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The construction of a radar coordinate system about the world line of an observer is discussed.
Radar coordinates for a hyperbolic observer as well as a uniformly rotating observer are described
in detail. The utility of the notion of radar distance and the admissibility of radar coordinates
are investigated. Our results provide a critical assessment of the physical significance of radar
coordinates.
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I. INTRODUCTION

A physical observer’s most basic measurements involve the determination of temporal and spatial intervals. The
fundamental nongravitational laws of physics have been formulated with respect to ideal inertial observers; therefore,
let us first discuss the spacetime measurements of inertial observers. In an inertial frame of reference with Cartesian
coordinates xµ = (t, x, y, z), the fundamental observers are the ideal inertial observers that are at rest in the global
reference system. Such observers have access to ideal clocks and measuring rods. The clocks are assumed to be
synchronized; for instance, two adjacent clocks at rest can be synchronized by a fundamental observer and then
one of the clocks can be adiabatically transported to another location. The transport can be so slow as to have no
practical impact on the synchronization of clocks. Similarly, lengths are determined in general by placing infinitesimal
measuring rods together. The measurements of uniformly moving inertial observers are related to those of the
fundamental observers by Lorentz invariance, which leads to the phenomena of length contraction and time dilation
[1]. To apply these elementary ideas in realistic situations involving accelerated systems and gravitational fields,
certain generalizations must be considered. In fact, all actual physical observers are more or less noninertial. The
standard generalization of the Cartesian inertial coordinates to the case of observers in accelerated systems and
gravitational fields involves the introduction of Fermi coordinates [2]. These constitute a geodesic coordinate system
Xµ = (T, X, Y, Z) that is established along the world line of a reference observer that carries an orthonormal tetrad
frame along its path. At each event on the path characterized by the observer’s proper time τ , a hypersurface
normal to the world line is constructed by all spacelike geodesics normal to the world line. On these hypersurfaces of
simultaneity, lengths away from the world line are defined using the proper length of the spacelike geodesic. This is
based on the summation of infinitesimal meter sticks placed together along a locally straight line. We note that the
underlying assumption regarding these measurements of a noninertial observer in the standard theory of relativity
is the hypothesis of locality. That is, the noninertial observer is pointwise equivalent to an otherwise identical
momentarily comoving inertial observer [3].

In an inertial reference frame, the above construction along a straight world line with a parallel-propagated frame
generates the entire Minkowski spacetime. However, for accelerated systems and gravitational fields there are well-
known limitations that are related to the existence of invariant acceleration and curvature lengths [3, 4].

Since the early days of relativity theory, an alternative method of synchronization of distant clocks — as well as
the measurement of the distance between them — has been discussed based on the transmission and reception of
light signals. Specifically, imagine an arbitrary observer P on a reference world line and suppose that at its proper
time τ1 it transmits a light signal to a (moving) observer Q that immediately and without delay transmits a light
signal right back to P as in figure 1. The second signal is received by P at its proper time τ2. We suppose that
the clock carried by Q at the event of signal interchange is simultaneous with the event along the world line of the
reference observer P at its proper time η = (τ1 + τ2)/2. In this way the clocks of P and Q are synchronized. That
is η − τ1 = τ2 − η, so that the time (η − τ1) that it takes for the first signal to reach Q is equal to the time (τ2 − η)
that it takes for the second signal to reach P. The corresponding distance from P to Q at the instant of simultaneity
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is then ρ = c(τ2 − τ1)/2. The limiting case of τ1 = τ2 refers to the location of observer P, where ρ = 0 and η = τ
is the proper time of the reference observer. It is well known that for inertial observers in Minkowski spacetime,
these operational procedures are equivalent to the standard approach discussed above. Moreover, this method can
be employed in accelerated systems and gravitational fields for observers whose world lines are infinitesimally close
to each other [5]; the results are then identical to those obtained by using Fermi coordinates. On the other hand, it
has been suggested that this “radar” approach may also be useful for general observers [6]. The synchronization of
distant clocks by light signals may lead to a foliation of spacetime by spacelike hypersurfaces of fixed η. Indeed in
view of the well-known limitations of Fermi coordinates in terms of their admissibility, some authors have recently
suggested that radar coordinates may be preferable [7, 8]. The purpose of this paper is to demonstrate that this is not
the case by pointing out the limitations of radar coordinates. We confine our main discussion to noninertial observers
in Minkowski spacetime for the sake of simplicity. In section 2 we define radar coordinates and discuss critically the
concept of radar distance. Hyperbolic and uniformly rotating observers are considered in sections 3 and 4, and the
limited domains of admissibility of their radar coordinates are demonstrated. Section 5 contains a brief discussion
of our results. Fermi coordinates for a uniformly rotating observer and the standard admissibility conditions are
discussed in appendices A and B, respectively.

