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Abstract 

 We show that any solution of the 4D Einstein equations of general relativity in vacuum 

with a cosmological constant may be embedded in a solution of the 5D Ricci-flat equations with 

an effective 4D cosmological “constant” Λ  that is a specific function of the extra coordinate.  

For unified theories of the forces in higher dimensions, this has major physical implications. 

 

1. Introduction 

The embedding of Einstein’s four-dimensional equations of general relativity in a higher-

dimensional space provides a promising route to the unification of gravity with the interactions 

of particle physics.  Five dimensions is of particular interest, since it represents the simplest ex-

tension of spacetime and is widely regarded as the low-energy limit of even higher-dimensional 

theories with relevance to particles, such as 10D supersymmetry, 11D supergravity and higher-D 

versions of string theory.  In the present account, we present a 4D/5D embedding theorem with 

wide implications for the cosmological “constant” problem, the Weak Equivalence Principle and 

the evolution of the universe. 

Embedding theorems are currently of interest because they constrain the ways in which 

classical general relativity can be welded to higher-D manifolds which may embody the internal 

symmetry groups characteristic of particles.  For example, Campbell’s theorem as recently resur-

rected by Tavakol and coworkers, provides a kind of ladder to go between manifolds whose di-

mensionality differs by one [1-5].  At the low end of this ladder, it implies that the 4D Einstein 

equations may be embedded in the 5D Ricci-flat equations (i.e., those where the Ricci tensor, 

rather than the Riemann-Christoffel curvature tensor, is set to zero).  This provides an algebraic 

basis to physical accounts, such as membrane theory and induced-matter theory [6,7], which are 
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now known to be mathematically equivalent [8,9].  However, the calculation of physical effects 

in such theories still requires the specification of a 5D line element, whose metric coefficients 

represent the potentials, as in the warp metric or the canonical metric [10].  Below, we will use 

the latter, since it simplifies the algebra.  It should be noted, in this regard, that several studies 

have been made of the generality of this 5D metric [11-14].  It is analogous to the synchronous 

metric used in standard 4D cosmology [15-17].  Below we will study its most general form.  We 

will thereby include results found recently on the embedding of 4D conformally-flat cosmologies 

of the de Sitter type which are relevant to the early inflationary period of the universe [14].  Our 

work will also include an exact 5D solution found recently which embeds the 4D Schwarzschild 

- de Sitter solution and is relevant to the solar system [5].  Further, we will obtain exact results 

on the value of the cosmological “constant” which is derived when a 5D metric is reduced to a 

4D one [18-20].  This provides extra insight to the mismatch of this parameter as calculated in 

macroscopic and microscopic situations [21-28], which may be related to the different 4D phys-

ics that follows from different choices of 5D gauge [29].  Our results will also confirm the infer-

ence that the Weak Equivalence Principle, which ensures the equality of accelerations in a 

gravitational field for objects of all types, can be viewed as the 4D dynamical consequence of a 

5D geometric symmetry [30; see also 11, 31, 32 for an extra force which can arise from the fifth 

dimension; and 12, 33 for the motion of massive particles along timelike paths in 4D which can 

be null paths in 5D].  In summary, we will recapture a large number of recent results from our 

theorem, while opening up new routes of investigation. 

Our embedding theorem, which is in essence a special case of that of Campbell but fo-

cussed on physical effects, is proved algebraically in Section 2.  Its consequences – such as exact 

5D solutions – may be verified numerically using a fast computer package, for example GRTen-
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sor.  Those readers who are more interested in physics than mathematics may like to proceed to 

Section 3, where we review our results and discuss their implications for new physics.  These 

include changes in the cosmological “constant” and violations of the Weak Equivalence Princi-

ple, which may be tested using galaxies and artificial satellites [34, 35].  In these and other ways, 

we can test if the world has more than four dimensions. 

