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The Newtonian regime of a recent nonlocal extension of general relativity is investigated. Nonlocality is

introduced via a scalar ‘‘constitutive’’ kernel in a special case of the translational gauge theory of

gravitation, namely, the teleparallel equivalent of general relativity. In this theory, the nonlocal aspect of

gravity simulates dark matter. A nonlocal and nonlinear generalization of Poisson’s equation of

Newtonian gravitation is presented. The implications of nonlocality for the gravitational physics in the

solar system are briefly studied.
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I. INTRODUCTION

The Poisson equation of Newtonian gravitation,

r2�ðt;xÞ ¼ 4�G�ðt;xÞ (1)

is a consequence of the inverse-square force law, which is
ultimately based on Solar System observations that origi-
nally led to Kepler’s laws of planetary motion. Einstein’s
gravitational field equations have generalized Eq. (1) into a
consistent relativistic framework that is in good agreement
with present solar system data [1–3]. Nevertheless, on
small laboratory scales, for instance, questions remain
regarding the validity of the inverse-square law of gravita-
tion and hence Eq. (1); at present, efforts continue on
resolving such experimental problems [4–7]. This paper
is about deviations from the inverse-square force law on
galactic scales in order to resolve the problem of the flat
rotation curves of spiral galaxies.

An essential component in the conceptual development
of general relativity (GR) is the way Lorentz invariance is
employed to describe what accelerated observers measure.
Lorentz invariance is a fundamental symmetry and refers
to measurements of ideal inertial observers that move
uniformly forever on rectilinear timelike worldlines; there-
fore, an assumption is required to relate these ideal inertial
observers to actual observers that are all noninertial (i.e.,
accelerated). The special theory of relativity uses the pos-

tulate of locality, namely, the assumption that an acceler-
ated observer is pointwise inertial. The hypothesis of
locality is known to be an approximation [8,9]; in fact,
its domain of applicability is limited to motions with
sufficiently low accelerations. The locality principle is
also an essential ingredient of Einstein’s heuristic principle
of equivalence that is the cornerstone of general relativity.
Nonlocal special relativity is a generalization of the stan-
dard theory that goes beyond the locality postulate and
involves a certain average over the past worldline of the
observer [10]. The principle of equivalence of inertial and
gravitational masses implies a general connection between
inertia and gravitation; therefore, one would expect that the
nonlocality of accelerated observers in Minkowski space-
time would entail a nonlocal theory of gravitation [11].
However, a direct nonlocal generalization of GR has not
been possible; that is, the highly local nature of Einstein’s
principle of equivalence apparently prevents a straightfor-
ward nonlocal generalization of GR. On the other hand,
gauge theories of gravitation are in general less restrictive
[12,13]; hence, in principle, a nonlocal generalization of
GR can be constructed within the gauge approach to gravi-
tation. Indeed, in recent papers [14,15], a nonlocal general-
ization of Einstein’s theory of gravitation has been
presented on the basis of the teleparallel equivalent of
GR [16]. In the simplest possibility, nonlocality is intro-
duced via a scalar kernel. In this approach to nonlocal
gravity, nonlocality can persist in the Newtonian limit of
the theory.
To arrive at this limit in the linear approximation, it has

been assumed, in addition, that the scalar kernelKðx; yÞ is
a universal function of x� y and x is supposed to be in the
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future of y to maintain causality [14,15]. In this case, the
nonlocal gravitational field equations reduce to

G��ðxÞ þ
Z

Kðx; yÞG��ðyÞd4y ¼ �T��; (2)

cf. Eq. (62) of [15]. Here G�� is the linear Einstein tensor,

� ¼ 8�G=c4 and T�� is the energy-momentum tensor of

matter (@�T
�� ¼ 0). In this gravitational background test

particles and light rays, respectively, follow timelike and
null geodesics of the metric tensor g�� ¼ ��� þ h��,

where ��� is the Minkowski metric tensor given by

diagð1;�1;�1;�1Þ and h�� is the linear perturbation

away from flat spacetime. Greek indices run from 0 to 3,
while Latin indices run from 1 to 3.

It is useful to move the nonlocal term to the right side of
Eq. (2) via the Liouville-Neumann method of successive
substitutions. Let us introduce iterated kernels Kn given
by K1ðx; yÞ ¼ Kðx; yÞ and

K nþ1ðx; yÞ ¼
Z

Kðx; zÞKnðz; yÞd4z: (3)

Inspection of Eq. (3) reveals that in each iterated kernel
Knðx; yÞ, with n > 1, causality is preserved so that x is in
the future of y, but in general Knðx; yÞ is no longer a
function of x� y. This is therefore the case for the recip-
rocal kernel Rðx; yÞ as well,

�Rðx; yÞ ¼ X1
n¼1

Knðx; yÞ: (4)

Thus Eq. (2) can be written as

G��ðxÞ ¼ �

�
T��ðxÞ þ

Z
Rðx; yÞT��ðyÞd4y

�
; (5)

so that the nonlocal theory in this approximation is equiva-
lent to GR but with an additional source term. In fact, the
nonlocal aspect of gravity can appear as dark matter given
by the integral transform of T�� by the causal reciprocal

kernel R. In this paper we take the view that R must be
determined from observation; for instance, lensing obser-
vations of colliding clusters of galaxies—such as in the
case of the Bullet Cluster [17]—could provide clues re-
garding the nature of the full time-dependent reciprocal
kernel (cf. Sec. III).