II. RADAR COORDINATES

Imagine an observer P following a world line x̄µ(τ) in a global inertial coordinate system. Henceforth we use units
such that c = 1. The radar time and distance that P assigns to observer Q at xµ = (t, x, y, z) are η and ρ, respectively.
Thus in figure 1, τ1 = η − ρ, τ2 = η + ρ and the equations for the null rays in figure 1 imply that

t − t̄(η − ρ) =
√

[x − x̄(η − ρ)]2 + [y − ȳ(η − ρ)]2 + [z − z̄(η − ρ)]2, (1)

t − t̄(η + ρ) = −
√

[x − x̄(η + ρ)]2 + [y − ȳ(η + ρ)]2 + [z − z̄(η + ρ)]2. (2)

These equations basically define η and ρ in terms of t, x, y and z. We define the radar coordinates of Q to be
(η, ρ, θ, φ), where (θ, φ) are the standard angular coordinates that uniquely identify the direction from P to Q;
therefore, −∞ < η < ∞, 0 ≤ ρ < ∞, 0 ≤ θ ≤ π, 0 ≤ φ < 2π. The radar coordinate system is thus a “spherical” polar
coordinate system that is set up such that P is fixed at the origin of the spatial coordinates. As usual, the proper
domain of definition of these polar coordinates excludes their associated z−axis.
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FIG. 1: Schematic representation of the interchange of light signals by observers P and Q.

Imagine, for instance, that P is an inertial observer moving with constant speed v along the x−direction

t̄ = γτ, x̄ = γvτ, ȳ = 0, z̄ = 0, (3)

where γ = 1/
√

1 − v2. Then (1) and (2) reduce to

t − γ(η − ρ) =
√

[x − γv(η − ρ)]2 + y2 + z2, (4)

t − γ(η + ρ) = −
√

[x − γv(η + ρ)]2 + y2 + z2. (5)
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After squaring (4) and (5) and then adding and subtracting the resulting equations we find the transformation between
(t, x, y, z) and (η, ρ, θ, φ),

t = γ(η + vρ sin θ cosφ),

x = γ(vη + ρ sin θ cosφ),

y = ρ sin θ sin φ,

z = ρ cos θ, (6)

such that for v = 0 we recover the standard inertial coordinates where the spatial coordinates are expressed using a
spherical polar coordinate system. This result has a simple physical interpretation. First consider the Lorentz boost
(t, x, y, z) → (t′, x′, y′, z′), where P is at the spatial origin of the new coordinates

t = γ(t′ + vx′), x = γ(x′ + vt′), y = y′, z = z′. (7)

Next, consider the transformation to spherical polar coordinates in the boosted frame, i.e. (t′, x′, y′, z′) → (η, ρ, θ, φ),

t′ = η, x′ = ρ sin θ cosφ, y′ = ρ sin θ sin φ, z′ = ρ cos θ. (8)

Substituting (8) in (7) results in (6). It proves useful to define the straight line segment ξµ = xµ− x̄µ(η) that connects
simultaneous events on the world lines of P and Q as in figure 1. The components of this vector with respect to the
boosted frame are given by ξ′µ = (0, x′, y′, z′); therefore, the angular coordinates (θ, φ) can be defined by the direction
of the vector ξ with respect to the inertial frame comoving with the observer. It is thus clear that for an inertial
observer radar coordinates can in principle cover the whole Minkowski spacetime and ds2 = ηαβdxαdxβ is then given
by

ds2 = −dη2 + dρ2 + ρ2(dθ2 + sin2 θdφ2). (9)

To generalize our approach to include accelerated observers in gravitational fields, it is advantageous to introduce
the natural tetrad frame of the observer. For instance, let λµ

(α) be the natural tetrad frame of the inertial observer
P:

λµ
(0) = γ(1, v, 0, 0), λµ

(1) = γ(v, 1, 0, 0),

λµ
(2) = γ(0, 0, 1, 0), λµ

(3) = γ(0, 0, 0, 1). (10)

The components of the vector ξ with respect to this frame are given by ξ(α) = ξµλµ
(α), i.e. ξ(0) = 0, ξ(1) = ρ sin θ cosφ,

ξ(2) = ρ sin θ sin φ and ξ(3) = ρ cos θ. Thus the spherical polar coordinates (ρ, θ, φ) completely characterize the spatial
vector ξ with respect to the natural tetrad frame of the observer. Extending this analysis to noninertial observers
provides a definite method of choosing the angular coordinates θ and φ. To solve this problem in general, we introduce
a natural tetrad frame for the reference observer P. At each instant of proper time τ , P is at the spatial origin of its
local orthonormal triad. The polar angles are then chosen with respect to this local triad, that is, at each instant τ ,
(ρ, θ, φ) are the spherical polar coordinates of ξ in an infinitesimal spatial neighborhood of P.