2. The 4D Vacuum Einstein Equations as a Subset of the 5D Ricci-Flat Equations: An Embed-

ding Theorem for Spacetime 

In this section, we absorb the speed of light c and the gravitational constant G via a 

choice of units which renders them unity.  We let lower-case Greek letters run 0,123 for time (t) 

and space (xyz or rθ φ ), defining a 4D proper time or interval in terms of a metric tensor via 

2ds g dx dxα β
αβ=  (with summation over repeated indices as usual).  This is part of a 5D interval 

defined analogously via 2 A B
ABdS g dx dx= , where upper-case Latin indices run 0,123,4 and the 

extra coordinate is 4x l≡ .  Our goal is to isolate the most useful form for the 5D line element, 

given the restrictions implicit in the field equations.  In this way, we will derive a special form of 

Campbell’s theorem, which however is physically general and allows us to see how the fifth di-

mension constrains what happens in 4D spacetime. 

The 4D Einstein field equations of general relativity are commonly written as 

8G g Tαβ αβ αβπ+ Λ = . Here, / 2G R Rgαβ αβ αβ≡ −  is the Einstein tensor in terms of the Ricci tensor 

and its scalar, Λ is the cosmological constant, and Tαβ  is the energy-momentum tensor which 

contains the material (non-vacuum) sources.  However, the latter are often negligible in astro-

physical situations.  Then the field equations take the form 
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 ( ), 0,123R gαβ αβ α β= Λ =      , (1) 

defining an Einstein space.  These equations, with appropriate sources and a small or zero value 

for Λ , are known to provide a good description of the dynamics of the solar system and other 

astrophysical systems such as binary pulsars.  Their analog in five dimensions is 

 ( )0 , 0,123, 4ABR A B= = , (2) 

defining a Ricci-flat space.  These equations are often used to provide a unified description of the 

gravitational, electromagnetic and scalar interactions in a classical sense.  Alternatively, they de-

scribe the interactions associated with a spin-2 graviton, a spin-1 photon and a spin-0 scaleron. 

It is already known that equations (2) contain equations (1), by virtue of Campbell’s theo-

rem.  However, to bring out the physics inherent in (2), we need to assume a form for the 5D 

metric.  Following earlier work, we choose to use the five available degrees of coordinate free-

dom to suppress the potentials of electromagnetic type ( )4 0g α =  and flatten the potential of sca-

lar type ( )44 1g = − .  The latter condition means that our coordinate system is analogous to the 

synchronous one of general relativity (though with l replacing t ): the l-lines are the congruence 

of geodesics normal to 4D spacetime, and all observers agree on the value of 4x l= .  The 5D 

metric thus has the form 2 2 2dS ds dl= − , where the spacetime part depends in general on xγ  and 

4x l= .  (We will here and below make the usual assumption that the extra dimension is space-

like.)  However, again following earlier work, it proves useful to factorize the 4D part of the 5D 

metric by an 2l  term.  There are three reasons for this: (1) we can make contact with the large 

literature which already exists on 5D metrics of so-called canonical type (see below); (2) we gain 
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insight by comparison with the Milne model of general relativity (whose 3D part is modulated by 

an analogous factor of 2t ); (3) we may consider the resulting metric as one involving a kind of 

moment in the 2-plane, since 2 2 2dS ds dl= −  under ( )sin /s l h s L→  and ( )cos /l l h s L→ be-

comes ( )22 2 2/dS l L ds dl= − .  Here L is a constant length introduced for the consistency of 

physical dimensions and whose meaning will become clear below.  Then we obtain 

 ( ) ( )22 2/ ,dS l L g x l dx dx dlγ α β
αβ= −      . (3) 

This is the canonical form, which aids understanding in a physical sense but is still general in a 

mathematical sense.  

 The field equations (2) for metric (3) involve components of the 5D Ricci tensor which 

are relatively simple in form.  They are: 

 ( )5
44

2A
R A A A

l l

α
α α αβ

α αβ

∂
= − − −

∂
  , (4a) 

 ( )5
4 ;R A

l

α
µαα

µ µ α

∂Γ
= −

∂
    ,  (4b) 

 ( ) ( )5 4R R Sµν µν µν= −      ,  (4c) 

where Sµν  is a symmetric tensor given by 

 ( )
2

2 2

4 12 3
AlS A A A A lA g

L l l L
µν α α α

µν α µν µ να α µν

∂  ≡ + + − + +  ∂   
     . (5) 
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Here ( )4 Rµν  and µ
νρΓ  are, respectively, the 4D Ricci tensor and the connection coefficients con-

structed from gαβ .  Moreover 

 1
2

g
A

l
αβ

αβ ≡ ∂
     ,  (6) 

where A g Aβ βδ
α αδ= , and the semicolon in equation (4b) represents the usual 4D covariant de-

rivative.  We need to solve (4) in the form 0ABR = .   