In the Newtonian limit (c ! 1), retardation effects can
be neglected and hence we can assume that each iterated
kernel in Eq. (3) is proportional to �ðx0 � y0Þ. It then
follows from Eq. (3) that

R ðx; yÞ ¼ �ðx0 � y0Þqðx� yÞ; (6)

where q is the spatial convolution kernel. Using this limit-
ing form of the kernel in Eq. (5), we find in the Newtonian
limit the nonlocal Poisson equation [14,15]

r2� ¼ 4�G½�ðt;xÞ þ �Dðt;xÞ�; (7)

where the ‘‘density of dark matter’’ �D is given by

�Dðt;xÞ ¼
Z

qðx� yÞ�ðt; yÞd3y: (8)

Here q is a universal function that is independent of the
nature of the source [14,15]. This simplifying assumption
is relaxed in Sec. II, where we discuss the general form of
the nonlocal kernel in the Newtonian limit.
This paper is based on the assumption that there is no

actual dark matter. According to the approximation scheme
employed in [14,15], the nonlocal aspect of the gravita-
tional interaction acts like dark matter of density �D that is
linearly related to the actual matter density via the kernel q
as in Eq. (8). Consider, for example, the circular motion of
stars in the disk of a spiral galaxy in connection with the
observed flat rotation curves in such galaxies (see, for
instance, [18,19] and references therein). At radius r out-
side the bulge, the Newtonian acceleration of gravity for
such a star is nearly v2

0=r, where v0 is a constant speed.

Poisson’s equation then implies that the corresponding
density of ‘‘dark’’ matter must be v2

0=ð4�Gr2Þ. Ex-

tending this �D to a spherical distribution of dark matter
by assumption, the result can be compared with Eq. (8):
neglecting the extended nature of the galactic bulge and
setting �ðt; yÞ ¼ M�ðyÞ, where M is the effective galactic
mass, we find

qðx� yÞ ¼ 1

4��

1

jx� yj2 ; (9)

where � ¼ GM=v2
0 is of the order of 1 kpc. The universal-

ity of the nonlocal kernel implies that � must be a constant
and hence M / v2

0. The resulting nonlocal modification of

Poisson’s Eqs. (7)–(9) has been previously discussed in
connection with the Tohline-Kuhn scheme [20–22]. In
particular, for a point source �ðt;xÞ ¼ M�ðxÞ, Eqs. (7)–
(9) imply that

�ðt;xÞ ¼ �GM

jxj þGM

�
ln

�jxj
�

�
: (10)

This coincides with Tohline’s original suggestion regard-
ing a modification of Newton’s law of gravitation in order
to account for the flat rotation curves of spiral galaxies
[20]. A lucid and enlightening account of the Tohline-
Kuhn approach is contained in the review paper of
Bekenstein [22].
It is clear from this brief account that, as shown in detail

in [14,15], the Tohline-Kuhn extension of Newtonian
gravitation to the realm of galaxies can be naturally em-
bedded within a nonlocal generalization of GR. However,
the Tohline-Kuhn scheme disagrees with the empirical
Tully-Fisher law [23]. The Tully-Fisher relation involves
a correlation between the luminosity of a spiral galaxy and
the corresponding asymptotic speed v0. This relation,
combined with other empirical data regarding mass-to-
light ratio, roughly favors M / v4

0, instead of M / v2
0
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that follows from the Tohline-Kuhn scheme. Various as-
pects of this issue have been discussed in [22,24,25]. To go
beyond the Tohline-Kuhn scheme, we discuss a general-
ization of Eqs. (7) and (8) in Sec. II, where the Newtonian
limit of nonlocal gravity is discussed in detail. It is hoped
that this more general treatment of the Newtonian limit
could help in the resolution of the discrepancy with the
Tully-Fisher law.

II. NEWTONIAN LIMIT OF NONLOCAL GRAVITY

The linear approximation in nonlocal gravity involves a
linear perturbation away from Minkowski spacetime.
Consider a background Minkowski spacetime with global
inertial coordinates x	 ¼ ðct;xÞ. The gravitational poten-
tials are given by the tetrad field e�

�ðxÞ such that

e�
	 ¼ �	

� þ c 	
�; e�	 ¼ ��

	 � c �
	; (11)

where c �� is proportional to G=c2. The indices are raised

and lowered by means of the Minkowski metric tensor
�	
. The gravitational field strength is then given by

C��� ¼ c ��;� � c ��;�: (12)

We define the modified field strength C��� via

C ��� ¼ C��� þ c ½���;� þ ���ðc ;� � c ��;
�Þ

� ���ðc ;� � c ��;
�Þ; (13)

where c ¼ �	
c
	
. Thus both C��� and C��� are anti-

symmetric in their first two indices. The coordinate com-
ponents of the metric tensor are given by

g�� ¼ �	
e�
	e�


 ¼ ��� þ c �� þ c ��: (14)

The nonlocal gravitational field equations in this linear
approximation scheme then reduce to [14,15]

G��ðxÞ þ ���
Z @Kðx; yÞ

@x�
C���ðyÞd4y ¼ �T��ðxÞ; (15)

whereG�� is the linearized Einstein tensor in terms of g��,

T�� is the energy-momentum tensor of mass-energy in

Minkowski spacetime and @�T
�� ¼ 0. Equation (15) cor-

responds to Eq. (60) of [15]. If Kðx; yÞ ¼ Kðx; yÞ, then
Eq. (15) reduces to Eq. (2), since G�� ¼ @�C

���. In this
case, T�� must be symmetric and hence the antisymmetric

part of c �� does not participate in gravitational dynamics

and can thus be neglected. In general, however, the energy-
momentum tensor is not symmetric; therefore, Eq. (15)
contains 16 field equations for the 16 components of c ��.

