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Fermi coordinates are directly constructed in de Sitter and Gödel spacetimes and the corresponding
exact coordinate transformations are given explicitly. The quasi-inertial Fermi coordinates are then
employed to discuss the dynamics of a free test particle in these spacetimes and the results are compared
to the corresponding generalized Jacobi equations that contain only the lowest-order tidal terms. The
domain of validity of the generalized Jacobi equation is thus examined in these cases. Furthermore, the
difficulty of constructing explicit Fermi coordinates in black hole spacetimes is demonstrated.
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I. INTRODUCTION

To interpret measurements in a gravitational field, access
to locally inertial coordinates is indispensable. At each
event in spacetime, the spacetime is locally flat; therefore,
it is possible to introduce Riemann normal coordinates that
constitute a geodesic system of coordinates that is inertial
at the event under consideration. The Riemann normal
coordinates are in general admissible only in a certain
region around the event such that every point in this region
can be connected to the event by a unique geodesic.

In general, the physical interpretation of measurements
by a free observer necessitates a continuous locally inertial
system along the worldline of the observer. This can be
achieved by Fermi coordinates, namely, a normal geodesic
coordinate system in a cylindrical region about the world-
line of the observer. Fermi normal coordinates [1] are the
natural extension of Riemann normal coordinates and play
a basic role in general relativity theory [2]. The notion of
Fermi coordinates was first implicitly introduced in
Ref. [1]; a recent commentary on Fermi’s pioneering
work is contained in Ref. [3].

Imagine a spacetime region with coordinates x� �
�t; xi� and a reference observer O following a worldline
��t; �xi�. We use gravitational units such that c � G � 1
throughout; moreover, we assume that the spacetime met-
ric has signature �2. The observer carries an orthonormal
parallel-propagated tetrad frame ��

��� along its path such
that ��

�0� � d �x�=d�, where � is the proper time along the
worldline ofO. Thus ��

�0� is the timelike unit vector that is
tangent to the worldline of O and acts as its local temporal
axis. Moreover, ���i�, i � 1, 2, 3, are orthogonal spacelike
unit gyro axes that form the local spatial frame of the
observer. At each event Q��� along the worldline, consider
the class of spacelike geodesics orthogonal to the world-
line; these form a local hypersurface. Let P be an event
with coordinates x� on this hypersurface and consider the
unique spacelike geodesic segment fromQ to P. We define

the Fermi coordinates of P to be X� � �T; Xi�, where

 T � �; Xi � �����
�i�: (1)

Here �� is the unit vector tangent to the spacelike geodesic
segment at Q and � is the proper length of this segment
from Q to P as in Fig. 1. Thus the reference observer O is
always at the spatial origin of Fermi coordinates.

The Fermi coordinates are in general admissible in the
sense of Lichnerowicz [4] in a finite cylindrical region
about the worldline of O. The spacetime metric in Fermi
coordinates is given by

 g00 � �1� FR0i0j�T�X
iXj � � � � ; (2)

 g0i � �
2

3
FR0jik�T�X

jXk � � � � ; (3)
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FIG. 1. Schematic construction of Fermi coordinates at P.
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 gij � �ij �
1

3
FRikjl�T�X

kXl � � � � ; (4)

where

 

FR��	��T� � R�
��������


����

�
�	��

�
��� (5)

is the projection of the Riemann tensor on the observer’s
tetrad along the reference trajectory. The Taylor series in
Eqs. (2)–(4) can be expressed as g�
 � ��
 � h�
�X�,
where h�
�X� is a perturbation that can be expressed as a
series expansion in powers of the spatial distance away
from the reference trajectory. The nature of the infinite
series in Eqs. (2)–(4) has been discussed by a number of
authors. The second-order terms given explicitly in
Eqs. (2)–(4) were worked out in Refs. [5,6]. The third-
order terms were first given in Ref. [7] and the fourth-order
terms in Ref. [8]; moreover, these higher-order terms have
been recently discussed in Ref. [9]. In the weak-field limit,
the infinite series in Eqs. (2)–(4) have been studied in
Ref. [10].

Consider the motion of a free particle in the Fermi
coordinate system. The geodesic equation of motion

 

dU�

ds
� ����U�U� � 0; (6)

where U� � dX�=ds, can be written in terms of the modi-
fied Lorentz factor � � dT=ds and V � dX=dT based on
the decomposition U� � ��1;V�. On the other hand, the
timelike condition U�U� � �1 implies that

 �
1

�2 � g00 � 2g0iV
i � gijV

iVj: (7)

The equation for V�T� is the reduced geodesic equation
given by

 

dVi

dT
� ��i�� � �0

��V
i�
dX�

dT
dX�

dT
� 0: (8)

It is useful to consider the class of static observers in the
Fermi coordinate system. These observers are generally
accelerated with four-velocity U�

S � ��g00�
��1=2���0 in

Fermi coordinates. The Lorentz factor of the test particle
with four-velocity U� � ��1;V� with respect to the static
observers is

 �S �
� �����������
�g00
p

�
g0iVi�����������
�g00
p

�
�: (9)

In this paper, we are interested in the comparison be-
tween the consequences of these equations in the case of
exact Fermi coordinates—given explicitly in de Sitter and
Gödel spacetimes—with equations based on the lowest-
order tidal terms given explicitly in Eqs. (2)–(4). In the
latter case, Eq. (7) implies that

 

1

�2
� 1� V2 � FR0i0jX

iXj �
4

3
FR0jikX

jViXk

�
1

3
FRikjlV

iXkVjXl; (10)

and the reduced equation of motion is the generalized
Jacobi equation [11]
 

d2Xi

dT2 �
FR0i0jX

j � 2FRikj0V
kXj �

2

3
�3FR0kj0V

iVk

� FRikjlV
kVl � FR0kjlV

iVkVl�Xj � 0: (11)

This equation is expected to be valid for jXj sufficiently
small compared to a certain radius of curvature of space-
time. We assume the following initial conditions for
Eqs. (8) and (11) throughout this paper: At T � 0, X �
0 and V � V0 such that jV0j< 1. Let us note that for T >
0 and away from the origin of Fermi coordinates, jVj could
then in principle exceed unity along a timelike geodesic
worldline.