This problem has been considered by various workers in the past under different motiva-

tions.  Our motive is the embedding of 4D in 5D, so we now split the general metric tensor in (3) 

into two parts via ( ) ( ) ( )*, ,g x l x l g xγ γ γ
αβ αβχ≡ .  In solving 0ABR =  subject to this split, it is 

convenient to tackle equations (4) by turn.  The working is tedious, so we only note the main 

points in the following three paragraphs. 

In (4a), we have * / 2A gαβ αβχ′=  , where / lχ χ′ ≡ ∂ ∂ , so * 2/(2 )A gαβ αβχ χ′= , 

/(2 )Aα α
β βχ δ χ′= , 2 /Aα

α χ χ′=  and ( )2/A Aαβ
αβ χ χ′= .  The noted equation set to zero then 

gives / 2 / 0A l A l A Aα α αβ
α α αβ∂ ∂ + + =  or ( ) ( )22 / 4 /( ) / 0l lχ χ χ χ χ χ′ ′ ′∂ ∂ + + = .  The general 

solution of this is 

 ( ) ( ) ( )
2

0, 1
l x

x l k x
l

γ
γ γχ

 
 = −
  

     , (7) 
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where ( )0l xγ  is an arbitrary length which we will find in the next paragraph is constant, while 

( )k xγ  is another arbitrary function of integration. 

In (4b), we have ( ) ( )
1 1

2 2
,/ / 2g g x g gα ν αβ

να αβ ν
− − Γ = − ∂ − ∂ =  , so / lα

να∂Γ ∂ =  

( ),2 / / lνχ χ∂ ∂  for the one term.  (Here g is the determinant of the metric tensor and a comma 

denotes the partial derivative.)  The other term is ( ) ( )
1 1

2 2
; /A g g A xα µ µ

ν α ν
−  = − ∂ − ∂ −   

( )/ / 2g x Aν αβ
αβ∂ ∂ .  We rewrite this using ( ) ( )

11 22 2 *g gχ−− = −  and ( )
1

2g Aµ
ν− =  

( )
1

2* / 2g µ
νχχ δ′ − .  The resulting form may be simplified using ( ) ( )

1 1
2 2* * /g g xν

−  − ∂ − ∂ =  
 

* *
, / 2g g αβ

αβ ν .  The result is ( ) ( ); ,1/ 2 / /A lα
ν α νχ χ= ∂ ∂ .  Setting the two terms equal gives 

( )( ) ( ), ,1/ 2 / 2 /ν νχ χ χ χ′ ′=  or ( ), / 0νχ χ ′ = .  The solution is 

 0 constantl =      , (8) 

in terms of the length in (7) above.  

In (4c), we can evaluate Sµν  using (5) and previous relations.  The vanishing of the 

spacetime components of the 5D Ricci tensor is then equivalent to saying that the 4D Ricci ten-

sor is 

 ( )
2

4
2

0

3 lR S g
L l lµν µν µν

 
= =  − 

     . (9) 
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Since an Einstein space as usually defined has ( )4 R gµν µν= Λ , this relation also gives the effective 

cosmological constant for spacetime. 