The kernel Kðx; yÞ could in general depend upon the
structure of the source in a manner that is consistent with
the linear approximation scheme. This situation is consid-
ered in this section for the nonlocal modification of
Newtonian gravity. However, in previous work [14,15],
this possibility was neglected for the sake of simplicity

and it was assumed instead that Kðx; yÞ is some universal
function of x� y.
To approach the Newtonian limit of the nonlocal theory,

we tentatively assume that the dynamics in Eq. (15) is
dominated by the Newtonian potential � such that

c 00 ¼ c 11 ¼ c 22 ¼ c 33 ¼ 1

c2
� (16)

and c ¼ �2�=c2, while the other components of c ��

may be neglected in the Newtonian limit. This assumption
corresponds to the circumstance that as in GR, one expects
that the main effects would be associated with a diagonal
spacetime metric of the form g�� ¼ ��� þ h��, where

h�� ¼ 2c�2� diagð1; 1; 1; 1Þ. In this case, we find from

Eq. (13) that

c2C0j0 ¼ �2@j�; (17)

moreover, as in GR, c2G00 ¼ 2r2�. Hence, with T00 ¼
�c2 and

Kðx; yÞ ¼ �ðx0 � y0Þkðx; yÞ; (18)

where retardation effects have been neglected, the
Newtonian limit of Eq. (15) is of the form

r2�ðxÞ þX
i

Z @kðx; yÞ
@xi

@�ðyÞ
@yi

d3y ¼ 4�G�ðxÞ: (19)

This is a more general form of Eqs. (7) and (8); further-
more, for simplicity we have suppressed any temporal
dependence. Equation (19) reduces to Eqs. (7) and (8) if
kðx; yÞ ¼ k0ðx� yÞ, for which the reciprocal kernel is
qðx� yÞ; however, as pointed out in [14,15], the kernel
could in general depend upon the Weitzenböck invariants
at x and y. For the case under consideration, these are

c4C���C��� ¼ 6�	
 @�

@x	
@�

@x

; (20)

c4C���C��� ¼ 3�	
 @�

@x	
@�

@x

; (21)

c4C��
�C��

� ¼ 9

�
@�

@x0

�
2 � ðr�Þ2: (22)

It follows that in the limiting case (c ! 1) under consid-
eration, the Weitzenböck invariants all reduce to the square
of jr�j, which is the magnitude of the Newtonian gravi-
tational acceleration. Hence, one may express the kernel as

kðx; yÞ ¼ k0ðx� yÞ þ k00
�
x� y;

jry�j
jrx�j

�
; (23)

so that kðx; yÞ depends on the structure of the source, but is
otherwise consistent with the linear approximation
scheme.
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Eqs. (19) and (23) imply that

r2
x�þ

Z
k0ðx; yÞr2

y�d3y ¼ 4�Gð�þ ��Þ; (24)

where �� is defined by

��ðxÞ ¼ � 1

4�G

X
i

Z @k00

@xi
@�

@yi
d3y: (25)

We recall that qðx� yÞ is reciprocal to k0ðx� yÞ; there-
fore,

r2� ¼ 4�G

�
�þ �� þ

Z
qðx� yÞ½�ðyÞ þ ��ðyÞ�d3y

�
:

(26)

In the absence of ��, Eq. (26) is equivalent to Eqs. (7) and
(8). However, Eqs. (24)–(26) contain a more general treat-
ment of the Newtonian limit of the nonlocal theory. Such a
treatment is necessary in order to help resolve observatio-
nal problems associated with the empirical Tully-Fisher
relation [23].

Equation (26) is a nonlinear integro-differential relation
for the Newtonian potential�. It is clear from Eq. (23) that
scaling � by a constant factor leaves the kernel invariant.
Thus � given by Eq. (26), despite the nonlinearity of this
equation, will be linear in the gravitational constant G, as
would be expected on physical grounds. Moreover, as in
Newton’s theory, the potential � can be determined from
the modified Poisson equation only up to an additive
constant. Solutions of Eqs. (19) and (23), or equivalently
Eq. (26), are not known at present; therefore, in the follow-
ing sections we resort to the discussion of the solutions of
the linear part of the modified Poisson equation.

III. ORIGIN OF KERNEL q

We return to the study of Eqs. (7) and (8). The main
feature of these equations is the existence of a linear
relation between the potential � and matter density �;
that is,

�ðt;xÞ ¼ G
Z

�ðx; yÞ�ðt; yÞd3y: (27)

The Green function � can in this case be simply obtained
from Eq. (10), namely, � is a function of jx� yj and is
given by

�ðx; yÞ ¼ � 1

jx� yj þ
1

�
ln

�jx� yj
�

�
: (28)

It can be easily verified that � is a solution of

r2
x�ðx; yÞ ¼ 4�½�ðx� yÞ þ qðx� yÞ�: (29)

One can develop potential theory (see, for instance, [26])
for nonlocal gravity on the basis of Eqs. (27) and (28).
Moreover, the force of gravity per unit test mass is given by

�r� ¼ �G
Z �

x� y

jx� yj3 þ
1

�

x� y

jx� yj2
�
�ðt; yÞd3y:

(30)

The integral form of Eq. (7)—as well as its general-
ization in Eq. (26)—can be obtained using Green’s theo-
rem; this is the subject of Appendix A.
In this paper, we take the tentative view that qðrÞ must

ultimately be determined via observation. That is, this
nonlocal ‘‘Newtonian’’ aspect of gravity, just as the local
Newtonian inverse-square force law, is a feature of the
gravitational interaction deducible from experience. Thus
there is no fundamental basis at present for the determi-
nation of the specific form of the nonlocal kernel other than
the concordance of Eq. (7) with observational data. As
pointed out in [15], the convolution theorem for Fourier
integrals may be employed to determine q using Eq. (8)
once � and �D are completely known. However, this ex-
pectation is unrealistic at present. Since Newton’s time,
various modifications of the inverse-square force law have
been contemplated [27]; similarly, we can investigate how
the potential (10) would change if the kernel (9) is
modified.
Let us first consider a kernel of the form

qðrÞ ¼ 1

4��

1

r2 þ ‘20
; (31)

where r ¼ jrj and ‘0 is a constant length parameter such
that for ‘0 � 0, Eq. (31) is, unlike Eq. (9), singularity-free.
Integrating the corresponding Eq. (29), it is straightforward
to show that the analog of Eq. (10) is in this case