In some situations—for instance, along the axis of rota-
tional symmetry of a Kerr black hole—one-dimensional
motion is allowed. In general, the symmetries of the
Riemann tensor imply that for motion along the Z direc-
tion, say, Eq. (11) reduces to

 

d2Z

dT2
� �1� 2 _Z2�Z � 0; (12)

where �T� � FRTZTZ�T� and _Z � dZ=dT. This equation
approximates the reduced geodesic equation for jZj suffi-
ciently small compared to jj�1=2. In Eq. (12), the critical
speed of 1=

���
2
p
� 0:7 should be noted: Motion at the criti-

cal speed is uniform, i.e. Z � constant� T=
���
2
p

, and the
character of the motion changes depending on whether the
initial relative speed is above or below the critical speed.
The critical speed in gravitational motion is briefly re-
viewed in Appendix A.

In a recent series of papers, we have investigated the
general equation of motion of a particle in Fermi coordi-
nates using the generalized Jacobi equation [11]. The
results are particularly interesting if the speed of the test
particle relative to the reference particle exceeds the criti-
cal speed given by Vc :� 1=

���
2
p

. The astrophysical impli-
cations of these results have been worked out in
Refs. [12,13]. This general approach has been extended
to the motion of charged particles in Ref. [14]. A major
shortcoming of these studies is that only the first few terms
of the series in Eqs. (2)–(4) have been taken into account. It
is therefore important to know the domain of validity of
these astrophysically significant results. In fact, as explic-
itly demonstrated in Appendix B, the construction of the
exact Fermi coordinates in black hole spacetimes is a
daunting task. Moreover, the transformation x� � X� re-
mains implicit as well as approximate in these studies [11–
13]. For recent efforts to construct such approximate trans-
formations explicitly, see Ref. [15].
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To avoid the difficulties encountered in black hole
spacetimes (cf. Appendix B), we turn to spacetimes with
more symmetries. It is clear that explicit Fermi coordinates
can only be constructed in rather special circumstances;
however, the generalized Jacobi equation can be employed
in general. What is the extent of agreement between these
approaches? To answer this question, we choose two spa-
tially homogeneous spacetimes: de Sitter’s spacetime with
ten Killing vector fields and Gödel’s spacetime with five
Killing vector fields.

The main purpose of the present paper is to study the
infinite series in Eqs. (2)–(4) and the exact transformation
x� � X� to Fermi coordinates explicitly in de Sitter and
Gödel spacetimes. The motion of a test particle is then
studied using the exact Fermi metric and the results are
compared to the implications of the generalized Jacobi
Eq. (12), where in de Sitter (Gödel) spacetime  is a
negative (positive) constant. Equation (12) can be inte-
grated in these cases; the behavior of the solutions have
been studied in Ref. [11]. The comparison of the exact
geodesic equation of motion in Fermi coordinates with the
generalized Jacobi equation makes it in principle possible
to determine the extent of validity of the latter equation in
these cases; moreover, a general mathematical treatment of
such a comparison is presented in Appendix C.

II. FERMI COORDINATES IN DE SITTER
SPACETIME

Consider de Sitter’s metric in the (inflationary-model)
form

 ds2 � �dt2 �A2�t��ijdx
idxj; (13)

where A�t� is given by

 A �t� � eHt; (14)

and H > 0 is a (‘‘Hubble’’) constant. This metric satisfies
Einstein’s matter-free equations such that H2 � �=3,
where �> 0 is the cosmological constant. The spacetime
region x� � �t;x� described by Eq. (1) is only part of
de Sitter’s spacetime of constant positive curvature; a de-
tailed historical description of spacetimes of constant cur-
vature is contained in Ref. [16].

The geodesics of the metric (13) are obtained from the
extrema of

R
ds. It is a simple consequence of this fact that

A2dxi=ds, i � 1, 2, 3, are constants along the geodesics.
Let us imagine a class of reference observers that are fixed
in space, i.e. they have constant spatial coordinates xi, i �
1, 2, 3. It turns out that these are free observers each with an
orthonormal tetrad frame ����� such that

 ���0� � ��0; ���i� �
1

A�t�
��i; (15)

where t � � is the proper time along the worldline of the
observer. Moreover, it is simple to verify that this tetrad

frame is parallel transported along the geodesic worldline
of the observer.

The projection of the Riemann tensor on the tetrad of a
reference observer can be expressed as a 6	 6 matrix
R � �RAB�, where A and B are elements of the set
f01; 02; 03; 23; 31; 12g. We find that

 R � �H2 I 0
0 �I

� �
; (16)

where I is the 3	 3 unit matrix.
We need to find the general solution for spacelike geo-

desics. To this end, the spacelike geodesic equation in this
case reduces to

 

dxi

d�
�

Ci
A2�t�

; (17)

 

�
dt
d�

�
2
�

C2

A2�t�
� 1; (18)

where � is the proper length along a spacelike geodesic,
Ci, i � 1, 2, 3, are constants, and

 C2 �
X
i

C2
i : (19)

The general solution of Eq. (18) is

 eHt � C cos�H�� ��; (20)

where � is a constant. It follows from Eq. (20) that Eq. (17)
can be solved exactly and the result is

 xi �
Ci
HC2 tan�H�� �� �Di; (21)

where Di, i � 1, 2, 3, are constants of integration.
To establish a Fermi coordinate system, we need to

choose a specific reference trajectory. For the sake of
simplicity and with no loss in generality, we choose the
reference observerO: ��t; �x� � ��; 0�. In the construction of
Fermi coordinates (see Fig. 1), the spacelike geodesic
segment from Q to P is given by Eqs. (20) and (21) such
that � � 0 at Q. Therefore,

 eH� � C cos�;
Ci
HC2 tan��Di � 0: (22)

Moreover, �� is the vector tangent to the spacelike geode-
sic segment at Q and is given in �t;x� coordinates by

 �� �
�
� tan�;

Ci
C2cos2�

�
: (23)