Let us now draw together our results.  They involve a fiducial value 0l  of 4x l= , a con-

stant length L and a function of the spacetime coordinates ( )k xγ .  The last is arbitrary, so we can 

define a new metric tensor ( ) ( )*g k x g xγ γ
µνµν ≡  in place of the one used above.  Now from (9) 

we find that ( ) ( ) ( ) ( ) ( )4 2 * 23 / 3 /R L k x g x L gγ γ
µν µν µν= = .  Under a constant conformal transfor-

mation of the spacetime metric, ( )4 Rµν   remains invariant; therefore, these are Einstein’s equa-

tions (1) with cosmological constant 23 / L for the metric tensor g µν .  However, for every such 4D 

solution g µν  with cosmological constant 23 / L  of Einstein’s equations, there is a corresponding 

5D solution of the Ricci-flat field equations 0ABR =  with line element 

 ( ) 2
2

2 0l ldS g x dx dx dl
L

γ µ ν
µν

− = −  
  . (10) 

The 4D spacetime metric 2
0(1 / ) ( )g l l g xγ

µν µν= −  has an effective cosmological “constant” 

given by 

 
2

2
0

3 l
L l l
 

Λ =  − 
     . (11) 

This 5D quantity goes back to the 4D one when 0 0l = ; but in general we have an embedding of 

4D in 5D with a cosmological “constant” which depends on the value of the fifth coordinate. 
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3.  Discussion 

In the preceding section, we proved the  

Theorem: Any solution of the 4D Einstein equations of general relativity in vacuum with 

a cosmological constant 23 / L  may be embedded in a solution of the 5D Ricci-flat equations with 

an effective cosmological “constant” given by ( ) ( )22 2
03 / /L l l lΛ = −  , where l is the extra coor-

dinate. 

This has major implications for several physical situations, including: (a) our solar sys-

tem as described by the Schwarzschild-de Sitter solution and other systems such as binary pul-

sars; (b) rapidly-spinning objects described by the Kerr metric, for which significant embeddings 

have been long sought; (c) gravitational waves, which are currently the subject of much research 

as for example by the Laser Interferometer Gravitational-Wave Observatory; (d) the early uni-

verse during its de Sitter-like phase of inflation. 

To completely study these situations would take us far beyond the purview of the present 

work, because each involves a different solution of the Einstein equations.  This is particularly 

true of the dynamics involved, which differs greatly from case to case.  By contrast, the implica-

tions for the cosmological “constant” are generic.  We therefore propose to give a summary of 

the dynamical effects of our embedding, drawing on results in the literature [11-14, 29-38], and 

follow it by a discussion of the possible behaviours for Λ .  These two topics involve respec-

tively the 5D line element (10) which contains a 4D Einstein one, and the corresponding cosmo-
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logical “constant” (11) which contains the Einstein one given by 23 / L . In those relations,  4x l=  

is the fifth coordinate as measured from some fiducial value 0l  and L is a constant length.  When 

0 0l = , (10) takes on the pure-canonical form, for which it is known that the 4D equations of mo-

tion take their standard form: the 4D motion is geodesic in the conventional sense, the Weak 

Equivalence Principle is obeyed and the 4D dynamics do not “know” about the embedding in 5D 

(see below).  Similarly, when 0 0l = , (11) gives 23/ LΛ =  which is a true constant: this is com-

monly taken to involve a cosmological length of order 1028 cm, so Λ  is a small parameter which 

is identical to the standard Einstein one. 

The situation changes significantly when 0 0l ≠ .  While the form of the 5D metric is pre-

served for ( )0l l l→ − , the consequences for classical relativity are analogous to those of symme-

try breaking in quantum field theory. 

Dynamics is altered, notably by the appearance of a fifth force which acts in spacetime.  

This is a general consequence of any 5D metric whose 4D part depends on the extra coordinate 

(the pure-canonical form with a factor 2 2/l L  in front of a 4D part that is independent of l is an 

exception).  The existence of this force has been demonstrated in both induced-matter theory and 

membrane theory, the two currently popular versions of 5D relativity [31, 32].  It is not difficult 

to see why such a force arises, assuming that the dynamics is derived as usual by finding the ex-

tremum of the path length, in the 5D case via 0dSδ   = ∫ .  The result is a set of 5 equations, of 

which the first 4 describe motion in spacetime and the fifth describes motion in the extra dimen-

sion.  However, in general these equations are coupled.  For spacetime, this coupling may be ex-

pressed as a fifth force (per unit mass) or acceleration, which modifies conventional 4D geodesic 



12 

motion.  The fifth force involves the l-dependence of the 4D metric tensor, and the ‘velocity’ 