� ¼ �GM

r
þGM

�

�
ln

�ðr2 þ ‘20Þ1=2
�

�
þ ‘0

r
tan�1

�
r

‘0

��
;

(32)

which reduces to Eq. (10) for ‘0 ¼ 0. We note that the term
in square brackets goes to 1þ lnð‘0=�Þ for r ! 0; there-
fore, the logarithmic singularity in Eq. (10) is avoided by
the introduction of ‘0 � 0. Next, let

qðrÞ ¼ 1

4��

1

r2
e�r=L0 ; (33)

where L0 is a constant length that renders the integral of
Eq. (33) finite over all space. This is necessary to ensure
that the total mass of dark matter is finite; as pointed out in
[15], the total ‘‘dark matter mass’’ is infinite if Eq. (9) is
taken to be valid for jx� yj ! 1. But empirical data are
not available beyond galaxy clusters and it is rather likely
that Eq. (9) must be modified for sufficiently large jx� yj.
As before, it is possible to integrate Eq. (29) in this case
and the result is
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� ¼ �GM

r
þGM

�

�
1þ L0

r
ðe�r=L0 � 1Þ þ Ei

�
� r

L0

�

� C� ln

�
�

L0

��
; (34)

which reduces to Eq. (10) for L0 ¼ 1. Here C ¼ 0:577 . . .
is the Euler constant and we use for the exponential inte-
gral function EiðxÞ the expression

Ei ð�xÞ ¼ Cþ lnxþ X1
n¼1

ð�1Þnxn
n � n! ; x > 0 (35)

and the asymptotic expansion

Ei ð�xÞ ¼ e�x
X1
n¼1

ð�1Þn ðn� 1Þ!
xn

; x ! 1; (36)

see the first formula in (8.214) and formula (8.125) on page
927 of Ref. [28]. It is important to note that for r ! 1, �
has a constant value in this case.

It is clear from these considerations that variations in the
simple form of the kernel (9) can lead to complicated
expressions for the gravitational potential. It is therefore
interesting to consider possible unique characterizations of
this kernel. In this connection, we recall that in Newton’s
theory, the exterior gravitational potential of a point mass is
proportional to 1=r and satisfies Laplace’s equation. In
fact, the fundamental harmonic solution of Laplace’s equa-
tion in n-dimensional Euclidean space is 1=rn�2 for n > 2
and lnr for n ¼ 2. In the n ¼ 4 case, this result has a
natural analog in Minkowski spacetime with inertial coor-
dinates ðct; x; y; zÞ, namely, hW ¼ 0, where

W�1 ¼ �c2ðt� t0Þ2 þ ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2:
(37)

Here h is the d’Alembertian operator defined by h ¼
��	
@	@
. For an interesting discussion of such solutions

and their singularities, see chapter IX of Synge [29].
Let us note, for instance, that Eq. (9) satisfies

r2q ¼ 8��q2: (38)

That is, up to a constant factor, qðrÞ is a time-independent
solution of the semilinear wave equation [30]

h’ ¼ ’2: (39)

It is demonstrated in Appendix B that there is a one-
parameter family of nonzero spherically symmetric solu-
tions of Eq. (38) that vanishes together with all of their
derivatives as r ! 1. These solutions, as discussed in
detail in Appendix B, behave as

1

4��

�
1

r2
� C0

r2þ�

�
(40)

for r ! 1, where � ¼ ð ffiffiffiffiffiffi
17

p � 3Þ=2 and C0 is an arbitrary

constant parameter. With a suitable choice of C0, these
latter solutions would also be consistent with galactic data.
Equations (38) and (39) make it possible to contemplate

appropriate generalizations of Eq. (9). For instance, the
invariance of Eq. (38) under spatial translations indicates
that

1

4��

1

ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2
(41)

is also a solution of Eq. (38) that reduces to qðrÞ; r ¼
ðx; y; zÞ, for r0 ¼ 0. Furthermore, it follows in a similar
way from the scalar field Eq. (39) that time-dependent
kernels can be constructed via Lorentz transformations.
Consider, for instance, a pure boost in the x direction
with speed v; then,

1

4��

1

2ðxþ vtÞ2 þ y2 þ z2
(42)

is a solution of Eq. (39) that reduces to qðrÞ for v ¼ 0. Here
 is the Lorentz factor corresponding to speed v. This
means that one could construct reciprocal kernels involv-
ing two events ðct; rÞ and ðct0; r0Þ using functions of the
form

1

4��

1

2½ðx� x0Þ þ vðt� t0Þ�2 þ ðy� y0Þ2 þ ðz� z0Þ2
(43)

together with an appropriate causal ordering of the events.
In the rest of the paper, we simply employ kernel (9).