Instead of a background global inertial system, as in the present paper, consider now the motion of the observer
P in general curvilinear coordinates. The light signals will follow null geodesics in this case and the line segment ξ
connecting simultaneous events on P and Q will no longer be a vector; in fact, it must be replaced by a (spacelike)

geodesic. Let ξ̂µ be the unit tangent vector to this geodesic at P; then, the radar angles θ and φ will be defined such

that they locally characterize ξ̂µ in the natural spatial frame at P, i.e.

ξ̂µ λµ
(1) =

√

1 + δ2 sin θ cosφ ,

ξ̂µ λµ
(2) =

√

1 + δ2 sin θ sin φ ,

ξ̂µ λµ
(3) =

√

1 + δ2 cos θ , (11)

where δ := ξ̂µ λµ
(0). As Q approaches P, δ → 0; indeed, in the immediate neighborhood of P, radar coordinates

(η, ρ, θ, φ) essentially reduce to Fermi coordinates (T, X, Y, Z) such that T = η, X = ρ sin θ cosφ, Y = ρ sin θ sin φ,
Z = ρ cos θ for ρ ≪ L, where L is a characteristic lengthscale. It follows that the hypersurfaces of radar simultaneity
are always orthogonal to the world line of P.

The principal advantage of radar coordinates has to do with the nonlocal synchronization of distant clocks as well
as a definition of radial distance based on a certain average light travel time. We now wish to show that the utility
of the latter is quite limited. To see the problem with radar distance, consider an observer P rotating uniformly on
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FIG. 2: Schematic representation of the determination of the radar distance from P to Q.

a circle of radius r about an observer Q as in figure 2. If a light signal traverses the radius of the circle in a time t,
t = r, then τ2 − τ1 = 2t

√
1 − v2, where v is the uniform speed of the observer P. Thus we have the unusual result that

ρ = r
√

1 − v2. (12)

The direction of motion of P is always orthogonal to the direction from P to Q, yet the radar distance to the center
has a contraction factor of

√
1 − v2 and thus depends on the speed of motion of P. That is, the radar distance from P

to Q is always less than r and approaches zero if the speed of P approaches the speed of light. This problem is absent
in Fermi coordinates; in fact, it is shown in appendix A that in terms of Fermi coordinates we get the standard result
that the distance from P to Q is r.

In a sufficiently small neighborhood around any regular event in a gravitational field, the spacetime is approximately
flat. It then follows from our results that in such a neighborhood the infinitesimal radar distance employed for instance
in [5] in fact agrees with the corresponding Fermi distance in that limit; however, for finite separations the Fermi
distance is in general different from the radar distance, which must then be employed with great care [9].

The relationship between the radar and Fermi coordinates can be further clarified as follows: Let (T, X, Y, Z) be
the Fermi coordinate system around the world line of observer P. In the immediate neighborhood of P, we introduce
the spherical polar coordinates (ρ̂, θ, φ) such that X = ρ̂ sin θ cosφ, Y = ρ̂ sin θ sin φ and Z = ρ̂ cos θ. Here ρ̂ is
sufficiently small by construction, i.e. ρ̂ ≪ L, where L is the acceleration length of P. It follows that (T, ρ̂, θ, φ) is
an admissible coordinate system and with T = η and ρ̂ = ρ coincides with the radar coordinate system around P.
Beyond this limiting situation, the two coordinate systems generally differ from each other. On general grounds, we
expect that for ρ ∼ L the radar coordinate system may become inadmissible. The standard admissibility conditions
are discussed in [5]; in any case, we must have gηη < 0 in radar coordinates. We will show in the next section that
for the hyperbolic observer (L = 1/g), the regime of applicability of the two coordinate systems coincide, whereas
this is not the case for the uniformly rotating observer (L = 1/Ω) discussed in section 4. A brief treatment of the
standard admissibility conditions is given in appendix B; for a more detailed treatment as well as a discussion of
Møller’s admissibility conditions see [10].