/dl ds  in the fifth dimension measured with respect to 4D proper time.  If either of these van-

ishes, conventional geodesic motion is recovered.  It is the independence of the 4D metric from 

4x l=  which is the basis for saying that the Weak Equivalence Principle can be viewed as a 

symmetry of the 5D metric [30].  This is bolstered by the fact that the second term in the fifth 

force ( )/dl ds  is not in general zero [39].  The fact that this extra force depends on the velocity 

in the extra dimension shows that its origin is inertial in the Einstein sense (it depends on the ve-

locity of 4D spacetime with respect to the 5D frame).  For metrics which engender a fifth force, 

however small, we expect violations of the Weak Equivalence Principle.  For metrics of the type 

we are discussing (with 0 0l ≠ ), this extra force has been shown [14] to be 

 
( )

0

0

l dl dxf
l l l ds ds

µ
µ  
= −  − 

     . (12) 

The explicit form of this in a given situation depends on ( )l l s=  and ( )x x sµ µ= .  The first of 

these functions has been discussed elsewhere [14].   The second has also been discussed in spe-

cial cases [6]; but the determination of ( )x sµ  can be much simplified in the present case, be-

cause we can prove that the equation of motion in spacetime is equivalent to the geodesic 

equation for the metric tensor ( )g xγ
µν  above. 

To see this, let 2 ( )d g x dx dxγ µ ν
µνσ = , which by (10) is related to the line element of 

spacetime via 
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22
01 lds

d lσ
   = −   

   
  .   (13) 

  

Using this with (12), there comes 

22 2

2 2

d x ds d x f
d d ds

µ µ
µ

σ σ
  = −  

   
  .   (14) 

Moreover, the Christoffel symbols 
µ
αβΓ associated with g µν  are such that  

µ
αβΓ  = µ

αβΓ , as the two 

metrics are related by a constant conformal transformation in spacetime; hence,  

    
2dx dx ds dx dx

d d d ds ds

α β α βµ µ
αβ αβσ σ σ

 Γ = Γ 
 

  .      (15) 

 
Adding this to (14) shows that the 4D part of the equation of motion is equivalent to a geodesic 

worldline in the spacetime with g µν  .  Moreover, given ( )l l s= [14], we can use equation (13) to 

obtain ( )sσ σ= .  Finally, we can combine these results to obtain ( )x sµ , and so evaluate the ex-

tra force (12) noted above. 

 

 That force obviously vanishes for 0 0l = , in which case the 5D metric (10) becomes the 

pure-canonical one we have noted above as exceptional, and the cosmological constant (11) be-

comes the 23/ L  of standard general relativity.  However, (12) does not depend explicitly on the 

constant L, confirming that it is an inertial force and not related to the cosmological-constant 

force (per unit mass) / 3rΛ  typical of Einstein’s theory.  Since dynamics is known to be in good 
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agreement with geodesic motion as based on general relativity, we infer that the extra force (12) 

is small in most situations.  Nevertheless, it could in principle be detected, for example by the 

anomalous motions of galaxies [34], or by violations of the Weak Equivalence Principle in a 

proposed new test of this using artificial satellites [35]. 

The cosmological “constant” associated with a 5D embedding has properties which can 

differ greatly from the 4D situation.  The latter is recovered for 0l l  in (11), in which case the 

5D metric (10) takes the pure-canonical form.  Then, we could not tell from studies of the cos-

mological constant or dynamics if we were living in a 4D world or a 5D world (see above).  

However, there is no a priori reason for assuming anything about the relative sizes of the con-

stants L, 0l  and the coordinate ( )4x l l s= = .  One consequence of this is that Λ  can diverge for 

0l l→ , resulting in a self-consistent model of the inflationary universe in which Λ  is unbounded 

at the big bang and decays to its presently-observed value over cosmological time [14].  There 

are also possible applications of (10) and (11) to the cosmological-“constant” problem, insofar as 

there is no unique value of Λ .  Rather, we have ( )lΛ = Λ  with ( )l l s=  in general.  For example, 

if 0l l  then the 5D metric (10) contains a 4D part which is a factor multiplied onto ordinary 

spacetime, and the cosmological constant (11) becomes ( )( )22
03 / /L l l .  That is, the “standard” 

value is modulated by a factor that depends on the fifth dimension.  (In this regard, it should be 

mentioned in passing that the “standard” value of the cosmological constant in 5D theory is re-

ported in the literature by various workers as 23 / L  or 23 / l  for the pure-canonical metric, de-

pending on whether the prefactor ( )2/l L  on the 4D metric is included or not: see note 40.)  This 
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variability of the cosmological “constant” can be investigated further by considering metrics of 

wider scope than what we have dealt with above.   