IV. EXTENDED SPHERICAL SOURCE

According to the inverse-square force law, a homoge-
neous spherical distribution of matter attracts an external
particle as if the mass of the sphere were concentrated at its
center. However, this important result of Newtonian gravi-
tation would no longer hold in general with a modified
force law. To illustrate this point, Eqs. (27) and (28) can be
used to evaluate the exterior gravitational potential for any
source distribution. Specifically, let us consider a spheri-
cally symmetric mass distribution of radius R0 such that

M ¼ 4�
Z R0

0
�ðrÞr2dr: (44)

At a spacetime position ðt;XÞ exterior to the static source,
R ¼ jXj> R0,

�ðt;XÞ ¼ �GM

R
þ 2�G

�

Z R0

0
FðR; rÞ�ðrÞr2dr: (45)

Here, the first term is due to the fact that in Newtonian
gravitation the exterior potential of any spherically sym-
metric distribution can be replaced at its center by a point
source, whose mass is equal to the total mass of the
spherical distribution. Moreover, in Eq. (45), FðR; rÞ is
given by
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FðR; rÞ ¼
Z �

0
ln

�ðR2 þ r2 � 2Rr cos�Þ1=2
�

�
sin�d�; (46)

since the symmetry of the configuration makes it possible
to choose the z axis to be along the position vector X. It is
straightforward to show that

FðR; rÞ ¼ 2 ln

�
R

�

�
þ f

�
r

R

�
; (47)

where for � ¼ r=R < 1,

fð�Þ ¼ �1þ 1

2�
½ð1þ �Þ2 lnð1þ �Þ � ð1� �Þ2 lnð1� �Þ�:

(48)

Thus Eq. (45) can be written as

�ðt;XÞ ¼ �GM

R
þGM

�
ln

�
R

�

�

þ 2�G

�

Z R0

0
f

�
r

R

�
�ðrÞr2dr; (49)

which is the sum of the contribution of a point massM as in
Eq. (10) and an extra term due to the extension of the
source. One can show that

fð�Þ ¼ 1

3
�2 þ 1

30
�4 þOð�6Þ (50)

using the following relation that is valid for jxj< 1,

lnð1þ xÞ ¼ X1
n¼1

ð�1Þnþ1 x
n

n
: (51)

To get an explicit result, let us assume, for the sake of
simplicity, that �ðrÞ ¼ �0 is a constant. Then, the integral
in Eq. (49) can be evaluated analytically using the formulas
(2.729) on page 205 of Ref. [28]. In any case, the dominant
terms can also be calculated directly from Eq. (50) and the
end result is

� ¼ �GM

R
þGM

�
ln

�
R

�

�

þGM

10�

�
R0

R

�
2
�
1þ 1

14

�
R0

R

�
2 þ � � �

�
: (52)

The force of gravity per unit test mass is conservative
and is given by �r�; for Eq. (52), this points in the
direction of the source and has a magnitude

d�

dR
¼ GM

R2
þGM

�R

�
1� 1

5

�
R0

R

�
2 � 1

35

�
R0

R

�
4 � � �

�
: (53)

Here, the quantity in brackets is close to unity, since R>
R0; therefore, we may conclude that the extended form of a
nearly homogeneous spherical source does not signifi-
cantly alter the main physical results of the Tohline-Kuhn
scheme.

V. SOLAR SYSTEM EFFECTS

It is interesting to search for evidence of nonlocal grav-
ity in the Solar System. As a first step in this endeavor, let
us consider gravitational physics in the Solar System using
a Tohline-Kuhn gravitational potential of the form

� ¼ �GM

r
þGM

�
ln
r

�0 ; (54)

where the gravitational source is at the origin of coordi-
nates. Here �0 is assumed to be a galactic-scale length. For
� ¼ 10 kpc, 2 A:U:=� � 10�9 hence the logarithmic term
in Eq. (54) is expected to be a very small perturbation of
the Newtonian potential. The following preliminary con-
siderations are based on the fact that in the nonlocal gen-
eralization of GR under consideration here, light rays and
test particles move along null and timelike geodesics,
respectively.

A. Time delay

In Newtonian gravity the potential vanishes at infinity by
convention. However, the logarithmic term in Eq. (54) is
assumed to vanish at the radial distance �0. While this is of
no consequence in Newtonian gravity, it matters here as the
spacetime interval depends on �. Consider, for instance,
the gravitational time delay � between events P1: ðct1; r1Þ
and P2: ðct2; r2Þ when a light signal travels from P1 to P2.
Let L ¼ jr2 � r1j and ‘: 0 ! L be the distance along a
straight line from P1 to P2; then, � ¼ t2 � ðt1 þ L=cÞ is
given by [31]

� ¼ � 2

c3

Z P2

P1

�d‘: (55)

It follows from a detailed calculation that

� ¼ 2GM

c3
ln
r2 þ n̂ � r2
r1 þ n̂ � r1 �

2GM

c3�

�
ðn̂ � r2Þ lnr2�0 � ðn̂ � r1Þ

� ln
r1
�0 � Lþ A

�
tan�1

�
n̂ � r2
A

�
� tan�1

�
n̂ � r1
A

���
:

(56)

Here

n̂ ¼ 1

L
ðr2 � r1Þ; A ¼ 1

L
jr1 � r2j: (57)

The net result is a sum of the Shapiro time delay together
with the contribution of the logarithmic term in the poten-
tial. The relative magnitude of these delays is expected to
be similar as in Eq. (54).
In the rest of this section, only the derivative of the

potential is involved; therefore, �0 drops out of our calcu-
lations. For instance, in the gravitational shift of the fre-
quency of light only the difference in the potential� at two
spatially separated events is significant.
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B. Deflection of light

The net deflection angle D of a light ray due to a point
mass M with potential � is given by twice the Newtonian
expectation in the first post-Newtonian approximation,
which for Eq. (54) works out to be

D ¼ 4GM

c2�
þ 2�GM

c2�
; (58)

where � is the distance of the closest approach. The bend-
ing angle is thus slightly larger than the Einstein angle by a
constant. However, the extra deflection is not expected to
remain constant for an extended source (cf. Sec. IV).

The effect of the logarithmic potential is �10�12 of the
Einstein angle for the bending of light by the Sun.