It follows from �����0� � 0 that tan� � 0 and hence
Di � 0, i � 1, 2, 3, from Eq. (22). We choose � � 0 for
simplicity; hence, C � exp�H��. Finally, we compute the
spatial Fermi coordinates of P using Eq. (1). It follows that
event P has Fermi coordinates

 T � �; X � �e�H�C: (24)
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It is useful to recognize that � is the radial Fermi coor-
dinate R,

 R �
����������������
�ijXiXj

q
; (25)

so that we find from Eqs. (20) and (21) that the trans-
formation �t;x�� �T;X� is given by

 eHt � eHT cos�HR�; (26)

 x � e�HT
tan�HR�
HR

X: (27)

De Sitter’s metric in Fermi coordinates is ds2 �

g�
dX
�dX
, where

 g00 � �cos2�HR�; g0i � 0; (28)

 gij �
XiXj

R2 �
sin2�HR�

H2R2

�
�ij �

XiXj

R2

�
: (29)

The Fermi coordinates cover a static spacetime region and
are admissible for 0 
 R<�=�2H�; in fact, g00 � 0 for
HR � �=2.

The form of the metric (28) and (29) can be simplified if
we introduce Fermi polar coordinates via

 X1 � R sin� cos�; X2 � R sin� sin�;

X3 � R cos�:
(30)

The Fermi metric in these spherical polar coordinates is
given by
 

ds2 � �cos2�HR�dT2 � dR2

�
1

H2 sin2�HR��d�2 � sin2�d�2�: (31)

It is interesting to note that this form of de Sitter’s metric
already appeared in de Sitter’s original investigations,
namely, in his 1917 paper on the curvature of space
[cf. Eq. (2.5) of Ref. [16] and the discussion therein].

Writing cos2�HR� and sin2�HR� in Eqs. (28) and (29) in
terms of cos�2HR� and the subsequent Taylor expansion of
cos�2HR� about R � 0 would lead to the standard series
expansion of the elements of the metric tensor in Fermi
coordinates as in Eqs. (2)–(4). Such series are uniformly
convergent for all R; however, the Fermi coordinates are
admissible only for 0 
 2HR<�. The hypersurface R �
�=�2H�, where the timelike Killing vector @T becomes
null, is a static limit surface.

III. TIDAL DYNAMICS IN DE SITTER SPACETIME

Let us now consider the radial motion of a test particle
away from the reference observer O at R � 0 in the
spherical Fermi coordinates (30). We concentrate on the
general reduced geodesic Eq. (8). In the case of radial
motion in the spherically symmetric spacetime region of
Eq. (31), the only relevant nonzero connection coefficients

are

 �RTT � �
1

2
H sin�2HR�; �TTR � �TRT � �H tan�HR�:

(32)

Therefore, the radial equation of motion is

 

d2R

dT2
�H tan�HR�

�
cos2�HR� � 2

�
dR
dT

�
2
�
� 0: (33)

This equation can be integrated easily once and the result
for _R � dR=dT is

 

_R 2 � cos2�HR� � �1� V2
0 �cos4�HR�; (34)

where V0 � _R�T � 0� is the initial speed at R � 0. Next,
reducing Eq. (34) to quadrature and using the relation

 

Z dx

cosx
������������������������
1��2sin2x
p �

1

2
��������������
1��2
p

	 ln

������������������������
1��2sin2x
p

�
��������������
1��2
p

sinx������������������������
1��2sin2x
p

�
��������������
1��2
p

sinx
(35)

with �2 � �1� 1=V2
0 , it is possible to show that the

general solution of the radial equation with the specified
initial conditions is

 tan�HR� � �V0 sinh�HT�: (36)

In general, we require that the Fermi time T increase along
the timelike worldline of every observer. Therefore, assum-
ing V0 > 0, we are only interested in the upper sign in
Eq. (36). The modified Lorentz factors � and �S are given
in this case by

 � �
�0

cos2�HR�
; �S �

�0

cos�HR�
; (37)

where �0 � �1� V2
0 �
��1=2�. The speed of the particle ini-

tially increases, remains constant or decreases depending
upon whether V0 is less than, equal to, or greater than the
critical speed 1=

���
2
p

; nevertheless, Eq. (37) indicates that
regardless the particle’s initial speed, as T ! 1 it mono-
tonically approaches a null geodesic at the static limit
surface HR � �=2. Moreover, the speed of the particle,
as ‘‘seen’’ by the reference observer, is zero at this bound-
ary surface, where everything, including light, ‘‘appears
frozen.’’ We note that _R has a maximum at cos�HR� �
�0=

���
2
p

for V0 
 1=
���
2
p

as illustrated in Fig. 2. The case of a
null ray follows from Eq. (36) with the upper sign for V0 �
1; in fact, in this case Eq. (36) also can be expressed as
tanh�HT� � sin�HR�.

Let us now determine to what extent these exact results
are reflected in the first-order tidal terms of the generalized
Jacobi Eq. (11). For radial motion, we find

 

d2R

dT2
� H2�1� 2 _R2�R; (38)
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which follows as well from Eq. (33), since to linear order
we have tan�HR� � HR and cos�HR� � 1. Equation (38)
is thus valid for R sufficiently small compared to H�1.

To study the general behavior of the solution of Eq. (38),
we note that this equation can be integrated once and the
result is

 

_R 2 � V2
c � �V2

c � V2
0 �e
�2H2R2

; (39)

where Vc � 1=
���
2
p

. Let us define a function ���x;
� via
the integral

 ���x;
� :�
Z x

0

dz���������������������
1� 
e�z

2
p ; (40)

where 
 is a constant parameter. Near x � 0, we have the
Taylor expansions

 

���x;
� � �
� 1��1=2

�
x�




� 1

x3

3!

�
3
�
� 2�

�
� 1�2
x5

5!
� � � �

�
; (41)

 x � �
� 1�1=2

�
�� �



3!