III. HYPERBOLIC OBSERVER

Let P be uniformly accelerated along the z-axis with a world line

t̄ =
1

g
sinh gτ, x̄ = 0, ȳ = 0, z̄ =

1

g
(−1 + cosh gτ). (13)

In this case (1) and (2) reduce to

t − 1

g
sinh g(η − ρ) =

√

x2 + y2 +
[

z + 1
g
− 1

g
cosh g(η − ρ)

]2

, (14)
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t − 1

g
sinh g(η + ρ) = −

√

x2 + y2 +
[

z + 1
g
− 1

g
cosh g(η + ρ)

]2

. (15)

One can show on the basis of these equations that (t, x, y, z) → (η, ρ, θ, φ) is given by

t =
1

g
(cosh gρ + cos θ sinh gρ) sinh gη, (16)

x =

(

1

g
sinh gρ

)

sin θ cosφ, y =

(

1

g
sinh gρ

)

sin θ sin φ, (17)

z = −1

g
+

1

g
(cosh gρ + cos θ sinh gρ) cosh gη. (18)

We note that as g → 0, (16)-(18) reduce to the standard spherical polar coordinates, as expected. By treating ρ to
first order in (16)-(18), it is possible to show that (ρ, θ, φ) is indeed the spherical polar coordinate system constructed
about P in an infinitesimal spatial neighborhood in the natural Fermi - Walker transported triad along the hyperbolic
observer’s world line. To this end, we recall that the Fermi coordinates are given in this (Rindler) space by [11]

t =
(

1
g

+ Z
)

sinh gT, x = X, y = Y,

z = − 1
g

+
(

1
g

+ Z
)

cosh gT. (19)

Let us introduce polar coordinates via X = ρ sin θ cosφ, Y = ρ sin θ sin φ and Z = ρ cos θ, where ρ is treated to first
order in comparison with the acceleration length 1/g. Then, with T = η, (19) and (16) - (18) are identical since
cosh gρ ≃ 1 and sinh gρ ≃ gρ for ρ ≪ 1/g.

The spacetime metric in radar coordinates is given by

ds2 = −(cosh gρ + cos θ sinh gρ)2dη2 + (cosh 2gρ + cos θ sinh 2gρ)dρ2

+
(

1
g

sinh gρ
)2

(−2g sin θdρdθ + dθ2 + sin2 θdφ2). (20)

It can be shown on the basis of the standard admissibility conditions given in appendix B that these radar coordinates
are admissible if and only if

− gηη = gρρ − g2
ρθ/gθθ > 0. (21)

We note that −gηη = (z + 1
g
)2 − t2 =

(

Z + 1
g

)2

> 0 and vanishes at the Rindler horizon.

It is possible to work out the components of ξµ = xµ − x̄µ(η) in this case using equations (13) and (16) - (18). With
respect to the natural tetrad frame of the observer P,

λµ
(0) = (cosh gη, 0, 0, sinhgη), λµ

(1) = (0, 1, 0, 0),

λµ
(2) = (0, 0, 1, 0), λµ

(3) = (sinh gη, 0, 0, cosh gη), (22)

the components of ξ are ξ(α) = ξµλµ
(α), so that in radar coordinates

ξ(0) = 0, ξ(1) =

(

1

g
sinh gρ

)

sin θ cosφ,

ξ(2) =
(

1
g

sinh gρ
)

sin θ sinφ, ξ(3) =
1

g
(−1 + cosh gρ) +

(

1

g
sinh gρ

)

cos θ. (23)

Thus to lowest order in gρ ≪ 1,

ξ(1) ≃ ρ sin θ cosφ, ξ(2) ≃ ρ sin θ sin φ, ξ(3) ≃ ρ cos θ, (24)

as expected. The hypersurfaces of simultaneity are hyperplanes orthogonal to the world line of the hyperbolic observer,
just as in the case of Fermi coordinates.

The construction of radar coordinates makes it evident that these are restricted to the Rindler wedge. As an
example, consider an observer Q that moves along the z-axis: x = y = 0 and z = v0t. For t ≥ 0, Q starts at P and
moves along the θ = 0 direction according to

cosh gη − v0 sinh gη = e−gρ (25)
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from η = 0 to η = η0 given by

η0 =
1

g
ln

(

1 + v0

1 − v0

)

, (26)

when it returns back to P. We note that ρ̇(η = 0) = v0 and ρ̇(η = η0) = −v0, while ρ̈(η = 0 or η0) = −g(1 − v2
0). In

contrast, the corresponding result for Fermi coordinates is −g(1−2v2
0); see [12]. Here an overdot denotes differentiation

with respect to the radar time η. For η > η0, the motion is along θ = π, hence

cosh gη − v0 sinh gη = egρ, (27)

so that as η → ∞, Q approaches the Rindler horizon at ρ = ∞, since −gηη = e−2gρ in this case. In the limit that Q
is a null ray with v0 = 1, the motion is simply given by ρ = η. These results should be compared and contrasted with
the results of [12] based on Fermi coordinates.