C. Perihelion precession

The gravitational force due to potential (54) is radial and
conservative. Therefore, the perturbing influence of the
logarithmic term in Eq. (54) on Keplerian orbits is such
that the orbit remains planar and the orbital angular mo-
mentum is unchanged. Let ðr; �Þ be polar coordinates in
the orbital plane and consider an unperturbed Keplerian
ellipse given by

r ¼ að1� e2Þ
1þ e cos�̂

; (59)

where a is the semimajor axis of the ellipse, e is its

eccentricity, �̂ ¼ �� g, and g is the argument of the
pericenter. Under the influence of the radial perturbing
acceleration �ðGM=�Þr�1, the orbital elements of the
osculating ellipse vary in accordance with the Lagrange
planetary equations [32]. In this case, we find

da

dt
¼ � 2!a2e

�ð1� e2Þ3=2 ð1þ e cos�̂Þ sin�̂; (60)

dg

dt
¼ !a

�eð1� e2Þ1=2 ð1þ e cos�̂Þ cos�̂; (61)

where ! is the Keplerian frequency of the osculating

ellipse (!2 ¼ GM=a3). Moreover, ½GMað1� e2Þ�1=2 is
the magnitude of the specific orbital angular momentum
and remains constant. Let us note here that only positive
square roots are considered in this paper.

The elements of the osculating ellipse change slowly
according to Eqs. (60) and (61); therefore, it is natural to
average the right-hand sides of these equations over the fast
orbital motion with period T ¼ 2�=!. That is, we define
the average of a quantity Q to be

hQi ¼ 1

T

Z T

0
Qdt; (62)

so that

hQi ¼ ð1� e2Þ3=2
2�

Z 2�

0

Qd�

ð1þ e cos�̂Þ2 ; (63)

since r2d�=dt ¼ ½GMað1� e2Þ�1=2 for the unperturbed
orbit. It follows that hda=dti ¼ 0, so that the semimajor
axis remains unchanged on the average. This is also the
case for the orbital eccentricity due to the constancy of the
angular momentum. Thus the ellipse keeps its shape on the
average but precesses, since�

dg

dt

	
¼ �!a

2�
PðeÞ; (64)

where

PðeÞ ¼ 2

e2
½ð1� e2Þ1=2 � ð1� e2Þ� (65)

decreases from unity at e ¼ 0 to zero at e ¼ 1. Here we
have used the fact that

Z 	0þ2�

	0

d	

1þ e cos	
¼ 2�

ð1� e2Þ1=2 : (66)

One can obtain the same result for the pericenter preces-
sion frequency from the study of the variation of the
Runge-Lenz vector [33].
For the Solar System, the resulting perihelion precession

[34] is retrograde and for � ¼ 10 kpc, it is about 10�3 of
Einstein’s value for Mercury and about 2� 10�2 for Earth,
as there is more ‘‘dark matter’’ to influence the outer orbits.
The general relativistic contribution to the perihelion pre-
cession of Mercury is known at present at the level of about
one part in a thousand; therefore, the possible contribution
of the logarithmic potential is hidden within the present
measurement error. Future improvements in such measure-
ments may make it possible to detect the influence of
nonlocal gravity in the Solar System. Nevertheless non-
local effects appear at present to be too small to be detect-
able. For instance, the contribution of the logarithmic term
to the Pioneer anomaly is �10�4 of the anomalous accel-
eration of the Pioneer spacecraft.
It appears that other anomalies in the Solar System—

such as the flyby anomaly, the possible secular increase in
the Astronomical Unit, and the increase in the eccentricity
of Moon’s orbit (see Ref. [35])—are not directly affected
by the conservative perturbing force under consideration
here. We should also mention that solar system deviations
from GR can, in principle, be used to place lower bounds
on the constant length scales that appear in the logarithmic
term in Eq. (54).

VI. DISCUSSION

Starting from first principles, arguments have been ad-
vanced for a nonlocal generalization of Einstein’s theory of
gravitation [10,11,14,15]. In such a theory, the gravita-
tional field is local, but satisfies nonlocal integro-
differential field equations. These are obtained from the
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local field equations via a nonlocal ‘‘constitutive’’ ansatz,
as described in Appendix C within the general context of
gauge theories of gravitation that are less restrictive than
GR and thus make it possible to implement this procedure.

The Newtonian limit of the simplest nonlocal GR theory
involving a scalar constitutive kernel [14,15] is studied in
this paper. It is shown that the theory reduces to a nonlinear
and nonlocal modification of Poisson’s equation of
Newtonian gravity. The exploration of the nonlinear as-
pects of this equation is beyond the scope of the present
work; therefore, we ignore the nonlinear part of this equa-
tion and concentrate on the simpler case of the linear
Poisson equation. This turns out to be equivalent to the
Tohline-Kuhn scheme of modified Newtonian gravity as an
alternative to dark matter [20–22,24,25]. Indeed, on galac-
tic scales, the nonlocal deviation of the gravitational inter-
action from the inverse-square force law could be
responsible for observational data that have been attributed
to the presence of dark matter. As a preliminary step, we
study some of the implications of the linear nonlocal theory
for observations within the Solar System.

APPENDIX A: INTEGRAL FORM OF POISSON’S
EQUATION

Consider a source density �ðxÞ with compact support in
a spatial volume V bounded by the surface S. Using Eq. (7)
and

r2 1

jx� x0j ¼ �4��ðx� x0Þ (A1)

in Green’s theorem, we find

�ðxÞ ¼ �GI þ S; x 2 V; (A2)

while

GI ¼ S; x =2 V: (A3)

Here

I ¼
Z
V

�ðx0Þ þ �Dðx0Þ
jx� x0j d3x0 (A4)

and S is the surface integral

S ¼ 1

4�

I
S

�
1

R
@�

@n0
��ðx0Þ @

@n0

�
1

R

��
dS; (A5)

whereR ¼ jx� x0j, @�=@n0 :¼ ðrx0�Þ � n̂0 and n̂0 is the
unit vector normal to the boundary surface S.