�3
� �


�7
� 6�

5!
�5
� � � � �

�
:

(42)

The general solution of Eq. (39) is thus given by

 ���
���
2
p
HR; 2V2

0 � 1� � �HT: (43)

For the physical problem under consideration here only the
upper sign in Eq. (43) is needed; in this case, the motion
can be described in terms of an attractor involving uniform
motion at speed Vc. Explicitly, it is simple to see via the
effective potential in Eq. (39) that for V0 > Vc, the particle
monotonically decelerates and asymptotically (i.e. for
HT ! 1 and HR! 1) approaches the critical speed.
For V0 � Vc, the particle moves uniformly, while for V0 <
Vc the particle monotonically accelerates and asymptoti-
cally approaches Vc. These results, together with the extent
of the (initial) agreement between Eq. (43) and the exact
result given by Eq. (36), are illustrated in Fig. 2. Analytic
estimates for the difference between the exact solution and
the approximation at a given time T can be obtained using
Eqs. (36) and (43).

IV. FERMI COORDINATES IN GÖDEL SPACETIME

Let us next consider the stationary and spatially homo-
geneous rotating universe model discovered by Gödel [17].
It has been discussed by a number of authors [18]. Gödel’s
metric can be expressed as

 ds2 � �dt2 � 2
���
2
p
U�x�dtdy� dx2 �U2dy2 � dz2;

(44)

where

 U�x� � e
��
2
p

�x (45)

and � is a positive constant. The Ricci curvature for this
spacetime is given by

 R�
 � 2�2u�u
; (46)

where u� � ��0 is the four-velocity vector field for free
particles that are at rest in space and coincides with the
timelike Killing vector field @t. The source of the Gödel
gravitational field could be a perfect fluid with velocity u�

and constant density � and pressure ~p given by � � ~p �
�2=�8��, where �@z is the vorticity vector of the geodesic
worldlines of the fluid source. Alternatively, the source of
the Gödel field could be dust of constant density �2=�4��
together with a cosmological constant � � ��2 [19]. The
investigation of the physical aspects of the Gödel universe
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1
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1

FIG. 2. Plot of _R versus HR, 0 
 HR 
 �=2, for V0 � 0:4,
1=

���
2
p

and 0.9. In each panel, the lower (upper) curve represents
the motion according to the exact (approximate) equation of
motion in Fermi coordinates. In the exact case, _R vanishes at
HR � �=2.
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has led to the introduction of various interesting coordinate
systems [20,21]; for instance, Gaussian coordinate systems
for the Gödel spacetime have been constructed in Ref. [20].

As in Sec. II, we are interested in the class of reference
observers that are fixed in space; that is, they have constant
x, y, and z coordinates. These free observers are endowed
with an orthonormal tetrad frame ��

��� that is parallel
transported along their geodesic worldlines. Thus ��

�0� �

u� and ���i�, i � 1, 2, 3, can be expressed as

 ���1� �
~���1� cos�t� ~���2� sin�t; (47)

 ��
�2� � �

~���1� sin�t� ~���2� cos�t; (48)

where in �t; x; y; z� coordinates we have ~���1� � ��1 and

 

~��
�2� �

�
�

���
2
p
; 0;

1

U�x�
; 0
�
; (49)

moreover, ��
�3� � ��3 coincides with the spacelike

Killing vector field @z. Thus at each point in space the
unit gyro axes of the corresponding reference observer
rotate about the z direction with frequency �. For the
sake of simplicity and without any loss in generality, we
choose the reference observer at x � y � z � 0.

It can be shown that all of the nonzero components of the
Riemann tensor for metric (44) can be obtained from

 R0101 � �2; R0202 � �2U2;

R0112 � �
���
2
p

�2U; R1212 � 3�2U2;
(50)

via the symmetries of the Riemann tensor. It is then
straightforward to demonstrate that the nonzero compo-
nents of the projection of the Riemann tensor on the
reference tetrad field can be obtained from

 

FR0101 �
FR0202 �

FR1212 � �2 (51)

via the symmetries of the Riemann tensor. Using Eqs. (2)–
(4), we note that in Fermi coordinates the spacetime met-
ric—containing only the lowest-order tidal terms—would
be
 

ds2 � ��1��2�X2 � Y2�dT2 � dX2 � dY2 � dZ2

�
1

3
�2�XdY � YdX�2: (52)

To find the exact expression for this metric, we need to
specify all of the spacelike geodesics of the Gödel space-
time that are orthogonal to the worldline of the chosen
reference observer O: ��t; �x� � ��; 0�. The spacelike geo-
desics of the Gödel spacetime are given by

 t0 �
���
2
p
Uy0 � E;

���
2
p
Ut0 �U2y0 � k; (53)

 z0 � h; �t02 � 2
���
2
p
Ut0y0 � x02 �U2y02 � z02 � 1;

(54)

where t0 � dt=d�, etc. Here � is the proper length of the
spacelike geodesic and E, k, and h are constants of inte-
gration. We need a general solution of these equations that
would correspond to the geodesic segment from Q to P in
Fig. 1. The vector tangent to this segment, namely,
�t0; x0; y0; z0� at � � 0 is �� at event Q: ��; 0�; moreover,
�� is orthogonal to ��

�0�, i.e.

 � ���
�
�0� � t0 �

���
2
p
Uy0 � E � 0; (55)

where Eq. (53) has been used. Therefore, with E � 0 and
z � h�, Eqs. (53) and (54) imply that

 t0 �
���
2
p k

U
; x02 �

k2

U2 � 1� h2; y0 � �
k

U2 ;

(56)

where h2 
 1. The equation for x can be written as

 U02 � 2�1� h2��2U2 � �2�2k2; (57)

which has the general solution

 U � � cosh�a�� b�; (58)

where a :� �
��������������������
2�1� h2�

p
. Here �> 0 and b are constants

that are related by the requirement that U � 1 at � � 0,
i.e.