IV. UNIFORMLY ROTATING OBSERVER

Consider next the world line of a uniformly rotating observer P parametrized by its proper time

t̄ = γτ, x̄ = R cosΩτ, ȳ = R sin Ωτ, z̄ = 0. (28)

The observer moves with speed v = RΩ0 on a circle of radius R with its center at the spatial origin of the global
inertial coordinates. The azimuthal angle of P with respect to inertial coordinates is given by Ω0t̄ = Ωτ , where
Ω = γΩ0 and γ is the Lorentz factor of P ,

γ =
√

1 + R2Ω2. (29)

The radar coordinate system around P can be developed as in figure 1 with τ1 = η − ρ and τ2 = η + ρ. The following
conditions must be satisfied:

t − γ(η − ρ) =
√

[x − R cosΩ(η − ρ)]2 + [y − R sin Ω(η − ρ)]2 + z2 := R1, (30)

t − γ(η + ρ) = −
√

[x − R cosΩ(η + ρ)]2 + [y − R sinΩ(η + ρ)]2 + z2 := −R2. (31)

To simplify the analysis, consider the rotation (x, y, z) → (x′, y′, z′)

x = x′ cosΩη − y′ sin Ωη, y = x′ sin Ωη + y′ cosΩη, z = z′. (32)

It follows that

R1 =
√

(x′ − R cosΩρ)2 + (y′ + R sin Ωρ)2 + z′2, (33)

R2 =
√

(x′ − R cosΩρ)2 + (y′ − R sin Ωρ)2 + z′2. (34)

From (30)-(31) and (33)-(34) we get

(x′ − R cosΩρ)2 + (y′ + R sinΩρ)2 + z′2 = [t − γ(η − ρ)]2, (35)

(x′ − R cosΩρ)2 + (y′ − R sinΩρ)2 + z′2 = [t − γ(η + ρ)]2. (36)

Adding and subtracting (35) and (36) result in

(x′ − R cosΩρ)2 + y′2 + R2 sin2 Ωρ + z′2 = γ2ρ2 + (t − γη)2, (37)

y′R sin Ωρ = γρ(t − γη). (38)

It proves useful to define the quantities U and V ,

U =
t − γη

R sin Ωρ
, V =

√

(γρ)2 − R2 sin2 Ωρ, (39)

where (γρ)2 − R2 sin2 Ωρ ≥ 0 and V = 0 only when ρ = 0. Based on these definitions, we have

t = γη + RU sin Ωρ, y′ = γρU (40)
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and from (36)

(x′ − R cosΩρ)2 + z′2 = (1 − U2)V 2, (41)

or

(x′ − R cosΩρ)2

V 2
+

z′2

V 2
+ U2 = 1. (42)

We now define the spherical polar angles (θ, φ) as follows:

cos θ =
z′

V
, sin θ cosφ =

(x′ − R cosΩρ)

V
, sin θ sinφ = U, (43)

since it follows from equation (42) that z′2/V 2 ≤ 1 and U2 ≤ 1. Hence

x′ = R cosΩρ + V sin θ cosφ,

y′ = γρ sin θ sin φ,

z′ = V cos θ, (44)

and from (32), (40) and (43)

t = γη + R sin θ sinφ sin Ωρ,

x = (R cosΩρ + V sin θ cosφ) cosΩη − (γρ sin θ sinφ) sin Ωη,

y = (R cosΩρ + V sin θ cosφ) sin Ωη + (γρ sin θ sin φ) cos Ωη,

z = V cos θ. (45)

Note that for Ω = 0 these relations reduce to the usual spherical coordinates with origin at (R, 0, 0):

t = η, x = R + ρ sin θ cosφ, y = ρ sin θ sin φ, z = ρ cos θ. (46)

To examine the physical significance of radar coordinates (45), it is important to consider the limiting case of R = 0.
The observer P is then fixed at the spatial origin of the global inertial frame and (45) reduces to t = η and

x = ρ sin θ cos(φ + Ω0η), y = ρ sin θ sin(φ + Ω0η), z = ρ cos θ. (47)

This is the standard transformation to rotating Cartesian coordinates, which means that though P is fixed it is still
noninertial as it refers its observations to axes rotating uniformly about the z−direction with frequency Ω0. Indeed,
these rotating axes are the natural orthonormal triad of P, as illustrated in appendix A and the radar angles (θ, φ)
are defined with respect to these rotating axes.