Thus we can explicitly include a scalar field ( ),x lγΦ = Φ  and both spacelike and time-

like natures for the extra coordinate ( )1ε = ±  by writing ( )2 ,dS g x lγ
αβ=  

( )2 2,dx dx x l dlα β γε+ Φ .  The motive for this is that the cosmological “constant” is widely re-

garded as measuring the value of a scalar field, the Einstein case corresponding to a perfect sca-

lar fluid with effective density / 8πΛ and pressure / 8π−Λ  (where the gravitational constant and 

the speed of light are unity).  Then the field equations of general relativity read 8G Tµν µνπ=  in 

terms of the Einstein tensor and the energy-momentum tensor (where the latter includes the Λ -

fluid).  Now any solution of the 5D Ricci-flat equation 0ABR =  may be regarded as a solution of 

the 4D Einstein equations if Tµν  has a certain form [7].  It is given by 

 , ; ,4 ,4
,44 ,4 ,428

2
g

T g g g gα β αβ λµ
αβ αβ αλ βµ

επ
Φ Φ

= − − +Φ Φ Φ
 

 ( )2,4 ,4
,4 ,4 ,42 4

g g g g
g g g g

µν
µν αβ αβ µν µν

µν µν

 − + +   
     . (16) 

This is a combination of “ordinary” matter and scalar-field matter, where the energy density of 

the latter implicitly determines a “local” value of the cosmological “constant” that depends on 

the fifth dimension. 

Even for the modest embedding which we have discussed it is clear that the fifth dimen-

sion can affect local 4D physics.  By (10) and (11), the behaviour of the fifth coordinate can ex-
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pand or shrink spacetime and change the value of the effective cosmological “constant”.  De-

tailed analysis of these things should be carried out to see if the world has more than 4 dimen-

sions. 

 

Acknowledgements 

Thanks for past comments go to H. Liu and S.S. Seahra.  This work was supported in part 

by N.S.E.R.C. of Canada and the University of Missouri at Columbia. 

References 

1. Campbell, J.E. 1926, A Course of Differential Geometry (Clarendon, Oxford). 

2. Rippl, S., Romero, C., Tavakol, R. 1995, Class. Quant. Grav. 12, 2411. 

3. Romero, C., Tavakol, R., Zalaletdinov, R. 1996, Gen. Rel. Grav. 28, 365. 

4. Lidsey, J.E., Romero, C., Tavakol, R., Rippl, S., 1997, Class. Quant. Grav. 14, 865. 

5. Fonseca-Neto, J.B., Romero, C., Tavakol, R. 2006, preprint. 

6. Wesson, P.S. 2006, Five-Dimensional Physics (World Scientific, Singapore). 

7. Wesson, P.S., Ponce de Leon, J. 1992, J. Math. Phys. 33, 3883. 

8. Ponce de Leon, J. 2001, Mod. Phys. Lett. A16, 2291. 

9. Ponce de Leon, J. 2002, Int. J. Mod. Phys. 11, 1355. 



17 

10. Seahra, S.S., Wesson, P.S. 2003, Class. Quant. Grav. 20, 1321. 

11. Mashhoon, B., Liu, H., Wesson, P.S. 1994, Phys. Lett. B 331, 305. 

12. Seahra, S.S., Wesson, P.S. 2001, Gen. Rel. Grav. 33, 1731. 

13. Wesson, P.S. 2002, J. Math. Phys. 43, 2423. 

14. Mashhoon, B., Wesson, P.S. 2004, Class. Quant. Grav. 21, 3611. 

15. Misner, C.W., Thorne, K., Wheeler, J.A. 1973, Gravitation (Freeman, San Francisco), p. 

717. 