 � coshb � 1: (59)

Substitution of Eq. (58) in Eq. (57) results in

 �a �
���
2
p

�jkj: (60)

It follows from the solution of the other equations in (56)
that

 t� � �
2k

�jkj
�arctanea��b � arctaneb�; (61)

 y � �
k���

2
p
��jkj

�tanh�a�� b� � tanhb: (62)

Next, we compute �����i� at Q, where � � 0, and use
Eq. (1) to find Fermi coordinates �T; X; Y; Z� such that

 T � �; X cos�T � Y sin�T � �jkj sinhb; (63)

 X sin�T � Y cos�T � ��k; Z � �h: (64)

We note that X2 � Y2 � Z2 � �2, since h2 � k2=�2 � 1.
It proves useful to introduce cylindrical Fermi coordinates
��;’; Z� such that

 X � � cos’; Y � � sin’: (65)

Then, Eqs. (63) and (64) can be written as

 

���
2
p

�� � a�; cos�’��T� � tanhb;

sin�’��T� � �
k
jkj
�:

(66)
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Consider now Eq. (58) for x: expanding its right-hand
side and using Eq. (66) together with Eq. (59), we find

 e
��
2
p

�x � cosh�
���
2
p

��� � sinh�
���
2
p

��� cos�’��T�:

(67)

Similarly, Eq. (62) for y can be written as

 

���
2
p

�y �
tanh�

���
2
p

��� sin�’��T�

1� tanh�
���
2
p

��� cos�’��T�
; (68)

while Eq. (61) for t� T takes the form

 tan
�

1

2
��T � t�

�

�
�e

��
2
p

�� � 1� sin�’��T�

1� cos�’��T� � �1� cos�’��T�e
��
2
p

��
:

(69)

It is advantageous to introduce new variables u and v by

 u �
���
2
p

��; v � ’��T; (70)

so that the transformation to Fermi coordinates,
�t; x; y; z�� �T; X; Y; Z�, is given by

 tan
�

1

2
��T � t�

�
�

�eu � 1� sinv
1� cosv� �1� cosv�eu

; (71)

 e
��
2
p

�x � coshu� cosv sinhu; (72)

 

���
2
p

�y �
sinhu sinv

coshu� sinhu cosv
; z � Z: (73)

It should be noted that transformations (72) and (73) bear a
strong resemblance to those used by Gödel to show the
rotational symmetry of his metric about the z axis (see
Ref. [17], p. 449).

One can show that

 dt�
���
2
p
Udy � dT �

1

�
�coshu� 1�dv; (74)

 dx2 �U2dy2 �
1

2�2 �du
2 � sinh2udv2�; (75)

so that the Gödel metric

 ds2 � ��dt�
���
2
p
Udy�2 � dx2 �U2dy2 � dz2; (76)

now takes the form
 

ds2 � �

�
dT �

1

�
�coshu� 1�dv

�
2

�
1

2�2 �du
2 � sinh2udv2� � dZ2 (77)

in �T; u; v; Z� coordinates. From �d� � XdX� YdY and
�2d’ � XdY � YdX, the form of the metric in Fermi
coordinates �T; X; Y; Z� is

 

ds2 � ��1� L�dT2 � 2�FdT�XdY � YdX�

� dX2 � dY2 � dZ2 �
H

�2 �XdY � YdX�
2; (78)

where � �
������������������
X2 � Y2
p

, u �
���
2
p

��,

 L�u� �
1

2
sinh2u; F�u� �

�
coshu� 1

u

�
2
;

H �u� �
�
sinhu
u

�
2
� 1� 2F�u�:

(79)

The metric functions L, F, and H depend upon coshu and
cosh�2u�; expanding these in uniformly convergent power
series in u �

���
2
p

�� for any � � 0, we find the complete
tidal expansion of the metric in Fermi coordinates. This
result agrees with Eq. (52) to order �2.

To examine the admissibility of Fermi coordinates in the
sense of Lichnerowicz [4], we need to determine both
(g�
) and (g�
) in Fermi coordinates. Indeed, given our
convention that the signature of the metric is �2,
Lichnerowicz admissibility requires that the principal mi-
nors of these matrices be negative. We recall that for a
symmetric n	 n matrix M, the principal minors are de-
fined by

 det

M11 � � � M1k

..

. ..
.

Mk1 � � � Mkk

2664
3775 (80)

for k � 1; . . . ; n. Employing �T; v; �; Z� coordinates, it is
possible to show that the admissibility conditions for the
inverse metric are satisfied provided 1�H ,

 1�H �

�
coshu� 1

u2

�
�3� coshu�; (81)

is positive. That is, the admissible Fermi coordinates must
remain within a circular cylinder about the Z axis such that
coshu < 3 or � < �max, where

 �max �

���
2
p

�
ln�1�

���
2
p
� �

1:25

�
: (82)

Expressing the Fermi metric (78) in terms of cylindrical
coordinates �T; �; ’; Z�, we find
 

ds2 � ��1� L�dT2 � 2��2FdTd’� d�2

� �2�1�H �d’2 � dZ2: (83)

In this form, the Gödel spacetime region under considera-
tion is stationary and cylindrically symmetric, and the
corresponding Killing vectors are @T , @’, and @Z. It is
important to note that the square of the magnitude of the
azimuthal Killing vector is �2�1�H �, which is positive
only for � < �max. Thus for a given T and Z, the circle of
radius � is spacelike within the admissible region, null at
� � �max and timelike for � > �max. The admissible re-
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gion therefore excludes closed timelike lines that are
known to exist in Gödel spacetime [17,18].