At a given radar time η, which identifies the event x̄µ(η) on the world line of the reference observer P, the corre-
sponding simultaneity hypersurface can be determined by eliminating the three spatial variables ρ, θ and φ from the
four equations given in display (45). In contrast to the hyperbolic case, the form of this hypersurface for the rotating
observer is not simple; nevertheless, by expanding sinΩρ and cosΩρ in powers of Ωρ one can show explicitly that the
hypersurface perpendicularly intersects the world line of P.

Let us compute the components of the vector ξµ = xµ − x̄µ(η) for the uniformly rotating observer P using (28)
and (45). With respect to the natural tetrad frame (A1) given in appendix A, the measured components of ξ,
ξ(α) = ξµλµ

(α), are given by

ξ(0) = γR(Ωρ − sin Ωρ) sin θ sin φ,

ξ(1) = R(−1 + cosΩρ) + V sin θ cosφ,

ξ(2) = (γ2ρ − R2Ω sin Ωρ) sin θ sin φ,

ξ(3) = V cos θ.

(48)

It is important to note that this vector is not in general orthogonal to the world line of P, so that the simultaneity
hypersurfaces in this case differ from the normal hyperplanes employed in the case of Fermi coordinates. For Ωρ ≪ 1,
cosΩρ ≃ 1, sin Ωρ ≃ Ωρ and V ≃ ρ; therefore, ξ(0) ≃ 0 and

ξ(1) ≃ ρ sin θ cosφ, ξ(2) ≃ ρ sin θ sin φ, ξ(3) ≃ ρ cos θ, (49)
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as expected.
It is interesting to return to the problem of the radar distance from P to the center of the circle of radius R. This

center has inertial coordinates (t, x = y = z = 0); therefore (45) implies that

η = t/γ, ρ = R/γ, θ = π/2, φ = π, (50)

in agreement with section 2. As is clear from figure 4 in appendix A, the center of the circle is always at (θ, φ) = (π/2, π)
for the reference observer P.

The metric in radar coordinates has a complicated form in this case; therefore, to simplify the analysis of the
admissibility of radar coordinates we use the coordinates (η, x′, y′, z′) instead. Let us note that x′, y′ and z′ are
independent of η and they have their origin at the center of the circle, while (ρ, θ, φ) has its origin at P. It turns out,
as demonstrated in detail in appendix B, that a further coordinate transformation to the actual radar coordinates,
(η, x′, y′, z′) → (η, ρ, θ, φ), does not affect the admissibility analysis presented here. We assume that (x′, y′, z′) →
(ρ, θ, φ) is a proper coordinate transformation and define

W (x′, y′, z′) = R sin θ sin φ sin Ωρ. (51)

Then, in terms of (η, x′, y′, z′) the metric is

ds2 = −(γdη + dW )2 + Ω2(x′2 + y′2)dη2 + 2Ω(x′dy′ − y′dx′)dη + dx′2 + dy′2 + dz′2. (52)

It follows from the general form of this metric that the conditions for the admissibility of the (η, x′, y′, z′) coordinate
system reduce to

− gηη = γ2 − Ω2(x′2 + y′2) > 0. (53)

Thus the boundary of the admissible region for radar coordinates is given by gηη = 0.
It follows from (53) that

gηη = −(1 + Ω2R2)[1 − (Ωρ)2 sin2 θ sin2 φ] + Ω2(R cosΩρ + V sin θ cosφ)2, (54)

so that the boundary surface ρ = ρ(θ, φ) is given by

− (1 + Ω2R2)[1 − (Ωρ)2 sin2 θ sin2 φ] + Ω2(R cosΩρ + V sin θ cosφ)2 = 0. (55)

This surface has the topology of a cylinder about the observer’s Z−axis (cf. appendix A), since for θ = 0 or π we have
−gηη = 1 + R2Ω2 sin2 Ωρ, which is always positive. Moreover, for ρ ≫ R/γ, equation (55) implies that ρ sin θ ∼ 1/Ω,
so that the asymptotic radius of the cylinder is ∼ Ω−1. For θ = π/2, the boundary surface reduces to a closed curve
that is depicted in figure 3, where Ωρ sin φ is plotted versus Ωρ cosφ for ΩR = 1.