16. Rindler, W. 2001, Relativity: Special, General and Cosmological (Oxford Un. Press, Ox-

ford), p. 362. 

17. Carroll, S.M. 2004, Spacetime and Geometry (Addison-Wesley, San Francisco). pp. 284, 

447. 

18. Rubakov, V.A., Shaposhnikov, M.E. 1983, Phys. Lett. B 125, 139. 

19. Csaki, C., Ehrlich, J., Grojean, C. 2001, Nucl. Phys. B 604, 312. 

20. Shiromizu, T., Koyama, K., Torii, T. 2003, Phys. Rev. D 68, 103513. 

21. Weinberg, S. 1989, Rev. Mod. Phys. 61, 1. 

22. Ng, Y.J. 1992, Int. J. Mod. Phys. D 1, 145. 

23. Adler, R., Casey, B., Jacob, O.C. 1995, Am. J. Phys. 63, 620. 



18 

24. Wesson, P.S., Liu, H. 2001, Int. J. Mod. Phys. D 10, 905. 

25. Carroll, S.M. 2001, Living Rev. Rel. 4, 1. 

26. Padmanabhan, T. 2002, Class. Quant. Grav. 19, L 167. 

27. Peebles, P.J.E., Ratra, B. 2003, Rev. Mod. Phys. 75, 559.  

28. Padmanabhan, T. 2003, Phys. Rep. 380, 235. 

29. Wesson, P.S. 2002, Class. Quant. Grav. 19, 2825. 

30. Wesson, P.S. 2003, Gen. Rel. Grav. 35, 307. 

31. Wesson, P.S., Mashhoon, B., Liu, H., Sajko, W.N. 1999, Phys. Lett. B 456, 34. 

32. Youm, D. 2000, Phys. Rev. D 62, 084002. 

33. Youm, D. 2001, Mod. Phys. Lett. A 16, 2371. 

34. Wesson, P.S. 2005, Astron. Astrophys. 441, 41. 

35. Reinhard, R. 1996, STEP: Testing the Equivalence Principle in Space (European Space 

Agency, Groningen). 

36. Liu, H., Mashhoon, B. 1995, Ann. Phys. (Leipzig) 4, 565. 

37. Mashhoon, B., Wesson, P.S., Liu, H. 1998, Gen. Rel. Grav. 30, 555. 

38. Mashhoon, B., Liu, H., Wesson, P.S. 1996, Proc. Seventh Marcel Grossmann Meeting, eds. 

Jantzen, R.T., Keiser, G.M. (World Scientific, Singapore) pp. 333-335. 



19 

39. On / 0dl ds ≠ : This may be proved by taking the l-component of the 5D geodesic, along 

with the usual normalization condition for the 4-velocities 1u uα α = , and proving that 

/ 0dl ds =  leads to a contradiction.  (See ref. 6, p. 72.) 

40. On 23 / LΛ =  versus 23 / l : For the canonical metric, there is a ready reduction of the 5D 

field equations to the 4D ones with an effective cosmological constant which is related to 

the 4D Ricci scalar via ( )4 4R = Λ .  For a spacelike extra dimension 0Λ >  while for a time-

like one 0Λ < .  However, the size of Λ depends on whether one considers the 4D part of 

the 5D space with or without the prefactor ( )2/l L .  This affects ( )4 R  and so Λ , and ex-

plains why in the literature there is reported both 23 / LΛ =  and 23/ lΛ = .  Both choices are 

valid, from an algebraic viewpoint.  To see this, consider the metric for 3D Euclidean space 

in spherical polar coordinates: ( )2 2 2 2 2sindr r d dθ θ φ+ + .  For a 2D spherical section, r is 

often suppressed by putting it equal to unity, but clearly this is not justified if one can go 

outside the 2-surface.  From a physical viewpoint, the choice between the two forms for Λ  

depends on what measurements determine how 4D spacetime is embedded in a 5D mani-

fold.  (See ref. 6, p. 140.) 