It is interesting to employ Fermi coordinates to study
some of the properties of Gödel spacetime. We recall that
the source of the Gödel solution has four-velocity u� that
coincides with the timelike Killing vector in x� �
�t; x; y; z� coordinates of Eqs. (44) and (45). Under the
transformation x� � ~x� � �T; �; ’; Z�, u� � ~u� �
�@x�=@~x��u�, so that using u� � g�0 we have

 ~u � � �
@t
@~x�
�

���
2
p
U�x�

@y
@~x�

; (84)

which can be simply computed using Eq. (74). For the
metric ~g�
 given by Eq. (83),

�������
�~g
p

� �
���
2
p

���1 sinhu, and
the only nonzero components of ~g�
 are ~g�� � ~gZZ � 1
and

 ~g TT �
�� 3

�� 1
; ~gT’ � ~g’T � ��

�� 1

�� 1
;

~g’’ � �2 �
2 � 1

�2 � 1
;

(85)

where � � coshu. It follows that ~u� � �1; 0;��; 0� in ~x�

coordinates or, expressed geometrically, @t � @T ��@’.
The Gödel spacetime is of Petrov type D and has five

Killing vector fields. In his original paper [17], Gödel
already discussed the simple symmetries associated with
four Killing vectors, which in terms of �t; x; y; z� coordi-
nates of Eqs. (44) and (45) are given by @t, @y, @z, and @x ����

2
p

�y@y. The fifth Killing vector has a more complicated
form

 K � 2
���
2
p
U�1@t � 2

���
2
p

�y@x � �2�2y2 �U�2�@y: (86)

This can be derived directly from the Killing equation;
alternatively, one can use the simple Killing vectors in the
new forms of the metric given in Eqs. (77), (78), or (83) to
find it. For instance, one can use Eqs. (71)–(73) to deter-
mine the partial derivatives of t, x, y, and z with respect to
v. The result is
 

@v �
1

�
�U�1 � 1�@t � y@x

�
1

2
���
2
p

�
�1� �2�2y2 �U�2�@y; (87)

so that the ‘‘new’’ Killing vector @v is expressible in terms
of those in the original coordinate system as

 2
���
2
p

�@v � �2
���
2
p
@t � @y � K: (88)

It is remarkable that pursuing such an approach to the
symmetries of Gödel spacetime, Obukhov already discov-
ered the coordinate transformations (71)–(73) in Ref. [21].

V. TIDAL DYNAMICS IN GÖDEL SPACETIME

Let us now consider the motion of a free test particle in
the exact Fermi coordinate system that we have con-
structed in Sec. IV. Our purpose here is to compare the
dynamics in the exact case with that using only the first-
order tidal terms; that is, the solution of the equations of
motion based on the metric form (52).

To simplify matters, let us limit our considerations to
‘‘radial’’ motion orthogonal to the Z direction. Specifically,
we assume that at T � 0, �X; Y; Z� � 0 and V � �V0; 0; 0�,
where V0 2 �0; 1�. Starting from the exact Fermi metric
(83) in cylindrical coordinates, we find the equations of
motion

 

�
d�
dT

�
2
�
�� 1

3� �
�

1

�2
0

�
�� 1

3� �

�
2
; (89)

 

d’
dT
� �

�� 1

3� �
; (90)

where, as in Sec. IV, � � cosh�
���
2
p

��� and �0 is the
Lorentz factor corresponding to V0. Let w :� �� 1, so
that

 w � 2cosh2

�
�����

2
p

�
: (91)

For 0 
 � < �max, we have that 2 
 w< 4. Equation (89)
can be written in terms of w and reduced to quadrature as

 

Z w

2

�1� 4=x������������������������������������������������
�x� 2��4� �2� V2

0 �x
q dx � �

���
2
p

�T: (92)

Next, formulas 2.261 on p. 81 and 2.266 on p. 84 of
Ref. [22] can be employed to express the general solution
as
 

�
���
2
p

arcsinW1 �
1���������������

2� V2
0

q arcsinW2

�
�
2

� ���
2
p
�

1���������������
2� V2

0

q �
� �

���
2
p

�T; (93)

where W1 and W2 are given by

 W1 �
�4� V2

0 � � �4� V
2
0 ��

V2
0 ��� 1�

; (94)

 W2 �
2� �2� V2

0 ��

V2
0

: (95)

It follows from Eq. (89) that in this ‘‘radial’’ motion with
zero orbital angular momentum about the Z axis, � in-
creases monotonically from zero and after reaching a
maximum at
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 �̂�V0� �
1���
2
p

�
ln
� ���

2
p
� V0���

2
p
� V0

�
(96)

returns to the origin in a time-symmetric fashion. For
V0: 0! 1, �̂: 0! �max; that is, a test particle remains
within the Fermi frame, while a null ray reaches the null
circular boundary. An interesting feature of ��, derived
from Eq. (89), should be noted: it vanishes at � � 0 for
V0 � 1=

���
2
p

, which is the critical speed for relative gravi-
tational motion.

The same kind of motion in the case of first-order tidal
terms, metric (52), turns out to be purely radial with the
equation of motion

 �� � ��2�1� 2 _�2�� (97)

and initial conditions that at T � 0, � � 0 and _� � V0.
This equation is expected to be valid for �� sufficiently
small compared to unity. Equation (97) can be integrated
once and the result is

 _� 2 � V2
c � �V2

c � V2
0 �e

2�2�2
; (98)

moreover, the solution of Eq. (98) can be expressed as

 ���
���
2
p

��; 2V2
0 � 1� � ��T: (99)

It is simple to see from the effective potential in Eq. (98)
that for V0 >Vc, the particle monotonically accelerates to
almost the local speed of light, while for V0 � Vc, the
motion is uniform. For V0 < Vc, the motion along any
radial axis in the �X; Y� plane is periodic and confined to
the interval ���0; �0, where

 �0 �
1���
2
p

�

���������������������������
ln
�

V2
c

V2
c � V2

0

�s
: (100)

We note that for 0<V0 <Vc, �0 > �̂, while for V0 � 0,
�0 � �̂ � 0. These results, together with a comparison
with the exact solution, are illustrated in Fig. 3. Analytic
estimates for the difference between the exact solution and
the approximation can be obtained using Eqs. (93) and
(99).