In Eq. (A3), where x =2 V, and assuming that q and � are
continuous functions, the order of integration in I—when
Eq. (8) is taken into account—may be interchanged such
that

I ¼
Z
V
Kðx;x0Þ�ðx0Þd3x0; (A6)

where K is given by

Kðx;x0Þ ¼ 1

jx� x0j þ
Z
V

qðy � x0Þd3y
jx� yj : (A7)

If �þ �D is bounded for small r ¼ jxj, falls off as

r�ð2þ	Þ with 	> 0 for large r and � ! 0 as r ! 1, then

�ðxÞ ¼ �G
Z �ðx0Þ þ �Dðx0Þ

jx� x0j d3x0: (A8)

To satisfy the conditions for Eq. (A8), we note that for a
smooth source density �ðxÞwith compact support, �D must

be finite and qðxÞ must fall off as r�ð2þbÞ with b > 0 as
r ! 1, since it is simple to check that

r2

�
1

rb

�
¼ bðb� 1Þ

rbþ2
: (A9)

APPENDIX B: NONUNIQUENESS OF q

We consider the time-independent, spherically symmet-
ric solutions of the nonlinear equation

hu ¼ 2u2 (B1)

in spacetime. Using spherical coordinates, the spherically
symmetric, time-independent solutions satisfy the ordinary
differential equation

urr þ 2

r
ur ¼ 2u2: (B2)

In particular, we wish to determine the solutions that are
C1-flat as r ! 1.
The change of variables (see [36,37])

z ¼ r2u; � ¼ lnr (B3)

or, equivalently,

zð�Þ ¼ e2�uðe�Þ; uðrÞ ¼ 1

r2
zðlnrÞ; (B4)

transforms Eq. (B2) to the autonomous ordinary differen-
tial equation

z00 � 3z0 þ 2z ¼ 2z2; (B5)

where the prime signifies differentiation with respect to �.
In the phase plane (see Fig. 1), the corresponding system

z0 ¼ w; w0 ¼ 3w� 2zþ 2z2 (B6)

has two rest points ðz; wÞ ¼ ð0; 0Þ and ðz; wÞ ¼ ð1; 0Þ,
which correspond to the solutions

uðrÞ ¼ 0; uðrÞ ¼ 1=r2 (B7)

of Eq. (B2); these solutions might also be obtained by
inspection of this equation. Both of these solutions and
all of their derivatives vanish in the limit as r ! 1; that is,
both are C1-flat as r ! 1.
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By linearization at the point (0,0) in the phase plane for
system (B6), it follows that this point is a hyperbolic source
with corresponding spectrum f1; 2g. The rest point (1,0)

is a hyperbolic saddle with spectrum f12 ð3�
ffiffiffiffiffiffi
17

p Þ; 12 ð3þffiffiffiffiffiffi
17

p Þg. Moreover, the stable manifold of this rest point is
tangent to the line with parametrization

s �
1
0

� �
þ s

�1
1
2 ð

ffiffiffiffiffiffi
17

p � 3Þ
� �

: (B8)

A solution of the system whose orbit lies on this stable
manifold is asymptotic to a corresponding solution of the
linearization on the linearized stable manifold [which is
exactly the line in display (B8)]. That is, the asymptotic
behavior of a solution on the stable manifold is

� �
1
0

� �
� e��ð�þ�0Þ �1

1
2 ð

ffiffiffiffiffiffi
17

p � 3Þ
� �

; (B9)

where � ¼ 1
2 ð

ffiffiffiffiffiffi
17

p � 3Þ and �0 is an arbitrary real number.

In particular, the asymptotic behavior of the first compo-
nent of a solution on the stable manifold will be

zð�Þ � 1� e��ð���0Þ; (B10)

which corresponds to

uðrÞ � 1

r2
� e��0

r2þ�
: (B11)

Because �> 0, the function u decreases like 1=r2 as
r ! 1.

APPENDIX C: NONLOCAL POINCARÉ GAUGE
THEORY

In the traditional approach to general relativity, the
invariance of the spacetime manifold under coordinate
transformations is emphasized. Thus curvilinear coordi-
nate systems play a dominant role in GR and observers
that occupy fixed positions in space in a given coordinate
system are accelerated in general. The frame field con-
structed from linearly independent vectors that are tangent
to the curvilinear coordinate lines are called natural or
coordinate frames. Such a frame, which is not necessarily
orthonormal, is integrable by definition and hence holo-
nomic. The gravitational field equations are second-order
local partial differential equations for the spacetime metric
in a given system of coordinates.
In the gauge approach to gravity, however, one considers

arbitrary frame fields that are in general nonintegrable, that
is, anholonomic. Taking advantage of the freedom afforded
by the use of anholonomic frames and the associated
geometric concepts (such as torsion), the gravitational field
equations take the form of first-order local partial differ-
ential equations [12,13,38–40].
It turns out that one can extend the first-order local field

equations to nonlocal ones via the introduction of a con-
stitutive kernel as in the phenomenological electrodynam-
ics of media. In this way, a nonlocal generalization of
Einstein’s theory of gravitation becomes possible by start-
ing with the teleparallel equivalent of GR rather than with
GR itself [14,15].
In order to be able to construct a nonlocal generalization

of Einstein’s gravitational theory, the gauge theory of
translations was recently employed in [14,15]. Now, the
gauge theory of translations itself is a somewhat degener-
ate subcase of the gauge theory of the Poincaré group, the
so-called ‘‘Poincaré gauge theory of gravity’’. In turn, the
question arises whether the nonlocal generalization of the
translational gauge theory can be extended to the Poincaré
gauge theory. This is, in fact, the case. We will follow the
method used in [14,15] for the translational gauge theory in
the more general case of the Poincaré gauge theory. We
will use the notation and conventions of [15].
Let the gauge Lagrangian of the underlying Riemann-