P

–2

–1

0

1

2

–1 0 1 2

FIG. 3: Schematic representation of the closed boundary curve ρ = ρ(π/2, φ). We plot Ωρ sin φ versus Ωρ cos φ for the special
case where ΩR = 1 and hence v = 1/

√
2.
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V. DISCUSSION

The theoretical construction of an extended frame of reference is a basic problem in the theory of relativity and has
been the subject of many recent investigations [10, 13, 14]. The present paper has been devoted to the construction
and investigation of radar coordinates. For the sake of simplicity , we have limited the scope of our main work to
accelerated observers in Minkowski spacetime and have found that radar coordinates have limited utility in terms
of the concept of radar distance. Moreover, the domain of applicability of radar coordinates is limited just as it is
with Fermi coordinates. Once an observer is accelerated, the absolute character of its acceleration is reflected in the
existence of local acceleration lengths. While these locally limit the pointwise applicability of the hypothesis of locality
[3], they also determine the scale of the domain of validity of physically - motivated coordinate systems established
around the world line of the observer. Radar coordinates may be interesting and useful, especially in connection with
the synchronization of distant clocks; however, they cannot in general replace the more basic Fermi coordinates.

For a general observer in a gravitational field, the light signals follow null geodesics and the calculations involved
in the determination of radar coordinates would then become considerably more complicated. Moreover, in addition
to possible acceleration scales, curvature radii must be taken into consideration. For distances beyond the curvature
radii, the uniqueness of null geodesics or the spacelike geodesics used to define the angular radar coordinates is not
assured.

The general issues discussed in this paper become relevant whenever electromagnetic or other (null) signals are
used for spacetime determinations. In this connection, we must mention the GPS system, where the coordinates of an
event are determined, in principle, by the simultaneous reception of four GPS signals [15, 16, 17]. We recall that the
radar coordinate system has the important property that it essentially reduces to the Fermi system when the range
ρ is sufficiently small compared to the characteristic lengthscale of the observer. Let us note that for observers on
the Earth, 1/Ω⊕ ≃ 28 AU and 1/g⊕ ≃ 1 lt-yr , so that for the GPS system the corresponding ρ/L is generally very
small.

The scheme of setting up coordinate systems about the world lines of observers may be called the 1+3 splitting of
spacetime, since the time coordinate is essentially distinguished as it is the proper time of an observer. A complemen-
tary scheme is based on a natural foliation of spacetime by spacelike hypersurfaces. Admissible 3+1 splittings have
been discussed in [18]. Moreover, a dynamical realization of the 3+1 scheme in the case of weak gravitational fields
is contained in [19].

The present knowledge of the structure of the universe is dependent to a large extent upon the reception of
electromagnetic signals from distant astronomical bodies as well as communication with spacecraft via radio signals
that are transponded back to the Earth. This circumstance provides the motivation to investigate generalizations of
the radar coordinate system as, for instance, the approach recently proposed in [10].

APPENDIX A: FERMI COORDINATES FOR UNIFORMLY ROTATING OBSERVER

Consider the uniformly rotating observer P in section 4 with its world line given by (28). The natural orthonormal
tetrad of this observer is given in (t, x, y, z) coordinates by [3]

λµ

(0) = γ(1,−v sin ϕ, v cosϕ, 0),

λµ

(1) = (0, cosϕ, sin ϕ, 0),

λµ

(2) = γ(v,− sinϕ, cosϕ, 0),

λµ

(3) = (0, 0, 0, 1), (A1)

where v = RΩ0 and ϕ = Ω0t̄ = Ωτ . The corresponding Fermi normal coordinates (T, X, Y, Z) are given by [3]

T =
1

γ
(t − γvY ),

X = −R + x cosΩT + y sin ΩT,

Y =
1

γ
(−x sin ΩT + y cosΩT ),

Z = z. (A2)

The center of the circle is represented by Q: (t, x = y = z = 0) with Fermi coordinates T = t/γ, X = −R and
Y = Z = 0 as in figure 4. Thus the Fermi distance between P and Q is the radius of the circle R, as expected.
Transforming (X, Y, Z) to spherical polar coordinates (ρ̂, θ, φ), we note that Q is at ρ̂ = R, θ = π/2 and φ = π.
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FIG. 4: Local axes of the rotating observer P.

Moreover, with ρ̂ = ρ very small and T = η, (A2) is identical with (45) when Ωρ is treated to first order (i.e.
cosΩρ ≃ 1, sin Ωρ ≃ Ωρ and V ≃ ρ); as discussed above, this is simply a consequence of the fact that the spherical
polar coordinates are defined with respect to the local spatial frame of the observer P. The spacetime metric in Fermi
coordinates is

ds2 = −γ2[1 − Ω2
0(X + R)2 − γ2Ω2

0Y
2]dT 2 + 2γ2Ω0(XdY − Y dX)dT

+dX2 + dY 2 + dZ2. (A3)

The Fermi coordinates are admissible for Ω2
0(X +R)2 +γ2Ω2

0Y
2 < 1. The boundary region is an elliptic cylinder whose

axis coincides with the Z−axis and is characterized in the (X, Y )-plane by an ellipse with its center at Q. The ellipse
has semimajor axis 1/Ω0 and semiminor axis 1/(γΩ0); in fact, this ellipse with eccentricity v < 1 can be considered
in terms of a circle of radius 1/Ω0 that is Lorentz-Fitzgerald contracted along the direction of motion of P, which
occupies a focus of this ellipse.