VI. DISCUSSION

The metrics of de Sitter and Gödel spacetimes in Fermi
coordinates can be expressed in infinite series of tidal terms
that are uniformly convergent over all of space and time;
however, the requirement of (Lichnerowicz) admissibility
limits their respective domains of applicability to 0 

HR< �=2 and 0 
 �� <

���
2
p

ln�1�
���
2
p
�. In terms of

the motion of free test particles in these domains, it turns
out that—for the cases considered in this paper—the first-
order tidal terms already provide good approximations
over significant neighborhoods about the origins of these
domains as illustrated in Figs. 2 and 3. It is possible to
provide detailed analytic estimates of the difference be-
tween the geodesic (deviation) equation and the general-
ized Jacobi equation using the solutions of these equations
of relative motion presented in Secs. III and V.
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APPENDIX A: CRITICAL SPEED

Imagine the radial motion of a swarm of particles away
from a collapsed configuration as in an astrophysical jet.
Relative to a free test observer and in a Fermi coordinate
system based on this observer’s worldline, free particles
starting from the position of the observer and moving
ultrarelativistically outward with speed above Vc � 1=

���
2
p
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FIG. 3. Plot of _� versus ��, 0 
 �� 

���
2
p

ln�1�
���
2
p
�, for

V0 � 0:5, 1=
���
2
p

and 0.9. In the top and middle panels, the lower
(upper) curves represent the motion according to the exact
(approximate) equation of motion in Fermi coordinates. In the
top panel, _� monotonically increases in the approximate case. In
the bottom panel, the inner curve corresponds to the exact
equation of motion.
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decelerate toward the critical speed 1=
���
2
p

. However, free
particles moving ultrarelativistically normal to the jet di-
rection accelerate relative to the observer; via collisions
with neighboring particles, the corresponding tidal energy
can be imparted to the collapsed object’s environment. One
can in fact envision at the position of the observer a critical
velocity cone with its axis along the jet direction and a total
opening angle of 2�c at its vertex such that tan�c �

���
2
p

.
Within this cone free ultrarelativistic particles decelerate
relative to the observer, while they accelerate outside the
cone. For infrarelativistic motion with speed below Vc �
1=

���
2
p

, tidal effects tend to behave more or less as one
would generally expect on the basis of Newtonian gravi-
tation theory. That ultrarelativistic gravitational tidal ef-
fects could exhibit astrophysically interesting features that
would be contrary to Newtonian expectations was first
pointed out in Ref. [11] and has been the subject of several
recent papers [12,13]. It is important to emphasize the
general significance of the critical speed for relative mo-
tion in accelerated systems and gravitational fields. These
results follow from the generalized Jacobi equation that is
based on the lowest-order tidal terms; we explain in
Appendix B why it is impractical to use exact tidal terms
for these astrophysically significant problems.

It is interesting to point out here that in the specific
context of (essentially radial) geodesic motion in the ex-
terior Schwarzschild field, the critical speed was already
discussed by Hilbert [23]. An examination of the early
references to this subject is contained in Ref. [24]. In terms
of Schwarzschild coordinates, the critical speed is given by
vc � 1=

���
3
p

as discussed in detail in Ref. [25]. Using a
more invariant approach, McVittie [26] derived the critical
speed Vc � 1=

���
2
p

for geodesic motion in Schwarzschild
spacetime.

Shapiro’s observation of the gravitational time delay can
be interpreted to imply that light slows down in the gravi-
tational field of a massive body. This is in apparent conflict
with the fact that in Newtonian gravity particles speed up
as they fall toward a massive object. These ideas are
properly integrated in general relativity through the con-
cept of critical speed. In this context, vc and Vc have been
treated in Ref. [25], which should be consulted for a more
detailed treatment of (and further references to) this topic.
Finally, we note that the critical speed vc � 1=

���
3
p

has been
discussed recently in connection with the deflection of
particles by a radially moving gravitational lens [27].

APPENDIX B: FERMI COORDINATES IN
SCHWARZSCHILD SPACETIME

The purpose of this appendix is to bring out the diffi-
culties encountered in attempts to employ explicit Fermi
coordinates in black hole spacetimes. To this end, we
imagine in the following treatment the simplest situation
of astrophysical interest, namely, purely radial motion in
the exterior Schwarzschild gravitational field.

Consider the exterior Schwarzschild spacetime of a
spherical source of mass M represented by the metric
 

ds2 � �

�
1�

2M
r

�
dt2 �

�
1�

2M
r

�
�1
dr2

� r2�d�2 � sin2�d�2� (B1)

for r > 2M. To simplify matters, we limit our treatment to
the motion of test particles along a fixed radial direction,
which we can choose to be the z axis (i.e. � � 0) with no
loss of generality.

To construct Fermi coordinates for this two-dimensional
world, we must specify a reference observer. Imagine,
therefore, a free observer O: ��t; �r� that starts from r0 >
2M at �t � 0 and follows an escape trajectory that reaches
radial infinity with zero speed. The geodesic equations of
motion for this observer are

 

d�t
d�
�

1

1� 2M
�r

;
d �r
d�
�

��������
2M

�r

s
; (B2)

where � is the observer’s proper time such that � � 0 at
�t � 0 and �r � r0. The system (B2) can be integrated and
the result is

 �r � 2Mcosh2w; 3�� 4Mcosh3w � c1; (B3)

 3�t� 4Mcosh3w� 12M
�
coshw� ln tanh

w
2

�
� c2; (B4)

where c1 and c2 are constants of integration and can be
expressed in terms of r0 using the initial conditions.

The observer carries an orthonormal parallel-propagated
tetrad ��

��� along its path. This local frame is given by unit
vectors along the temporal and radial directions

 ��
�0� �

��
1�

2M
�r

�
�1
;

��������
2M

�r

s
; 0; 0

�
; (B5)

 ��
�3� �

� ��������
2M

�r

s �
1�

2M
�r

�
�1
; 1; 0; 0

�
; (B6)

in �t; r; �; �� coordinates, respectively, as well as ���1� and
��
�2�. The axial symmetry of the spacetime about the z axis

implies that a rotational degeneracy exists in the choice of
��
�1� and ��

�2�. But, once these unit vectors are chosen at
�t � 0, they are then parallel transported along the path of
O.

