was 

stated.stated.
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