APPENDIX B: STANDARD ADMISSIBILITY CONDITIONS

Consider a region of spacetime where events have been assigned coordinates xµ = (t, xi) such that the spacetime
interval takes the form ds2 = gµνdxµdxν with signature +2. The fundamental observers in this region are the observers
at rest, i.e. xi = constant for each observer. The standard admissibility conditions for this system of coordinates refer
to the local measurements of the fundamental observers using clocks and infinitesimal measuring rods. The proper
time τ of each fundamental observer is given by −dτ2 = g00dt2, so that g00 < 0 is the first admissibility condition.
Let

uµ = (
1√−g00

, 0, 0, 0) (B1)

be the four-velocity field of the fundamental observers. Each has access to infinitesimal measuring sticks that exist in
an infinitesimal hypersurface orthogonal to its world line, i.e. gµνuµdxν = 0. The infinitesimal orthogonal hypersurface
is thus given by g00dt + g0idxi = 0, which combined with

gµνdxµdxν =
1

g00
(g00dt + g0idxi)2 + γijdxidxj , (B2)

where

γij = gij −
g0ig0j

g00
, (B3)

implies that the length of an infinitesimal measuring rod is dl2 = γijdxidxj . It follows that other standard admissibility
conditions are required to ensure that dl2 is positive. A theorem of linear algebra [20] states that for a symmetric
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n × n matrix M , Mijdxidxj is positive if and only if the principal minors of M are all positive, i.e.

det











M11 . . . M1k

. .

. .

. .
Mk1 . . . Mkk











> 0, for k = 1, . . . , n. (B4)

Moreover, it can be shown that M is positive if and only if there exists an invertible matrix N such that M = N †N ,
where N † is the transpose of N . Then, Mijdxidxj can be expressed in matrix notation as (Ndx)†(Ndx), which is
manifestly positive; that is, if dx 6= 0, then Ndx 6= 0, since N is invertible, and so Mijdxidxj > 0 [20].

The admissibility conditions (B4) are the same as those given in [5] on the basis of a different analysis involving the
determination of radar distance between two infinitesimally close observers. Let us now apply these conditions to the
spacetime metric in radar coordinates for the case of the rotating observer in section 4. The transformation from the
inertial coordinates to radar coordinates in (45) may be considered to be a combination of (t, x, y, z) → (η, x′, y′, z′)
given by t = γη + W (x′, y′, z′) and (32) together with (η, x′, y′, z′) → (η, ρ, θ, φ) given by (44). Consider first the
transformation (t, x, y, z) → (η, x′, y′, z′) that results in the metric (52). It is straightforward to show that for this
metric gηη < 0 implies that the relations (B4) are all satisfied. This means that for gηη < 0, there exists an invertible
matrix S such that γ′

ijdx′idx′j = (Sdx′)†(Sdx′). Next, we apply the transformation (44) to the metric (52) to get
the general metric in radar coordinates, which are admissible if γijdxidxj is positive. Let H be the Jacobian matrix of
the transformation (44). This matrix is invertible if the corresponding Jacobian, J = detH , is nonzero. It is possible
to express J as

J = γρ2 sin θF, (B5)

where F (ρ, θ, φ) is given by

F =
V

ρ

[

dV

dρ
(cos2 θ + sin2 θ cos2 φ) +

V

ρ
sin2 θ sin2 φ − RΩ sin θ cosφ sin Ωρ

]

. (B6)

It is simple to see from (B6) that F is always positive along the axis of rotation (θ = 0, π), F → 1 for ρ → 0 and
F > 0 for ρ → ∞. Moreover, F (ρ, θ, π/2) ≥ 1. Extensive numerical analysis has shown that F is indeed positive.
On this basis, we assume that H is invertible. Then it follows from the structure of (B2) that in radar coordinates
γijdxidxj = (SHdx)†(SHdx), where SH is an invertible matrix. Thus (γij) is a positive matrix and gηη < 0 is the
only condition that we need in order to ensure that the radar coordinates for the rotating observer are admissible.
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