Let us next consider the spacelike geodesics appropriate
to the two-dimensional world of radial motion under con-
sideration. They are given by

 

dt
d�
�

p̂

1� 2M
r

;
dr
d�
� �

����������������������������
p̂2 � 1�

2M
r

s
; (B7)

where p̂ is an integration constant and � � �1. As in
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Fig. 1, we need only those spacelike geodesics that are
orthogonal to the reference worldline at Q. It follows from
�����0� � 0 that

 p̂ � �

��������
2M

�r

s
: (B8)

Moreover, it follows from Eq. (1) that in this case the Fermi
coordinates are

 T � �; X � Y � 0; Z � ��: (B9)

It remains to integrate system (B7) from Q to P for
constant T. This system can be written as

 

dt
dZ
�

p

1� 2M
r

;
dr
dZ
�

�������������������
q2 �

2M
r

s
; (B10)

where p � �p̂ and q are functions of T,

 p �

��������
2M

�r

s
; q �

�����������������
1�

2M
�r

s
: (B11)

The solution of system (B10) is simplified if we introduce a
new quantity � such that

 

��������
r

2M

r
�

1

q
cosh�: (B12)

Then, we find

 � �
1

2
sinh�2�� � �� �

1

2
sinh�2 ��� �

q3

2M
Z; (B13)

 F ��� �F � ��� �
2p
q
�� � ��� �

1

2M
�t� �t�T� � pZ;

(B14)

where �� is given by

 

�� � cosh�1

�
q
p

�
(B15)

and F ��� is defined to be

 F ��� � ln
�
e2� � A

e2� � B

�
: (B16)

Here A and B are functions of T given by

 A � 1� 2p2 � 2pq; B � 1� 2p2 � 2pq: (B17)

Inspection of Eq. (B13) makes it evident that it is not
possible to express � explicitly in terms of T and Z. It
follows that the radial coordinate r in the Schwarzschild
metric (B1) cannot be expressed explicitly in terms of T
and Z. For the explicit expression of the metric in Fermi
coordinates, one must resort to expansions in powers of Z.
It is therefore clear that the transformation �t; r�� �T; Z�
is given only implicitly by Eqs. (B12)–(B17). Taylor ex-
pansions can be used to obtain an explicit form for the

transformation to Fermi coordinates. We find that

 t � �t�T� � f1Z�
1

2!
f2Z2 �

1

3!
f3Z3 �O�Z4�; (B18)

 r � �r�T� � Z�
1

2

M

�r2 Z
2 �

1

3

M

�r3 Z
3 �O�Z4�; (B19)

where

 f1 �
p

1� p2 ; f2 � �
1

�r
p3

�1� p2�2
;

f3 �
1

2�r2

p3�4� p2 � p4�

�1� p2�3
:

(B20)

Using transformations (B18) and (B19), we find the rele-
vant metric coefficients in Fermi coordinates
 

gTT � �1�
2M

�r3 Z
2 �O�Z3�; gTZ � gZT � O�Z3�;

gZZ � 1�O�Z3�; (B21)

in agreement with Eqs. (2)–(4), since in this case

 RTZTZ � �
2M

�r3 ; �r �
�
r3=2

0 �
3

2

��������
2M
p

T
�

2=3
: (B22)

We have shown that it is not possible to provide explicit
Fermi coordinates for radial motion in the exterior
Schwarzschild spacetime. The upshot of our direct ap-
proach is just a different approximation scheme for deter-
mining the series of tidal terms in Eqs. (2)–(4). In this way,
we have also provided the justification for using the gen-
eralized Jacobi equation in our previous work [11–13].

APPENDIX C: EXTENT OF VALIDITY OF THE
GENERALIZED JACOBI APPROXIMATION

The generalized Jacobi Eq. (11) is a first-order approxi-
mation to the geodesic deviation Eq. (8) in Fermi normal
coordinates. The purpose of this appendix is to describe a
general method for determining the time scale over which
the first-order approximation is valid.

It is convenient to express Eqs. (8) and (11) in dimen-
sionless form; to this end, we introduce T :� T=R and
X :� X=R, where R is a constant effective radius of
curvature of the spacetime under consideration such that
jXj< 1 in the domain of admissibility of Fermi coordi-
nates. In terms of U :� �X;V�, Eqs. (8) and (11) can be
expressed, respectively, as

 

dU

dT
� �V;P�U� �Q�U��; (C1)

 

d ~U

dT
� �~V;P� ~U��: (C2)

Here
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Pi�X;V� :� �R2�FR0i0j � 2FRikj0V
k �

2

3
�3FR0kj0V

iVk

� FRikjlV
kVl � FR0kjlV

iVkVl�Xj; (C3)

 Qi�X;V� :� ��R��i�� � �0
��V

i�V�V� � Pi�X;V�;

(C4)

where V� :� dX�=dT � �1;V�.
To estimate the difference between the solutions of

Eqs. (8) and (11), we introduceZ :�U� ~U and note that

 

dZ

dT
� J�U� � J� ~U� � S�U�; (C5)

where

 J�U� :� �V;P�U��; S�U� :� �0;Q�U��: (C6)

The initial conditions for Eqs. (8) and (11) are the same,
hence it follows from the integration of Eq. (C5) that

 jZ�T �j 

Z T

0
jJ�U� � J� ~U�jdT 0 �

Z T

0
jS�U�jdT 0:

(C7)

It is clear from definitions (C3) and (C4) that Q consists of
tidal terms of second, third, and higher orders. Since jXj<
1 and jVj & 1, we may suppose that k DJ k
 A0 and k
S k
 B0 over an interval of interest �0;T  for some posi-
tive constants A0 and B0. Hence it follows from Eq. (C7)

that

 jZ�T �j 
 A0

Z T

0
jZ�T 0�jdT 0 � B0T : (C8)

By an application of Gronwall’s inequality [28], we have
the fundamental estimate

 jZ�T �j 
 B0T eA0T ; (C9)

which implies that

 jX�T � � ~X�T �j 
 B0T eA0T : (C10)

As a measure of the validity of the approximation of
X�T � by ~X�T �, we can determine the timescale T � over
which the magnitude of their difference is less than �, 0<
�� 1; that is,

 B0T �e
A0T � � �: (C11)

Using Lambert’s W function, which is the inverse of the
function x � xex, we find

 T � �
1

A0
W
�
A0�
B0

�
: (C12)

It should be clear that this method provides a general but
crude estimate; indeed, sharper estimates may be obtained
in specific cases using explicit solutions as in Secs. III and
V of this paper.
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