Cartan spacetime depend on coframe ei
	, torsion Tij

	

and curvature Rij
	
 ¼ �Rij


	; that is, Lgrav ¼
Lgravðei	; Tij

	; Rij
	
Þ. The matter Lagrangian Lmat, with

the matter field(s) �, is supposed to be minimally coupled
to the geometry. Then the total Lagrangian reads

L tot ¼ Lgravðei	; Tij
	; Rij

	
Þ þLmatðei	; c ; Dic Þ;
(C1)

with the independent field variables ei
	 (coframe), �i

	
 ¼
��i


	 (Lorentz connection) and � (matter field(s)). With
the help of the two excitations

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5
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0.0

0.5

1.0

1.5

FIG. 1 (color online). Phase portrait of system (B6), where w
is drawn versus z.
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H ij
	 ¼ �2

@Lgrav

@Tij
	 and H ij

	
 ¼ �2
@Lgrav

@Rij
	


;

(C2)

the two field equations—the results of the variation ofLtot

with respect to ei
	 and �i

	
—can be written as

DjH ij
	 � E	

i ¼ �	
i; (C3)

DjH ij
	
 � ej½	H

i
jjj
� ¼ �	


i; (C4)

where �	
i ¼ �Lmat=�ei

	 denotes the canonical energy-
momentum tensor density of the matter field and �	


i ¼
�Lmat=��i

	
 ¼ ��
	
i denotes the corresponding canoni-

cal spin (angular momentum) tensor density (note that
these definitions differ slightly from the ones in
Ref. [16]). The energy-momentum tensor density �	

i

should not be confused with the torsion tensor Tij
	.

In Eq. (C3), the energy-momentum tensor of the gauge
fields can be expressed as

E 	
i :¼ ei	Lgrav �H jk

	Tjk
i �H jk

	
Rjk
i
: (C5)

On the other hand, for Eq. (C4) the spin of the gauge fields
is given by ej½	H

i
jjj
�, which depends only on the trans-

lational excitation; thus, it is very simple and we have
already substituted it directly into Eq. (C4).

This represents the general framework for the Poincaré
gauge theory. We still have to specify the explicit form of
the gauge Lagrangian. Following the general scheme of a
Yang-Mills theory, we assume that the Lagrangian is local
and quadratic in torsion and curvature. We denote the three

irreducible pieces of the torsion by ðIÞTij
	, for I ¼ 1, 2, 3,

and the six irreducible pieces of the curvature by ðKÞRij
	
,

for K ¼ 1; 2; . . . ; 6; details can be found in [13,16]. Then
the Lagrangian reads

L
loc

grav¼ 1

2�

ffiffiffiffiffiffiffi�g
p �

�ei	e
j


ð6ÞRij

	
þ�þTij
	

X3
I¼1

bI
ðIÞTij

	

�

þ
ffiffiffiffiffiffiffi�g

p
2�

Rij
	


X6
K¼1

cK
ðKÞRij

	
; (C6)

where � is Einstein’s gravitational constant, � is the
cosmological constant and � is the dimensionless coupling
constant of ‘‘strong gravity,’’ which is mediated via the
propagating Lorentz connection. The constants bI and cK
are dimensionless and should be of order unity.

We compute the excitations from Eq. (C6) by partial
differentiation according to Eq. (C2):

H ij
	 ¼

ffiffiffiffiffiffiffi�g
p
�

X3
I¼1

bI
ðIÞTij

	; (C7)

H ij
	
 ¼

ffiffiffiffiffiffiffi�g
p
�

ei½	e
j

� þ

ffiffiffiffiffiffiffi�g
p
�

X6
K¼1

cK
ðKÞRij

	


¼ H ij
lin

	
 þH ij
qu

	
: (C8)

This is the quadratic local Poincaré gauge theory.
For later purposes, it is convenient to express the

Lagrangian in terms of the excitations:

Lgrav ¼ � 1

2
H ij
lin

	

ð6ÞRij

	
 þ
ffiffiffiffiffiffiffi�g

p
2�

�� 1

4
H ij

	Tij
	

� 1

4
H ij
qu

	
Rij
	
: (C9)

This Lagrangian will also be valid in the nonlocal case. We
now generalize the local ‘‘constitutive relations’’ (C7) and
(C8) to nonlocal ones, again as in [14,15], by using an
unknown scalar kernel �ðx; x0Þ and the world function �
and its derivatives for transporting tensors from x0 to x:

H ij
kðxÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi�gðxÞp
�

Z
Uðx; x0Þ�ii0�jj0�kk0�ðx; x0Þ

� X3
I¼1

bI
ðIÞTi0j0

k0 ðx0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðx0Þ

q
d4x0; (C10)

H ij
lin

klðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi�gðxÞp
�

�i
½k�

j
l�; (C11)

H ij
qu

klðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi�gðxÞp
�

Z
Uðx; x0Þ�ii0�jj0�kk0�ll0�ðx; x0Þ

� X6
K¼1

cK
ðKÞRi0j0

k0l0 ðx0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðx0Þ

q
d4x0; (C12)

H ij
kl ¼ H ij

lin

kl þH ij
qu

kl: (C13)

The final field equations will not be written down ex-
plicitly. We find them as follows: We first substitute
Eqs. (C10)–(C13) into (C9) and (C5) and then into the
field Eqs. (C3) and (C4); the last step involves the sub-
stitution of the new Eq. (C5), after Eq. (C9) is inserted, into
Eq. (C3). In this way, we have a set of 16þ 24 integro-
differential equations in terms of the variables ei

	, �i
	
,

and �.
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